
Peripheral Memory for LLMs:
Integration of Sequential Memory Banks with Adaptive Querying

Songlin Zhai 1 Yuan Meng 1 Yongrui Chen 1 Yiwei Wang 2 Guilin Qi 1

Abstract
Large Language Models (LLMs) have revolution-
ized various natural language processing tasks
with their remarkable capabilities. However, a
challenge persists in effectively processing new
information, particularly in the area of long-term
knowledge updates without compromising model
performance. To address this challenge, this paper
introduces a novel memory augmentation frame-
work that conceptualizes memory as a periph-
eral component (akin to physical RAM), with the
LLM serving as the information processor (analo-
gous to a CPU). Drawing inspiration from RAM
architecture, we design memory as a sequence of
memory banks, each modeled using Kolmogorov-
Arnold Network (KAN) to ensure smooth state
transitions. Memory read and write operations are
dynamically controlled by query signals derived
from the LLMs’ internal states, closely mimick-
ing the interaction between a CPU and RAM. Fur-
thermore, a dedicated memory bank is used to
generate a mask value that indicates the relevance
of the retrieved data, inspired by the sign bit in
binary coding schemes. The retrieved memory
feature is then integrated as a prefix to enhance
the model prediction. Extensive experiments on
knowledge-based model editing validate the effec-
tiveness and efficiency of our peripheral memory.

1. Introduction
Large Language Models (LLMs) have transformed the field
of machine learning, achieving state-of-the-art performance
across a wide range of tasks (Singh, 2023; Naveed et al.,
2024; Chen, 2024; Luo et al., 2024; Azaria et al., 2024). De-
spite these remarkable advancements, LLMs still face chal-

1School of Computer Science and Engineering, Southeast Uni-
versity, Nanjing, China 2University of California, Merced, USA.
Correspondence to: Guilin Qi <gqi@seu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Table 1. Comparison between different types of memory. W.M.:
“Working Memory”, I.M.: “Implicit Memory”, E.M.: “Explicit
Memory”, P.M.: “Peripheral Memory (Ours)”. : “Well Sup-
ported”, : “Partially Supported”, : “Poorly Supported”.

Memory Types W.M. I.M. E.M. P.M.
Scalability

Reusability

Configurability

lenges in integrating new information (Wang et al., 2024b;
Modarressi et al., 2025), particular in incorporating knowl-
edge updates without harming their original performance
(Zhang et al., 2024; Fang et al., 2025). These challenges
are further exacerbated in dynamic real-world applications
(Kaddour et al., 2023; Wang et al., 2024b). Memory aug-
mentation has emerged as a promising solution to address
these challenges (Zheng et al., 2023; Hartvigsen et al., 2023;
Wang et al., 2024a;b; Modarressi et al., 2025), with existing
efforts focusing on working memory (contextual key-values
pairs from specific layers), implicit memory (extra model
parameters), and explicit memory (sparsely activated knowl-
edge circuits) (Yang et al., 2024). However, as summarized
in Table 1, these methods are hindered by limitations in
scalability (i.e., maintaining query effectiveness and effi-
ciency as memory size increases), reusability (i.e., sharing
memory across LLMs with varying architectures to avoid
redundant storage of identical knowledge), and configura-
bility (i.e., dynamically adjusting memory independently of
the LLM, such as memory size and structure). These issues
primarily stem from the tight coupling between memory
and LLM architectures, which restricts dynamic memory
allocation and cross-model adaptability.

Inspired by modern computer architectures that separate
computation and storage (Blum, 1986; Rojas & Hashagen,
2000), we propose a novel memory framework called pe-
ripheral memory. Unlike traditional memory systems, we
decouple memory from LLMs, treating it as an independent
module-hence the term “peripheral”. In this framework, the
LLM functions as the information processor, similar to a
CPU, while the peripheral memory operates like RAM, han-
dling requests from LLMs to retrieve or store information

1

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

as needed. This decoupling offers two key advantages: the
flexibility to design memory independently of the LLM’s
architecture, and the ability to treat memory contents as
dynamic variables, free from constraints imposed by the
LLM (e.g., hidden feature dimension, depth of the model).

For the memory architecture, we draw inspiration from phys-
ical RAM (Random Access Memory) (Jacob et al., 2007),
structuring the peripheral memory as a set of memory banks,
each functioning as a one-bit data unit. The number of mem-
ory banks thus determines the overall memory bandwidth,
enabling flexible scaling of memory capacity. For each
memory bank, we conceptualize its query process as a map-
ping from query signals to memory data, and employ a
Kolmogorov-Arnold Network (KAN) (Liu et al., 2024) to
model this process, due to recognizing KAN’s ability to fit
nonlinear interactions with fewer parameters. This could
ensure efficient and precise memory retrieval while minimiz-
ing computational overhead. Moreover, instead of working
independently, each memory bank refines its query itera-
tively, passing its output to the next one. This design, termed
sequential, allows memory banks to process information
sequentially, promoting smoother integration of information
and enhancing the handling of interdependent queries.

For memory querying, if the required data is not stored in
memory, the query results are likely to be useless or even
detrimental to the LLM. In this case, directly integrating
the query results into the LLM could disrupt its forward ac-
cumulation of information. To ensure query reliability, we
introduce a confidence memory bank that assesses the rele-
vance of retrieved data by generating a trust value derived
from the sequential outputs of previous banks. This mecha-
nism filters out irrelevant or noisy information, ensuring that
only relevant memory content is integrated into the LLM,
thereby preserving its original knowledge and preventing
interference. Memory writing is implemented through a
fine-tuning process, eliminating the need for complex man-
ual operations and improving usability. Furthermore, when
memory reaches capacity, older data is archived, and new
data is stored in fresh memory, enabling efficient long-term
memory management. Extensive experiments on knowledge
editing validate the effectiveness of the proposed peripheral
memory. In summary, the contributions of this paper are:

• We propose a novel peripheral memory for the LLM
that decouples the memory module from the model
itself. This design alleviates the limitations of existing
memory paradigms, enhancing the scalability, reusabil-
ity, and configurability of the memory system.

• We introduce a sequential querying mechanism, where
the output of each memory bank serves as the input to
the next. Additionally, a confidence memory bank is
allocated to generate trust values, minimizing interfer-
ence with the LLMs’ original knowledge.

• We conduct extensive experiments on Knowledge-
based Model Editing, demonstrating the effectiveness
of the proposed memory in improving task perfor-
mance and efficiency, along with enhanced knowledge
storage management.

2. Preliminaries
2.1. Notations and Task Definition

A large language model requires a textual sentence s as
input, which is tokenized into a sequence of tokens s →
{t0, t1, ..., tn, ..., tN}. Each token is converted into a cor-
responding embedding vector which is processed by each
hidden layer of the model. We use the bold notation tln to
represent the hidden representation of tn at layer l, where
1 ≤ l ≤ L indexes the layers of the LLM. Additionally, we
denote the memory as M = {M1,M2, ...,Mk, ...,MK},
with Mk being an individual memory bank (a specific stor-
age unit). To query the memory, a query signal q is used.
After querying, the resulting memory data is denoted as
m = (m1,m2, ...,mk, ...,mK), where mk is the query re-
sult from k-th memory bank (i.e., Mk). For augmenting
LLM with memory, the task can be formulated as:

fΘ(x|M) =

{
y∗, K(x) ∈ M
y, K(x) /∈ M

(1)

where Θ denotes the LLM parameters, and f is a complex
function learned by the LLM. K(x) represents the relevant
knowledge related to input x. If the relevant information is
stored in the memory, i.e., K(x) ∈ M, the LLM is expected
to output the desired prediction y∗. Otherwise, the model
should maintain its original prediction y.

2.2. Architecture of Physical RAM

Physical RAM is a critical component in modern computer
systems, providing high-speed temporary storage for data.
The architecture of RAM typically consists of one or two
memory ranks. Each memory rank is composed of several
memory chips, and each chip contains multiple memory
banks. Specifically, a memory bank refers to a memory array
for storing data, and is indexed by specific row and column
identifiers. Each memory cell within a bank, identified by a
unique (row id, column id), stores specific bits of data and
is predefined by the manufacturer.

For the memory query process, we can conceptualize it as
a mapping: X 7→ Y , where X represents the query signal
from the CPU, and Y is the corresponding sequence of 0
and 1 returned from memory. Specifically, each bit of the
query can thus be modeled as:

ϕk(X|M) = I(X|M) (2)

where ϕk indicates the query function of k-th bit in RAM

2

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

E
m

be
dd

in
g

L
ay

er

O
ut

pu
t L

ay
er

logits

L
ay

er
 #

1

…
…

…

…t11
t1
N

L
ay

er
 #

2

…
…

…

t21
t2
N

…

in
pu

t
se

nt
en

ce
{t 1

,t 2
,..

.,t
N
}

tokens

s

t01 …

t0
n

…
…

…

token features LLM

… … …

…
…

…

tl1
tl
N

…

La
ye

r #
l

L
ay

er
 #

L-
1

…
…

…

tL−11
tL−1

N

…

L
ay

er
 #

L

…
…

…

tL1
tL

N

…

process the information from memoryprocess the information from inputs

tl *

tL−
1

* tL *

q

Converter Converter

… …

…tl
N t*

Interact with Peripheral Memory

query signal memory signal
m

memory featurequery feature

query return

…

Peripheral Memory

α confidence

Memory
Bank

Sign-Bit

qiQuery Signal

qi,K−1

Memory Feature

qi,K−2 qi,Kqi,1 qi,2 qi,3 qi,k

… …

M1 M2 M3 MK−2 MK−1 MKMk

… …

M
em

or
y

C
h

ip

m
i,1

si
gn

al
 f

ro
m

 la
st

 b
it

m
i,2

si
gn

al
 f

ro
m

 la
st

 b
it

m
i,K

−2
si

gn
al

 f
ro

m
 la

st
 b

it

m
i,K

−1
si

gn
al

 f
ro

m
 la

st
 b

it

mi

Query Result

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗Gating

Convertor

mi,1 mi,2 mi,3 mi,k mi,K−2 mi,K−1 mi,K

Gated Memory Feature

… …

… …

Figure 1. Framework of peripheral memory. Reading&Writing operations are achieved by the query signal from LLM hidden states.

M. I is an indicator function that outputs either 0 or 1. In
this context, I(X|M) represents the presence or absence of
the desired bit of information from the physical RAM M
based on the query signal X .

3. Methodology
Different from previous memory architectures that directly
store information within the LLM, our peripheral memory
decouples the memory module from the LLM, treating it
as an independent storage component. In this design, the
content stored in memory is treated as a dynamic variable,
allowing the LLM to dynamically retrieve or write the nec-
essary information as needed. Figure 1 illustrates the overall
framework. The memory is connected to the LLM through
a specialized converter, which acts like signal cables to
facilitate feature conversion between the two components.
Memory operations are driven by the hidden state of the
last token from the LLM (serves as the query signal), and
the query result is then integrated into the LLM as a prefix,
enhancing the generation process.

3.1. Element-Wise Peripheral Memory

3.1.1. STRUCTURE OF MEMORY

Similar to physical RAM, our peripheral memory is com-
posed of a set of distinct memory chips. However, unlike
physical RAM, we simplify the memory architecture by as-
signing each memory chip to contain a single memory bank,
with each bank representing a one-bit data unit1. Figure 2
depicts the detailed architecture of the proposed peripheral
memory. In line with Eq. 2, the query of each memory bank
(e.g., Mk) is conceptualized as a mapping from the query
signal to the query result, formulated as:

mk = Mk(qk) (3)

1The terms memory chip and memory bank are equivalent in
peripheral memory, as each chip contains only one memory bank.

where mk is the memory data at k-th element in the memory
feature vector m, retrieved by qk. Specifically, qk is also
the k-th element in the query signal q.

Unlike the discrete bits in RAM, which can be understood
as indicator functions, the query function in peripheral mem-
ory is designed to be continuous and smooth to avoid in-
formation loss. To model this smooth function for each
memory bank (also denoted as Mk for simplicity), we em-
ploy Kolmogorov-Arnold Networks, which are capable of
modeling complex, non-linear relationships in continuous
spaces with fewer parameters (Kolmogorov, 1957; Liu et al.,
2024). Formally, the memory bank Mk is defined as:

Mk(qk) =
∑Dk

i=1
gki (h

k
i1(qk)) (4)

where Dk is the memory depth of Mk, which can be config-
ured freely. gki and hk

i1 are simple one-variable continuous
functions parameterized by B-spline function (Aziznejad &
Unser, 2019; Bohra et al., 2020; Liu et al., 2024).

3.1.2. SEQUENTIAL QUERYING MECHANISM

As shown in Eq. 3, each memory is independently retrieved
by its corresponding query signal qk. To enable richer in-
teractions between memory banks and allow the memory
system to capture complex patterns in query data, we intro-
duce a sequential querying mechanism. That is, the output
of one memory bank serves as the input to the next. As such,
the querying process in Eq. 3 can be extended as:

mk = Mk(mk−1, qk), 2 ≤ k ≤ K (5)

where mk−1 denotes the query result of the last memory
bank Mk−1. From Eq. 5, we can draw that the peripheral
memory contains a total of K memory banks to store data,
with the first memory bank accepting only the query signal
(formulated by Eq. 3), and subsequent memory banks ac-
cepting both the query signal and the query result from the

3

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

Query
Signal

Pe
ri

ph
er

al
 M

em
or

y

si
gn

al
 f

ro
m

 la
st

 b
an

k

si
gn

al
 f

ro
m

 la
st

 b
an

k

si
gn

al
 f

ro
m

 la
st

 b
an

k

si
gn

al
 f

ro
m

 la
st

 b
an

k

M1 M2 Mk MK−1 MK

Converter

⊗ ⊗ ⊗ ⊗ ⊗
Gating

Gated Memory Feature

Memory
Feature

Memory
Signal

Confidence
Score

q1 q2 qk qK−1 qK
… … q

α

… …

… …

… …

m1 mK

m

t*

tl*

m
1 m
k

m
2

m
K

−1

MK+1

mK

mem-arch

mem-arch

mem-archFigure 2. Architecture of the peripheral memory.

previous bank. For the memory bank where 2 ≤ k ≤ K,
Eq. 4 can be redefined as:

Mk(mk−1, qk) =
∑Dk

i=1
gki (h

k
i1(qk) + hk

i2(mk−1)) (6)

where hi2(mk−1) represents the processing of information
from the previous memory bank (Mk−1), also parameterized
by the B-spline function.

3.1.3. CONFIDENCE MEMORY BANK

To ensure the quality of the retrieved information and pre-
vent disturbances to the LLM’s existing knowledge, we
introduce a confidence memory bank, represented as MK+1

in Figure 2. This confidence memory bank receives the
memory states output by the previous memory bank (MK)
and calculates a trust value to assess the relevance of the
data retrieved from memory. This value reflects the con-
fidence level in the retrieved memory and acts as a mask
to filter and refine the retrieved information before it influ-
ences the LLM’s processing pipeline. The confidence value
α predicted by the MK+1 memory bank is formulated as:

α = MK+1(mK) (7)

Analogously, the MK+1 memory bank can be modeled as∑DK+1

i=1 gK+1
i (hK+1

i1 (mK)). The masking operation is par-
ticularly useful in Knowledge Updates: where new, rele-
vant knowledge should be prioritized over outdated data.

3.2. Memory Reading & Writing

Before reading from a peripheral memory, we first plug it
into an LLM. Then, a query feature from the LLM is used
to retrieve the memory, defined as:

tl∗ = σ(α) · t∗ = σ(α) · {M((tlN)⊤W0)
⊤W1} (8)

where tlN is the hidden state of the last token at layer l. W0

converts the token feature into the query signal, acting as
the outlet cable. Similarly, W1 maps the memory data m
into the memory feature adapted to LLM hidden feature
space, which can be understood as the leading in cable. The
confidence value α is normalized by the sigmoid function
σ, and then is used to mask the memory feature element by
element. tl∗ is the masked memory feature, which is merged
as a prefix vector into the LLM. Eq. 8 allows the memory
and the LLM to be used effectively as a unified system.
As such, the memory writing could be simply achieved
by performing a finetuning process with setting requiring
gradients of the memory. After the peripheral memory is
“full”, we can unplug and archive it and store data in a fresh
one2. The memory bandwidth K plays a critical role in
determining the read/write performance of the peripheral
memory. To ensure K operates within an optimal range, we
leverage the Information Abundance in Guo et al. (2024) to
determine that its lower bound is approximately 64.

4. Experiments
In this section, we evaluate the proposed peripheral mem-
ory within a representative scenario involving knowledge
updates, specifically Knowledge-based Model Editing. We
primarily focus on analyzing its strengths in terms of scal-
ability, reusability, and configurability, highlighting its ad-
vantages compared to existing memory architectures.

4.1. Knowledge-based Model Editing (KME)

4.1.1. EXPERIMENTAL SETUP

The KME task evaluates the ability of the proposed periph-
eral memory to integrate specific knowledge updates into an
LLM while ensuring that its original information remains
unaffected. Following prior studies (Mitchell et al., 2022a;
Meng et al., 2022; 2023; Li et al., 2024), we also utilize
the EDIT sets of ZSRE (Levy et al., 2017) and COUN-
TERFACT (Meng et al., 2022) to comprehensively evaluate
all competing methods. To assess editing performance, we
adopt three fundamental metrics, i.e., Efficacy, Generality,
and Locality. Notably, we consider the consecutive editing,
where a series of sequential updates is performed without
parameter roll-back. This setting effectively tests memory’s
capability to manage long-term knowledge updates.

All experiments are conducted on an NVIDIA A100-SXM4-
40GB machine. The baseline methods are implemented
using the widely adopted EasyEdit toolkit3, ensuring repro-
ducibility, reliability, and adherence to established research
practices. Hyperparameter settings for all baseline models
are based on recommendations provided by EasyEdit.

2Section 4.4 discusses memory storage capacity.
3https://github.com/zjunlp/EasyEdit

4

https://github.com/zjunlp/EasyEdit

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

Table 2. Editing performance of all compared methods under 3K consecutive editing. For our method, query features are derived from
the hidden states (the last token representation) of the model’s 24-th layer.

Editor ZsRE COUNTERFACT
Efficacy Generality Locality Score Efficacy Generality Locality Score

GPT-J (6B) (Wang & Komatsuzaki, 2021) 0.2165 0.2110 / 0.2138 0.0030 0.0023 / 0.0027

FT-L (Zhu et al., 2020) 0.1104 0.0841 0.0159 0.0701 0.2133 0.0797 0.0127 0.1019
LoRA (Hu et al., 2022) 0.0111 0.0115 0.0005 0.0077 0.0097 0.0067 0.0013 0.0059
ROME (Meng et al., 2022) 0.3187 0.2810 0.1829 0.2609 0.0013 0.0020 0.0003 0.0012
R-ROME (Gupta et al., 2024a) 0.5478 0.5176 0.1333 0.3996 0.6927 0.3740 0.4187 0.4951
MEMIT (Meng et al., 2023) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AlphaEdit (Fang et al., 2025) 0.0000 0.0000 0.0005 0.0002 0.0000 0.0000 0.0000 0.0000
PMET (Li et al., 2024) 0.0002 0.0002 0.0003 0.0002 0.0000 0.0000 0.0000 0.0000
KN (Dai et al., 2022) 0.0000 0.0000 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000
EMMET (Gupta et al., 2024b) 0.5521 0.5167 0.3747 0.4812 0.7020 0.4117 0.3303 0.4813
GRACE (Hartvigsen et al., 2023) 0.3368 0.0126 1.0000 0.4498 0.0002 0.0000 0.9939 0.3314
IKE (Zheng et al., 2023) 0.9973 0.9898 0.4764 0.8212 0.9900 0.4223 0.6393 0.6839
WISE (Wang et al., 2024a) 0.4598 0.4185 0.9895 0.6226 0.3420 0.0907 0.0790 0.1706

Ours (without 1K archive) 0.9934 0.6619 1.0000 0.8851 0.9240 0.1647 1.0000 0.6962

Ours (with 1K archive) 0.9985 0.6941 1.0000 0.8975 0.9907 0.2340 1.0000 0.7416

Llama 3 (8B) (Llama Team, 2024) 0.2627 0.2598 / 0.2613 0.0087 0.0075 / 0.0081

FT-L (Zhu et al., 2020) 0.0769 0.0666 0.0069 0.0501 0.0575 0.0047 0.0013 0.0212
LoRA (Hu et al., 2022) 0.1145 0.1116 0.0535 0.0932 0.0077 0.0117 0.0017 0.0070
ROME (Meng et al., 2022) 0.0339 0.0280 0.0015 0.0211 0.2507 0.1323 0.0097 0.1309
R-ROME (Gupta et al., 2024a) 0.0271 0.0243 0.0035 0.0183 0.4892 0.3662 0.0147 0.2900
MEMIT (Meng et al., 2023) 0.0000 0.0000 0.0396 0.0132 0.0000 0.0000 0.0722 0.0241
AlphaEdit (Fang et al., 2025) 0.0001 0.0000 0.0003 0.0001 0.0033 0.0017 0.0007 0.0019
PMET (Li et al., 2024) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMMET (Gupta et al., 2024b) 0.0517 0.0486 0.0043 0.0349 0.5450 0.3882 0.0128 0.3153
GRACE (Hartvigsen et al., 2023) 0.0624 0.0095 1.0000 0.3573 0.0003 0.0000 0.9938 0.3314
IKE (Zheng et al., 2023) 0.5233 0.5231 0.5289 0.5251 0.0055 0.0043 0.6509 0.2202
WISE (Wang et al., 2024a) 0.3348 0.3283 0.9997 0.5543 0.1473 0.0763 0.9907 0.4048

Ours (without 1K archive) 0.9597 0.5619 1.0000 0.8405 0.9038 0.2168 1.0000 0.7069

Ours (with 1K archive) 0.9805 0.6123 1.0000 0.8643 0.9915 0.3108 1.0000 0.7674

4.1.2. OVERALL COMPARISON

Table 2 summarizes the performance of all compared meth-
ods under 3K consecutive updates. The results highlight
several key observations (1) Our method significantly out-
performs all baselines across most metrics, achieving state-
of-the-art results. Notably, even when compared to the latest
memory-based KME methods, such as GRACE, IKE and
WISE, our method demonstrates a significant performance
advantage. This underscores the scalability and robustness
of our framework, particularly in handling large-scale mem-
ory updates. Additionally, our method consistently achieves
perfect performance on Locality, benefiting directly from
our novel memory architecture, the “peripheral” memory.
Specifically, when original predictions from the model are

desired, the peripheral memory can simply be “unplugged”
without causing any modifications to the original model.
(2) While EMMET and IKE achieves slightly better perfor-
mance in the Generality on COUNTERFACT, its Locality
score is considerably lower than that of ours. This suggests
that EMMET introduces substantial disruptions to the origi-
nal model. (3) Localization-based methods, such as ROME,
AlphaEdit and PMET, suffer severe performance degrada-
tion after consecutive updates, with their scores eventually
dropping to zero. This indicates that these methods not only
fail to retain newly edited knowledge but also introduce
significant interference, severely compromising the origi-
nal model’s integrity. As a result, they are unsuitable for
large-scale or long-term knowledge editing.

5

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

Figure 3. Performance of long-term knowledge updates on ZSRE
(left) and COUNTERFACT (right) based on Llama3 (8B). Our
method is evaluated under 1K archiving.

4.1.3. SCALABILITY: LONG-TERM RETENTION

To further investigate the scalability of our method, we
conduct experiments by increasing the number of reads
and writes in memory from 1K to 10K, and analyzing
the effects of long-term editing. Figure 3 presents the re-
sults of our methods compared to several strong memory-
based methods across varying numbers of edits. The results
demonstrate that our peripheral memory effectively adapts
to a larger number of memory updates without experienc-
ing performance degradation. In contrast, WISE (implicit
memory) exhibits a sharp decline in efficacy and generality
as the number of edits increases. Meanwhile, GRACE and
IKE (working memory) exhibit a more stable trend but con-

Figure 4. Writing efficiency of extensive knowledge updates on
ZSRE (top) and COUNTERFACT (bottom) based on Llama3 (8B).
Our method is evaluated using parallel storage of a 1K archiving.

Table 3. Reusability of peripheral memory. Memory writing is per-
formed on Llama3 (8B), after which it is shared with other LLMs
for reading only. The values labeled with † represent performance
with shared memory, while those without † indicate performance
with fresh memory written directly on the LLM itself.

Models Efficacy Generality Locality Score

ZSRE
Llama3 (8B) 0.9907 0.6090 1.0000 0.8666

Gemma2-it (2B) 0.9918 0.6989 1.0000 0.8969
0.9713† 0.6635† 1.0000† 0.8783

Phi3 (3.8B) 1.0000 0.6547 1.0000 0.8849
0.0000† 0.0000† 1.0000† 0.3333

COUNTERFACT
Llama3 (8B) 0.9990 0.3150 1.0000 0.7713

Gemma2-it (2B) 0.9890 0.1948 1.0000 0.7279
0.9790† 0.2045† 1.0000† 0.7278

Phi3 (3.8B) 0.9997 0.2875 1.0000 0.7624
0.9997† 0.3075† 1.0000† 0.7691

sistently underperform compared to our method. This lower
performance is likely due to noise accumulation in working
memory, which affects retrieval accuracy over time.

4.1.4. SCALABILITY: STORAGE EFFICIENCY

In scenarios involving a large number of edits, both per-
formance and storage efficiency are critical considerations.
Figure 4 illustrates the storage efficiency of our method com-
pared to others under extensive editing conditions. From
the 1K update results, we observe that while our model’s
write latency falls between GRACE (working memory) and
WISE (implicit memory), it benefits from high configurabil-
ity (see Section 4.4), enabling efficient parallel writes. The
results ranging from 1K to 10K further illustrate that, ow-
ing to its parallel storage capability, our method maintains
consistently stable and low efficiency values across scales.
Among the baselines, WISE exhibits the longest write time
since it internalizes knowledge directly into model param-
eters, whereas GRACE achieves the shortest latency due
to its lightweight working memory mechanism. Addition-
ally, ROME, despite being an efficient localization-based
approach, takes longer than memory-based methods.

4.1.5. REUSABILITY: MEMORY SHARING

As discussed in Section 3.1, the proposed peripheral mem-
ory is entirely independent of the underlying LLM and oper-
ates with a high degree of autonomy. This independence en-
dows our memory with a significant advantage, i.e., reusabil-
ity. Specifically, knowledge stored in one LLM’s peripheral
memory can be seamlessly shared with other LLMs, elim-

6

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

Figure 5. Effects of memory bandwidth (top) and depth (bottom)
based on Gemma2-it (2B) and ZSRE with 1K consecutive editing.

Figure 6. Storage capacity with bandwidth 512 and depth 11 based
on Gemma2-it (2B) and ZSRE under consecutive editing.

inating the need for redundant knowledge storage. This
follows the principle: store once, use everywhere. Table 3
presents the results of 1K memory sharing, where knowl-
edge is first stored using Llama3 (8B) and then transferred
to two different LLMs4: Gemma2-it (2B) and Phi3 (3.8B).
The results demonstrate that even when memory is shared
across LLMs with different architectures, knowledge reten-
tion remains consistently high, achieving nearly identical
effectiveness as knowledge stored from scratch. In contrast,
existing memory architectures do not support cross-model
reuse due to constraints such as incompatible feature di-
mensions, parameter spaces, and internal representations.
Notably, the performance of Phi3 under shared memory of
ZSRE is 0. The possible reason is that ZSRE, being a zero-
shot relation extraction dataset, relies more on the LLM’s
internal knowledge rather than externally stored memory.

4.2. Query Features from Different Hidden Layers

In this paper, we directly utilize hidden-layer representations
as query features. However, selecting features from differ-
ent layers can significantly impact memory performance.
Figure 7 illustrates memory performance of Accuracy and
Generality, under 3K consecutive edits (with a 1K archive).
As depicted, employing features from earlier layers (i.e., lay-
ers 1–7) as queries results in poor accuracy and generality,
mainly because these layers predominantly handle low-level

4We utilize the hidden states from the 24-th layer of Gemma2
and the 28-th layer of Phi3 as the query features.

Figure 7. Performance of queries from different layers within
Llama3 (8B) on ZSRE (top) and COUNTERFACT (bottom).

linguistic information, thereby lacking sufficient semantic
integration in the final token representations. As we move
the query to higher layers, performance on both metrics
gradually improves and ultimately stabilizes. However, for
very late layers (i.e., layers 30–32), the model’s performance
on ZSRE experiences a marked decline. Therefore, to main-
tain consistently stable and high performance, we select the
24-th layer as our query layer throughout this paper.

4.3. Memory Configurability

4.3.1. MEMORY BANDWIDTH

To evaluate the effects of memory bandwidth, we vary the
number of memory banks from 32 to 1024 (i.e., the num-
ber of parallel storage units) while keeping the memory
depth fixed at 11. As shown in the top section of Figure 5,
increasing the memory bandwidth initially improves task
accuracy but results in diminishing returns at larger scales.
With 512 memory banks (approximately 0.2M parameters),
the memory achieves near-perfect accuracy (0.99), demon-
strating sufficient capacity for basic operations. However,
when scaling to 1024 memory banks (about 0.4M parame-
ters), accuracy drops to 0.98, likely due to increased noise
from sparsely activated memory units. Generality, which
reflects the memory’s ability to generalize to semantically
equivalent queries, shows a similar trend to accuracy, fur-
ther supporting this observation. Based on these results,
we adopt 512 memory banks as the default memory band-
width in this paper. For most applications, we recommend
dynamically allocating bandwidth based on task-specific
requirements, optimizing both performance and efficiency.

4.3.2. MEMORY DEPTH

Memory depth controls the size of each memory bank, with
larger depth allowing for richer information refinement but
also increasing computational costs. As illustrated in the

7

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

Table 4. ESD of different memories on Llama3 (8B).

Memory GRACE (W.M.) WISE (I.M.) Ours (P.M.)

#Data 1K 10K 1K 10K 1K 10K

Accuracy↑0.0794 0.0651 0.5512 0.2720 0.99080.9878
#Param↓ 18.4M 184.3M 234.9M234.9M 0.2M 0.2M
ESD↑ 0.0043 0.0035 0.0023 0.0116 4.95 49.39

bottom subfigure of Figure 5, both the storage Accuracy and
Generality improve as the memory depth increases. Model
performance stabilizes when the depth reaches 11, indicat-
ing that larger depth enhances the memory’s storage capac-
ity. However, this improvement comes at the cost of higher
parameter counts in the memory, leading to increased com-
putational overhead during memory writing and retrieval
operations. To strike a balance between performance and
efficiency, we choose a memory depth of 11 as an optimal
configuration for our framework.

4.4. Discussion

4.4.1. MEMORY STORAGE CAPACITY

As discussed in Section 4.3, we configured the memory with
a bandwidth of 512 and depth of 11. This setup raises the
question: What is the storage capacity of the peripheral
memory, similar to the storage size of a physical RAM. To
investigate this, we continuously stored data in memory
while evaluating its performance and storage efficiency. As
shown in Figure 6, as the amount of stored data increases,
the memory storage accuracy remains high (around 98% at
10K). However, the generalization ability for semantically
equivalent queries significantly drops, from 0.72 at 0.5K
to 0.65 at 10K, especially as the data volume reaches 1000.
This highlights the trade-off between memory utilization
and semantic discriminability, which arises from the direct
querying mechanism using the last token hidden state.

4.4.2. EFFECTIVE STORAGE DENSITY (ESD)

Memory storage density is a crucial factor for evaluating the
memory efficiency. Similar to knowledge capacity (Allen-
Zhu & Li, 2024), we introduce the concept of Effective
Storage Density (ESD) to quantify how many pieces of
knowledge are successfully stored per 1K parameters:

ESD(M|D) =
#D

#Θ(M)
∗ Accuracy(D|M) (9)

where #D refers to the number of data in D. #Θ(M)
calculates the parameters number of M in KB. Accuracy(·)
estimates the storage accuracy of D based on M.

Table 4 compares the effective storage density across dif-

Table 5. ESD of different memories across LLMs (3K data).

Memory GRACE (W.M.) WISE (I.M.) Ours (P.M.)

LLMs GPTJ Llama3 GPTJ Llama3 GPTJ Llama3

Accuracy↑0.3368 0.0624 0.4598 0.3348 0.9985 0.9805
#Param↓ 61.4M 55.3M 268.4M234.9M 0.2M 0.2M
ESD↑ 0.0165 0.0034 0.0051 0.0043 14.98 14.71

ferent memory types. For working memory5, which caches
contextual key-value pairs, the amount of stored information
increases dramatically as the data volume grows. This leads
to a significant rise in the number of parameters required for
memory (e.g., increasing from 18.4M at 1K to 184.3M at
10K). However, as the cached information increases, the
probability of retrieving irrelevant data also rises during in-
ference, reducing storage performance (e.g., reducing from
0.0794 at 1K to 0.0651 at 10K). These two factors cause a
substantial decrease in effective storage density (e.g., from
0.0043 at 1K to 0.0035 at 10K). In implicit memory6,
the number of parameters remains relatively stable as the
data increases on the same LLM, but its performance signifi-
cantly drops (e.g., from 0.5512 at 1K to 0.2720 at 10K) due
to knowledge forgetting, causing poor ESD. Additionally,
the number of parameters in working memory and implicit
memory inevitably changes as the model changes (as shown
in Table 5), which will bring inconvenience for memory
management. At the same time, both of them rely heavily
on the LLMs’ structure, limiting their configurability.

In contrast, the proposed peripheral memory shows stable
performance across different LLMs and varying data sizes.
Moreover, by leveraging KANs, peripheral memory signif-
icantly reduces the number of parameters required (only
0.2M). This enables it to achieve considerably higher effec-
tive storage density, e.g., 1000+ times greater than working
memory and 500+ times greater than implicit memory for
1K data under Llama3 (8B). Surprisingly, this advantage
grows even more pronounced as the data size increases or
as the LLM architecture changes (See Table 4 and Table 5).

5. Related Work
Existing memory mechanisms for LLMs can be broadly
classified into three categories (Yang et al., 2024): working
memory, implicit memory, and explicit memory. Work-
ing Memory retains transient context by caching contextual
key-value pairs from hidden layers. Notable methods in-
clude Transformer-XL (Dai et al., 2019), which introduces
segment-level recurrence for cross-context retention, and
Memformer (Wu et al., 2022a), which dynamically updates

5#Parameters are calculated based on Hartvigsen et al. (2023).
6#Parameters are calculated based on Wang et al. (2024a).

8

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

memory slots during decoding. Subsequent advancements
enhance working memory through methods like approxi-
mate kNN lookup (Wu et al., 2022b), subject word embed-
ding alteration (Li et al., 2025), retrieval-based methods
(Hartvigsen et al., 2023), and retrieval-augmented counter-
factual models (Mitchell et al., 2022b). However, these
approaches focus on short-term context and lack persis-
tent, scalable storage. Implicit memory encodes knowl-
edge into model parameters for long-term retention. Ap-
proaches in this category include fine-tuning (Hu et al.,
2022; Modarressi et al., 2025; Yu et al., 2024), direct pa-
rameter edits (Mitchell et al., 2022a; Meng et al., 2023;
Raunak & Menezes, 2022)), and parameter-efficient patch-
ing (Dai et al., 2023; Wang et al., 2024b; Wang & Li, 2024;
Wang et al., 2024a). While effective for targeted updates,
these methods often suffer from catastrophic forgetting and
architectural rigidity, as they are tightly coupled with the
LLM parameters (Kaddour et al., 2023). Explicit mem-
ory encompasses retrievable model parameters, externalized
knowledge, or sparsely-activated neural circuits (Yang et al.,
2024). However, these frameworks often rely on static
memory allocation (Yao et al., 2023), struggling with issues
related to scalability, reusability and configurability.

6. Conclusion
In this paper, we introduced peripheral memory, a novel
memory augmentation framework inspired by the decoupled
architecture of physical RAM and CPU. By conceptualiz-
ing memory as an independent module separate from the
LLM, our method addressed critical limitations in scala-
bility, reusability, and configurability inherent to existing
memories. At the core, the Kolmogorov-Arnold Networks
were used to model memory banks, enabling smooth state
transitions and sequential interactions between storage units.
Additionally, a dedicated confidence mechanism further en-
sured reliable retrieval by filtering irrelevant or noisy data,
preserving the LLM’s original knowledge integrity. Exten-
sive experiments on knowledge editing demonstrated its
superior performance while maintaining efficiency.

Limitations
In the proposed framework, memory is queried directly us-
ing the hidden state of the last input token. While this design
facilitates efficient retrieval, it faces a well-known challenge
in representation learning: hypersensitivity to minor in-
put variations (Jiang et al., 2020). Semantically equivalent
queries (despite conveying the same meaning) may be pro-
jected to distinct regions of the memory space due to subtle
differences in token-level hidden representations. Moreover,
as the volume of stored data increases, the memory module
tends to overfit to the original query distribution, becom-
ing increasingly specialized in retrieving exact matches for

frequently encountered hidden states. Consequently, this
specialization comes at the cost of reduced generalization to
semantically similar but representationally divergent queries
(see Figure 6 and Section 4.4.1).

To overcome limitations of the direct memory querying, we
are now actively developing a memory management module
inspired by the Memory Management Unit (MMU) in oper-
ating systems. This module serves as an abstraction module
between the LLM and the peripheral memory, effectively
decoupling semantic alignment from storage operations. By
doing so, the peripheral memory can specialize in storage
and retrieval, while the MMU is responsible for query nor-
malization and semantic mapping.

Acknowledgments
This work is partially supported by National Nature Science
Foundation of China under No. 62476058. We thank the
Big Data Computing Center of Southeast University for
providing the facility support on the numerical calculations
in this paper.

Impact Statement
This paper presents work that aims to advance the field
of memory-augmented LLMs, with the potential to signif-
icantly advance the field of machine learning. There are
many potential consequences of our work:

Societal Implications: Peripheral memory has the potential
to democratize access to LLM capabilities by enabling effi-
cient, modular memory systems. However, its deployment
must be accompanied by rigorous ethical guidelines and
regulatory oversight to ensure responsible use.

Ethical Impacts: The modular design of peripheral memory
enhances interpretability, as memory operations are decou-
pled from the LLM’s core processing. This transparency is
crucial for auditing and debugging memory systems.

Environmental Impact: The reusability and read&write
efficiency of peripheral memory significantly reduce redun-
dant storage of identical knowledge, enhancing the overall
energy efficiency of the memory system. By minimizing
repetitive operations, our framework lowers the computa-
tional resources required for memory management, thereby
reducing the carbon footprint of memory-augmented LLMs.
This aligns with broader sustainability goals in AI research,
promoting environmentally responsible development of ad-
vanced language models.

Potential Risks: Storing and retrieving dynamic knowledge
raises privacy risks, particularly if sensitive or personal data
is inadvertently memorized. Techniques like differential
privacy or memory anonymization should be investigated.

9

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

References
Allen-Zhu, Z. and Li, Y. Physics of language models: Part

3.1, knowledge storage and extraction. In ICML. OpenRe-
view.net, 2024. URL https://openreview.net/
forum?id=5x788rqbcj.

Azaria, A., Azoulay, R., and Reches, S. Chatgpt is a remark-
able tool—for experts. Data Intelligence, 6:240–296,
2024. URL http://www.sciengine.com/doi/
10.1162/dint_a_00235.

Aziznejad, S. and Unser, M. Deep spline networks with
control of lipschitz regularity. In IEEE ICASSP, pp. 3242–
3246, 2019. URL https://ieeexplore.ieee.
org/document/8682547.

Blum, B. I. History of Computers, pp. 3–32.
Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1986. ISBN 978-3-662-26537-6. doi:
10.1007/978-3-662-26537-6 1. URL https://
doi.org/10.1007/978-3-662-26537-6_1.

Bohra, P., Campos, J., Gupta, H., Aziznejad, S., and Unser,
M. Learning activation functions in deep (spline) neural
networks. IEEE Open Journal of Signal Processing, 1:
295–309, 2020. doi: 10.1109/OJSP.2020.3039379.

Chen, H. Large knowledge model: Perspectives
and challenges. Data Intelligence, 6:587–620,
2024. URL http://www.sciengine.com/doi/
10.3724/2096-7004.di.2024.0001.

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and Wei, F.
Knowledge neurons in pretrained transformers. In ACL,
pp. 8493–8502. Association for Computational Linguis-
tics, 2022. URL https://doi.org/10.18653/
v1/2022.acl-long.581.

Dai, D., Jiang, W., Dong, Q., Lyu, Y., and Sui, Z. Neural
knowledge bank for pretrained transformers. In NLPCC,
volume 14303 of Lecture Notes in Computer Science, pp.
772–783. Springer, 2023. URL https://doi.org/
10.1007/978-3-031-44696-2_60.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and
Salakhutdinov, R. Transformer-XL: Attentive language
models beyond a fixed-length context. In ACL, pp.
2978–2988. Association for Computational Linguis-
tics, 2019. URL https://aclanthology.org/
P19-1285/.

Fang, J., Jiang, H., Wang, K., Ma, Y., Wang, X., He,
X., and Chua, T. Alphaedit: Null-space constrained
knowledge editing for language models. In ICLR,
2025. URL https://openreview.net/forum?
id=HvSytvg3Jh.

Guo, X., Pan, J., Wang, X., Chen, B., Jiang, J., and Long,
M. On the embedding collapse when scaling up recom-
mendation models. In ICML. JMLR.org, 2024.

Gupta, A., Baskaran, S., and Anumanchipalli, G. Re-
building ROME : Resolving model collapse dur-
ing sequential model editing. In EMNLP, pp.
21738–21744. Association for Computational Linguis-
tics, 2024a. URL https://aclanthology.org/
2024.emnlp-main.1210.

Gupta, A., Sajnani, D., and Anumanchipalli, G. A uni-
fied framework for model editing. In Al-Onaizan,
Y., Bansal, M., and Chen, Y. (eds.), EMNLP, pp.
15403–15418. Association for Computational Linguis-
tics, 2024b. URL https://aclanthology.org/
2024.findings-emnlp.903.

Hartvigsen, T., Sankaranarayanan, S., Palangi, H., Kim,
Y., and Ghassemi, M. Aging with GRACE: lifelong
model editing with discrete key-value adaptors. In
NeurIPS, volume 36, pp. 47934–47959. Curran Asso-
ciates, Inc., 2023. URL https://dl.acm.org/
doi/10.5555/3666122.3668201.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank
adaptation of large language models. In ICLR, Virtual,
2022. OpenReview.net. URL https://openreview.
net/forum?id=nZeVKeeFYf9.

Jacob, B., Ng, S., and Wang, D. Memory Systems: Cache,
DRAM, Disk. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007. ISBN 0123797519.

Jiang, W. X., Nelson, B. L., and Hong, L. J. Estimating sensi-
tivity to input model variance. In WSC, pp. 3705—-3716.
IEEE Press, 2020. ISBN 9781728132839. URL https:
//informs-sim.org/wsc19papers/395.pdf.

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu,
R., and McHardy, R. Challenges and applications
of large language models. ArXiv, abs/2307.10169,
2023. URL https://api.semanticscholar.
org/CorpusID:259982665.

Kolmogorov, A. N. On the representation of continuous
functions of many variables by superposition of con-
tinuous functions of one variable and addition. Dok-
lady Akademii Nauk, 114:953–956, 1957. URL http:
//mi.mathnet.ru/dan22050.

Levy, O., Seo, M., Choi, E., and Zettlemoyer, L. Zero-
shot relation extraction via reading comprehension. In
Levy, R. and Specia, L. (eds.), CoNLL, pp. 333–342.
Association for Computational Linguistics, 2017. URL
https://doi.org/10.18653/v1/K17-1034.

10

https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
http://www.sciengine.com/doi/10.1162/dint_a_00235
http://www.sciengine.com/doi/10.1162/dint_a_00235
https://ieeexplore.ieee.org/document/8682547
https://ieeexplore.ieee.org/document/8682547
https://doi.org/10.1007/978-3-662-26537-6_1
https://doi.org/10.1007/978-3-662-26537-6_1
http://www.sciengine.com/doi/10.3724/2096-7004.di.2024.0001
http://www.sciengine.com/doi/10.3724/2096-7004.di.2024.0001
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.1007/978-3-031-44696-2_60
https://doi.org/10.1007/978-3-031-44696-2_60
https://aclanthology.org/P19-1285/
https://aclanthology.org/P19-1285/
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://aclanthology.org/2024.emnlp-main.1210
https://aclanthology.org/2024.emnlp-main.1210
https://aclanthology.org/2024.findings-emnlp.903
https://aclanthology.org/2024.findings-emnlp.903
https://dl.acm.org/doi/10.5555/3666122.3668201
https://dl.acm.org/doi/10.5555/3666122.3668201
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://informs-sim.org/wsc19papers/395.pdf
https://informs-sim.org/wsc19papers/395.pdf
https://api.semanticscholar.org/CorpusID:259982665
https://api.semanticscholar.org/CorpusID:259982665
http://mi.mathnet.ru/dan22050
http://mi.mathnet.ru/dan22050
https://doi.org/10.18653/v1/K17-1034

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

Li, X., Li, S., Song, S., Yang, J., Ma, J., and Yu, J. PMET:
precise model editing in a transformer. In AAAI, pp.
18564–18572. AAAI Press, 2024. URL https://doi.
org/10.1609/aaai.v38i17.29818.

Li, X., Li, S., Song, S., Liu, H., Ji, B., Wang, X., Ma,
J., Yu, J., Liu, X., Wang, J., and Zhang, W. Swea:
Updating factual knowledge in large language mod-
els via subject word embedding altering. AAAI, 39
(23):24494–24502, 2025. URL https://ojs.aaai.
org/index.php/AAAI/article/view/34628.

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson,
J., Soljačić, M., Hou, T. Y., and Tegmark, M. Kan:
Kolmogorov-arnold networks, 2024. URL https://
arxiv.org/abs/2404.19756.

Llama Team, A. . M. The llama 3 herd of mod-
els. CoRR, abs/2407.21783, 2024. URL https://
github.com/meta-llama/llama3/.

Luo, M., Xu, X., Dai, Z., Pasupat, P., Kazemi, M., Baral,
C., Imbrasaite, V., and Zhao, V. Y. Dr.icl: Demonstration-
retrieved in-context learning. Data Intelligence, 6:909–
922, 2024. URL http://www.sciengine.com/
doi/10.3724/2096-7004.di.2024.0012.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in GPT. In NeurIPS,
pp. 17359–17372. Curran Associates, Inc., 2022. URL
https://rome.baulab.info/.

Meng, K., Sharma, A. S., Andonian, A. J., Belinkov, Y.,
and Bau, D. Mass-editing memory in a transformer. In
ICLR, Virtual, 2023. OpenReview.net. URL https:
//openreview.net/pdf?id=MkbcAHIYgyS.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Man-
ning, C. D. Fast model editing at scale. In ICLR,
Virtual, 2022a. OpenReview.net. URL https://
openreview.net/forum?id=0DcZxeWfOPt.

Mitchell, E., Lin, C., Bosselut, A., Manning, C. D.,
and Finn, C. Memory-based model editing at
scale. In ICML, volume 162, pp. 15817–15831.
PMLR, 2022b. URL https://proceedings.mlr.
press/v162/mitchell22a.html.

Modarressi, A., Köksal, A., Imani, A., Fayyaz, M., and
Schuetze, H. MemLLM: Finetuning LLMs to use explicit
read-write memory. Transactions on Machine Learning
Research, 2025. URL https://openreview.net/
forum?id=dghM7sOudh.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar,
S., Usman, M., Barnes, N., and Mian, A. A com-
prehensive overview of large language models. CoRR,
abs/2307.06435, 2024. URL https://arxiv.org/
pdf/2307.06435.

Raunak, V. and Menezes, A. Rank-one editing of encoder-
decoder models. In The Second Workshop on InterNLP
of NeurIPS, 2022. URL https://doi.org/10.
48550/arXiv.2211.13317.

Rojas, R. and Hashagen, U. (eds.). The first computers:
history and architectures. MIT Press, Cambridge, MA,
USA, 2000. ISBN 0262181975.

Singh, A. Exploring language models: A comprehensive
survey and analysis. In RMKMATE, pp. 1–4, 2023. doi:
10.1109/RMKMATE59243.2023.10369423.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A
6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax, 2021.

Wang, P., Li, Z., Zhang, N., Xu, Z., Yao, Y., Jiang, Y.,
Xie, P., Huang, F., and Chen, H. WISE: Rethinking the
knowledge memory for lifelong model editing of large
language models. In NeurIPS, 2024a. URL https:
//openreview.net/forum?id=VJMYOfJVC2.

Wang, R. and Li, P. Memoe: Enhancing model
editing with mixture of experts adaptors. CoRR,
abs/2405.19086, 2024. URL https://doi.org/10.
48550/arXiv.2405.19086.

Wang, Y., Gao, Y., Chen, X., Jiang, H., Li, S., Yang, J., Yin,
Q., Li, Z., Li, X., Yin, B., Shang, J., and McAuley, J. J.
MEMORYLLM: towards self-updatable large language
models. In ICML. OpenReview.net, 2024b. URL https:
//openreview.net/forum?id=p0lKWzdikQ.

Wu, Q., Lan, Z., Qian, K., Gu, J., Geramifard, A., and
Yu, Z. Memformer: A memory-augmented transformer
for sequence modeling. In Findings of AACL-IJCNLP,
pp. 308–318. Association for Computational Linguis-
tics, 2022a. URL https://aclanthology.org/
2022.findings-aacl.29/.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C.
Memorizing transformers. In ICLR. OpenReview.net,
2022b. URL https://openreview.net/forum?
id=TrjbxzRcnf-.

Yang, H., Lin, Z., Wang, W., Wu, H., Li, Z., Tang,
B., Wei, W., Wang, J., Tang, Z., Song, S., Xi, C.,
Yu, Y., Chen, K., Xiong, F., Tang, L., and E, W.
Memory3: Language modeling with explicit mem-
ory. Journal of Machine Learning, 3(3):300–346,
2024. URL http://global-sci.org/intro/
article_detail/jml/23419.html.

Yao, Y., Wang, P., Tian, B., Cheng, S., Li, Z., Deng, S.,
Chen, H., and Zhang, N. Editing large language models:
Problems, methods, and opportunities. In EMNLP, pp.

11

https://doi.org/10.1609/aaai.v38i17.29818
https://doi.org/10.1609/aaai.v38i17.29818
https://ojs.aaai.org/index.php/AAAI/article/view/34628
https://ojs.aaai.org/index.php/AAAI/article/view/34628
https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756
https://github.com/meta-llama/llama3/
https://github.com/meta-llama/llama3/
http://www.sciengine.com/doi/10.3724/2096-7004.di.2024.0012
http://www.sciengine.com/doi/10.3724/2096-7004.di.2024.0012
https://rome.baulab.info/
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://openreview.net/forum?id=dghM7sOudh
https://openreview.net/forum?id=dghM7sOudh
https://arxiv.org/pdf/2307.06435
https://arxiv.org/pdf/2307.06435
https://doi.org/10.48550/arXiv.2211.13317
https://doi.org/10.48550/arXiv.2211.13317
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=VJMYOfJVC2
https://openreview.net/forum?id=VJMYOfJVC2
https://doi.org/10.48550/arXiv.2405.19086
https://doi.org/10.48550/arXiv.2405.19086
https://openreview.net/forum?id=p0lKWzdikQ
https://openreview.net/forum?id=p0lKWzdikQ
https://aclanthology.org/2022.findings-aacl.29/
https://aclanthology.org/2022.findings-aacl.29/
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
http://global-sci.org/intro/article_detail/jml/23419.html
http://global-sci.org/intro/article_detail/jml/23419.html

Peripheral Memory for LLMs: Integration of Sequential Memory Banks with Adaptive Querying

10222–10240. Association for Computational Linguistics,
2023. URL https://aclanthology.org/2023.
emnlp-main.632/.

Yu, L., Chen, Q., Zhou, J., and He, L. MELO: en-
hancing model editing with neuron-indexed dynamic
lora. In AAAI, pp. 19449–19457. AAAI Press,
2024. URL https://doi.org/10.1609/aaai.
v38i17.29916.

Zhang, N., Yao, Y., Tian, B., Wang, P., Deng, S., Wang, M.,
Xi, Z., Mao, S., Zhang, J., Ni, Y., Cheng, S., Xu, Z., Xu,
X., Gu, J., Jiang, Y., Xie, P., Huang, F., Liang, L., Zhang,
Z., Zhu, X., Zhou, J., and Chen, H. A comprehensive
study of knowledge editing for large language models.
CoRR, abs/2401.01286, 2024. URL https://doi.
org/10.48550/arXiv.2401.01286.

Zheng, C., Li, L., Dong, Q., Fan, Y., Wu, Z., Xu, J., and
Chang, B. Can we edit factual knowledge by in-context
learning? In EMNLP, pp. 4862–4876. Association for
Computational Linguistics, 2023. URL https://doi.
org/10.18653/v1/2023.emnlp-main.296.

Zhu, C., Rawat, A. S., Zaheer, M., Bhojanapalli, S., Li,
D., Yu, F. X., and Kumar, S. Modifying memories in
transformer models. CoRR, abs/2012.00363, 2020. URL
https://arxiv.org/abs/2012.00363.

12

https://aclanthology.org/2023.emnlp-main.632/
https://aclanthology.org/2023.emnlp-main.632/
https://doi.org/10.1609/aaai.v38i17.29916
https://doi.org/10.1609/aaai.v38i17.29916
https://doi.org/10.48550/arXiv.2401.01286
https://doi.org/10.48550/arXiv.2401.01286
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://doi.org/10.18653/v1/2023.emnlp-main.296
https://arxiv.org/abs/2012.00363

