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Abstract

Solving partially observable Markov decision processes (POMDPs) remains a fundamen-
tal challenge in reinforcement learning (RL), primarily due to the curse of dimensionality
induced by the non-stationarity of optimal policies. In this work, we study a natural actor-
critic (NAC) algorithm that integrates recurrent neural network (RNN) architectures into
a natural policy gradient (NPG) method and a temporal difference (TD) learning method.
This framework leverages the representational capacity of RNNs to address non-stationarity
in RL to solve POMDPs while retaining the statistical and computational efficiency of nat-
ural gradient methods in RL. We provide non-asymptotic theoretical guarantees for this
method, including bounds on sample and iteration complexity to achieve global optimality
up to function approximation. Additionally, we characterize pathological cases that stem
from long-term dependencies, thereby explaining limitations of RNN-based policy optimiza-
tion for POMDPs.

1 Introduction

Reinforcement learning (RL) for partially observable Markov decision processes (POMDPs) has been a
particularly challenging problem due to the absence of an optimal stationary policy, which leads to a curse of
dimensionality as the space of non-stationary policies grows exponentially over time (Krishnamurthy, 2016;
Murphy, 2000). To address this curse of dimensionality in solving POMDPs, finite-memory (Yu & Bertsekas,
2008; Yu, 2012; Kara & Yiiksel, 2023; Cayci et al., 2024a) and RNN-based (Lin & Mitchell, 1993; Whitehead
& Lin, 1995; Wierstra et al., 2010; Mnih et al., 2014; Ni et al., 2021; Lu et al., 2024) model-free RL approaches
are widely used to solve POMDPs. Despite the empirical success of RNN-based model-free RL methods, a
rigorous theoretical understanding of their performance in the POMDP setting remains limited.

We begin by outlining two key observations that motivate our approach:

Observation 1. Recurrent neural networks (RNNs) have been extensively employed in model-free reinforce-
ment learning (RL) to solve partially observable Markov decision processes (POMDPs) (Whitehead & Lin,
1995; Wierstra et al., 2010; Mnih et al., 2014). Recent work Ni et al. (2021) demonstrates that RNN-based
model-free RL can perform competitively with more sophisticated and structured approaches under appro-
priate hyperparameter and architecture choices. In Lu et al. (2024), shortcomings of emerging transformers
in solving POMDPs were demonstrated, and it was shown, somewhat surprisingly, that particular recurrent
architectures can achieve superior practical performance in certain scenarios. However, despite this plethora
of works that demonstrate the effectiveness of RNN-based model-free algorithms for solving POMDPs, a
concrete theoretical understanding of these methods is still in a nascent stage. This is particularly impor-
tant since, as noted by Ni et al. (2021), RNN-based model-free RL algorithms are sensitive to optimization
parameters, and identification of provably good choices is important for practice.
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Observation 2. Natural policy gradient (NPG) framework has been shown to be effective in solving MDPs
due to its versatility in encompassing powerful function approximators, such as deep neural networks (Wang
et al., 2019; Cayci et al., 2024b). However, a naive application of such non-recurrent model-free RL algorithms
to solve POMDPs has been observed to be ineffective (Ni et al., 2021), which necessitate careful incorporation
of recurrent architectures into the policy optimization framework. This calls for the need to incorporate and
analyze policy optimization, particularly NPG framework, augmented with recurrent architectures, to obtain
a provably effective solution for POMDPs.

Our study is motivated by these observations and guided by the following key questions, each addressed in
this work:

Q1. How can we achieve (i) provably effective and (ii) computation/memory-efficient policy
evaluation for non-stationary policies in partially observable environments?

> A temporal difference (TD) learning algorithm with an IndRNN (Rec-TD) overcomes the so-called percep-
tual aliasing problem imperative in memoryless TD learning for POMDPs (Singh et al., 1994), and achieves
near-optimal policy evaluation, provided a sufficiently large network (Theorem 5.4 and Remark 5.5). Our
analysis identifies the exploding semi-gradients pathology in policy evaluation, which can significantly in-
crease network and iteration complexities to mitigate perceptual aliasing under long-term dependencies
(Remark 5.6), and demonstrates the role of regularization to mitigate this. We also provide empirical results
in random-POMDP instances in Appendix C.

Q:. How can we parameterize non-stationary policies by a rich and practically feasible class
of RNNs and perform efficient policy optimization?

> We represent non-stationary policies using IndRNNs with SOFTMAX parameterization as a form of finite-
state controller, and perform computationally efficient NPG updates (based on path-based compatible func-
tion approximation for POMDPs) for policy optimization. The policy optimization update (called Rec-NPG)
is aided by Rec-TD as the critic (Section 4).

Qs. What are the memory, computation and sample complexities of the resulting Rec-NAC
method, which employs Rec-NPG for policy updates and Rec-TD for policy evaluation?

> Our non-asymptotic analyses of Rec-TD (Theorem 5.4) and Rec-NPG (Theorem 6.3) demonstrate their
near-optimality in the large-network limit while highlighting dependencies on memory, long-term POMDP
dynamics, and RNN smoothness. Pathological cases with long-term dependencies may require exponentially
growing resources (Remarks 5.6-6.4).

These results establish principled and scalable RL solutions for POMDPs, offering insights into the interplay
between memory, smoothness, and optimization complexity.

1.1 Previous work

Natural policy gradient method, proposed by Kakade (2001), has been extensively investigated for MDPs
(Agarwal et al., 2020; Cen et al., 2020; Khodadadian et al., 2021; Liu et al., 2020; Cayci et al., 2024c), and
analyses of NPG with feedforward neural networks (FNNs) have been established by Wang et al. (2019); Liu
et al. (2019); Cayci et al. (2024b). As these works consider MDPs, the policies are stationary. In our case,
the analysis of RNNs and POMDPs constitute a very significant challenge.

Standard TD learning, which does not have a memory structure, was shown to be suboptimal for POMDPs
(Singh et al., 1994). We incorporate RNNs into TD learning as a form of memory to address this problem
in this work.

In Yu (2012); Singh et al. (1994); Uehara et al. (2022); Kara & Yiiksel (2023); Cayci et al. (2024a), finite-
memory policies based on sliding-window approximations of the history were investigated. Bilinear frame-
works with memory-based policies (Uehara et al., 2022) and Hilbert space embeddings with deterministic
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latent dynamics (Uehara et al., 2023) enable sample-efficient learning under specific model structures. In
Guo et al. (2022), an offline RL algorithm for the specific class of linear POMDPs was proposed. Unlike these
existing works, our approach integrates RNNs with NAC methods, providing a scalable and theoretically
grounded framework for general POMDPs without requiring structural assumptions such as deterministic
transitions, fixed memory windows, or linear POMDP dynamics. Value- and policy-based model-free RL
algorithms based on RNNs have been widely considered in practice to solve POMDPs (Lin & Mitchell, 1993;
Whitehead & Lin, 1995; Wierstra et al., 2010; Mnih et al., 2014; Ni et al., 2021; Lu et al., 2024). However,
these works are predominantly experimental, thus there is no theoretical analysis of RNN-based RL methods
for POMDPs to the best of our knowledge. In this work, we also present theoretical guarantees for RNN-
based NPG for POMDPs. For structural results on the hardness of RL for POMDPs, we refer to (Liu et al.,
2022; Singh et al., 1994).

1.2 Notation

For a finite set A, A(A) = {v € le(l) © Y aeaVa = 1} is the set of probability vectors over the set A.
Rad(a) = Unif{—a,a} fora e Ry.

2 Preliminaries on Partially Observable Markov Decision Processes

In this paper, we consider a discrete-time infinite-horizon partially observable Markov decision process
(POMDP) with the (nonlinear) dynamics
P (Si41 = 8|Sk, A, k < t) =t P((S1, Ar), 5),
P(Y;: = y‘St) = ¢(St7y)a
for any s € S and y € Y, where S; is an S-valued state, Y; is a Y-valued observation, and A; is an A-valued
control process with the stochastic kernels P : S x A xS — [0,1] and ¢ : S x Y — [0, 1]. We consider finite

but arbitrarily large A, Y and S, where
ACRYY c R%

for some di,dy € Z4 with d := dq + dz, and [|(y,a)|[2 < 1 for any (y,a) € Y x A. In this setting, the state
process (St)ten is not observable by the controller. Let

Y if t =
2= b W
(thlvAtfla}ft)v 1ft>07

be the history process, which is available to the controller at time ¢ € N, and
Zt = (ZtaAt) = (Y07A07'~’7)/;57At)7 (2)

be the history-action process.
Definition 2.1 (Admissible policy). An admissible control policy m = (m¢)sen is a sequence of measurable
mappings m; : (Y x A)! x Y — A(A), and the control at time ¢ is chosen under m; randomly as
P(A; = a|Z;y = 2) = mi(alz),
for any z; € (Y x A)! x Y. We denote the class of all admissible policies by Tym.

If an action a is taken at state s, then a deterministic reward r(s, a) with |r(s,a)| < ro. < o0 is obtained.

Definition 2.2 (Value function, Q-function, advantage function). Let 7 be an admissible policy, and u €
A(Y). The value function under 7 with discount factor v € (0,1) is defined as

Vi (z) :=E" [Z'yk*tr(sk, Ak)’Zt = zt} , (3)

0o
k=t
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for any z; € (Y x A)! x Y. Similarly, the state-action value function (also known as Q-function) and the
advantage function under 7 are defined as

Q7 (%) :==E" [iyk_tr(sk, Ak)‘Zt = Zt], (4)
k=t

Af (2t,0) == QF (21, a) — Vi (21),
for any z; € (Y x A)**1 respectively.
Given an initial observation distribution p € A(Y), the optimization problem is

™ 5
Jnax V7(u), (5)

where
V(i) == V5 (yo)(yo)-
yeyY
We denote an optimal policy as 7* € argmax V™ (u).
mElInm
Remark 2.3 (Curse of history in RL for POMDPs). Note that the problem in equation 5 is significantly more
challenging than its subcase of (fully-observable) MDPs since there may not exist an optimal stationary policy
(Krishnamurthy, 2016; Singh et al., 1994). As such, the policy search is over non-stationary randomized
policies of type m = (mg, m1,...) where m; : (Y x A)t x Y — A(A) depends on the history of observations
Zy = (Yo, A0, Y1,..., Ai—1,Y}:) for t € N. In this case, direct extensions of the existing reinforcement learning
methods for MDPs become intractable, even for finite Y, A: the memory complexity of a non-stationary
policy 7 € IIym at epoch t € N is O(]Y x A[**1), growing exponentially.

In the following section, we formally introduce the RNN architecture that we study in this paper.

3 Independently Recurrent Neural Network Architecture

We consider an independently recurrent neural network (IndRNN) architecture in this work (Li et al., 2018;
2019). This architecture has been featured in POPGym (Morad et al., 2023) as it enables RNNs with large
sequence lengths by handling long dependencies in practical applications. In other works, it has been shown
to be effective for POMDPs in practice as well (Lu et al., 2024; Elelimy et al., 2024).

Let X; = (Y;, A;) € RY, therefore Z; = (X, X1,...,X;) for any t € Z, by equation 2. The central structure
in an IndRNN is the sequence of hidden states H; = (Ht(l),Hz(z)7 . ,Ht(m)) € R™ for t = 0,1,..., which
evolves according to

H(Z,; W, U) = g(With(i)l(Z_l;W, U) + <U,;,Xt>) for all i € [m], (6)

with the initial condition Héz)(Zo; W, U) := o({U;, Xo)), where o : R — R is a smooth activation function,
W = diag(Wi1, Waa, ..., W) and U is an m X d matrix whose i-th row is Ui—'— for i € [m]. We assume a
smooth activation function ¢ with |o(2)| < 00, |0’ (2)| < 01 and |¢”(2)| < g2 for all z € R, which is satisfied
by many widely-used activation functions including tanh and the sigmoid function. We consider a linear
readout layer with weights ¢ € R™, which leads to the output

_ 1 & 0=
Fy(Zy; W, U, c) = T ZCth( '(Z:; W, ). (7)
i=1

The operation of an independently recurrent neural network is illustrated in Figure 1. Following the neural
tangent kernel literature, we omit the task of training the linear output layer ¢ € R™ for simplicity, and study
the training dynamics of (W, U), which is the main challenge (Du et al., 2018; Oymak & Soltanolkotabi,
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Figure 1: An independently recurrent neural network (IndRNN) in the RL context.

2020; Cai et al., 2019; Wang et al., 2019). Consequently, we denote the learnable parameters of an IndRNN
compactly in the vector form as

O,
©2 d+1 Wi d+1 .

0= . € R where ©,; = U € R for i € [m). (8)
Om

We use © and (W, U) interchangeably throughout the paper.

A key feature of the neural tangent kernel analysis is the random initialization (Bai & Lee, 2019; Chizat
et al., 2019; Cayci et al., 2023).

Definition 3.1 (Symmetric random initialization). Let (c°,0") = (¢}, 09);c[m) be a random vector such
that

9 % Rad(1),

v Uz‘o N(O7Id) ’
C?+m/2 = 70? and @?—i-m/Q = 6(2)
fori=1,2,...,%. Wecall (¢, 8% a symmetric random initialization, and denote the distribution of (¢, )

as (p-

For both policy optimization (Algorithm 1) and policy evaluation (Algorithm 2), the IndRNNs are randomly
initialized according to Definition 3.1. Such random initialization schemes are widely adopted in practice,
and play a fundamental role in the theoretical analysis of deep learning algorithms Bai & Lee (2019); Chizat
et al. (2019); Wang et al. (2019); Cai et al. (2019); Liu et al. (2019).

In the following subsection, we define the reference function class determined by overparameterized IndRNNs
in a detailed way, which will be instrumental in the theoretical results and their analyses. We note that this
subsection can be skipped for those who would like to focus on the algorithmic design.

3.1 Reference Function Class for Independently Recurrent Neural Networks

A fundamental question in reinforcement learning with function approximation is to determine a concrete
reference function class for the function approximation architecture that is used for approximation in the
value and policy spaces (Bertsekas & Tsitsiklis, 1996). In this subsection, we will identify and discuss the
reference function class defined by the IndRNN architecture that will be used for incorporating memory to
solve POMDPs. In order to motivate the discussion, we first overview basic reference function classes for
(fully-observable) MDPs, then extend the discussion to POMDPs.

Function approximation in MDPs. Let us consider value-based reinforcement learning in the case of
MDPs, where the objective is to learn the Q-function under a given stationary policy 7. The approximation
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error for a given reference class .% of functions f: S x A — R is
capp(F) = Inf Bea[(Q7(s,a) = f(s, a))?]. (9)

For example, if a linear function approximation scheme with a given feature map ¢ : S x A — RP is used,
then the reference function class is . = {(s,a) — 0" ¢(s,a) : 6 € RP} = span(®) where ® := [¢ (s,0)]s.a
is the feature matrix. In the case of linear MDPs Jin et al. (2020), we have Q" € ¥ and €app(F) = 0;
otherwise TD(0) with this linear approximation scheme has an inevitable approximation error ﬁeapp (F)
(Bertsekas & Tsitsiklis, 1996). The reference function class for a randomly-initialized single hidden-layer
feedforward neural network with frozen output layer is

It = {(5,0) = Eygon(o,12)[v(u0) " Vuo({(s, ), uo))] such that Ey,onro, ) [lv(uo)ll3] < oo}, (10)

where v : R — R? (Liu et al., 2019; Wang et al., 2019; Cayci et al., 2023). Technically, the completion of
Znr1k yields the reproducing kernel Hilbert space (RKHS) of the so-called neural tangent kernel

ki (z,2") =By [V, o(ug )Veo(ug )] = 2 2'E[o (ug )0 (ug «')] for any z,2" € S x A

and its explicit analysis shows that it is provably rich (Ji et al., 2019). For a detailed discussion on the
function space Z#nTk and its role in reinforcement learning, we refer to Section A.2 in Liu et al. (2019) and
Cayci et al. (2024b). Due to the concrete approximation bounds for .#nTk, the representational assumption
Q7 € Zntk is standard in the theoretical analyses of neural TD learning for MDPs, and the objective
is to prove that neural TD learning can learn any Q" € Znrk using samples with finite-time and finite-
sample guarantees (Cai et al., 2019; Wang et al., 2019; Cai et al., 2019; Cayci et al., 2023). Without the
representational assumption Q™ € Fnrk, the optimality guarantees in Cai et al. (2019); Liu et al. (2019);
Wang et al. (2019); Cayci et al. (2023) hold up to an additional error term proportional to ﬁeapp(ﬁNTK).

Function approximation in RL for POMDPs. Analogous to the approximation error analysis in RL for
MDPs discussed earlier, our objective here is to identify a suitable reference function class for the IndRNN
architecture defined in equation 7. Building on the framework of Cayci & Eryilmaz (2025), we present an
infinite-width characterization of IndRNNS in the neural tangent kernel (NTK) regime. This directly extends
the reference function class Zntk in 10 for feedforward neural networks in the neural RL literature (Cai
et al., 2019; Wang et al., 2019; Cayci et al., 2024b) to the partially observable setting with recurrent models.
We note that our reference function class reduces to the feedforward neural networks as a specific case (see
Remark 3.4).

For any t € Z, and input Z, symmetric initialization ensures that Fy(Z;©°) = 0. Furthermore, the first-order
Taylor expansion of F; at © € R™@+1 around ©° yields

F(Z:0) = VIR (209 (6 — 0°) + 0 (W) | ()

As m — oo, the linear part VgFt(Z; oY) (@ - @0) is able to approximate a rich class of functions determined
by the reproducing kernel Hilbert space (RKHS) of the recurrent neural tangent kernel defined as

ki(Z,2') = W}gnoongt(Z;@O)v@Ft(Z; eY),

for t € Z4. In the following, we characterize this sequence of reproducing kernel Hilbert spaces for t € Z
explicitly, following Cayci & Eryilmaz (2025).

Let wo ~ Rad(«) and ug ~ N(0, 1) be independent random variables, and 6y := (wp, ug). Given a sequence
z = (zo,71,...) € (Y x A)Z+, let

hi(zi;00) := o(wohi—1(Z1-1;00) + (uo, x¢)) for t =0,1,2,...,
with the initial condition A_; := 0. and

Ty (z1;60) := o' (wohi—1(Zi—1;00) + (uo, z¢)).
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Then, the neural tangent random feature mapping' at time ¢ is defined as

t

_ h Z ;00)
Yy (Z¢;6) ;_Zwo( t—k— 13;: : 1500 > HL i(GGi_ii 00),

k=0

Based on the sequence of neural tangent random features, the neural tangent random feature matrix is
defined as U(Z;6p) = ¥ (Z;60p), where

Vi1 (Zr-1:60)
for any T' € Z...
Definition 3.2 (Transportation mapping). Let . be the set of mappings v : R'*¢ — R such that

v(by) == (1;:((3;)))) for 6y = (wo, up) with E[||v(6p)||3] < oo, where wg ~ Rad(a) and ug ~ N(0, I4). We call

v € J a transportation mapping, following Ji & Telgarsky (2019); Ji et al. (2019).

Definition 3.3 (Reference function class for IndRNNs). We define the reference function class of IndRNNs
for any sequence-length 7' > 1 as

[ (Zo; )
Fr =1z E[Ur(Z;00)v(0)] = cveH,zZe(Yx A

f:?—l(gT—UU)

where f7(Z;v) := E[), (2;00)v(6p)] for any Z € (Y x A)%+. The same transportation mapping v is used to
define f; for all ¢t € N, which is a characteristic feature of weight-sharing in RNNs. We denote % := Z .
Remark 3.4 (Reduction to #nr1k). Note that setting T = 1 yields the random feature map

2G50 = (9, ()

since V,0({xo, uo)) = o0’ ({0, uo)). Hence, for any v € 5, we have
F1 = {20 = E[vu(uo) " Vue((zo, uo))] « Ellvu(uo) |3 < oo},

which is exactly the reference function class SNtk for feedforward neural networks given in equation 10.
In other words, {%#r : T € Z,} contains &ntk with %1 = Fnrk, which is the reference function class in
neural RL literature for MDPs (Wang et al., 2019; Liu et al., 2019). .%; is dense in the space of continuous
functions on a compact set (Ji et al., 2019).

Remark 3.5 (Fully-connected RNNs). IndRNNs utilize a diagonal hidden-to-hidden weight matrix W, which
was shown to be very effective in handling long-term dependencies in RL compared to conventional RNNs,
GRU and LSTM architectures (Morad et al., 2023). In addition to its practical benefits, IndRNNs have
theoretical niceties as well, as they enable (i) explicit characterization of the reference function class, and
(ii) direct control and analysis of the spectral radius of W. Both of these theoretical amenities are lost when
W does not inherit a diagonal structure.

3.2 Max-Norm Projection for IndRNNs

Given an initialization (W(0), U(0),¢) as in Definition 3.1 and a vector p = (pw,pu) ' € RZ, of projection
radii, we define the compactly-supported set of weights €2, ,, C R4+ a5

= {0 € R s amax [ W — Wa0)] < D=, max [Us - U (0)] < T, (13)

1The feature uses a complicated weighted-sum of all past inputs z;,k < t, leading to a discounted memory to tackle
g g
non-stationarity. x;_j is scaled with w§ ~ Rad(a), thus it yields a fading memory approximation of the history if o < 1.
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Given any symmetric random initialization (W(0),U(0),c) and p € R%, the set Q,,, is a compact and
convex subset of R™(4+1) and for any © € Qp.m, we have

Pw
max Wi = Wii(0)] < i
Pu
U —U;(0 .
max (U~ U0)] < e
Let
Proj,, .[0] = arg min Wi —w;|,  argmin 1U; — u;ll2 (14)
weBy (Wii(0), £ ) ui€B2 (Ui (0), 5% sl
As such, the projection operator Projg,  [-] onto €2, is called the max-norm projection (or regularization)

(Goodfellow et al., 2013; Srebro et al. 2004) As an immediate consequence, © € €2, ,, implies that |[W;;| <
|Wi — Wi (0)] + \Wu( )| <a+-£ U&= =: apy, which implies a strict control over max;eim, 1 I Wiil. As we will see
in Section 5 and Section 6, such a strict control over the norm of the hldden—to—hldden weights W;; has a
significant importance in stabilizing the training of IndRNNs. Similar projection mechanisms for IndRNNs
are adopted in practice as well (Morad et al., 2023). For further details, we refer to Appendix A.

4 Rec-NAC: A High-Level Algorithmic View

In this section, we present a high-level description of our Recurrent Natural Actor-Critic (Rec-NAC) Algo-
rithm with two inner loops, critic (called Rec-TD) and actor (called Rec-NPG), for policy optimization with
RNNs. The details of the inner loops of the algorithm will be given in the succeeding sections. We use an
admissible policy m = (m:)ten that is parameterized by a recurrent neural network (Fi(-; ®))sen of the form
given in equation 7 with a network width m € Z,. To that end, for any ¢t € N, let

el e P Ful(z,0); ®))
t : Za’eAeXp(Ft((zt,a);q)))’

for any z € (Y x A)! x Y and a € A with the parameter ® € R™@+1)_ The high-level operation of Rec-NAC
is summarized in Algorithm 1.

(15)

Algorithm 1 Recurrent Natural Actor-Critic (Rec-NAC) — a High-level description

1: Initialize the actor RNN as (¢, ®(0)) ~ (o (see Definition 3.1).

2: forn=0,1,2,...,N—1do

3: Critic. Independently initialize the weights of the critic IndRNN as (¢",©"(0 )) Y Co-

4: Run Rec-TD in Algorithm 2 for K4 iterations, and obtain O := K ' Y k<ky 9" (K)
5: Estimate Q7" by O™ (-) := F,(0") for all t < T.

6 Actor. Apply projected-SGD to obtain

T 2
wy, € argmin Ej Z (V In 7 (A Zs)w — A(n (Zt)) )
wEQp m t=0
7 where the estimated advantage function is

A (z20,0) == O (z1,0) — VIV (Z),

8: for Q" (-) 1= Fy(50") and V" (-) i= Xy ep i (@)2) Q) (-, ).
9: Policy update.

10: end for
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For information regarding the algorithmic tools, i.e., random initialization and max-norm regularization for
RNNs, we refer to Section A.

In the following two sections, we derive the critic (Section 5) and the actor (Section 6) in full detail, and
provide concrete performance bounds for these methods in each section.

5 Critic: Recurrent Temporal Difference Learning (Rec-TD)

In this section, we study a policy evaluation method for POMDPs, which will serve as the critic.

Policy evaluation problem. Consider the policy evaluation problem for POMDPs under a given admissible
policy m € IIym. Given an initial observation distribution g € A(Y), policy evaluation aims to solve

T-1

Z ’Yt (Ft(Zt§ 0) - Q?(Zt))2

t=0

min  R7(0) :=Ej

oluin ; (16)

where T € N is the sequence length (i.e., the length of the truncated trajectory Z), and {F; : t € N} is
an IndRNN given in equation 7 — we drop the superscript a for simplicity throughout the discussion. The
expectation in R7.(©) is with respect to the joint probability law P;* of the stochastic process {(Si, As, Yy)
t € 10,7} where Zy ~ p.

5.1 Recurrent TD Learning Algorithm

In this section, we present a multi-step temporal difference learning algorithm for computing the sequence
of state-action value functions {QF : ¢t € N} for large POMDPs.

We assume access to a sampling oracle capable of generating independent trajectories from a given initial
state distribution (Bhandari et al., 2018; Cai et al., 2019).

Assumption 5.1 (Sampling oracle). Given an initial state distribution u, we assume that the system can be
independently started from Sy ~ p, i.e., independent trajectories {(St, Yz, A¢) : t € [T]} ~ Pp" are obtained.

Rec-TD is presented in Algorithm 2. We study the performance of Rec-TD numerically in Section C under
long-term and short-term dependencies to validate our theoretical results in Section 5.2.

Remark 5.2 (Intuition behind Rec-TD). In a stochastic optimization setting, the loss-minimization for Rr(0)
would be solved by using gradient descent, where the gradient is

T—

3 "(Fi(Z50) - Q7 () VF(Z:;©)

t=0

VeoRT(©) =2E]

On the other hand, the target function Qf is unknown and to be learned. Following the bootstrapping idea
for MDPs in Sutton (1988), we exploit an extended non-stationary Bellman equation in Proposition B.3,
and use r; + 'yFtH(ZtH; O) as a bootstrap estimate for the unknown Q?(Zt). Note that, in the realizable
case with Fi(;0%) = Qf(:), t € Z4 for some ©*, we have E7] [VR(Z7;0*)] = 0, motivating the use of the
stochastic approximation in this partially observable setting.

5.2 Theoretical Analysis of Rec-TD: Finite-Time Bounds and Global Near-Optimality

In the following, we prove that Rec-TD with max-norm regularization achieves global optimality in ex-
pectation. To characterize the 1mpact of long-term dependencies on the performance of Rec-TD, let
pe(x) = Y52 l2l*, and gi(z) = 32 o (k + Dlal*, 2 € Rt € N.

In the following, we present a regularity condition on the state-action value functions.

Assumption 5.3 (Regularity of (QF):). {QF : t € N} € .7 with a transportation mapping v = (4, vy) €
S such that supgepa+1 [[v,(0)|2 < vy and supgegar1 [V (0)] < v
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Algorithm 2 Recurrent TD Learning Algorithm

1: Input: step-size n > 0, max-norm projection radius p = (pu, pu), sequence-length 7.
2: Initialize (¢, ©(0)) ~ ¢ according to Definition 3.1.

3: for k=0,1,2,...,K —1do

4: Sample an initial state S5 ~ p independently.

5: Observe Y ~ ®(Sk, ).
6: Choose an action Ak ~ mo(-|ZE).
7: Set VRE := 0.
8: fort=0,1,...,7T do
9: State transition Sf,; ~ P((SF, AF),-).
10: Observe Y5 | ~ ®(SF, ).
11: Choose an action Af,, ~ m1(-|ZF, ).
12: Compute temporal difference d;(ZF, ©(k)) where
0¢(2t41; ©) 1= 1t + YFi11(Z141; ©) — Fi(2;9).
13: Update stochastic semi-gradient:
VRE « VR +~'0,(Zf,1; 0(k)).
14: end for
15: Parameter update with max-norm projection
O(k+1) = Projg,  [0(k)+n- VRE].
16: end for

Assumption 5.3 is a representational assumption, stating that (QF); lies in the RKHS induced by the
random features Ur(Z;60y) defined in equation 12. It directly extends Assumption 4.1 in Wang et al. (2019)
and Assumption 2 in Cayci et al. (2024b) to POMDPs, and exactly recovers these assumptions when T = 1
(see Remark 3.4).

Theorem 5.4 (Finite-time bounds for Rec-TD). Under Assumptions 5.1-5.8, for any projection radius
and step-size n > 0, Rec-TD with maz-norm projection achieves the following error bound:

~—

pt’/:(ywﬂ/u

LN re L3 o cy "N
e] Rﬂe%wf5<uvf*aw3 Py TR e (07

@)

for any K € N, where
o, Cf = poly (pr((a+ pum™"/2)o1). llll2: []2)

are instance-dependent constants that do not depend on K, and wy j = \/]E[(Ft(Zt; O(k)) — QF (ZF))2] is a

uniformly bounded sequence for t,k € N. Furthermore, the loss at average-iterate, E[RT. (% kK:_Ol @(k‘))],

admits the same upper bound as the regret upper bound in equation 17, up to a multiplicative factor of 10.

The proof of Theorem 5.4 can be found in Section B.

Assumption 5.1 is critical to obtain finite-time bounds in Theorem 5.4, and holds when the system can be
restarted independently from the initial state distribution Bhandari et al. (2018). In the specific case of fully-
observable MDPs, the process {(Sg, Ag) : k € N} is a Markov chain under any stationary policy, and mixing
time arguments under uniform ergodicity assumptions are used for analysis under Markovian sampling from
a single trajectory without independent restarts (Bhandari et al., 2018; Cayci et al., 2023). On the other
hand, in the case of POMDPs, {(S;, Ax) : k¥ € N} is not a Markov chain under a general non-stationary

10
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policy . In the specific case of policies parameterized by RNNs with hidden state {Hy : k € N}, the
augmented process { (S, Ak, Yi, Hx) : k € N} forms a Markov process. The challenge here is that the state
space for this augmented Markov process may be very large or even continuous, and standard theoretical
tools (e.g., mixing time arguments) can become much more involved. Under Assumption 5.3, Theorem 5.4
implies the global e-optimality of Rec-TD as the sequence-length 7" — oo for sufficiently large number of
iterations K = C’)(C(Tl) /€?) and network width m = (’)(Cq(?) /€?). If we omit Assumption 5.3, the error bound

in Theorem 5.4 still holds with an additional error term O (ﬁeapp(ﬂ%)) where

T-1
€app(Fr) := Inf EJ lz ok (ft(Zt) - Q?(Zt))Q
t=0

feFr

is the function approximation error.

Remark 5.5 (Overcoming perceptual aliasing with Rec-TD). Memoryless TD learning suffers from a non-
vanishing optimality gap in POMDPs, known as perceptual aliasing (Singh et al., 1994). To address this,
Rec-TD integrates T-step stochastic approximation with an RNN, enabling it to retain memory. Accordingly,
Theorem 5.4 establishes that as " — oo, Rec-TD reduces R7, to arbitrarily small values, given sufficiently
large network width m and iteration count K.

Remark 5.6 (The impact of long-term dependencies). Note that both constants C'(Tl),C(TQ) polynomially
depend on pr (910,). As noted in Goodfellow et al. (2016), the spectral radius of {W (k) : k € N} determines
the degree of long-term dependencies in the problem as it scales Hy. Consistent with this observation, our
bounds depend on
Pw T
A = a4+ —= > Amax(W ' (k)W (k)) = max |W;;(k)],
> M (W (KW (k) = max [ I8

for any k € N. Note that Theorem 5.4 requires p,, > vy, thus max;cpm,) |Wii(k)| should be sufficiently large
depending on the RKHS norm v. Let € > 0 be any given target error.

e Short-term memory. If a,, < Q%, then it is easy to see that pr(oicu,) < 1_911a . Thus, the
extra term (©) in equation 17 vanishes at a geometric rate as T — oo, yet m (network-width) and

K (iteration-complexity) are still O(1/£2). Rec-TD is very efficient in that case.

e Long-term memory. If o, > é, as T — oo, both m and K grow at a rate O ((Q1am)T/€2) while
the extra term (O) in equation 17 vanishes at a geometric rate. As such, the required network size
and iterations grow at a geometric rate with 7" in systems with long-term memory, constituting the
pathological case.

Theorem 5.4 emphasizes the critical importance of max-norm projection and large neural network size m in
stabilizing the training of IndRNNs by Rec-TD, and guides the choice of the projection radius p. Interestingly,
it {QF : ¢t < T} € #r has an RKHS norm v, < 1/p;, then Rec-TD with a projection radius pw X Vw
and overparameterization m > 1 yields significantly improved policy evaluation performance in terms of
C(Tl), C(TQ) for large T'. Similar projection mechanisms on {W;; : i € [m]} are widely used for IndRNNs in
practice, for instance in Morad et al. (2023), to enhance stability.

The performance of Rec-TD is studied numerically in Random-POMDP instances in Section C.

6 Actor: Recurrent Natural Policy Gradient (Rec-NPG) for POMDPs

The goal is to solve the following problem for a given initial distribution u € A(Y) and p € R2:

7_{_<I>
@eg}?(il) V™ (u) such that ® € Q, , (PO)

11
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6.1 Recurrent Natural Policy Gradient for POMDPs

In this section, we describe the recurrent natural policy gradient (Rec-NPG) algorithm for non-stationary
reinforcement learning. First, we formally establish in Prop. D.2 that the policy gradient under partial
observability takes the form

VeV (1) = ,

S Q" (2, A)Ve Inf (A Z)

t=0

where the state S; in the MDP framework is replaced by the process history Z; in POMDP. Fisher information
matrix under a policy 7% is defined as

> A VInaf (A Z)V T Inw (A Zy)
t=0

Gu(®) :=

)

for an initial observation distribution p € A(Y). Rec-NPG updates the policy parameters by

(1), (18)

for an initial parameter ®(0) and step-size n > 0, where GT denotes the Moore-Penrose inverse of a matrix
G. This update rule is in the same spirit as the NPG introduced in Kakade (2001), however, due to the
non-stationary nature of the partially observable MDP, it has significant complications that we will address.

@ (n)

®d(n+1) = &(n) +n-G(2(n)Ve V"

In order to avoid computationally-expensive policy updates in equation 18, we utilize the following exten-
sion of the compatible function approximation in Kakade (2001) to the case of non-stationary policies for
POMDPs.

Proposition 6.1 (Compatible function approximation for non-stationary policies). For any ® € R™(d+1)
and initial observation distribution u, let

£ ( Z’yt VT 1H7Tt At|Zt)w .Aﬂ- (Zt)) 5 (19)
t=0

for w € R™4+D) - Then, we have

GL(CD)V@V”<I> (1) € argmin L, (w; ®). (20)

wER™M(d+1)

We have the following remark regarding the intricacies of compatible function approximation in the POMDP
setting.

Remark 6.2 (Path-based compatible function approximation with truncation). For MDPs, the compatible
function approximation error £, (w;®) can be expressed by using the discounted state-action occupancy
measure, from which one can obtain unbiased samples (Agarwal et al., 2020; Konda & Tsitsiklis, 2003). Thus,
the infinite-horizon can be handled without any loss. On the other hand, for POMDPs as in equation 19,
this simplification is impossible due to the non-stationarity. As such, we use a path-based method for a
sequence-length T' € N with

T-1
br(w; @, Q) := Z YV Inaf (Al Zow — A(Ze, Ar))?,
t=0

where Ay (2, ar) = Qi(2e,a) — Y uen T (al2) Qi (2¢, a) is the advantage function.

Given a policy with parameter ®(n), the corresponding output of the critic, which is obtained by Rec-TD
with the average-iterate as

k<th

12
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the actor aims to solve the following problem:

wénﬂi;lm E{ET (w; ®(n), Q(”)) ’(:)"7 d(n),..., <I>(0)}.

We utilize stochastic gradient descent (SGD) to solve the above problem. Let Z;’k ~ P;q)
independent random sequence for k € N, @, (0) = 0, and

A

On(k + 1) = O (k) — 1sgaVeolr (@ (k); @(n), ™),
@n(k+1) = Projg,  [@n(k+1)],

p,m

. . N .
A stochastic estimate of GL(@(?’L))V(I)V ’ (1) is computed as wy, := fgd Zk<ngd @n(k), followed by

O(n+1) = P(n) + Nnpg - Wn-
In the following, we present a theoretical analysis of this policy optimization algorithm.

6.2 Theoretical Analysis of Rec-NAC for POMDPs

We establish an error bound on the best-iterate for the Rec-NPG. The significance of the following result
is two-fold: (i) it will explicitly connect the optimality gap to the compatible function approximation error,
and (ii) it will explicitly show the impact of truncation on the performance of path-based policy optimization
for the non-stationary case.

Theorem 6.3. Assume that P}T*’“ is absolutely continuous with respect to P:’p’(b(n)'M

this assumption, let

for alln < N. Under

P‘ﬂ'*,ll«
K= max %
0<n<N || PRTC
o0
be the concentrability coefficient, and
a* 7‘,(1)(71)
Vo :i=V" () = V™ (n), n<N

be the optimality gap. Rec-NPG after N € Z steps with step-size nnpg = ﬁ and projection radius p € R2>0
yields

N-1
o IH‘A| ||pH% pT(aTan) ’)/T’roo \/E T 1

min Eo[V,] < ~ — M E o 2
ouin o[Val S 1) + T i— + e + T 2 0(eda(®(n),wn))?,

where By is the conditional expectation given the symmetric random initialization (c°, ®(0)) ~ (o, and

(@) =Y AV naf (A Ze)w — AT (Ze, Ap)P2.

t<T
Remark 6.4. We have the following remarks.

o The effectiveness of Rec-NPG is proportional to the approximation power of the IndRNN used for
policy parameterization, as reflected in acha in Theorem 6.3. We further characterize this error term
in Propositions 6.6-6.8 in the following.

o The terms Ly, i, At, x¢ grow at a rate py(01,). Thus, if a;, > 91_1, then m and N should grow at
a rate (a,,01)7, implying the curse of dimensionality (more generally, it is known as the exploding
gradient problem Goodfellow et al. (2016)). On the other hand, if o, < 07", then Ly, B, A¢, x¢
are all O(1) for all ¢, implying efficient learning of POMDPs. This establishes a very interesting
connection between the memory in the system, the continuity and smoothness of the RNN with
respect to its parameters, and the optimality gap under Rec-NPG.

13
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e The term a TT;Z is due to truncating the trajectory at T, and vanishes with large T

o Rec-NPG achieves e-optimality (up to the compatible function approximation and truncation errors)
with N = O(1/€?) steps and m = O(1/€*) neural network width for any € > 0.

Remark 6.5. The quantity « in Proposition 6.8 is the so-called concentrability coefficient in policy gradient
methods (Agarwal et al., 2020; Bhandari & Russo, 2019; Wang et al., 2019), and determines the complexity
of exploration. Note that it is defined in terms of path probabilities P7* in the non-stationary setting. By
making the assumption x < oo, we assume that the policies 7®(™ perform sufficient exploration to visit
each trajectory visited by 7* with positive probability. In order to establish similar bounds without this
assumption, entropic regularization is widely used to encourage exploration in practical scenarios Ahmed
et al. (2019); Cen et al. (2020); Cayci et al. (2024c). The benefits of using entropic regularization in policy
optimization for POMDPs to encourage exploration is an interesting future research direction.

In the following, we decompose the compatible function approximation error 5
error for the RNN and the statistical errors. To that end, let

5, into the approximation

220

cappn = if EY VT F(Z () - QF (2 Al

2o.m t<T

o (n
be the approximation error where the expectation is with respect to Py~ ",

cun =E[RE ()@ (k), k < n),

be the error in the critic (see equation 16), and finally let

Esgdn = Ellr (wn; ®(n), Q™) |OM), @ (k), k < n] — inf E[lr(w; ®(n), Q™) |0, (k). k < n,
be the error in the policy update via compatible function approximation.
Proposition 6.6 (Error decomposition for €X.). For any n € Z., we have

(2 (wns @(n), Q)] |@(k), k < n] < ”p”2 Z 787 + 8eappn + 6t + 2esgan.

P (n)

E[E;

From Theorem 5.4, we have, for ng = O(1/v/Kia),

1 1
Etd,n < pOIL om))O | ——= + + T>’
td, poly(pr(o1am)) (m \/m v

and by Theorem 14.8 in Shalev-Shwartz & Ben-David (2014), we have, for nsgq = O(1/+/Ksgd),

Esgdn < POLy(pr(010m), [1pl|2)O(1/1/ Kega)-

As such, the statistical errors in the critic and the policy update (i.e., €td n,€sgd,n) can be made arbitrarily
small by using larger Kiq, Ksgq and larger meritic. The remaining quantity to characterize is the approximation
error, which is of critical importance for a small optimality gap as shown in Theorem 6.3 and Proposition
6.6. In the following, we will provide a finer characterization of e,pp 5 and identify a class of POMDPs that
can be efficiently solved using Rec-NPG.

Assumption 6.7. For an index set J and v € ]R2>0, we consider a class %, of transportation mappings

sup [0 (0)]

) L ORIt jeJ Vw
v e j€ed < ( )
s @) ) T\ [
ORI+ jeJ

14
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and also the corresponding infinite-width limit
Fiv =12~ E[¥(Z6p)v(0)] : v € Conv(],)},
where ¥(-;6p) is the NTRF matrix, defined in equation 12.
We assume that there exists an index set J and v € R2>0 such that Q”é(n) € %y, forallneN.

This representational assumption implies that the Q-functions under all iterate policies 7®(™ throughout
the Rec-NPG iterations n = 0,1, ... can be represented by convex combinations of a fized set of mappings
in the NTK function class .# indexed by J. As we will see, the richness of J as measured by a relevant
Rademacher complexity will play an important role in bounding the approximation error. To that end, for
Z = (2,a1) € (Y x A)IHL ) Tet

Gt = {p = VJHP (2 0)0(0) : v € H7,},

and m
Rad,, (G?) := E — i
& ( t) e~Rad™ ztmzeg

<I>(0)~c:.n.t =1

Note that v € 7, above can be replaced with v € Conv(5,) without any loss. In that case, since
the mapping v — f7(Z;vV)) € G7* is linear, G7* is replaced with Conv(G;") without changing the
Rademacher complexity (Mohri et al., 2018).

The following provides a finer characterization of the approximation error.

Proposition 6.8. Under Assumption 6.7, if p = v, then

1 z
€appn < T <2 max ~ max Rad,,(G;*) + LT|p|2\/

0<t<T z;e(YxA)tt1

2
In (2T|Y x A[T/5)
m )

for all n simultaneously with probability at least 1 — & over the random initialization for any § € (0, 1).

Remark 6.9. An interesting case that lead to a vanishing approximation error (as m — o0) is |J| < oo.
Then, Proposition 6.8 reduces to Cayci et al. (2024b) (with 7' = 1 for FNNs) with the complexity term

(@) (\/ ln(lJml/é)> by the finite-class lemma (Mohri et al., 2018). In this case, the Q-functions throughout

n=0,1,... lie in the convex hull of |.J| fixed functions in . generated by {v\/) € 7 : j € J}.

Remark 6.10. As noted in Cayci et al. (2024b), in a static problem (e.g., the regression problem in supervised
learning or policy evaluation in Section 5) with a target function f € %, the approximation error is easy to
characterize:

m

‘VTFt(Zt; <I>(O))w* — ft(ét)| = O < 1n(1/6)> s (21)

by Hoeffding inequality with w* := {ﬁciv(@(O))]

ie[m].

In the dynamical policy optimization problem, the representational assgrription Q”é(”) € .Z does not imply
arbitrarily small approximation error as m — oo since the function Q™ ™ also depends on ®(0). Thus,

" VTH (7 2(0)0®™) (9,(0))

VTFt(Zt,
m

M

i=1

with w} = [ﬁc v®($;(0))]ie[m for v¥(™ € H# may not converge to the target function 9™ asm — oo

because of the correlated VTHt( )(zt; ®(0))v®™ ($;(0)) across i € [m]. To address this, we characterize the
uniform approximation error as in Proposition 6.8 for the random features of the actor RNN in approximating
all 9" for all n based on Rademacher complexity.
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7 Conclusion

We studied RNN-based policy evaluation and policy optimization methods with finite-time analyses, which
demonstrate the effectiveness of the NPG method equipped with RNNs for POMDPs. An important limita-
tion of Rec-NPG is that its memory and sample complexity significantly increases in POMDPs with long-term
dependencies as pointed out in Remarks 5.6-6.4. In order to mitigate these issues, as an extension of this
work, input normalization (Zucchet & Orvieto, 2024) and preconditioned Rec-TD updates to incorporate
curvature information (Martens & Sutskever, 2011) are important directions for future research.
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A Algorithmic Tools for Recurrent Neural Networks

A.1 Max-Norm Projection for Recurrent Neural Networks

Max-norm regularization, proposed by Srebro et al. (2004), has been shown to be very effective across
a broad spectrum of deep learning problems (Srivastava et al., 2014; Goodfellow et al., 2013). In this
work, we incorporate max-norm regularization (around the random initialization) into the recurrent natural
policy gradient for sharp convergence guarantees. To that end, given an initialization (W(0), U(0),¢) as in
Definition 3.1 and a vector p = (pw,pu) | € R2>0 of projection radii, we define the compactly-supported set
of weights 2, ,, C R™+1) a5

Qp,m = {@ c R™(d+1) . miaX |W“ — W“<O)‘ < L\/%’ mzax ||UvZ — Uz<0)|| < \5%} (22)

Given any symmetric random initialization (W(0),U(0),c) and p € R%, the set Q,,, is a compact and

convex subset of R™(@+1) and for any © € Qp.m, we have

T < Pw
2 (Wi = Wi (0)] < 722,

 —U; < .
1r§nignlle Uz(O)II_\/m

Let

Proj,,  [6] = arg min [Wii —w;|,  argmin IU; — u;ll2 (23)

we By (Wu(O),%) u; €Ba (Ui(o),j”m) iem]

As such, the projection operator Projg,  [] onto €2, is called the max-norm projection (or regularization).

Note that we have ||[W —=W(0)||2 < pw, [|[U—-U(0)]]2 < p, and ||©—0(0)||2 < ||p||2 in the ¢; geometry for any
O € Q, . Therefore, although the max-norm parameter class Q,,,, C {© € R™1 . |@-0(0)|2 < |pll2}
the ¢5-projected Cai et al. (2019); Wang et al. (2019); Liu et al. (2019) and max-norm projected Cayci et al.
(2024b) optimization algorithms recover exactly the same function class (i.e., RKHS associated with the
neural tangent kernel studied in Ji et al. (2019); Telgarsky (2021), see Section 3.1).

B Proofs for Section 5
An important quantity in the analysis of recurrent neural networks is the following;:
I (2:0) == WisH{" (2:©),
for any hidden unit i € [m] and © € R™@+1). The following Lipschitzness and smoothness results for

0; — Ht(i)(zt;@) and ©; — Fii)(zﬁ 0).
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Lemma B.1 (Local continuity of hidden states; Lemma 1-2 in Cayci & Eryilmaz (2025)). Given p € R%,

and a >0, let oy = o+ p—m Then, for any Z € (Y x A)Z+ with SUp;en <1,teNandie [m],

2

e O, Ht(i)(ét; ©) is L;-Lipschitz continuous with Ly = (08 + 1)0% - p?(amo1),
e O, — Ht(i)(ét; ©) is Bi-smooth with By = O (d - pr(ame1) - ¢(amor)),
e O, — ng)(ét; 0) is Ay-Lipschitz with Ay = v/2(00 + 1 + amLy),

« O, ng)(ét; Q) is x¢-smooth with x; = v2(Lt + amfBt),

in Q, m. Consequently, for any © € Qp 4,

< .
s g Fi(z:0)] < Lo o, T €N, (24)

Su_p |FtLin(2t; 6) — Ft(gtv 6)| S
zeH

(92/\ + 01x4)[|© — ©(0) |3, t €N, (25)

-

7 _ -\ _ 267pll3
sup (VFi(z4;0) — VFi(%;06(0)),0 —0) < ———=
sw (VR(5:0) - VA(2:00)),0 -6) < T

with probability 1 over the symmetric random initialization (W (0), U(0),c) ~ (.

The following result builds on Proposition 3.8 in Cayci & Eryilmaz (2025), and identifies the approximation
error for approximating f* € % by using randomly-initialized IndRNNs of width m. Unlike the supervised
learning setting in Cayci & Eryilmaz (2025), the approximation error in the RL setting is P/ -norm.

Lemma B.2 (Approximation error between RNN-NTRF and RNN-NTK). Let f* € .F with the transportation
mapping v € €, and let

%cw(@i(())),i € [m]. (27)

for the initialization (W(0),U(0),c) ~ (o in Def. 3.1. Let

6, = 0,(0) +

Ff"(50) = Vo Fi(-:0(0) - (6 — 6(0)).

If Pp" induces a compactly-supported marginal distribution for Xyt € N such that | X2 < 1 a.s. and
{Z, : t € N} is independent from the random initialization (W (0),U(0),c), then we have

E {EZ [(ft*(zt) —FtLin(Zt;é))2H < 2|lv[|3(1 + 0p)pi (0491)’ (28)

m

where the outer expectation is with respect to the random initialization (W (0), U(0),c) ~ (o.

Proof. For any hidden unit 7 € [m], let

¢ g
G = < ). 30 w3 0) (Miha kO )HLJ&W<»>

k=0

Then, it is straightforward to see that

FLm Zt, Z C“ (29)
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and E[(;|Z:] = E[ff(Z:)|Z;] almost surely. Note that {¢; : i € [m/2]} is independent and identically
distributed and (; = (i1, 2 for any i € [m/2]. Also, with probability 1 we have

t
61 2 @ o |3 o) (ke Zioir 04 )quzt 0.0 .

= 2
(%
< [v(©:(0))]]2 Zak 1+ el
©) .
< lvll2- o1 y/1+ 05 - pe(or),

where (#) follows from Cauchy-Schwarz inequality, (&) follows from the uniform bound sup,cp [0(2)] < 01
and almost-sure bounds || Xj|l2 <1 and |[W;;(0)| < a, and () follows from v € .7,. From these bounds,

Var(¢i) < E[ELGI)) < w301 (1 + 00)?pi (aer), i € [m]. (30)
Therefore,
™ *(r7 Lin/ 7 . 3\ 2 iy =i 1 - 7 ]
E[Eu [(ft (Zy) = Fy'™"(Z1;9)) ” =E, |E EZ(Q—E[CHZJ) :
=1
[ 9 m/2 ~ 21
=E; |E|| =Y (G-EGIZ])]| ||,
1=1
2 N )
= S S E[(G - ElGlZ)) (G - BlG1Z)]
i=1 j=1
m/2 9
= ZVM (G) < = [wl3ed (1 + e0)*pi (a0),

where the first identity is from Fubini’s theorem, the second identity is from the symmetricity of the random
initialization, the fourth identity is due to the independent initialization for i < m/2, and the inequality is
from the bound in equation 30.

O

Proposition B.3 (Non-stationary Bellman equation). For 7 € Ilym, we have

O (z) = E™ |7(Ss, Ar) + ’)’Qf_;_l(ztﬂ)

Zu = 2| = E7 [r(Si, A) + Vi (Zesa)

Zt = 2tj| )
foranyteZ,.

Proof of Theorem 5.4. Since {QF : t € N} € .Z, let the point of attraction © be defined as in equation 27,
and the potential function be defined as

¥(0) = 6 - 63 (31)

Then, from the non-expansivity of the projection operator onto the convex set €2, ,,, we have the following
inequality:

T-1

V(O(k+1)) < W(OK) +20 Y 7'0:(Zf113O()) (VE(Z50(K)), O(k) — ) +1°[VRr(Z5; O (k)13 (32)
t=0
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Let EF[-] := E[|©(K),...,0(0), ZF]. Then, we obtain

E[W(O(k + 1)) - W(O(k))] < 2nE[ S B ZE 1500 (V28 000). 0(h) — o)]
= (W)

+7°E |[VRr(Z150(k))[5 . (33)
)

Bounding E(#);. By using the Bellman equation in the non-stationary setting (cf. Proposition B.3), notice
that

By 6:(Zf1: O(k)) = BY [ + 7 Fei1(ZEy15O(k)] — Fi(Zf5 ©(k)),
=B} [Fei(ZE150(k) — QT (Zf1)] + QT (Ze) — Fu(Z¢; O(k)).

Secondly, we perform a change-of-feature as follows:

(VE(ZE;0(k)), 0(k) — 6) = (VF(ZF;6(0)),0(k) — ©) +err}), (34)
where
. ) ~k - W, _ 282lel3 _ 26%1pll3
et = (VR(ZE;0(8) = VF(Z}50(0)), 8(k) = 8) , and [err])| < =LER < T,
by Lemma B.1. Furthermore,
(VE(Zf;0(0)),0(k) — ©) = FF"(ZF;0(k) — FE"(2F;6), (35)
= F(ZF;0(k) - QF (ZF) + enrl?) + err?) (36)
where
erry’) = FH(ZF; 0(k)) - Fi(ZF:0(k)),
erry) = —FF"(ZF50) + Q7 (Z)).
Thus,

(W) = —(QF (Zf) = Fu(Z;0(k))? + 7B [Fia(Z1:0(K)) — QFa (Z70)] - (QF (Z)) — Ful(Zy: (k)

+EFS(ZF, 150 err).

I\Mw

By equation 24, we have

sup [0¢(Ze41;O(k))| < 7o + 2L7[pll2 =: Omax
zell.,

Now, let wyy, = (E[(QF(ZF) — FL(Z}; @(k:)))Q])l/2, where the expectation is over the joint distribution of
O(k) and Z%. Then,

3
E[(‘)t] < _Wtzvk + VWi41,kWt k + 5max ZE|€I’I’§’]2: .
j=1
From equation 25, we have

2
Elerr\?)| < 7( 0202 + o1x7)|IplI3.

From the approximation bound in Lemma B.2, we get

2 1 2.
Elerr®)| < \/Eferr® 2 < AVt & prioo)
Jm
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Also, note that wiiq gwe e < %(wik + wf+17k). Putting these together, we obtain the following bound for
every t € {0,1,...,T —1}:

gl Cr
E[(#)] < —wiy + §(Wt2+1,k + Wi k) + Omax - NGk

where
Cr =267 |pl13 + 2(02A% + o1x1) ol + 2|[wll2\/1 + 03 - pr (o).

Hence, we obtain the following upper bound:

T—1
Omax - CT
t t, 2 max
> AE[(M)] < —(1—7/2) ) Awiy + e Z’Y Witk
t=0 t<T (I =7)vm t<T
S%(ZKT 'Yt“’?.k""VT‘“%,k)
11—~ Cr - Oma
< - Z’YWHHF ’YWTkJFW (37)

t<T

Bounding E[(&)]. Using the triangle inequality, we obtain:

1D A"6:( 21 OV E(Zi: O(K))ll2 < D A 18:(ZEy; ORI - IV EA(Zi; ©(K)) -

t<T t<T

Since O(k) € Q, ,, for every k € N as a consequence of the max-norm regularization, we have
166(Z8415 O(K))| < dmax = To0 + 2L7 | pll2,

IVF.(ZF;0(k)|3 = — leveH (ZF©(k)|3 < L? < L%,

for every t < T with probability 1 since ©; +— Ht(i)(ét; ©;) is Li-Lipschitz continuous by Lemma B.1. Hence,
we obtain: I

VR (ZE:0(0)]o < ST (39)
Final step. Now, taking expectation over (ZF,©(k)) in equation 33, and substituting equation 37 and
equation 38, we obtain:

~

-1

E[¥(O(k +1)) = ¥(O(k)] < —n(1 =) Y ~'wiy +mTwi, + 7

t

6ma>< : C(T 52

max T

Ty )

for every k € N. Note that ¥(©(0)) < |lv||3. Thus, telescoping sum over k =0, 1,..., K — 1 yields

Il
=3

K— K—-1
||V||% 775max (Smax ) CT ’YT 2
+ Ly + W .. 39
Z SA-K T—F T a—tym 1K 2 “ha (39)

k=0

The final inequality in the proof stems from the linearization result Lemma B.2, and directly follows from

. (;{ Z @(k)) < % Z Rr(O(k)) + % (QQAQT + QlXT) ||P||§7

k<K k<K

which directly follows from Cayci & Eryilmaz (2025), Corollary 1. O

In the following, we study the error under mean-path Rec-TD learning algorithm.
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Theorem B.4 (Finite-time bounds for mean-path Rec-TD). For K € N, with the step-size choice n =

%252)2, mean-path Rec-TD learning achieves the following error bound:
T

E [}{ > REOK)

k<K

+

2”1/“% ’YTWT,k C’T(Smax + n <(C§“)2
T (1=K 1-vy  (1-9)%*/m

16927 LA (]2 + ||u|§>) 7

where Cl. and Lt are terms that do not depend on K.
Theorem B.4 indicates that if a noiseless semi-gradient is used in Rec-TD, then the rate can be improved

from O ( ) to O ( ) indicating the potential limits of using variance-reduction schemes.

Proof of Theorem B.j. At any iteration k € N, let
VR1(O(k)) = B} [VR(ZE;0(k) |, (40)

be the mean-path semi-gradient. First, note that

IVRr(©(K))I < 2IVRr(O(k) = VR ()|5 + 2 VR (O)]l3. (41)

Bounding ||[VR(©)|3. For any k € N, ¢ < T, we have
[515( t+13 )|va@(0)vc] = WE[Ft-s-l(Zt-s-p ) Qt+1( t+1)|Zf ( )70] + Qf(Zf) - Ft(Zf;é)-
Since ||V Fy(%;©)]]2 < Ly, the following inequality holds:

[B(5:(ZE; 8)V A (25O, < B (BB, 1:0)1 2, 000), VR 21,
< LTE|]E[5t t+17 )|Ztk ©(0), C} )
< Ly (VE|Fei1(Zf4150) = QT (Z7)| + E|QT(Z7) — F(Zf50)]),  (42)

where we used Jensen’s inequality, the law of iterated expectations, and triangle inequality. From the above
inequality, we obtain

o o o
IVR7(©)ll2 < Y A |E[6:(ZE,1; ©)VE(ZE; ©)]]
t=0

27

@ o
< LT’YZ’Y E|F11(2f01;0) — Q7 (28 |+LTZVtE|QW(Zk) F.(Z};0)],

t<T t<T
@ L YE Z'Y ‘Ft+1( t+1) ) Qt+1( t+1)| +E Z’Y | F3( Ztk ) QF (Zk)|
vI=7 t<T t<T
@ Ly
S ZW |Ft+1 t+17 ) Qt—H( 1) ZV | Fi( va - QF (Zk)‘ )
1=7 \/ t<T t<T
® V21 +9)Lr vl T+ & - pr(eia)

Vi Vi

where (1) follows from triangle inequality, (2) follows from equation 42, (3) follows from Cauchy-Schwarz
inequality and the monotonicity of the geometric series T+ Y, 7", (@ follows from Jensen’s inequality,
and finally (5) follows from Lemma B.2. Hence, we obtain

SLA IR0+ )p(o10) )

I9R(®)I < =

24



Published in Transactions on Machine Learning Research (10/2025)

Bounding ||[VR7(0(k)) — VR7(0)|3. First, note that
IVR2(O(k)) = VR2(O)ll2 = IE[ D" 7" (0:(ZE3 0N VEL(ZE; O(k)) = 61(ZF13 O) V(25 ©)) || Iz
t<T

We make the following decomposition for each ¢ < T
61(Zf 13 0(k))VE(ZF;0(k)) — 0¢(ZF,1:©)VFU(Zf;0) = 6:(Z),1:0(k)) (VE(Z); ©(k)) — VE(Z];0))
+ VFt(Zf; O(k)) (5t(2tk+19 (:)) - 5t(2tk+1; G(k))) (44)

By Lemma B.1, we have |6;(ZF,1;0)| < dmax and | VE,(Z;0)||1 < Ly < L almost surely for any © € Q, ,,
which holds for ©(k) (due to the max-norm projection) and ©. As such, by triangle inequality,

< 53]E||®(Z)—@||% + LB, (ZF1:0) — 6 Hl,@(k))l),

IVR7(6(k)) = VR ()]l < Y+

t<T
SmaxB3- ([l 113 + [1113) = o & _
= 2(1_27) = +LrE ;vtlét(&’&l;@)—5t(zf+1;@(k))| (45)
ol
Note that
10215 OK) — 621 0)] = 4" (11 (2413 0) = Finn (21 OR))| + | F(250) - Fi(Z:0())),
t<T t<T
(ZF;0) — F(ZF;0(k)| + 1T Lr||©(k) — O, (46)
t<T

where the second line follows from the Lipschitz continuity of © — Fi(-;©). Then, adding and subtracting
OF to each term, we obtain

D o A10(ZE 1 O(R) = 6:(Zf430) <2 A (1F(Zf:0) — QF (Z8)| + Q7 (Zf) — Fu(ZE; 0 (k))l)

t<T t<T
+7TLr|O(k) - Oll2.  (47)

Taking expectation, we obtain

EKZTVtVSt(ZtkH? k)) — d4( t+17®)| < \/%JE lKZT’Y”Ft(Zf;@(k))_Q?(ZfV

+ 4" Lr|©(k) — O|2.

; %J ’ lZ VIF(ZL:0) - QF (2P

t<T

By Lemma B.2 and equation 25, we have

4
E|Fy(Z};0) — QF (Zf)? < 7””“2@1(1 +00)°pi(@0r) + — (027 + erxr) o,

for any t < T'. Thus,

]

EY 16211 0(k) = 8,(Zf1;0)] < = \IElZthFt(Zf;G(k))Q?(Zf)Z

t<T t<T

+ = \/Oi—’v) (Ivlla01(1 + eo)pr(aer) + (203 + ovxr) Ipl) +47 Lz [O(k) — O]l

<lell2+lvl2

::C;S)
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This results in the following bound:

(3)
L VRO + =+ Lol + Il (48)

EZ; [V16:(ZF,15 O(K)) — 61(ZF,1: ©)]] < —

Substituting the local smoothness result in equation 48 into equation 45, we obtain

(3) (4)
|9Rr(O(k) — VR7(O)]z < Ly (V%\/RT(G(M) + T o Ll + ||u||2>) + O

Thus, we obtain

_ _ _ 16L2
IVR(O(K)) - TR2(O)3 < 1L

(3272 (4)\2

— - + 8y LT (Ioll3 + [IvI13)- (49)

Using equation 43 and equation 49 together, we obtain

IVRr(©(k))|I3 < 2IVRr(O(k)) — VR (©)|3 + 2| VR ()13,
_ RLIRr(O(R) | (Ch)?
- 1—7v m

+ + 1697 LT (llpll3 + ll3)- (50)

In the final step, we use equation 33, equation 37 and equation 50 together:

C’T(Smax
(1=y)vm

(C'%)Q 16 2TL4 2 2 51
- 1677 La(llellz + 1vll2) ), (51)

E[U(O(k+ 1)) — ¥(O(k)] < —n(1 — )ERr(O(K)) + ny" wrk + 1

g (32L§ERT(@(k)) N

11—~

(1—)?

6aL3 We obtain

where the expectation is over the random initialization. Choosing n =

CT(Smax
(1=7)v/m

2 ((C1)* 16727 .4 2 2 59
+1 + 1697 Lr(llplz + [Ivl2) ) - (52)

B[Ok + 1)) ~ ¥(0(k)] < -V ER(O(0) + m wrs 11

m
Telescoping sum over £ =0,1,..., K — 1, and re-arranging terms, we obtain:

E

1 Z 2||v|3 Y wrk C10max (Cr)? 2T 14 2 2
R < + 2 —+ .

O

C Numerical Experiments for Rec-TD

In the following, we will demonstrate the numerical performance of Rec-TD for a given non-stationary policy
7Tgreedy.

POMDP setting. We consider a randomly-generated finite POMDP instance with [S| = |Y| =8, |A| = 4,
r(s,a) ~ Unif[0,1] for all (s,a) € S x A. For a fixed ambient dimension d = 8, we use a random feature
mapping (y,a) = ¢(y,a) ~ N(0,1a), Y(y,a) ~ Y x A.

e-greedy policy. Let

<%k
t) € arg max r;
.7 () g0§j<t 20
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be the instance before ¢ at which the maximum reward was obtained, and let

w.p. min{ % s Dexp }'s

. (54)
w.p. 1— mm{Ql—'Bt,pexp},

1
7r;*greedy(a‘zt) = { ]IIAI )
a=Ajx (1))

be the greedy policy with a user-specified exploration probability pes € (0,1). The long-term dependencies
in this greedy policy are obviously controlled by pexp: a small exploration probability will make the policy
(thus, the corresponding Q-functions) more history-dependent. Since the exact computation of (QF )iy
is highly intractable for POMDPs, we use (empirical) mean-squared temporal difference (MSTD) 2 as a
surrogate loss.

Example 1 (Short-term memory). We first consider the performance of Rec-TD with learning rate
1 = 0.05, discount factor v = 0.9 and RNNs with various choices of network width m. For pes, = 0.8, the
performance of Rec-TD is demonstrated in Figure 2. Consistent with the theoretical results in Theorem

— m=32

— m=32
0.40 — m=128
m=512

e

20 ——
Y

-

g
N\
g N\
B 1.

— m=32

Deviation [|U(K)-U(0)]|

Deviation [|W(Kk)}-W(0)]|

101 — m=128 -
— m=512 — 1

4000 6000 8000 10000 12000 14000 16000 18000 20000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Iterations (k) [ k)

4000 6000 8000 10000 12000 14000 16000 18000 20000
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(€) =3, [Wii(k) —

Figure 2: Mean-squared TD and (mean) parameter deviation under Rec-TD for the case pey = 0.8 and
v =0.9. The mean curve and confidence intervals (90%) stem from 5 trials.

(a) Mean-squared TD, T'= 8 (b) =52, IU(k) = U:(0)]], T = 8. Wi (0)], T = 8.

5.4, Rec-TD (1) achieves smaller error with larger network width m, (2) requires smaller deviation from the
random initialization ©(0), which is known as the lazy training phenomenon.

Example 2 (Long-term memory). In the second example, we consider the same POMDP with same
random samples, and an RNN with the same neural network initialization. The exploration probability is
reduced to pexp = 0.25, which leads to longer dependency on the history. This impact can be observed in
Figure 3¢, which implies a larger spectral radius compared to Example 1 (in comparison with Figure 2c).

— m=32

— m=32
— m=128
— m=512

— m=32 045

o

-

Deviation ||U(k)-U(0)]|
Deviation [|W(k)-W(0)]|

Mean-squ:

020 e ———

4000 6000 8000 10000 12000 14000 16000 18000 20000

4000 6000 8000 10000 12000 14000 16000 18000 20000
\\\\\\\\\\\\ [ K)

Iterations (k)

(a) Mean-squared TD, T = 8 (b) =5, IU(k) = U:(0)]], T = 8. (¢) =3, Wii(k) = Wi (0)], T = 8.

Figure 3: Mean-squared TD and (mean) parameter deviation under Rec-TD for the case pey, = 0.25 and
~v = 0.9. The mean curve and confidence intervals (90%) stem from 5 trials.

In Figure 4, we investigate the impact of the truncation level 7" on the MSTD performance with pe,, = 0.25,
which implies long-term dependency, for an RNN with m = 256 units. Increasing 7" implies a larger MSTD
due to long-term dependencies, validating the theoretical results.

2the empirical mean of independently sampled {% Zs<k 7%}[)(9(5)) 1k e N} where Q}D(@(k)) = Ezﬂ:_ol V62 (ZF; O(k)).
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D Policy Gradients under Partial Observability

In this section, we will provide basic results for policy gradients under POMDPs, which is critical to develop
the natural policy gradient method for POMDPs.

Proposition D.1. Let ' € IIym be an admissible policy, and let Zr ~ P}T/”L. Then, for any t < T,
conditional distribution of S; given Z; is independent of 7'. Furthermore, for any 7 € Ilxm, the conditional
distribution of v(St, Ay) + YV 1 (Zi41) given Zy is independent of m'.

Proof of Prop. D.1. Let the belief at time ¢ € N be defined as

For any non-stationary admissible policy m, the belief function is policy-independent. To see this, note that

t—1
P(Si=s1,Ze=2)= »  P(So=s0Yo=wy)mo(aolzo) [T Pskralsw ar)d(ynslskir)musr(@rralzirn),
(80,-..,8t—1)€ESt k=0
t t—1
= (H Wk(ak|2k)> > P(So=s0Yo =) [[ Plsksrlse, ar)d(wrralsisr),
k=0 (805...,8¢—1)€ESt k=0
since szo 7k (ak|zx) does not depend on the summands (sp,...,s—1) — note that we use the notation

P(Sk+1l|5k, ak) := P(Sks ks {Sk+1 = sk+1}) and ¢(ye|sk) == é(sk, {Yx = yx}). Thus,

2 (s0rse1yest P(So = so[Yo = y) HZ;B P(Sk+1|5k, k) O(Ykt1|Sk41)
)
2 (shyes! t

bt(st) = s
,8)_ 1,8} )EStHL P(So = Sé\YO =) k=0 P(32+1|5§c’ ak)¢(yk+1|5;c+1)

independent of w. As such, we have

E™ [r + AV (Ze1)| Ze) = D bu($)E™ [re + W1 (Zei1)| Ze = 7, Si = 5],
seS

D> bilse) (r(ses Ae) + YP(seralse, A)d(ylser) Vi1 (Ze, yein)) s

st,5¢41ESYEY

= Elre + W1 (Zes)| 22 = ),

in other words, the conditional distribution of r(Sy, 4;) +YVF,1(Zi41) given {Z; = z} is independent of 7.
We also know from Prop. B.3 that

E™ [re + Vi1 (Zes1)| Ze = 2] = Elry + Wi (Zer)| Ze = 2] = OF (2).

tean-squared temporal difference

M
&

eeeeeee

Figure 4: MSTD performance with m = 256 with various sequence lengths T" with pe,, = 0.25. Increasing T'
implies larger MSTD.



Published in Transactions on Machine Learning Research (10/2025)

The next result generalizes the policy gradient theorem to POMDPs. We note that there is an extension
of REINFORCE-type policy gradient for POMDPs in Wierstra et al. (2010). The following result is a
different and improved version as it (1) provides a variance-reduced unbiased estimate of the policy gradient
for POMDPs, and more importantly (2) yields the compatible function approximation (Prop. 6.1) that yields
natural policy gradient (NPG) for POMDPs.

Proposition D.2 (Policy gradient - POMDPs). For any ® € R™@+D) e have
> @ s £
VoV™ (n) =Ej Z’Yt Q7 (Ze, Ay) - Vo lnmf (A Zy)| (56)
t=0

for any p € A(Y).
Proof of Prop. D.2. For any t € N, we have

Vi () = > wf(alz) QF (2, a0), (57)

by Prop. B.3. Thus, we obtain

YV ) = Yo (ale) Vin g (ar]2) Q7 (et ar) + Y- 7 (@il VT (e, an),

at at

=B [VIna® (4| 2) Q7 (Zs, Ay) + VOF (Zy, A)|Zy = 2. (58)
Now, note that

QF (20, ae) = E[r(Se, Ar) + Wi (Zer )| Ze = (21, a0)],

=Y "bulse) | rlsea) +9 > Plseqalsea) D dyesalse)Vin (zen) |

St+1 Yt+1

where z;11 = (21, at, yi+1). As a consequence of Prop. D.1, we have Vg ZSt bi(s¢)r(se, ar) = 0, and also

Ve Q?q)(zta ar) = ’YZ be(s¢) Z P(st+1]st, ar) Z ¢(yt+1|5t+1)v<bvt7f1(Zt+1),

St St41 Yi+1

= B[V In 7, (Aes1]Ze+1) Qfir (Zesr, A1) + Vo Qiyr (Zesr, Avi)| Ze = (21,0,

=B [ 3 I, 1m,§(Ak|zk)ng’(zk,Ak)‘Zt = (z,01)].
k=t+1

Using the above recursive formula for Vg Qf(b along with the law of iterated expectations in equation 58, we

obtain
oo

VaVr (2) =E™ | 30" Ve Inaf (el Z)QF (Zi, Ar)
k=t

7 = zt}. (59)

Since we have V™ := V7, and also VoV™ (1) = Vo >z M(Zo)Vﬂq)(zo) =2 u(zo)Vq>V”®(z0) by the
linearity of gradient, we conclude the proof.
Note on the baseline. Similar to the case of fully-observable MDPs, adding a baseline qfq)(zt)

to the O-function does not change the policy gradients since Y., m(alz)VInmy (a|zt)q)’f1> (=) =
qf(b(zt) Y. Vad(alz) = qf(b(zt)v >, T (alzt) = 0. Thus, we also have

VeV (u) =B | 34" AT (Z A)Valna (AdZ0) | (60)
t=0
which uses g = VI ¥ as the baseline, akin to the fully-observable case. O
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The following result extends the compatible function approximation theorem in Kakade (2001) to POMDPs.

Proof of Prop. 6.1. The proof is identical to Kakade (2001). By first-order condition for optimality, we have
il e P — P
BT 34V Inrl (44|2,) (VT In7® (A, Z,)w* — AT (zt)) —2 (GM(@)W* —VgV™ (M)) =0,
t=0
which concludes the proof. O

E Theoretical Analysis of Rec-NPG

First, we prove structural results for RNNs in the kernel regime, which will be key in the analysis later.

E.1 Log-Linearization of SoftMax Policies Parameterized by RNNs

The key idea behind the neural tangent kernel (NTK) analysis is linearization around the random initializa-
tion. To that end, let
Fy"(%;0) := (VE(%;6(0)),© - 6(0)), (61)

for any © € R™4+1) We define the log-linearized policy as follows:

exp(FEM (2, a5 @)
Za’eA eXp(FtLin(Zta a’; ®)) ’

t e N. (62)

ﬁ?(a|zt) =

The first result bounds the Kullback-Leibler divergence between 7 and its log-linearized version 7. In the
case of FNNs with ReLU activation functions, a similar result was presented in Cayci et al. (2024b). The
following result extends this idea to (i) RNNs, and (ii) smooth activation functions.

Proposition E.1 (Log-linearization error). For anyt € N and (2;,a) € (Y x A)'!, we have

6

<= (A2 + xi01) [|® — @(0)]13, (63)

N AGIED)
T (alz)
t t

sup
(zt,0)€(YxA)IHT

for any t € N. Consequently, we have m(-|zt) < Te(-|zt) and 7 (+|z) < m(-|2e), and

@\/

max { Zi (1} (120) |77 (120)), D (77 (L) [ (-|e)) } < (Afo2 + xe01) @ — @(0)]3, (64)

T
for all z € (Y x A)**! and t € N.

Proof. Fix (2, a) € (Y x A)**1. By the log-sum inequality Cover & Thomas (2006), we have

>, exp(FH" (2, a; ®))
1 ;D) — F, ;D)) .
: Yoo exp(Fi(ze,a; P)) %ﬂ-t a|zt (Zt’a’ ) (a1 0; ))
Using the same argument, we obtain
exp(FHM (2, a; ® . n
’hl DL ))’ <Y (7 (alz) + 7 (alz)) - [FE (21, 0 ®) — Fi(21,059)] (65)

>, op(Fi(za;9)) |~ 2

Thus, we have

72 (alz )
’ln & <(1+ ﬁ?(a|zt) + w?(a|zt)) |Ft"'“(zt,a; D) — Fy(z, a; <I>)| .

7T?(a|zt)
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By using Lemma B.1, we have sup;, ¢(yyae+1 |FHn (215 @) — Fy(2; ®)] f(AtQ,QQ + x¢01)||® — ®(0)||3. By
alz

<
using the last two inequalities together, and noting that 1+ % (alz;) + 7 +) < 3, we conclude that

‘ i alz)

6
2 (A202 + xi00)|® — D(0)]3-
7 (alz0)

<7

Since the right-hand side of the above inequality is independent of (2, a), we deduce that the result holds
for all (z¢,a), thus concluding the proof. O

The following result will be important in establishing the Lyapunov drift analysis of Rec-NPG.
Proposition E.2 (Smoothness of In 7 (a|z;)). For any t € N, we have

sup ||V1n7~r?(a|zt) Vlnwt ( 12) 2 <L2H‘1> &',
(z¢,a)E(YxA)t+1

for any ®,®" € R™(d+1)

Proof. Consider a general log-linear parameterization

po(@) o exp(¢, 0), = € X.

Then, if sup,cx ||¢z|l2 < B < 00, then § — Inpy(z) has B>-Lipschitz continuous gradients for each x € X
Agarwal et al. (2020). The remaining part is to prove a uniform upper bound for |V¢Fi(Z; ®(0))]2. To
that end, notice that

_ 1 i) = _ .
Vo, Fi(z; ©(0)) = ﬁcith( )(zt;@(O)), Ze € (Y x AL € [m].
From the local Lipschitz continuity result in Lemma B.1, we have
SUDz, :max; <. || (y),a,) |2 <1 ||Vq>th(l) (Z¢;2(0))||2 < Ly for any ¢ € [m]. Thus, for any z;, we have

Ve Fy (2 2(0)I3 = Z |V, Hy" (2 2(0))3 < L7, (66)

E.2 Theoretical Analysis of Rec-NPG

For any 7w € IIym, we define the potential function as

T-1

D D (w120 I (1 20))

t=0

L(n) =

Then, we have the following drift inequality.
Proposition E.3 (Drift inequality). For any n € N, the drift can be bounded as follows:

P (n)

L) = L@ ) < =g (V7 (1) = VT (11)) ~hapeE lZv (VT (A 2w — AT (22)

@

T-1
®(n) * ~ n n T
L S A (Z) L 304 (VA (402 ~ Vel (4120)
t=T t=0
® @

-« 1203 <=
+ Tlnpg”PHzZVtLQ \/ﬁ Z’Yt(A§Q2+Xt91)'
t=0 t=0
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Proof. First, note that the drift can be expressed as

P(n+1) * ﬂ-;b(n) (At|Zt)
=0  ach T (A¢]Z1)

Then, with a log-linear transformation,

~<I> (n) P(n) ~P(n+1)
g(ﬂ_cb(n+1))_$ Efr Z,}/ Zﬂt (A2 ( (A¢|Zy) 4l (Al Zy) “ln e (At|Zt)> .

= = f’("“)(At\Zt) wr M (Az) w4 Z,)

By using the log-linearization bound in Prop. E.1 twice in the above inequality, we obtain

B(n+1 <~ 7" (Ad Z) (S >
L) = 2@ S S0 Szt Z Ao+ xio)lllB- (68)
t=0 a€h t=0

By the smoothness result in Prop. E.2, we have

~'i>(n+1)(

|In 7, arz) — In 7y

n ~ n 1
arlz) = VInw, ™ (alz)(@(n +1) = @(m)] < S L 8(n + 1) = 2(n)]J3.
Thus, we obtain

7™ (a]20)

2 142 2 74 2 2(n)
“Nhpg Lt 19112 < —Thnpg L lwnllz < —In —
pg—t pgt ﬂ_t( +1)( t‘Zt)

— nnngT In7, " (at|2t)wn,

because of the max-norm gradient clipping that yields |lwy|l2 < ||pll2 and ®(n + 1) = ®(n) + npgwy, for any
n € N. Using this in equation 68, we get

T—1
n n T* ~ 1
L)~ 2 (7)< BT S AV T In A (a2 )+ Z 7 (M eatxse))llpll3+5 e el 113

t=0
(69)
An important technical result that will be useful in our analysis is the pathwise performance difference
lemma, which was originally developed in Kakade & Langford (2002) for fully-observable MDPs.

Lemma E.4 (Pathwise Performance Difference Lemma). Let ®, 3’ € R4+ be two parameters. Then, we
have

V() = VT () =B S A AT (2, Ay).

t=0

The proof of Lemma E.4 is an extension of Agarwal et al. (2020) to non-stationary policies, and can be found
at the end of this subsection.

Using Lemma E.4 in equation 69, we obtain

T-1

n n 7P (n) * ~®d(n & (n)
L) =L (@) < g (V7 ()Y (1) =g Y2 (VT I (a2 — AT (22)
t=0
2 ey, 5 — 1
+ Mnpg ), ZAZT (Z4) + TZ (At292+Xt91)||P||§+5772ng§||;0||§- (70)
t=T t=0

Finally, we replace the term VIn 7?;1) (n)(at\zt) with Vin 7T;I> (n)(at|zt) by including the corresponding error
term, and conclude the proof by considering the telescoping sum, and noting that 2 (7®©)) = log |A| since
F;(-;®(0)) = 0 by symmetric initialization. O
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Proof of Theorem 6.3. We prove Theorem 6.3 by bounding the numbered terms in Prop. E.3.
Bounding (1) in Prop. E.3. Recall that pr(y) = Y-, 7" Then, by using Jensen’s inequality,

T-1 _ T-1 2
Ep YA (VT (A 2w, — AT (20)) <\ |pr()ER YA LA Z e — AT(Z)]
t=0 t=0
= pT('Y) \/ '%Ez;a(q)(n)’ wn)’
I)(n)

where k yields a change-of-measure argument from Pr. BE %o Pr

Bounding (2) in Prop. E.3. sup,,|r(s,a)| < 7o, therefore |Af(z)| < f’;"f’y for any t € N, 2z, € (Y x
A)t+1, and 7 € IIym.

Bounding (3) in Prop. E.3. For any ¢ € N, Cauchy-Schwarz inequality implies

.
(v In 720 (a]2,) — Vinre™ (at|zt)) wn < [IVIn 72 (ay]2) — VIna™ (ag]z0) 2] pll2.-
Recall that

Vlnﬁ?(at|zt) = VFi(z,a; P Zwt "20)V (2, a"; ®(0)),

VIH’/T?(CLt|Zt) VFt zt,at, Zﬂ't |Zt VFt zt,a (I))

First, from local B;-Lipschitzness of ®; — VHt(i)(Et; ;) for ® € Q,,, by Lemma B.1, we have

[V, Fi (265 (1)) — Vo, Fy (2 2(0)) ||l = ——= |V, H (2 ®i(n)) — Vo, HY (75 8;(0))]|2,

< 5t||ﬁ||2’

Elly

3

for any n € N since max; ||®;(n) — ®;(0)|]2 < lelle by max-norm projection. Thus,
vm

Billpll2

Ve Fy(z; ®(n)) — Vo Fi(z; ®(0))[]2 < Jm

, teN. (71)
Thus,
IVl ~ Vin! ezl < P 3 el — 7 @I VE GOl
+Z7r N(al2) |V Fi(21,0; 8(n)) = VFy (21, a; (0)) |-

From equation 66, we have

2Billpll2
e

where 7y denotes the total-variation distance between two probability measures. By Pinsker’s inequality
Cover & Thomas (2006), we obtain

IV 7 (ar]2e) = Vina ™ (as]z0) 2 < + 2Ly (w17 (=)

~ n n 2 n ~ n
19 175 (ar)z) — Vin ™ (a]z0)]|2 < /i'ﬁf;” n ﬂW@KL (rPO I (20). (1)
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By the log-linearization result in Prop. E.1, we have

_®(n n 2 A2ps +
1V 1072 (ar)20) — VI ™ (ag]z0) 2 < %” VI ol | S (73)

Thus, we have

. T 2B Vo2 + xe01
In 720 B VA LIC)) < 2 [ 22t 19, Y 1tE2 T XiE1 )
(Vi # arlz) = Vina ™ (ailz)) - wn < 1ol N R

1/4

Proof of Lemma E.4. For any y € Y, we have:

oo

V™ (50) = V" (o) = B[S '

t=0

- IEZ/ {ivt (rt + V] (Z;) — V{r(Zt)) ‘Zo = yo} = V(o)

Zy = yo} -V (%0),

=ET {Z Y (re + Wi (Zea) = VI (Z:)

A =y0}7

where r; = r(S, A;) and the last identity holds since

oo oo

AV (z) = Vi (20) +7 Y 7V (Ben).

t=0 t=0
Then, letting r; = r(s¢, a;) and by using law of iterated expectations,

o0

V™ (50) = V(o) =B [ 327" (B Ire + Wi (Zesn)l 2o, Sl = Vi (Z0)) |20 = o), (74)
t=0

which holds because , B , _
E™ [re + YV (Zes1 )| Zi) = BT [re + YWV (Zi31)| Ze, Zo)-

The conditional expectation of 7, + V], given {Z; = %} is independent of 7":

E™ [re + W™ (Zie1)| Z4) = Y bi(S)E™ [re + V1 (Zesa)| 2 = 2, S0 = 8],
seS

DD bulse) (r(si, A) + 4P (siaalse, A)S(ylsis) Vi (Ze, vin))

S¢,5t4+1ESyeY

= El[re + Vi1 (Zer1)| 2 = zl,

based on Prop. D.1. We also know from Prop. B.3 that

E™ [re + WV (Zeg1)| Ze = 2) = Elre + WV (Zen1)| 20 = 7] = OF (2).
Using the above identity in equation 74, we obtain

V™ (o) — V™ (0) [ivt(% (Z0) = V™(20)) |20 = o), (75)

t=0

which concludes the proof. [
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Proof of Prop. 6.6. For any w, we have

®(n)

(r(w; ®(n), Q" ") < 20 (w; B(n), Q™) +2Z 72 A = A (Ze, AP (76)

Let G, := o(®(k), k <n) and H,, := (0™ &(k), k < n). Then, since

esgdin = Ellr(wn; @(n), Q™) Hy] = inf  Ellr(w; ®(n), Q)| Ha],
wEB(m) (0,p)

we obtain

Eftr (wn; ®(n), @) Ha] < 2B inf Efer (w: ®(n), Q).

gn] + 2(Etd,n + 5sgd,n)7 (77)

which uses the fact that Var(X|G,) < E[|X|?|G,] for any square-integrable X. We also have

o0

Hal+2 Y A AT (20, A=A (20, A2, (78)

t=0

72

inf E[¢7(w; ®(n), 0)|H,] < 2inf E[lr(w; ®(n), Q

which further implies that

Efinf Effr (w; @(n), Q) [Mn]|Gn) < 2E[ind Bty (w; ®(n), @) HallGn] + 224
Thus,
Eftr (wn; ®(n), @) [Ha] < 4B | inf Bler(w; ®(n), Q") Hnl[Gn] + 62ian + 25 n: (79)
For any w € Bé’:’;g(o, 0),
Eltr(w; ®(n), Q) Ha] < E[D 4 (Ve Fu(Zi; ®(n))w — QF " (Z0))*[Ha),
t<T
<2E[Y A (VEFU(Zi 2(0)w — QF " (Z0)? + (VE(Z1; ©(n)) — VE(Zi; 8(0)) Tw)?[Ha),
bt

which implies that

inf E[r(w; ®(n), Q) [Ha] < 22appn + 2|pIBELY VIV E(Zi @(n)) — VF(Zis D(O) 3 Ha],

t<T
2||pl4
< eoppn + 222 5157,
t<T

using equation 71. Hence,

7 2(n)

8 4
) Hn] < Hn’;”rz S 4182 + 8appin + 6td,n + 25,
t<T

E[lr(wn; ®(n), Q

concluding the proof. O
Proof of Prop. 6.8. Under Assumption 6.7, consider ft(j)(ét) = B[] (2; do)v9) (¢o)] for v9) € 7 . Let
. 1 ‘
wi(J) = ﬁcivm(@(O)), 1=1,2,...,m, (80)
for any j € J. Since [|w") ||z < ||v|l2 and p = v, we have

o VT F(2 2(0)w — f7(2)] < [V Rz 2(0)w? - [9(z)] . (81)
weB; 0,p
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Thus, we aim to find a uniform upper bound for the second term over j € J. For each Zz;, we have

m

_ ; 1 s ;
V(2 9(0)w = — ;VLHE (2 24(0))0) (:(0)),

thus E[V T F}(z; ®(0))w)] = ft(j)(it). Furthermore, from Lemma B.1, since ®(0) € €, ,,, obviously, we have

max ||V, Hy (2 8:(0)0? (8:(0)) |2 < Le[vllz < Lillpllz, a.s.

Thus, by McDiarmid’s inequality Mohri et al. (2018), we have with probability at least 1 — 4,

log(2/6)

sup [V Fy(2; (0))w") — £ ()| < 2Radm (G7) + Lillpll2(/ — 1=, (82)
JjET m
for each ¢t < T and Zz;. By union bound,
. ; - log(2TY x A|t+1/§
sup max |V Fy(Z; 0(0)w?) — £9(Z)| < 2maXRadm(Gft)+Lt||p|2\/ o8(27]| - /o) (83)
Zt

jeg =t

. log(2TY x AT /§
< 2 max m_axRadm(Gf*)+LT||p||2\/Og( [Y < Al /), (84)

0<t<T z: m

simultaneously for all ¢ < T with probability > 1 — 4. Therefore,

. 7 ®(n) = i D) _ . .
1BfE; Z7t|VTFt(Zt;<I>(O))w - ft(J)\Z < IEM@ th sup |V Fy(Zy; ®(0))w) — ft(J)|27

t<T t<r 1€J
2
1 5 log(2T|Y x A|T/4)
< — : :
T 1l-v (2 Olgg{TmE?XRadm(Gt )+ LT||p||2\/ m
O
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