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ABSTRACT

Pre-trained models for programming languages are widely used to solve code
tasks in Software Engineering (SE) community, such as code clone detection and
bug identification. Reliability is the primary concern of these machine learning
applications in SE because software failure can lead to intolerable loss. However,
deep neural networks are known to suffer from adversarial attacks. In this paper,
we propose a novel black-box adversarial attack based on model behaviors for pre-
trained programming language models, named Representation Nearest Neighbor
Search(RNNS). The proposed approach can efficiently identify adversarial ex-
amples via variable replacement in an ample search space of real variable names
under similarity constraints. We evaluate RNNS on 6 code tasks (e.g., clone de-
tection), 3 programming languages (Java, Python, and C), and 3 pre-trained code
models: CodeBERT, GraphCodeBERT, and CodeT5. The results demonstrate
that RNNS outperforms the state-of-the-art black-box attacking method (MHM)
in terms of both attack success rate and quality of generated adversarial examples.

1 INTRODUCTION

A great deal has been accomplished with deep learning in many fields, such as image recogni-
tion (Li, 2022) and natural language processing (Otter et al., 2020). However, it is well known that
deep learning systems are vulnerable to adversarial attacks (Szegedy et al., 2013) which are able
to trick machine learning algorithms by perturbing inputs slightly without changing semantic con-
text. Normally, adversarial attacks can be divided into three categories depending on the extent to
which attackers can access victim deep learning models (e.g., model gradient and model architec-
ture). 1) White-box attack, which can fully access the internal information of victim models, e.g.,
FGSM (Goodfellow et al., 2014). 2) Black-box attack, which attacks the victim models only using
the final output information, such as Label-Only Attack (Ilyas et al., 2018). 3) Grey-box attack,
which partially accesses victim models, e.g., additionally training a victim model (Xu et al., 2021).
To defend against adversarial attacks, multiple approaches have been proposed (Qiu et al., 2019). In
which, adversarial training (AT) (Bai et al., 2021) is the most effective defense practice to enhance
the robustness of deep learning systems. Specifically, AT maximizes the permutation within the
limitation while minimizing training loss, by including adversarial examples for training.

Recently, Hindle et al. (2016) and Allamanis et al. (2018) demonstrate that code data has properties
in common with natural language which leads a hot direction in the SE community – machine
learning for source code. The pre-trained deep learning models for programming languages have
been proposed to solve code tasks where the transformer architecture (e.g., CodeBERT (Feng et al.,
2020)) is most popular due to its promising performance. However, the same as deep learning
models in other fields, code models also suffer from adversarial attacks (Yefet et al., 2020). The
reliability of code models and their related applications is under exploration.

Different from adversarial attacks on image and natural language data, adversarial attacks on source
code have more constraints in syntax correction and semantic reservation, e.g., all the identifier
names in a valid code should follow the syntax of the programming language. Besides, black-box
adversarial attacks are more practical for code models since they are usually embedded in IDEs
and the internal information is not available, for example, Tabnine in PyCharm. Recently, some
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black-box attacks on code models have been proposed which generate adversarial examples by vari-
able name replacement based on generation models or rule-based modifications (Yang et al., 2022;
Srikant et al., 2021). The major limitations of existing black-box attack methods are: 1) the search
space size is limited, 2) the generated alternatives have a data shift from the real data from the de-
velopers, and 3) they do not fully utilize model uncertainty and failed attacks, which could also be
helpful to teach the subsequent attacking trial

In this paper, we present a black-box attack on pre-trained models for programming languages based
on model uncertainty, named Representaion Nearest Neighbor Search(RNNS). Specifically, first,
RNNS utilizes real code data to construct the search space based on semantic similarity. Then, it uses
an efficient search way guided by the domain probability change to find the adversarial examples in
the real name space. Importantly, failure attacking trials are used to teach the next round of attacking
by the memory mechanism in RNNS. To show the effectiveness and efficiency of RNNS, we inves-
tigate three (3) big code pre-trained models CodeBERT (Feng et al., 2020), GraphCodeBERT (Guo
et al., 2020) and CodeT5 (Wang et al., 2021), and evaluate our approach on six (6) code tasks in
multiple programming languages. The results on 18 victim models demonstrate that compared to
the SOTA approach MHM, RNNS achieves a higher attack access rate(ASR) with a maximum of
about 100% improvement and 18/18 times as the winner. Furthermore, we analyze the adversarial
examples statistically and find that RNNS introduces smaller perturbation than MHM. In the end,
we apply the RNNS to attack three (3) defended models. In summary, our main contributions are:

• We propose a novel black-box adversarial attack RNNS for code models guided by model
behavior change and searching in the real identifier name space from actual code data.

• We demonstrate that RNNS outperforms SOTA methods, and introduce perturbation into
inputs slightly in terms of number of modified variables and code length.

2 RELATED WORK

Adversarial Attacks in NLP. Zhang et al. (2020b) categorize adversarial methods into three (3)
groups, character-level, word-level and sentence-level attacks based on attacking granularity. A
character-level adversarial attack modifies the characters in a word. DeepWordBug (Gao et al., 2018)
applies simple character-level transformations to the text inputs. VIPER (Eger et al., 2019) replaces
characters with their nearest neighbors in a visual embedding space. A word-level adversarial attack
first finds the risky word, and then replace it with the alternative word. TextBugger (Li et al., 2019)
fools the models by modifying the vulnerable word. BERT-Attack (Li et al., 2020) uses BERT
to generate the adversarial substitues to replace the vulnerable word while preserving semantics.
BAE (Garg & Ramakrishnan, 2020) also utilizes the BERT capability of predicting masking tokens
to generate adversarial examples. A sentence-level adversarial attack generates fake inputs directly
or manipulates multiple words while keeping inputs semantically equivalent. Zhao et al. (2018)
uses Generative Adversarial Networks (GAN) to output adversarial samples. SEA (Ribeiro et al.,
2018) constructs a set of universal replacement rules to generate semantically equivalent adversarial
examples. Except that TextBugger (Li et al., 2019) can be configured under both white-box and
black-box setting, all aforementioned adversarial attacks belong to the black-box group. Overall,
with the exception of generating fake inputs directly, all adversarial attacks must first locate where
should change and then decide what should be filled.

Adversarial Attack in Code Models. We introduce the state-of-the-art(SOTA) adversarial attacks
for code models based on the concealment levels of model information, i.e., black-box and white-
box attacks. A black-box attack for code models queries the model outputs and selects the substi-
tutes using a score function. NaturalAttack (Yang et al., 2022) finds the adversarial examples us-
ing variable-name substitutes generated by pre-trained masked models for programming language.
MHM (Zhang et al., 2020a) uses Metropolis–Hastings to sample the replacement of code identifiers.
STRATA (Springer et al., 2020) generates adversarial examples by replacing the code tokens based
on the token distribution. Chen et al. (2022) apply pre-defined semantics-preserving code transfor-
mations to attack code models. CodeAttack (Jha & Reddy, 2022) uses code structure to generate
adversarial data. White-box attacks require the code model gradient to modify inputs for adversar-
ial example generation. CARROT (Zhang et al., 2022) selects code mutated variants based on the
model gradient. Ramakrishnan et al. (2020) attack code models by gradient-based optimization of
the abstract syntax tree transformation. Srikant et al. (2021) uses optimized program obfuscations
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to modify the code. DAMP (Yefet et al., 2020) derives the desired wrong prediction by changing
inputs guided by the model gradient.

In black-box attacks, model inside information is not accessed. White-box attacks are quite effec-
tive but are limited by the availability of model information. Our approach considers the identifier
replacement like MHM (Zhang et al., 2020a), ensuring that the adversarial example keeps the same
semantic (code behavior) as the original one. In our approach, we locate vulnerable variables based
on the victim model uncertainty, and search in the substitute embedding space guided via model
behavior signals.

3 METHODOLOGY

3.1 PRELIMINARY OF PROCESSING TEXTUAL CODE

The nature of code data (in text format with discrete input space) makes that it is impossible to
feed one code input x directly into deep learning models. Thus, transferring code data to learnable
continuous vectors is the first step in source code learning. Dense encoding is one common method
used to vectorize textual code data. First, we need to learn a tokenizer that splits the code text into
a token sequence called Tokenization. It can alleviate the Out-of-Vocabulary(OOV) problem and
reduce vocabulary size by reusing the elemental tokens. After tokenization, code x is represented
by a sequence of tokens, namely, x = (s0, ..., sj , .., sl) where si is one token. The code vocabulary
dictionary consists of si, denoted V. Every word(token) in V is embedded by a learned vector
vi with dimension d. We use E|V|×d to represent the embedding matrix for V. Then, x can be
converted into a embedding matrix Rl×d = (v0, ...,vj , ..,vl). Pre-trained code models based on
the transformer take the matrix Rl×d as inputs, and learn the contextual representation of x for
downstream tasks via Masked Language Modeling (MLM) and Causal Language Modeling (CLM).

Figure 1 shows the critical steps of the code models for the downstream classification tasks. First,
we tokenize the textual code x into a token sequence that is represented in a discrete integer space.
Then, we map the discrete sequence ids into the token vector space Rl×d. Next, we feed the token
vectors into the task model f(θ). f(θ) is built on the top pre-trained models. Finally, we can predict
the domain probabilities after fine-tuning.
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Figure 1: One code model demo on the downstream task

3.2 PROBLEM STATEMENT

Considering a code classification task, we use f(x; θ)→ y : Rl×d → C = {i|0 ≤ i ≤ k} to denote
the victim model that maps a code token sequence x to a label y from a label set C with size k,
where l is the sequence length and d is the token vector dimension, and i is one integer. By querying
dictionary dense embedding E|V×d|, a code token sequence x = (s0, ..., sj , .., sl), is vectorized into
Rl×d. Adversarial attacks for code models create an adversarial example x′ by modifying some
vulnerable tokens of x limited in a maximum perturbation ϵ to change the correct label y to a
wrong label y′. Simply, we get a perturbed x′ by modifying some tokens in (s0, ..., sj , .., sl) such
that f(x′; θ) ̸= f(x; θ) where x′ = x+ σ, + represent perturbation execution, σ is the perturbation
code transformation for (s0, ..., sj , .., sl), and σ ≤ ϵ. For black-box attacks, the model parameters
are not available.
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There are two main dynamic limitations of adversarial code attacks. First, the adversarial example
can be compiled. Second, it should not change code semantics, meaning the adversarial example
should behave exactly the same as the original one. These limitations differ from adversarial attacks
for image and natural language data. Code transformations are designed to attack code models but
maintain the code semantics during an attack, e.g., variable replacement and rewriting condition
statements in another format.

3.3 PROPOSED METHOD: REPRESENTAION NEAREST NEIGHBOR SEARCH(RNNS)

3.3.1 MOTIVATION

A hidden correlation exists between the token vector space and the domain probability space in
Figure 1, which f(θ) can learn. As a result, changes in the token vector space can be reflected in
the domain probability space and vice versa. These motivate us to use the change trending of the
domain probability space to find adversarial identifiers in the token vector space. Our approach is
one black-box adversarial attack, which means the token vector space in Figure 1 is not accessible
because it is part of downstream task models after fine-tuning. Instead of the fine-tuned token
embedding encoder, we use pre-trained models trained by MLM or CLM as the surrogate encoder
to infer variable generalization embedding. We can pre-train such a surrogate encoder from scratch
by ourselves, but it makes no difference that we use public pre-trained models.

Our approach considers the replacement perturbation of variable names for code attacking. Vari-
able Replacement can guarantee the code is still syntax correct and semantically equivalent to the
original code after modification. Token Replacement is also shown as the most significant trans-
formation (Li et al., 2022). The variable-replacement adversarial attack has two steps. First, we
should locate where we should attack and then decide what adversarial tokens we should use.
Except for renaming variables, it is unclear whether structural changes are equivalent to the original
code, known as the equivalent mutant detection (Papadakis et al., 2019) in Software Engineering.
It implies that the generated example can have different functionality/semantics from the original
code.

3.3.2 METHODOLOGY

Figure 2 demonstrates the overview of our approach, RNNS. Generally, it has two steps where we
should attack ( 1 , 2 ) and what adversarial tokens we should use ( 3 - 7 ). Initially, we uses
Variable Extractor to obtain a list of the variables and their corresponding positions in the code
input (step 1 ). Later, at the step 2 ,we rank the list based on uncertainty of the variables via
Uncertainty Ranking Estimator. Next, we pop the first variable and get its vector representation
by Variable Name Encoder (step 3 ). We query the real variable dataset and randomly select K

replacements for this variable (step 4 ). Then, we evaluate these K replacements and choose the

best one by Replacement Evaluator (step 5 ). After replacement, we query the victim model to see
if the label is changed. If it is changed, we stop attacking. Otherwise, we will check if the confidence
of the victim model for ground truth label decreases. If the confidence increases, we move to next
variable in the ranked list and go back to the step 3 . If we find the victim model reduces its
confidence for the ground truth label, we update our search seed by Search Seed Generator (step
6 ) and query the Top-K replacement set again (step 7 ). We continue the loop 5 - 6 - 7

- 5 until we find one adversarial example, or we reach the maximum loop iterations and move to

next variable in the ranked list (step 3 ).

When RNNS searches the adversarial examples, it has tow constraints:

1) similarity distance,
1− similarity(vadv, vorg) < ϵ (1)

2) variable length change
|length(vadv)− length(vorg)| < δ (2)

,where vadv is the adversarial variable and vorg is the original variable. The successful adversarial
examples have to satisfy both at the same time.
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Figure 2: Overview of RNNS

Depending on if using the change direction of the search seed or if using the change direction histor-
ical information at the step 6 , our approach RNNS has three variants, RNNS-Smooth, RNNS-
Direct and RNNS-Raw. RNNS-Smooth combines the current change direction of the search seed
and its change direction history. RNNS-Direct only considers the current change direction. RNNS-
Raw does not use either of them.

Algorithm 1 shows the details of RNNS-Smooth. As an overview, line 1 is where we should attack
(line 1) and lines 2-23 are what adversarial tokens we should use. In the first stage, we use model
uncertainty to assign different priorities to variable positions. In the second stage, we start attacking
the model to find adversarial examples.

RNNS has some hyperparameters, as shown at the beginning of Algorithm 1. max itr defines
the maximum attacking iterations. K is the number of adversarial candidates we consider at each
trial. α is used to smooth the moving/changing direction. ϵ and δ are used to limit the maximum
perturbation. The maximum token similarity distance should be within ϵ, and the maximum string
length difference should be less than δ. dist is the distance metric, and the default is cosine distance.
RNNS is independent of victim downstream-task models. We need one encoder (denoted as emb)
that can map one variable var into an independent token vector space, denoted as evar. We use
the pre-trained CodeBERT model as the surrogate encoder without domain knowledge about down-
stream tasks. If want, it is possible to pre-train the surrogate encoder from scratch, but it makes no
difference under the same pre-training settings. Search Space S consists of variable names from the
actual code.

Before we go through Algorithm 1, we introduce some important symbols about Search Seed Gen-
erator ( 6 ). evar is the model-independent vector representation of var from Variable Name
Encoder emb ( 3 ) . ∆e is the difference between the current adversarial variable state ecur and
the last adversarial variable state epre, defined by ∆e← ecur−epre at line 12. ∆esmo is the smooth
history memory for ∆e, and it is initialized at the first attacking iteration(line 14), and updated by
(1− α)∆esmo + α∆e(line 15), where α is the smooth rate between 0 and 1.

First, we extract all variables V ars and their positions from x ( 1 ). Then, we need to rank

the pairs (V ars, PosList) according to the descending order of model uncertainty at line 1 ( 2 ).
Rank Uncertainty replaces each variable with a group of pre-defined random variables with
different lengths and then measures model output uncertainty(variance).

Next, we start attacking the ranked pairs (var, pos). Line 3 initializes the embedding vectors used
later ( 3 ). In line 4, we randomly select topK replacement candidates within the distance to evar,

that is less than ϵ ( 4 ). Then, we iteratively search adversarial examples. Given a list of variables
topK, Get Cur Best returns the variable varcur with the lowest probability pcurg of the ground

truth label g for x′ ( 5 ). Boolean value is suc marks if varcur can make f(θ) mis-classify. If
is suc is false and the current sate probability pcurg decreases compared with last time ppreg , we
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update ∆esmo using ∆e and then make the current state ecur move in this direction(lines 15-16,
6 ), denoted etmp. Next, Get TopK computes the top similar variables with etmp in S under the

two limitations ( 7 ). Get TopK contains two constraints of RNNS as described by Equation 1
and Equation 2. First, the similarity limitation is less than ϵ between candidates and etmp. Second,
the length difference limitation is less than δ between candidates and evar. Our approach continues
searching the adversarial example until it reaches the quit conditions: 1) finding one adversarial
example, 2) reaching the maximum iteration and moving to next variable trial ( 3 ).

Algorithm 1: RNNS-Smooth
Hyperarameter: maximum attacking iteration max itr, maximum candidates K, direction smooth rate

α, maximum distance ϵ, maximum length difference δ, distance metrics dist
Input: code x with ground label g, search space S, victim modelf(θ), independent token encoder emb
Output: adversarial example x′, attacking success is suc
Initialization:
x′ ← x, ppreg = fg(x), (V ars, PosList)← V arExtractor(x), i← 1

1 (V ars, PosList)← Rank Uncertainty(V ars, PosList, x, f(θ))
2 for (var, pos) ∈ (V ars, PosList) do
3 evar ← emb(var), ∆esmo ← 0, epre ← evar ,
4 topK ← random topK(S,K, evar, ϵ, δ, dist)
5 while i ≤ max itr do
6 is suc, varcur , pcurg = Get Cur Best(f(θ), x′, g, pos,K))
7 if is suc then
8 x′ ← Replace(x′, var, varcur)
9 return x′,is suc

10 else if pcurg − ppreg < 0 then
11 ecur ← emb(varcur)
12 ∆e← ecur − epre

13 if i == 1 then
14 ∆esmo ← ∆e

15 ∆esmo ← (1− α)∆esmo + α∆e
16 etmp ← ecur +∆esmo

17 topK ← Get topK(etmp, topK, S, evar, ϵ, δ, dist)
18 ppreg ← pcurg

19 epre ← ecur

20 varpre ← varcur

21 i← i+ 1

22 else
23 x′ ← Replace(x′, var, varpre)
24 break

25 return x′, False

By modifying Algorithm 1 (RNNS-Smooth), we can get the other two variants, RNNS-Direct and
RNNS-Raw. First, RNNS-Direct does not use ∆e history information ∆esmo and directly use
∆e to update etmp ← ecur + ∆e (line 15). RNNS-Raw drops ∆e, etmp ← ecur (line 15).
Figure 3 demonstrates their difference. Both of RNNS-Smooth and RNNS-Direct use ∆e while
RNNS-Smooth introduces the history of ∆e for smoothing.

4 EXPERIMENTS SETUP

We first compare RNNS with SOTA black-box adversarial attacks (MHM and NaturalAttack) to
evaluate its efficiency. Then, we study the quality of adversarial examples and see how many changes
we introduce during the attack. Next, we remove the constraints of RNNS to see how these con-
straints affect our approach. Ultimately, we apply our approach to attack the defended models via
adversarial training by NaturalAttack.

Dataset and Model. We evaluate our approach on six (6) datasets. BigCloneBench (Wang et al.,
2020) is one code clone detection dataset. Devign (Zhou et al., 2019) is used for vulnerability
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Figure 3: Difference among RNNS-Smooth, RNNS-Direct, RNNS-Raw

detection in C. Authorship (Alsulami et al., 2017) is for code owner classification. We also em-
ploy Java250, Python800 and C1000 from ProjectCodeNet (Puri et al., 2021), and they are about
problem-solving classification tasks. We investigate the pre-trained models for programming lan-
guages CodeBERT (Feng et al., 2020), GraphCodeBERT (Guo et al., 2020) and CodeT5 (Wang
et al., 2021) on all six (6) datasets, and fine-tune 18 victim models. Table 1 summarizes the datasets
and fine-tuned models in the experiments. We implement our approach in PyTorch and run all
experiments on 32G-v100 GPUs.

Baseline. We compare our approach with MHM (Zhang et al., 2020a) and NaturalAttack (Yang
et al., 2022). MHM is a sampling search-based black-box attack and generates the substitutes from
the vocabulary based on lexical rules for identifiers. MHM is our primary baseline and we use it for
all six (6) tasks. We compare RNNS with NaturalAttack on three (3) tasks. Then, we employ RNNS
and MHM to attack three (3) defended models by adversarial training from NaturalAttack (Yang
et al., 2022).

Evaluation Metric. To evaluate the effectiveness of adversarial attack methods, we employ the
commonly used attack success rate (ASR) as the measurement. A higher ASR means that the attack
method can generate more adversarial examples. ASR is defined as:

ASR =
Number of Successful Attacks

Total Number of Attack

.

To evaluate the efficiency of the attack methods, we use query times (QT) to check the average
number of querying the victim model for one attack. A smaller QT means the attack method can
find the adversarial examples by visiting victim models in a less query times number. We do not
use the running time as the measurement metric because it can be affected by many factors, e.g., the
hardware, the running environment and the implementation. Finally, we use the change of replaced-
variable length and the number of replaced variables to study the quality/perturbation of adversarial
examples. A smaller score means the attack method can generate adversarial examples with less
perturbation injection.

Parameter Setting. We set the maximum iteration max itr = 6, the number of candidates K = 60,
the smooth rate α = 0.2 the maximum length change δ = 4 and the maximum cosine distance
ϵ = 0.15. The search space S consists of the variable names from the actual code. All variants of
RNNS uses the same settings.

Table 1: Datasets and Victim Model Performance (Accuracy, %)

Task Train / Val / Test CodeBERT GraphCodeBERT CodeT5
Defect 21,854 / 2,732 / 2,732 63.76 63.65 74.27
Clone 90,102 / 4,000 / 4,000 96.97 97.36 97.84
Authorship 528 / – / 132 82.57 77.27 88.63
C1000 320,000 / 80,000 / 100,000 82.53 83.79 84.46
Python800 153,600 / 38,400 / 48,000 96.39 96.29 96.79
Java250 48,000 / 11,909 / 15,000 96.91 97.27 97.72
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5 EVALUATION

5.1 COMPARISON RESULTS

We compare three variants of our approach with the state-of-the-art black box attacks MHM (Zhang
et al., 2020a) and NatualAttack (Yang et al., 2022). Table 2 shows the comparison result with
MHM. In conclusion, RNNS outperforms MHM. MHM fails to attack GraphCodeBERT on Big-
Clone dataset and only has 9.58% ASR, while RNNS has more than 40% ASR. RNNS has almost
two times larger ASR than MHM on Java250+CodeT5 and Python800+CodeT5. RNNS with the
direction ∆e can improve the attacking success rate (ASR) and reduce the query times, achieving
13 highest ASR and 11 lowest QT among 18 attacking tasks. RNNS-Smooth has almost the same
performance as RNNS-Direct, and they are complementary to each other, 6/18 and 7/18, for differ-
ent tasks, respectively. We also find that the victim models using CodeT5 are more robust to RNNS,
which has lower ASRs than CodeBERT and GraphCodeBERT on all tasks except the defection de-
tection. We also compare RNNS with NatualAttack (Yang et al., 2022) (named ALERT), as shown
in Table 2. We can see that RNNS is much better than NatualAttack.

Table 2: Comparing Results with MHM, ASR %
Task+Model ALERT MHM RNNS-Smooth RNNS-Direct RNNS-Raw

ASR QT ASR QT ASR QT ASR QT ASR QT
Clone+CodeBert 28.67 2155.39 39.66 972.15 46.50 666.48 47.07 967.21 47.79 964.25
Clone+GrpahCodeBert 10.4 1466.68 9.58 490.99 41.28 1122.01 42.04 1121.81 42.24 1118.28
Clone+CodeT5 29.2 2359.70 38.79 1069.06 39.61 895.79 38.59 988.52 38.99 1001.93
Defect+CodeBert 52.29 1079.68 50.51 862.18 69.18 588.35 69.18 595.80 67.37 602.46
Defect+GrpahCodeBert 74.29 621.77 75.19 539.93 81.63 404.73 83.67 414.58 82.73 410.84
Defect+CodeT5 76.66 721.02 86.51 344.08 89.45 344.29 89.21 890.80 88.69 891.81
Authorship+CodeBert 34.98 682.57 64.70 775.11 73.39 1029.59 75.22 1002.26 76.14 972.82
Authorship+GrpahCodeBert 58.82 1227.36 75.49 632.10 80.39 696.64 78.43 709.90 77.45 715.87
Authorship+CodeT5 64.95 1078.40 66.97 715.89 71.79 970.44 68.37 981.98 70.94 981.05
Java250+CodeBert 50.5 958.96 74.03 961.60 75.12 815.91 75.85 798.02 73.58 825.17
Java250+GrpahCodeBert 46.74 1026.15 46.05 946.52 72.30 853.74 73.23 851.30 72.51 863.49
Java250+CodeT5 52.04 1189.42 30.59 1107.95 63.80 1049.46 64.85 1034.10 62.34 1130.23
Python800+CodeBert 58.3 513.63 56.67 919.37 77.88 514.19 79.75 503.82 78.40 516.34
Python800+GrpahCodeBert 51.87 577.70 54.15 917.92 71.42 730.14 71.94 723.12 69.04 760.71
Python800+CodeT5 52.84 777.20 36.95 1127.44 69.07 662.28 69.70 658.50 67.73 666.61
C1000+CodeBert 53.5 525.43 59.75 340.88 72.96 537.76 72.84 538.59 71.75 547.03
C1000+GrpahCodeBert 52.68 566.18 45.93 837.09 72.23 634.27 68.77 634.11 72.47 636.37
C1000+CodeT5 47.86 843.33 36.45 668.15 59.00 697.06 59.12 689.56 59.24 707.90
Count 0/18 2/18 0/18 6/18 6/18 4/18 7/18 6/18 5/18 0/18

5.2 ADVERSARIAL EXAMPLE STUDY

We count the original and adversarial variable length (Table 3). The second and fifth columns are
the average length for original variables (Var Len) that are replaced. The third and sixth columns are
the average length for adversarial variables(named Adv Var Len). The fourth and seventh columns
are the average and variance (mean± variance) of the absolute length difference between original
variables and adversarial variables (named Difference). We observe that MHM prefers to replace the
long-length variables while RNNS likes replacing short-length variables if we compare the second
and fifth columns. Meanwhile, the change of variable length is changed to be less than MHM by
RNNS. MHM introduces the average length difference of 3.39-6.82 while RNNS only has 2.02-
2.54. MHM has much higher variances than RNNS in the length change.

Table 4 statistically shows the number of replaced variables for our approach RNNS and MHM
(mean± variance ). It can be seen that RNNS replaces around an average of 3.6 variables with a
smaller variance of around (3.4-4.6) while MHM needs to modify about an average of 5.4 variables
with a larger variance (≥ 11.14). We can summarize that RNNS introduces smaller perturbations
into inputs when generating adversarial examples. From Table 4 and Table 3, we can see that RNNS
is also competitive with ALERT, replacing less number of variables.

Figure 4 shows one example that both RNNS and MHM attack successfully from Java250 dataset.
The left is the original code. The center is the adversarial example generated by RNNS. The right
is the adversarial example from MHM. The changes are highlighted by shadow markers. RNNS
only renames one variable b to h, while MHM almost renames all variables and also prefers longer
names. Appendix A.1 shows more examples.
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Table 3: Replaced-Variable Length Comparison (mean± variance)
Task+Model RNNS-Smooth MHM ALERT

Var Len Adv Var Len Difference Var Len Adv Var Len Difference Var Len Adv Var Len Difference

Clone+CodeBert 6.12 6.79 2.35 ± 4.5 6.47 10.6 6.34 ± 10.98 5.91 6.21 1.32 ± 2.02
Clone+GraphCodeBert 6.32 6.97 2.54 ± 6.43 6.58 10.41 6.82 ± 21.67 5.5 5.93 1.45 ± 2.49
Clone+CodeT5 6.45 6.69 2.51 ± 8.3 6.46 10.46 6.17 ± 25.78 6.25 6.61 1.32 ± 2.72
Defect+CodeBert 4.64 5.44 2.08 ± 2.49 4.44 9.59 6.57 ± 28.78 4.85 5.06 1.36 ± 1.93
Defect+GraphCodeBert 4.08 5.34 2.13 ± 1.83 4.37 9.73 6.48 ± 26.51 4.47 5.22 1.33 ± 1.83
Defect+CodeT5 3.95 5.17 2.03 ± 1.93 4.33 9.81 6.59 ± 29.98 4.36 5.01 1.27 ± 1.57
Authorship+CodeBert 3.81 5.18 2.28 ± 1.56 3.97 7.94 5.45 ± 16.72 4.42 5.35 1.4 ± 2.25
Authorship+GraphCodeBert 3.69 5.23 2.36 ± 1.71 4.39 7.64 5.24 ± 15.38 3.74 4.46 1.22 ± 1.82
Authorship+CodeT5 3.95 5.18 2.03 ± 2.66 3.95 7.98 5.59 ± 20.94 3.81 4.5 1.22 ± 1.62
Java250+CodeBert 2.35 4.22 2.11 ± 1.02 3.21 6.5 4.34 ± 15.2 3.22 3.65 0.937 ± 1.63
Java250+GraphCodeBert 2.48 4.31 2.13 ± 1.07 3.13 6.59 4.42 ± 14.84 3.05 3.5 0.979 ± 1.54
Java250+CodeT5 2.76 4.47 2.1 ± 1.17 3.2 6.54 4.33 ± 14.6 3.16 7.31 4.41 ± 18.73
Python800+CodeBert 1.5 3.54 2.21 ± 1.02 1.97 5.11 3.64 ± 9.06 1.78 2.27 0.64 ± 1.34
Python800+GraphCodeBert 1.88 3.9 2.18 ± 0.78 1.99 6.01 4.46 ± 16.52 1.8 2.33 0.76 ± 1.3
Python800+CodeT5 1.65 3.59 2.13 ± 0.95 1.97 4.95 3.49 ± 8.18 1.88 5.84 4.1 ± 12.64
C1000+CodeBert 1.58 3.44 2.08 ± 0.88 2.41 5.05 3.65 ± 12.02 2.13 2.52 0.67 ± 1.17
C1000+GraphCodeBert 1.6 3.59 2.1 ±0.85 2.39 5.35 3.9 ± 12.98 2.18 2.67 0.66 ± 1.23
C1000+CodeBert 1.38 3.33 2.02 ± 0.85 2.36 4.82 3.39 ± 10.98 2.1 6.56 4.74 ± 13.24

Table 4: Replaced-Variable Number Comparison, mean± variance

Task
CodeBERT GraphCodeBERT CodeT5

RNNS-Smooth MHM ALERT RNNS-Smooth MHM ALERT RNNS-Smooth MHM ALERT
Clone 3.55 ± 4.6 6.72 ± 16.57 6.86 ± 18.85 4.12 ± 4.94 6.21 ± 15.13 6.95 ± 18.99 3.43 ± 5 5.68 ± 14.01 7.65 ± 25.57
Defect 3.39 ± 4.96 2.78 ± 7.89 3.49 ± 3.99 2.67 ± 1.75 2.84 ± 9.5 4.1 ± 11.05 2.51 ± 1.45 2.16 ± 3.58 3.49 ± 3.99
Authorship 4.24 ± 7.47 7.52 ± 25.82 6.6 ± 22.96 3.65 ± 3.32 6.67 ± 22.29 7.75 ± 33.12 4.39 ± 9 5.72 ± 13.02 6.06 ± 18.74
Java250 3.87 ± 4.7 7.11 ± 21.18 7.82 ± 28.96 3.87 ± 4.25 6.41 ± 16.24 7.83 ± 25.06 4.71 ± 6.87 7.04 ± 15.29 8.92 ± 25.97
Python800 3.06 ± 1.87 5.21 ± 12.28 4.96 ± 8.47 4.12 ± 3.68 5 ± 10.83 4.63 ± 6.76 3.57 ± 3.04 5.29 ± 13.51 6.18 ± 11.45
C1000 3 ± 1.86 4.42 ± 7.49 4.13 ± 5.59 3.37 ± 2.38 5.14 ± 7.3 4.88 ± 6.24 3.39 ± 2.48 5.2 ± 7.43 5.43 ± 6.99
mean 3.52 ± 4.24 5.63 ± 15.21 5.65 ± 14.80 3.63 ± 3.39 5.38 ± 13.55 6.02 ± 16.87 3.67 ± 4.64 5.18 ± 11.14 6.29 ± 15.45

5.3 ABLATION STUDY

In comparing, we remove the constraints of RNNS, named RNNS-Unlimited. Table 5 demonstrates
the result. RNNS-Unlimited requires less query times (15/18) and achieves higher ASRs (18/18) in
general than RNNS with constraints. Without any constraint, RNNS can find adversarial examples
more easily.

Table 5: Removing Constraints

Task
CodeBERT GraphCodeBERT CodeT5

RNNS-Unlimited RNNS-Smooth RNNS-Unlimited RNNS-Smooth RNNS-Unlimited RNNS-Smooth
ASR QT ASR QT ASR QT ASR QT ASR QT ASR QT

Defect 72.29 361087 69.18 359483 87.77 243604 81.63 258216 91.64 218614 89.45 222412
Clone 50.66 930154 46.5 648486 48.16 1083006 41.28 1099569 41.38 899474 39.61 875189
Authorship 91.74 48797 73.39 112225 91.17 44746 80.39 71057 88.88 72605 71.79 113542
C1000 74.7 414165 72.96 443650 76.82 417365 72.23 530884 61.96 594974 59.00 588320
Python800 83.9 443864 77.88 495162 79 477440 71.42 702390 72.69 625251 69.07 640426
Java250 79.7 737379 75.12 790616 81.94 721485 72.3 827275 75.52 890933 63.8 1026367
Count 6/6 4/6 0/6 2/6 6/6 6/6 0/6 0/6 6/6 5/6 0/6 1/6

5.4 ATTACK DEFENDED MODEL

We use RNNS and MHM to attack three (3) defended models from NaturalAttack (Yang et al.,
2022)1. There defended models are against adversarial examples by adversarial training. The adver-
sarial variables generated by NaturalAttack are close to the actual data because it uses the masked
mechanism of pre-trained code models to generate the variable substitutes. Pre-trained code models
can learn the data distribution by pre-training methods, i.e., Masked Language Modeling (MLM)
and Causal Language Modeling (CLM). RNNS uses the actual variable names as the search space.
This means that attacking such defended models can benefit MHM in some way. Table 6 illustrates
the result. RNNS-Unlimited is one RNNS variant in that we remove all constraints. We can see
that RNNS outperforms MHM in two (2) tasks (defect detection, authorship), and MHM is better in
one (1) task (code clone).

1https://github.com/soarsmu/attack-pretrain-models-of-code
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public static void main(String[] args) {
Scanner obj = new Scanner(System.in);
int a = obj.nextInt();
int b = obj.nextInt();
int out = 1;
int ans = 0;
while ( out < b ){

out--;
out = out + a;
ans++;

}
System.out.println(ans);

}

public static void main(String[] args) {
Scanner obj = new Scanner(System.in);
int a = obj.nextInt();
int h = obj.nextInt();
int out = 1;
int ans = 0;
while ( out < h ){

out--;
out = out + a;
ans++;

}
System.out.println(ans);

}

public static void main(String[] args) {
Scanner FastScanner = new Scanner(System.in);
int tdigit = FastScanner.nextInt();
int colArr = FastScanner.nextInt();
int tempOp = 1;
int number_array = 0;
while (tempOp < colArr ){

tempOp--;
tempOp = tempOp + tdigit;
number_array++;

}
System.out.println(number_array);

}

Original Code Adversarial Code  from RNNS Adversarial Code  from MHM

Figure 4: Original vs. RNNS vs. MHM

Table 6: Attack Defended Models, ASR %
Defended Model RNNS-Smooth RNNS-Unlimited MHM
Clone+CodeBert 12.90 23.47 28.17
Defect+CodeBert 96.36 95.37 92.23
Authorship+CodeBert 51.88 71.69 39.62

6 CONCLUSION

We propose a novel black-box adversarial attack based on variable replacement, RNNS. Variable
replacement is a safe way to transform code without changing its dynamic behavior (semantics).
RNNS can generate practical adversarial examples with as little perturbation as possible. It uses
failed attacks to teach the next attack and searches for adversarial alternatives to variables in the
real variable names from developers based on model output behaviors. RNNS has two stages: 1)
locating the vulnerable-variable position based on model uncertainty, and 2) finding adversarial al-
ternatives based on model output-behavior change. We evaluate our approach on 18 victim models
for six (6) SE tasks and three (3) widely used pre-trained code models (CodeBERT, GraphCode-
BERT, and CodeT5). RNNS achieves higher ASRs and less QTs compared with SOTA MHM and
NaturalAttack. RNNS requires fewer replaced variables and increases code length slightly. When
RNNS attacks defended models, it can achieve acceptable performance. In summary, RNNS is a
useful black-box adversarial attack on code models. We public our prototypical implementation of
RNNS2.
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A APPENDIX

A.1 ADVERSARIAL EXAMPLES

Figure 5, Figure 6 Figure 7 and Figure 8 show four examples that are attacked successfully by RNNS
and MHM on Defect, Authorship, Pythoon800 and C1000 respectively.

Figure 5: Original (above) vs. RNNS (middle) vs. MHM (bottom) on Defect
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Figure 6: Original (above) vs. RNNS (middle) vs. MHM (bottom) on Authorship
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Figure 7: Original (above) vs. RNNS (middle) vs. MHM (bottom) on Python800
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Figure 8: Original (above) vs. RNNS (middle) vs. MHM (bottom) on C1000
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