
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ANALYSIS OF LINEAR MODE CONNECTIVITY VIA
PERMUTATION-BASED WEIGHT MATCHING: WITH IN-
SIGHTS INTO OTHER PERMUTATION SEARCH METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, Ainsworth et al. (2023) showed that using weight matching (WM) to
minimize the L2 distance in a permutation search of model parameters effectively
identifies permutations that satisfy linear mode connectivity (LMC), where the loss
along a linear path between two independently trained models with different seeds
remains nearly constant. This paper analyzes LMC using WM, which is useful
for understanding stochastic gradient descent’s effectiveness and its application
in areas like model merging. We first empirically show that permutations found
by WM do not significantly reduce the L2 distance between two models, and
the occurrence of LMC is not merely due to distance reduction by WM itself.
We then demonstrate that permutations can change the directions of the singular
vectors, but not the singular values, of the weight matrices in each layer. This
finding shows that permutations found by WM primarily align the directions of
singular vectors associated with large singular values across models. This alignment
brings the singular vectors with large singular values, which determine the model’s
functionality, closer between the original and merged models, allowing the merged
model to retain functionality similar to the original models, thereby satisfying LMC.
This paper also analyzes activation matching (AM) in terms of singular vectors
and finds that the principle of AM is likely the same as that of WM. Finally, we
analyze the difference between WM and the straight-through estimator (STE), a
dataset-dependent permutation search method, and show that WM can be more
advantageous than STE in achieving LMC among three or more models.

1 INTRODUCTION

Deep learning has significantly advanced various fields, including image classification, speech
recognition, and natural language processing (Vaswani et al., 2017; van den Oord et al., 2016; Zhao
et al., 2023). Large-scale neural networks (NNs) are widely used in these applications, and optimizing
their parameters poses a massive non-convex optimization problem. Remarkably, stochastic gradient
descent (SGD), which is widely used for training NNs, is known to find good solutions despite its
simplicity. One hypothesis for this seemingly counterintuitive phenomenon is that the landscape of
the loss function may be much simpler than previously thought. Several studies (Garipov et al., 2018;
Draxler et al., 2018; Freeman & Bruna, 2017) have found that different neural network solutions
can be connected by nonlinear paths with almost no increase in loss. Recently, Entezari et al. (2022)
conjectured that Conjecture 1.1 holds, considering all possible permutation symmetries of NNs:

Conjecture 1.1 (Permutation invariance, informal). Let θa and θb be two SGD solutions (model
parameters). Then, with high probability, there exists a permutation π such that the barrier (defined
in Definition 2.1) between θa and π(θb) is sufficiently small.

Here, the barrier represents the increase in loss observed when linearly interpolating between the
weights of the two models. A sufficiently small barrier implies that the model obtained by linear
interpolation of the two models performs the same as the original models. If the barrier between
two models is sufficiently small, we say that linear mode connectivity (LMC) is satisfied between
them (Frankle et al., 2020). Conjecture 1.1 suggests that most SGD solutions can be transferred into
the same loss basin using permutations. Indeed, some studies (Ainsworth et al., 2023; Singh & Jaggi,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2020) have experimentally demonstrated that this conjecture is valid for various datasets and models
using weight matching (WM), which identifies permutations that minimize the L2 distance between
the weights of two models.

Understanding LMC principles based on permutation symmetries is important not only for compre-
hending how SGD works in deep learning but also for its application in model merging (Singh & Jaggi,
2020), where two independently trained models are combined. The method of finding permutations
using only the L2 distance is particularly versatile, dataset-independent, and computationally efficient.
In fact, several studies (Singh & Jaggi, 2020; Wang et al., 2020; Peña et al., 2023) have proposed
applications of permutation symmetries in model merging, federated learning, and continual learning.

The current theoretical analysis of LMC relies on the feasibility of closely matching NN weights
through permutations. Recently, Zhou et al. (2023) proved that if the distance between the weights of
two models can be sufficiently reduced via permutation, then LMC holds. Intuitively, for two SGD
solutions θa and θb, if θa ≈ π(θb) holds for a permutation π, the outputs of the interpolated model
will closely approximate those of the original models θa and θb.

However, our analysis reveals that even if LMC holds, the permutations found by WM do not
significantly reduce the distance between the two models (at most about a 20% reduction). This
suggests that LMC is satisfied even when WM does not bring the two models very close (i.e.,
θa ̸≈ π(θb)). Accordingly, this paper seeks to uncover a more fundamental reason why LMC holds
through the permutations found by WM. Specifically, we demonstrate that singular vectors with large
singular values of each weight in the models play a crucial role in LMC. Our analysis not only reveal
the principle behind WM but also shows that WM may be more advantageous in merging more than
three models compared to other methods such as STE.

The contributions of this paper are threefold:

1. Demonstrating that the L2 distance reduced by WM is not the direct cause of LMC. This
paper empirically shows that permutations found by WM do not significantly reduce the L2 distance
between the two models. Our results indicate that, even when LMC is satisfied, permutations
reduce the model weight distance by no more than 20%. Supported by a Taylor approximation, our
findings suggest that reducing the L2 distance through permutations is not the direct reason for LMC
satisfaction.

2. Revealing the reason why WM and activation matching (AM) satisfy LMC. We provide
evidence that WM satisfies LMC by aligning the directions of singular vectors with large singular
values in each layer’s weights. This alignment ensures that the singular vectors with large singular
values, which determine the model’s functionality, become similar between the merged and original
models. Additionally, we show that, from the perspective of the input distribution at each hidden
layer, aligning singular vectors with large singular values can efficiently approximate the functionality
between two models, even if the L2 distance cannot be significantly reduced. As a result, the merged
model retains functionality similar to the original models, which facilitates LMC. We also conducted
experiments with AM and found that the reason why LMC holds in AM is likely the same as in WM.

3. Revealing STE is fundamentally different from WM in principle, which leads to a significant
difference between them when merging multiple models. To distinguish WM from other permu-
tation search methods that are independent of L2 distance, we examine the straight-through estimator
(STE), which focuses on minimizing the barrier itself rather than the L2 distance. Our experiments
reveal that the permutations found by STE do not align the directions of singular vectors, which is a
critical difference compared to WM in achieving LMC. Furthermore, we demonstrate experimentally
that this difference significantly impacts the satisfaction of LMC among three or more models.

2 BACKGROUND AND PRELIMINARIES

2.1 NOTATION

For any natural number k ∈ N, let [k] = {1, 2, . . . , k}. Bold uppercase variables represent tensors,
including matrices (e.g., X), and bold lowercase variables (e.g., x) represent vectors. For any tensor
X , its vectorization is denoted by vec(X), and ∥X∥ denotes its Frobenius (L2) norm.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 PERMUTATION INVARIANCE

We consider multilayer perceptrons (MLPs) f(x;θ) with L layers for simplicity while our analyses
in this paper can be applied to any model architectures. Here, x ∈ Rdin is the input to the NN, and
θ ∈ Rdparam represents the model parameters, where din ∈ N is the dimension of the input, and
dparam ∈ N is the dimension of the parameters. Let zℓ be the output of the ℓ-th layer (i.e., z0 = x,
and, for all ℓ ∈ [L], zℓ = σ(Wℓzℓ−1 + bℓ)). Here, σ denotes the activation function, and Wℓ and
bℓ represent the weight and bias of the ℓ-th layer, respectively. Note that in this MLP, we have
θ =

∥∥L
ℓ=1

(vec(Wℓ) ∥ bℓ), where ∥ represents the concatenation of vectors.

NNs have permutation symmetries of weight space. Considering an NN with model parameters θ,
for its ℓ-th layer, zℓ = P⊤Pzℓ = P⊤σ(PWℓzℓ−1 +Pbℓ) holds, where P is a permutation matrix.
Note that permutation matrices are orthogonal, so we have P⊤ = P−1. Therefore, by permuting
the input of the (ℓ+ 1)-st layer with P⊤, the model parameters can be changed without altering the
input-output relationship of the NN. Specifically, the new weights and bias are given by W ′

ℓ = PWℓ,
b′ℓ = Pbℓ, W ′

ℓ+1 = Wℓ+1P
⊤. Such permutations can be applied to all layers. We denote the tuple

of permutations corresponding to each layer as π = (Pℓ)ℓ∈[L]. Moreover, if a model θ is given, the
application of permutation π to θ is denoted by π(θ).

2.3 LINEAR MODE CONNECTIVITY (LMC)

Let θ ∈ Rdparam be a model and L(θ) denote the value of the loss function for the model θ. Here,
we define the loss barrier between two given models θa and θb as follows:
Definition 2.1. For two given models θa and θb, their loss barrier is defined as

B(θa,θb) := max
λ∈[0,1]

(
L(λθa + (1− λ)θb)− (λL(θa) + (1− λ)L(θb))

)
.

Intuitively, the barrier represents the increase in loss because of the linear interpolation of the two
models. Two models θa and θb are said to be linearly mode connected when the loss barrier between
them is approximately zero.

2.4 PERMUTATION SELECTION

Entezari et al. (2022) conjectured that for SGD solutions θa and θb, there exists a permutation π such
that LMC holds between θa and π(θb) with high probability. Afterward, Ainsworth et al. (2023)
proposed WM, straight-through estimator (STE), and activation matching (AM) as methods for
finding such permutations. This subsection explains WM, which is the main focus of this paper. AM
and STE are discussed in Sections 5 and 6.

In WM, we search for a permutation that minimizes the L2 distance between two models1:

argmin
π

∥θa − π(θb)∥2 = argmin
π

∑
ℓ∈[L]

∥W (a)
ℓ − PℓW

(b)
ℓ P⊤

ℓ−1∥2, (1)

where, without loss of generality, let PL = I and P0 = I , and I is an identity matrix. This
minimization problem is known as the sum of the bilinear assignments problem, which is NP-
hard (Koopmans & Beckmann, 1957; Sahni & Gonzalez, 1976; Ainsworth et al., 2023). Recently,
Peña et al. (2023) proposed solving Equation (1) using Sinkhorn’s algorithm (Adams & Zemel, 2011)
by considering it as an optimal transport problem. We adopt their method because it allows for
the optimization of all layers simultaneously, unlike the method by Ainsworth et al. (2023), and
potentially finds better solutions.

3 MOTIVATING OBSERVATIONS

Previous studies have suggested that the closeness of two parameters in terms of L2 distance
is important for satisfying LMC. For example, Zhou et al. (2023) showed that LMC holds if a

1Although only the weights are considered here, the biases can also be dealt with by concatenating the biases
and the weights.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Results of WM and the estimated barrier value using Taylor approximation when λ = 1/2.
The table presents the mean and standard deviation from five trials of model merging (i.e., the linear
combination of the models (θa + π(θb))/2). The columns labeled “Barrier”, “Taylor approx.”, and
“Diff.” show the barrier value, the estimated barrier value using Equation (2) for the merged model at
λ = 1/2, and their difference, respectively. In the “Diff.” column, if a statistical significant difference
is determined using a t-test at a 5% significance level, they are highlighted in bold. The table also
shows the L2 distance between the models θa and θb before and after applying the permutation, as
well as the reduction rate of the L2 distance (i.e., (∥θa − θb∥ − ∥θa − π(θb)∥)/∥θa − θb∥).

Dataset Network Barrier (λ = 1/2) Taylor approx. Diff. ∥θa − θb∥ ∥θa − π(θb)∥ Reduction rate [%]

CIFAR10 VGG11 0.035± 0.1 2.956± 0.35 2.921± 0.323 799.503± 16.396 746.465± 19.576 6.64± 0.808
ResNet20 0.167± 0.035 7.517± 0.573 7.349± 0.599 710.762± 16.261 661.055± 12.539 6.987± 0.472

FMNIST MLP −0.183± 0.049 0.928± 0.175 1.111± 0.152 121.853± 5.83 100.041± 4.71 17.897± 0.348
MNIST MLP −0.033± 0.006 0.036± 0.03 0.069± 0.028 81.231± 5.58 64.751± 4.795 20.305± 1.225

commutativity property is satisfied. This property holds if, for all layers ℓ, W (a)
ℓ −PℓW

(b)
ℓ P⊤

ℓ−1 = 0.
Zhou et al. (2023) argued in Section 5.2 that since WM finds the permutation that minimizes
Equation (1), WM can be seen as searching for permutations that satisfy the commutativity property.
In particular, there is a huge number of permutations because the total number of possible permutations
grows exponentially as the number of layers and the width increase, and thus, some of them may
sufficiently reduce the distance between the two models. However, this section explains from the
perspective of a Taylor approximation that this intuition is not always correct. Our results demonstrate
that even when LMC is satisfied, the permutations found by WM do not necessarily bring the models
as close as expected. The facts observed from the experiments in this section motivate us to explore
other reasons for satisfying LMC in the following sections.

3.1 CLOSENESS OF TWO MODELS IN TERMS OF TAYLOR APPROXIMATION

This subsection describes the estimation of the barrier value using the Taylor approximation. Let
θa and θb be two SGD solutions, and π be a permutation found by WM to make π(θb) close to the
model θa. Let θc = λθa + (1− λ)π(θb) be the merged model at a ratio λ ∈ (0, 1). If θa and π(θb)
are sufficiently close, then their linear interpolation θc should be close to both models. Therefore, the
loss of the parameter θc should be able to be approximated by the Taylor approximation. In fact, the
following theorem holds if θa and π(θb) are sufficiently close:

Theorem 3.1. The loss function L : U ∋ θ 7→ L(θ) ∈ R is assumed to be of class C3 on an open
set U over Rdparam . Let Ha and Hb be the Hessian matrices centered at the models θa and π(θb),
respectively. If, for any λ ∈ (0, 1), λθa + (1− λ)θb ∈ U holds, then we have

B(θa, π(θb)) = max
λ

λ(1−λ)
[
βµ⊤∇(L(θa)−L(π(θb)))+

1

2
β2µ⊤ ((1− λ)Ha + λHb)µ

]
+O(β3),

(2)

where ∇ is the gradient with respect to the parameters, O is the Landau symbol, β is the L2 distance
between θa and π(θb), and µ is the unit vector from θa to π(θb) (i.e., µ = (π(θb)− θa)/β).

We prove this theorem in Appendix G.1. The theorem states that if θa and π(θb) are sufficiently
close, the barrier value can be predicted from the gradients and Hessian matrices around each model.

3.2 EXPERIMENTAL RESULTS

We conducted experiments to verify whether the Taylor approximation (Equation (2)) accurately
estimates the barrier between two SGD solutions. Table 1 presents the experimental results of model
merging. Details about the datasets, network training procedures, and permutation search methods
used in these experiments are described in Appendix D. In the table, we chose λ = 1/2 because it
is empirically known that the midpoint between two models results in the highest loss (Ainsworth
et al., 2023; Peña et al., 2023). Although not directly applicable to this paper, as the two models are
generalized to the same extent, it is worth noting that Adilova et al. (2024) demonstrated that the
location of the highest barrier shifts when one model is more generalized than the other. We used the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

vhp function provided in the PyTroch library2 to efficiently compute µ⊤H , which is required for
the evaluation of Equation (2). A negative value in the Barrier column indicates that the loss of the
merged model is lower than that of the original (pre-merged) models.

The table shows that for all datasets, there is a significant difference between the actual barrier values
and those estimated by the Taylor approximation. These differences are particularly large for VGG11
and ResNet20. Additionally, the table indicates that the L2 distance changes by only about 6% to
20% from the original distance. This suggests that WM does not bring the models sufficiently close,
at least not close enough for a second-order Taylor approximation to hold.

4 ANALYSIS OF WM

The previous section demonstrates that the establishment of LMC by WM is not due to the reduction
in L2 distance itself, but rather because WM helps find permutations that result in a smaller barrier
between the two models. To better understand why WM reduces the barrier, we first analyze WM
by performing SVD on the weights of each layer of the model in Section 4.1. Then, in Section 4.2,
we show that the singular value distribution of each layer are almost identical across independently
trained models, and that the primary differences between the models are due to variations in their
singular vectors. In Section 4.3, we demonstrate that WM preferentially aligns the directions of
singular vectors with large singular values between the weights of the two models. Finally, in
Section 4.4, we explain that aligning singular vectors with large singular values makes LMC more
achievable because these singular vectors predominantly influence the outputs of the hidden layers of
the models.

4.1 ANALYSIS BASED ON SVD

The basic idea in analyzing WM is to perform SVD on the weight in each layer. Although using
SVD for analysis might seem overly simplistic given that WM reduces the L2 distance, this approach
provides important insights that are explored in subsequent sections. In WM, permutation matrices
are searched to minimize Equation (1). We denote the SVDs of W

(a)
ℓ and W

(b)
ℓ by W

(a)
ℓ =

U
(a)
ℓ S

(a)
ℓ (V

(a)
ℓ)⊤ =

∑
i u

(a)
ℓ,i s

(a)
ℓ,i (v

(a)
ℓ,i)

⊤ and W
(b)
ℓ = U

(b)
ℓ S

(b)
ℓ (V

(b)
ℓ)⊤ =

∑
j u

(b)
ℓ,js

(b)
ℓ,j (v

(b)
ℓ,j)

⊤,
respectively. Here, we assume that the singular values are ordered in descending order (i.e., for all
ℓ ∈ [L], s(a)ℓ,1 ≥ s

(a)
ℓ,2 ≥ · · · ≥ s

(a)
ℓ,n and s

(b)
ℓ,1 ≥ s

(b)
ℓ,2 ≥ · · · ≥ s

(b)
ℓ,n, where n is the number of singular

values). Then, we have

argmin
π

∥θa − π(θb)∥2 = argmin
π

∑
ℓ∈[L]

∥∥∥∑
i

u
(a)
ℓ,i s

(a)
ℓ,i (v

(a)
ℓ,i)

⊤ −
∑
j

Pℓu
(b)
ℓ,js

(b)
ℓ,j (Pℓ−1v

(b)
ℓ,j)

⊤
∥∥∥2

. (3)

Equation (3) shows that the permutation matrices Pℓ and Pℓ−1 are multiplied by the left and right
singular vectors of the model θb, respectively. The L2 distance between the models is expressed
by the difference in singular values and singular vectors between the two models, as indicated by
Equation (3). Therefore, in the following, we will discuss the differences in (1) singular values and
(2) singular vectors of independently trained models.

4.2 DIFFERENCES BETWEEN SINGULAR VALUES OF TWO MODELS

First, we investigate the differences between the singular values of two independently trained models.
To this end, ten models are trained independently under identical conditions except for the seed,
and their singular values are compared. Figure 1 plots the singular values in the second layer of
independently trained models in descending order. The evaluation results for all the layers are
shown in Figure 7. As can be seen in the figures, in the hidden layers, the singular values are very
close across all models. Therefore, the differences in singular values between the models are not a
significant obstacle to reducing the distance between the two models to zero.

2https://pytorch.org/docs/stable/generated/torch.autograd.functional.
vhp.html

5

https://pytorch.org/docs/stable/generated/torch.autograd.functional.vhp.html
https://pytorch.org/docs/stable/generated/torch.autograd.functional.vhp.html

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 200 400
Index

0

5

10

Si
ng

ul
ar

 v
al

ue

MLP, MNIST

0 200 400
Index

0

5

10

Si
ng

ul
ar

 v
al

ue

MLP, FMNIST

0 20000 40000 60000
Index

0

20

40

Si
ng

ul
ar

 v
al

ue

VGG11, CIFAR10

0 100000 200000
Index

0

20

Si
ng

ul
ar

 v
al

ue

ResNet20, CIFAR10

Figure 1: Distribution of the singular values in the second layer. The singular values of ten in-
dependently trained models (i.e., trained with different seeds) are plotted in different colors. The
distribution of the singular values for all layers is shown in Appendix H.2.

=0.3
MLP, MNIST

=0 =0.3
MLP, FMNIST

=0 =0.3
VGG11, CIFAR10

=0 =0.3
ResNet20, CIFAR10

=0
0.0

0.2

0.4

R(
a,

(
b)

)

w/ WM
w/o WM

Figure 2: Mean and standard deviation of R(θa,θb) from five permutation searches using WM. The
red and blue bars represent the results with and without applying a permutation to θb, respectively.

4.3 SINGULAR-VECTOR ALIGNMENT

In the previous subsection, we confirmed that the distributions of the singular values of the weights
of the two independently trained models were almost equal. In this subsection, we will show that
the permutations found by WM only align the large singular vectors of the two models. We will
also show experimentally that WM cannot align all singular vectors between the two models, and
therefore cannot reduce the L2 distance to zero.

First, we introduce the following theorem:
Theorem 4.1. Given the trained L-layer MLPs θa and θb, Equation (3) is equivalent to

argmin
π

∥θa − π(θb)∥2 = argmax
π=(Pℓ)ℓ

∑
ℓ,i,j

s
(a)
ℓ,i s

(b)
ℓ,j (u

(a)
ℓ,i)

⊤(Pℓu
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j). (4)

The proof of this theorem is shown in Appendix G.2. Focusing on the term for each layer∑
i,j s

(a)
ℓ,i s

(b)
ℓ,j (u

(a)
ℓ,i)

⊤(Pℓu
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j) in Equation (4), (u(a)

ℓ,i)
⊤(Pℓu

(b)
ℓ,j) is the inner prod-

uct between the left singular vector u(a)
ℓ,i of the model θa and the left singular vector u(b)

ℓ,j of the model
θb, applied with the permutation matrix Pℓ. The permutation matrix is orthogonal, so it only permutes
the elements without changing the norms of the left singular vectors. Therefore, this inner product
is maximized when the directions of the two left singular vectors are aligned by the permutation
matrix. The same applies to the right singular vectors. Thus, Equation (4) can be interpreted as
finding permutation matrices that align the directions of the singular vectors for all layers between
two models, especially those associated with large singular values. Like MLPs, Appendix F shows a
similar analysis holds for convolutional layers.

Then, to empirically evaluate how well the singular vectors are aligned, we calculate

R(θa, π(θb)) =

∑
ℓ,i,j(u

(a)
ℓ,i)

⊤Pℓu
(b)
ℓ,j (v

(a)
ℓ,i)

⊤Pℓ−1v
(b)
ℓ,j)∑

ℓ nℓ
,

where nℓ is the number of singular values in the ℓ-th layer. Note that |R(θa, π(θb))| ≤ 1 holds and,
we have equality if for all ℓ and i, u(a)

ℓ,i = Pℓu
(b)
ℓ,i and v

(a)
ℓ,i = Pℓ−1v

(b)
ℓ,i (proof in Appendix G.5).

Therefore, if R(θa, π(θb)) is close to one, the singular vectors of the models are well-aligned.

Figure 2 shows the experimental results of evaluating the R value between θa and π(θb). A threshold
γ is introduced to examine whether the singular vectors with large singular values are preferentially

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

w/ WM
MLP, MNIST

w/o WM w/ WM
MLP, FMNIST

w/o WM w/ WM
VGG11, CIFAR10

w/o WM w/ WM
ResNet20, CIFAR10

w/o WM
0.4

0.6

0.8

1.0
R(a, (a + (b))/2) R((b), (a + (b))/2)

(a) Evaluation results with the threshold γ = 0.

w/ WM
MLP, MNIST

w/o WM w/ WM
MLP, FMNIST

w/o WM w/ WM
VGG11, CIFAR10

w/o WM w/ WM
ResNet20, CIFAR10

w/o WM
0.4

0.6

0.8

1.0
R(a, (a + (b))/2) R((b), (a + (b))/2)

(b) Evaluation results with the threshold γ = 0.3.

Figure 3: Evaluation results of R between the pre- and post-merged models. The red and blue bars
represent the evaluation results of R(θa, (θa+π(θb))/2) and R(π(θb), (θa+π(θb))/2), respectively.

aligned. For each model, we evaluate R using only singular vectors whose ratio to the largest singular
value is greater than γ. Thus, in the figure, γ = 0 corresponds to the results when all singular vectors
are used, and γ = 0.3 corresponds to the results when only singular vectors with a ratio to the largest
singular value exceeding 0.3 are used. When we calculated R, its denominator

∑
ℓ nℓ was also

adjusted according to the value of γ. The details of the calculation of R are described in Appendix B.

The figure shows that the directions of the singular vectors are aligned with WM. Without WM, the
value of R is almost zero, indicating that the singular vectors are nearly orthogonal. Additionally,
focusing on the difference in γ, when the singular vectors are aligned using WM, the value of R
is clearly larger when γ is 0.3. This indicates that WM aligns singular vectors with larger singular
values more closely. Although the value of R is not necessarily very large, especially around 0.2 at
most for VGG11 and ResNet20, this alignment of singular vectors still affects the merged models.

Figure 3 shows the evaluation results of R between the merged model (i.e., (θa + π(θb))/2) and the
pre-merged models (i.e., θa and π(θb)). To investigate how well the directions of singular vectors
with large values are aligned between the merged and pre-merged models, we also show the results
for γ = 0.3 in Figure 3(b). The figures show that when γ = 0, the value of R does not change
regardless of the use of WM. However, when γ = 0.3, the value of R changes significantly depending
on whether WM is used. For example, the MLP results show that the value of R exceeds 0.8 when
using WM. This result indicates that the directions of singular vectors with particularly large singular
values are better aligned between these models.

4.4 IMPORTANCE OF SINGULAR VECTORS IN LMC

In the previous section, we mentioned that WM aligns the directions of singular vectors with large
singular values. This section clarifies why these singular vectors, rather than L2 distances, play a
crucial role in establishing LMC.

To explain this, we first focus on the difference between outputs at the ℓ-th layers of two models,
W

(a)
ℓ and W

(b)
ℓ , given the same input z (e.g., z = z

(a)
ℓ−1 or z = z

(b)
ℓ−1). Suppose that the distributions

of the singular values of the two weights are equal (this assumption holds for models trained with
SGD, as shown in Figure 7). The difference between the outputs can be bounded from above:

E∥σ(W (a)
ℓ z)− σ(W

(b)
ℓ z)∥ ≤ CE∥W (a)

ℓ z −W
(b)
ℓ z∥, (5)

where σ is a Lipschitz continuous activation function with a constant C > 0 (e.g., C = 1 for the
ReLU function). From Equation (5), we can see that depending on the distribution of the input z, the
outputs of the two layers can be close even when the distance between the two weights is not.

Let W (a)
ℓ =

∑
i u

(a)
ℓ,i s

(a)
i (v

(a)
ℓ,i)

⊤ and W
(b)
ℓ =

∑
i u

(b)
ℓ,i s

(b)
i (v

(b)
ℓ,i)

⊤ be the SVDs of their weights.
Here, we assume that, for some index k, the direction of z is always in the direction of the k-
th right singular vector v

(a)
ℓ,k with W

(a)
ℓ . Then, the product between W

(a)
ℓ and z is given by

W
(a)
ℓ z =

∑
i u

(a)
ℓ,i s

(a)
i (v

(a)
ℓ,i)

⊤z = u
(a)
ℓ,ks

(a)
k (v

(a)
ℓ,k)

⊤z because the singular vectors are orthogonal.
Therefore, Equation (5) can be rewritten as

E∥σ(W (a)
ℓ z)− σ(W

(b)
ℓ z)∥ ≤ CE

∥∥∥u(a)
ℓ,ks

(a)
k v

(a)
ℓ,kz −

∑
i

u
(b)
ℓ,i s

(b)
i v

(b)
ℓ,i z

∥∥∥.
7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 200 400
Singular Vector Index

0

5

10

|v
z|

²

MLP, MNIST

0 200 400
Singular Vector Index

0

5

|v
z|

²

MLP, FMNIST

0 20000 40000 60000
Singular Vector Index

0.0

0.5

1.0

|v
z|

²

1e6
VGG11, CIFAR10

0 100000 200000
Singular Vector Index

0.0

0.5

1.0

|v
z|

²

1e7
ResNet20, CIFAR10

Figure 4: Average absolute values of the inner products of the right singular vectors and the input
of the second layer. The figure shows results for ten models trained with different seeds, each
represented by a different color. The test dataset is used as input for the models. In each plot, the
vertical axis denotes the value of E(v⊤

ℓ,izℓ−1)
2, and the horizontal axis denotes the index i of the

right singular vector. The left side of each plot corresponds to singular vectors with large singular
values. The results for all layers are shown in Figure 9.

Thus, as long as the directions of the k-th singular vectors of the two weights are aligned (i.e.,
v
(a)
ℓ,k = v

(b)
ℓ,k and u

(a)
ℓ,k = u

(b)
ℓ,k hold), the outputs of the two layers will coincide regardless of the other

singular vectors. Note that the L2 distance between the two weights is not necessarily close to zero
since the directions of the other singular vectors need not be aligned. In fact, in Appendix C, we
provide an example where the L2 distance is not close to zero even though the output is zero.

More generally, the following theorem holds for the difference between the outputs of the two layers.

Theorem 4.2. For the difference, we have

E∥σ(W (a)
ℓ z)− σ(W

(b)
ℓ z)∥ ≤ C

(∑
i

(s
(a)
ℓ,i)

2E((v(a)
ℓ,i)

⊤z)2 +
∑
i

(s
(b)
ℓ,i)

2E((v(b)
ℓ,i)

⊤z)2

− 2
∑
i,j

s
(a)
ℓ,i s

(b)
ℓ,j (u

(a)
ℓ,i)

⊤u
(b)
ℓ,jE(v

(a)
ℓ,i)

⊤z(v
(b)
ℓ,j)

⊤z

)1/2

. (6)

The proof of Theorem 4.2 is provided in Appendix G.6. If the right-hand side of Equation (6) in the
theorem is small, the difference is also small. Note that each sum on the right-hand side includes the
inner product between the right singular vector and the input (i.e., (v(a)

ℓ,i)
⊤z and (v

(b)
ℓ,i)

⊤z). Since
singular vectors are orthogonal to each other, if z is aligned with one singular vector, its inner product
with the other singular vectors will be small. In other words, right singular vectors with a large inner
product with the input determine the difference between the outputs of the two layers.

In the context of WM, it is desirable that the input vector has the same direction as the right singular
vectors with large singular values because WM preferentially aligns these singular vectors of the
two weights. To verify this, we experimentally investigate the relationship between the directions
of the right singular vectors and that of the input vector. Figure 4 shows the value of E(v⊤

ℓ,izℓ−1)
2

for the i-th right singular vector vℓ,i in the second layer (i.e., ℓ = 2) and the corresponding hidden
layer input zℓ−1 for each model. The results show that in the hidden layer, the singular vectors
with large singular values have large inner products with the input vectors, which indicates that the
permutations found by WM make LMC more feasible.3 In particular, Figure 3(b) shows that by
aligning the directions of the singular vectors between the two models θa and θb using WM, the
directions of the singular vectors with large singular values of the models before and after merging
(e.g., θa and (θa + θb)/2) are well aligned. This suggests that the hidden layer outputs of the models
before and after merging are closer, which contributes to the establishment of LMC.

Some studies (Ainsworth et al., 2023; Entezari et al., 2022) have observed that increasing the model
width makes it easier to satisfy LMC using WM. In Appendix H.4, we provide an empirical analysis
to explain this observation in terms of singular-vector alignment. Furthermore, Qu & Horvath (2024)
showed that strengthening weight decay and increasing the learning rate make it easier for LMC to
be established through WM. Appendix H.5 demonstrates empirically that increasing these values

3As shown in Figures 11 and 12, this tendency only occurs when the model is sufficiently wide. This suggests
that LMC is unlikely to be established in WM unless the model is wide enough.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Results of model merging with STE.

Dataset Network Barrier (λ = 1/2) L2 dist. w/o STE L2 dist. w/ STE R(θa, π(θb)) (γ = 0.3)

CIFAR10 VGG11 0.06± 0.042 799.503± 16.396 799.779± 16.177 0.036± 0.007
ResNet20 0.119± 0.119 710.762± 16.261 711.142± 16.048 0.013± 0.005

FMNIST MLP −0.342± 0.066 121.853± 5.83 118.316± 5.453 0.081± 0.008
MNIST MLP −0.037± 0.008 81.231± 5.58 73.994± 5.58 0.211± 0.013

reduces the proportion of large singular values in the weights of each layer, facilitating the alignment
of the corresponding singular vectors through WM, and thus making LMC easier to achieve.

5 ACTIVATION MATCHING

Ainsworth et al. (2023) proposed activation matching (AM) as a permutation search method different
from WM. This section compares AM and WM, and explains that their results are almost similar.

Activation Matching (AM) searches for a permutation π∗ based on the following equation:

π∗ = argmin
π=(Pℓ)ℓ

∑
ℓ∈[L]

E∥z(a)
ℓ − Pℓz

(b)
ℓ ∥2. (7)

Unlike WM, AM can be solved as a simple linear sum assignment problem because it can be
optimized independently for each layer, allowing for the optimal solution to be obtained.

The minimization of Equation (7) is related to Theorem 4.2. Specifically, in a permutation search for
the ℓ-th layer, if we assume that the outputs z(a)

ℓ−1 and z
(b)
ℓ−1 from the previous layer are sufficiently

close under the permutation Pℓ−1 (i.e., z(a)
ℓ−1 ≈ Pℓ−1z

(b)
ℓ−1), then minimizing the right-hand side of

Equation (6) becomes equivalent to reducing the objective function in Equation (7). In other words,
similar to WM, AM may search for permutations that align the singular vectors with large singular
values between two models. To verify this, the results of model merging using AM are presented in
Table 4. The experimental settings are the same as those used for WM in Section 3.2. Additionally,
to evaluate how well the singular vectors align through permutation, the R calculation results are
shown in Figures 15 and 16. These results closely resemble those for WM in Table 1 and Figures 2
and 3, suggesting that the reason AM achieves LMC is likely to be similar to that for WM.

6 COMPARISON WITH STRAIGHT-THROUGH ESTIMATOR

This section discusses the relationship between the straight-through estimator (STE), a more direct
method for finding permutations, and WM in terms of singular vectors. STE uses a dataset to find
permutation matrices with a small barrier value. This section also explains that STE and WM are
based on fundamentally different principles, and shows how this difference significantly impacts
LMC among three or more models.

6.1 STRAIGHT-THROUGH ESTIMATOR (STE)

Ainsworth et al. (2023) proposed the STE, which finds a permutation π such that
argmin

π
L
(
(θa + π(θb)) /2

)
. (8)

Since Equation (8) is difficult to solve directly, Ainsworth et al. (2023) proposed a method to
approximate the solution. Later, Peña et al. (2023) proposed a method to solve Equation (8) directly
using Sinkhorn’s algorithm. We adopt the latter method, which we refer to as STE in this paper.

6.2 EXPERIMENTAL RESULTS OF MODEL MERGING BY STE

The experimental results of model merging using STE are shown in Table 2. This table also shows
the L2 distance and the R value between the two models before and after the permutation. Despite
the relatively small barrier value, Table 2 shows that the L2 distance between the two models before
and after permutation hardly changes compared to the results with WM shown in Table 1. Since
R(θa, π(θb)) is nearly zero, the singular vectors between the two models are likely not aligned at all.
Therefore, the reason for satisfying LMC by STE is completely different from that of WM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

MLP, MNIST MLP, FMNIST VGG11, CIFAR10 ResNet20, CIFAR10
0.0

0.2

0.4

0.6
R(a, b(b)) R(a, c(c)) R(b(b), c(c))

Figure 5: Evaluation results of R between each pair of the models with γ = 0.3.

Table 3: Loss and accuracy barriers between πb(θb) and πc(θc). The table shows the mean and
standard deviation over three model merging trials.

Loss barrier ((πb(θb) + πc(θc))/2) Accuracy barrier ((πb(θb) + πc(θc))/2)
Dataset Network WM STE WM STE

CIFAR10 VGG11 0.141± 0.141 2.172± 0.989 10.12± 5.117 32.013± 8.193
ResNet20 0.294± 0.098 1.693± 0.168 7.23± 0.99 34.483± 2.426

FMNIST MLP −0.174± 0.051 0.023± 0.118 4.337± 1.434 15.97± 1.724
MNIST MLP −0.031± 0.003 0.017± 0.014 0.475± 0.069 2.312± 0.457

6.3 LMC AMONG THREE MODELS

The previous subsection shows that the permutation matrices found by STE do not align the directions
of the singular vectors of the models. This suggests that STE finds a permutation that reduces the
loss of the merged model based on the loss landscape rather than the linear algebraic properties of the
weight matrices of each layer. The difference between the principles of STE and WM could result in
a qualitative difference in LMC among three or more models.

Suppose we have three SGD solutions: θa, θb, and θc. Let πb and πc be permutations that satisfy
LMC between θa and πb(θb), and θa and πc(θc), respectively. If permutations found by STE depend
on the locality of the loss landscape rather than the linear algebraic properties of the model weights,
there is no guarantee that πb(θb) and πc(θc) are linearly mode-connected. In contrast, permutations
found by WM align the directions of the singular vectors of the two models. This means that the
singular vectors of πb(θb) and πc(θc) are also expected to be aligned. Thus, the LMC between πb(θb)
and πc(θc) may not be satisfied with STE, while it is likely to be satisfied with WM.

We performed model merging experiments among three models to confirm the validity of the above
discussion. First, Figure 5 presents the results of examining how well the singular vectors are aligned
in each model pair by WM. Since the models θb and θc are matched to θa through WM, it is expected
that R(θa, πb(θb)) and R(θa, πc(θc)) would be large. On the other hand, although θb and θc were
not explicitly aligned, R(πb(θb), πc(θc)) is clearly greater than zero, indicating that the directions
of these two singular vectors are indirectly aligned by WM. From this result, the barrier between
the models πb(θb) and πc(θc) is expected to be small. To confirm this, Table 3 shows the barriers
between πb(θb) and πc(θc). Table 5 shows the detailed results, and Figure 17 shows the test accuracy
landscape around θa, πb(θb), and πc(θc). As can be seen from Table 3, the barrier between πb(θb)
and πc(θc) is smaller with WM than with STE. This means that there is a significant difference
between the principles of permutations obtained by WM and STE. Figure 17 also shows that the
landscape of test accuracy is flatter around the three models with WM than with STE. Therefore,
WM is likely to be more advantageous, especially for merging three or more models.

7 CONCLUSION

This paper analyzed why linear mode connectivity (LMC) is satisfied through permutation search
with weight matching (WM). First, we demonstrated that WM does not reduce the distance between
the weights of two models as significantly as previously thought. We then analyzed WM using
singular value decomposition (SVD) and found that WM aligns the directions of singular vectors
with large singular values, which plays a crucial role in achieving LMC. Additionally, we showed
that the reason LMC is established in AM is likely the same as for WM. Finally, we discussed the
difference between STE and WM from the perspective of singular vectors.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential ethical consequences of our work, none which we feel must be specifically highlighted here.

REPRODUCIBILITY

The settings for reproducing the experiments are described in Appendix D. All the proofs of the
theorems are given in Appendix G.

REFERENCES

Ryan Prescott Adams and Richard S. Zemel. Ranking via sinkhorn propagation, 2011.

Linara Adilova, Maksym Andriushchenko, Michael Kamp, Asja Fischer, and Martin Jaggi. Layer-
wise linear mode connectivity. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=LfmZh91tDI.

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=CQsmMYmlP5T.

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/db85e2590b6109813dafa101ceb2faeb-Paper.pdf.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 254–263. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/arora18b.html.

Donato Crisostomi, Marco Fumero, Daniele Baieri, Florian Bernard, and Emanuele Rodolà. C2M3:
Cycle-consistent multi-model merging. arXiv preprint arXiv:2405.17897, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1309–1318. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/draxler18a.html.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks, 2022.

Damien Ferbach, Baptiste Goujaud, Gauthier Gidel, and Aymeric Dieuleveut. Proving linear mode
connectivity of neural networks via optimal transport. In Sanjoy Dasgupta, Stephan Mandt, and
Yingzhen Li (eds.), Proceedings of The 27th International Conference on Artificial Intelligence and
Statistics, volume 238 of Proceedings of Machine Learning Research, pp. 3853–3861. PMLR, 02–
04 May 2024. URL https://proceedings.mlr.press/v238/ferbach24a.html.

11

https://openreview.net/forum?id=LfmZh91tDI
https://openreview.net/forum?id=CQsmMYmlP5T
https://proceedings.neurips.cc/paper_files/paper/2017/file/db85e2590b6109813dafa101ceb2faeb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/db85e2590b6109813dafa101ceb2faeb-Paper.pdf
https://proceedings.mlr.press/v80/arora18b.html
https://proceedings.mlr.press/v80/arora18b.html
https://proceedings.neurips.cc/paper_files/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.mlr.press/v80/draxler18a.html
https://proceedings.mlr.press/v80/draxler18a.html
https://proceedings.mlr.press/v238/ferbach24a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3259–3269. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/frankle20a.html.

C. Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Bk0FWVcgx.

Tomer Galanti, Zachary S. Siegel, Aparna Gupte, and Tomaso Poggio. Characterizing the implicit
bias of regularized sgd in rank minimization, 2023. URL https://arxiv.org/abs/2206.
05794.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wil-
son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Anil K. Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., USA, 1989. ISBN
0133361659.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR:
REnormalizing permuted activations for interpolation repair. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=gU5sJ6ZggcX.

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence, 2016.

Tjalling C. Koopmans and Martin Beckmann. Assignment problems and the location of economic
activities. Econometrica, 25(1):53–76, 1957. ISSN 00129682, 14680262. URL http://www.
jstor.org/stable/1907742.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge,
and Sanjeev Arora. Explaining landscape connectivity of low-cost solutions for multilayer
nets. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. FFCV: Accelerating training by removing data bottlenecks. In Computer Vision and Pattern
Recognition (CVPR), 2023. https://github.com/libffcv/ffcv/. commit 4dd291.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh
and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR,
20–22 Apr 2017. URL https://proceedings.mlr.press/v54/mcmahan17a.html.

12

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://openreview.net/forum?id=Bk0FWVcgx
https://openreview.net/forum?id=Bk0FWVcgx
https://arxiv.org/abs/2206.05794
https://arxiv.org/abs/2206.05794
https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=gU5sJ6ZggcX
https://openreview.net/forum?id=gU5sJ6ZggcX
http://www.jstor.org/stable/1907742
http://www.jstor.org/stable/1907742
https://proceedings.neurips.cc/paper_files/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/46a4378f835dc8040c8057beb6a2da52-Paper.pdf
https://github.com/libffcv/ffcv/
https://proceedings.mlr.press/v54/mcmahan17a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain generaliza-
tion in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf.

Quynh Nguyen. On connected sublevel sets in deep learning. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 4790–4799. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/nguyen19a.html.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. On the loss landscape of a class
of deep neural networks with no bad local valleys. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HJgXsjA5tQ.

Fidel A. Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20237–20246,
June 2023.

Xingyu Qu and Samuel Horvath. Rethinking model re-basin and linear mode connectivity, 2024.
URL https://arxiv.org/abs/2402.05966.

Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–565, jul
1976. ISSN 0004-5411. doi: 10.1145/321958.321975. URL https://doi.org/10.1145/
321958.321975.

Hanie Sedghi, Vineet Gupta, and Philip M. Long. The singular values of convolutional layers. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJevYoA9Fm.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 22045–22055. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/fb2697869f56484404c8ceee2985b01d-Paper.pdf.

Sidak Pal Singh, Linara Adilova, Michael Kamp, Asja Fischer, Bernhard Schölkopf, and Thomas
Hofmann. Landscaping linear mode connectivity. In High-dimensional Learning Dynamics
2024: The Emergence of Structure and Reasoning, 2024. URL https://openreview.net/
forum?id=OSNMqvPii6.

Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in relu
networks. In Shipra Agrawal and Francesco Orabona (eds.), Proceedings of The 34th International
Conference on Algorithmic Learning Theory, volume 201 of Proceedings of Machine Learning
Research, pp. 1429–1459. PMLR, 20 Feb–23 Feb 2023. URL https://proceedings.mlr.
press/v201/timor23a.html.

Murad Tukan, Alaa Maalouf, Matan Weksler, and Dan Feldman. Compressed deep networks:
Goodbye svd, hello robust low-rank approximation, 2020. URL https://arxiv.org/abs/
2009.05647.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.mlr.press/v97/nguyen19a.html
https://openreview.net/forum?id=HJgXsjA5tQ
https://arxiv.org/abs/2402.05966
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/321958.321975
https://openreview.net/forum?id=rJevYoA9Fm
https://openreview.net/forum?id=rJevYoA9Fm
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb2697869f56484404c8ceee2985b01d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb2697869f56484404c8ceee2985b01d-Paper.pdf
https://openreview.net/forum?id=OSNMqvPii6
https://openreview.net/forum?id=OSNMqvPii6
https://proceedings.mlr.press/v201/timor23a.html
https://proceedings.mlr.press/v201/timor23a.html
https://arxiv.org/abs/2009.05647
https://arxiv.org/abs/2009.05647
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Luca Venturi, Afonso S. Bandeira, and Joan Bruna. Spurious valleys in one-hidden-layer neural
network optimization landscapes. Journal of Machine Learning Research, 20(133):1–34, 2019.
URL http://jmlr.org/papers/v20/18-674.html.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

J von Neumann. Some matrix-inequalities and metrization of matrix-space tomsk univ. rev., 1 (1937),
1962.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BkluqlSFDS.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 23965–23998. PMLR, 17–
23 Jul 2022. URL https://proceedings.mlr.press/v162/wortsman22a.html.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

David Yunis, Kumar Kshitij Patel, Samuel Wheeler, Pedro Savarese, Gal Vardi, Karen Livescu,
Michael Maire, and Matthew R. Walter. Approaching deep learning through the spectral dynamics
of weights, 2024. URL https://arxiv.org/abs/2408.11804.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023.

Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going beyond linear
mode connectivity: The layerwise linear feature connectivity. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vORUHrVEnH.

14

http://jmlr.org/papers/v20/18-674.html
https://openreview.net/forum?id=BkluqlSFDS
https://proceedings.mlr.press/v162/wortsman22a.html
https://arxiv.org/abs/2408.11804
https://openreview.net/forum?id=vORUHrVEnH
https://openreview.net/forum?id=vORUHrVEnH

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A EXTENDED RELATED WORK

(Linear) mode connectivity. Several studies (Garipov et al., 2018; Draxler et al., 2018; Freeman &
Bruna, 2017) have found that different neural network solutions can be connected by nonlinear paths
with almost no increase in loss. Nagarajan & Kolter (2019) first discovered that solutions can be
connected by linear paths with an almost constant loss value when training models on MNIST with
the same random initial values. Later, Frankle et al. (2020) demonstrated experimentally that LMC is
not always satisfied between two SGD solutions, even with the same initial parameters, depending on
the datasets and model architectures. However, they also showed that if a single model is trained for a
certain period and then two models are trained independently from this pre-trained model as a starting
point, they are linearly mode-connected. Furthermore, Frankle et al. (2020) explored the relationship
between LMC and the lottery-ticket hypothesis (Frankle & Carbin, 2019). Entezari et al. (2022)
conjectured that LMC is satisfied with a high probability between two SGD solutions by accounting
for permutation symmetries in the hidden layers. Subsequently, Ainsworth et al. (2023) proposed a
WM method by formulating neuron alignment as a bipartite graph matching problem and solving
it approximately. Later, Peña et al. (2023) suggested using Sinkhorn’s algorithm to solve the WM
directly. Some previous studies (Ainsworth et al., 2023; Crisostomi et al., 2024) have also proposed
permutation search methods for achieving LMC between multiple models. However, all of these
methods use WM, and no methods have been proposed that use information from the loss function,
such as STE. Therefore, in this paper, we created a pair of models and performed a permutation search
to clarify the differences between WM and STE in a fair manner. The investigation of permutation
search methods for multiple models is a future work.

While several papers (Venturi et al., 2019; Nguyen et al., 2019; Nguyen, 2019; Kuditipudi et al., 2019)
have discussed nonlinear mode connectivity, there is little theoretical analysis on LMC. Ferbach
et al. (2024) provided an upper bound on the minimal width of the hidden layer to satisfy LMC.
However, to prove this, they assumed the independence of all neuron’s weight vectors inside a given
layer. It is unlikely that this assumption holds for models after training. Partially similar to our paper,
Singh et al. (2024) demonstrated that the barrier value can be approximated using a second-order
Taylor approximation for the case of spawning (Zhou et al., 2023). However, they have not validated
this approach for permutations, and we revealed that a second-order Taylor approximation fails to
accurately estimate the barrier value in the case of permutations. Zhou et al. (2023) introduced
the concept of layerwise linear feature connectivity (LLFC) and showed that LLFC implies LMC.
Additionally, Zhou et al. (2023) demonstrated that if weak additivity for ReLU activation and the
commutativity property are satisfied, then both LLFC and LMC are satisfied. However, we show that
the L2 distance between the models after permutation is not close enough to satisfy the commutativity
property. This motivated us to investigate the relationship between LMC and WM.

Model merging. Relevant topics of LMC include model merging and federated learning. McMahan
et al. (2017) and Konečný et al. (2016) introduced the concept of federated learning, where a
model is trained on divided datasets. Wang et al. (2020) proposed a federated learning method
by permuting each component unit and then averaging the weights of the models. Singh & Jaggi
(2020) proposed a method for merging models by performing alignments of model weights using
optimal transport, which is similar to the method proposed by Ainsworth et al. (2023). Although
their method is designed for model fusion and its performance is inferior to that of Ainsworth et
al.’s method, it can be considered an LMC-based method because it uses hard alignments for the
same architecture. Wortsman et al. (2022) proposed a method to improve test accuracy without
increasing inference cost, unlike ensemble methods, by averaging the weights of models fine-tuned
with different hyperparameters.

Low-rank bias. Empirically, some previous studies (Tukan et al., 2020; Arora et al., 2018; Alvarez
& Salzmann, 2017; Yu et al., 2017; Denton et al., 2014) on the compression of trained DNN models
have pointed out that even when the weights are replaced with low-rank matrices, the accuracy does
not decrease significantly. This suggests that SGD has an implicit bias toward reducing the model
weights to low-rank. Yunis et al. (2024) explored the reduction of rank during SGD-based training
and the orientation of top singular vectors via SVD on the weights. While this is relevant to our
paper, Yunis et al. (2024) do not examine the effects of permutations in detail. Moreover, it does

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

not discuss the interplay between hidden layer inputs and top singular vectors under permutations.
Galanti et al. (2023) and Timor et al. (2023) further discuss the low-rank effect on the weights of
trained models introduced by weight decay and a small initialization scale. In particular, Galanti et al.
(2023) state that the weights become more low-rank by strengthening the weight decay and increasing
the learning rate, and this is expected to help establish LMC via WM (which we experimentally
confirm in Appendix H.5).

B CALCULATION OF R WITH THRESHOLD γ

This section describes how to calculate the R value with a threshold γ > 0. Given two models, θa
and θb, let W (a)

ℓ and W
(b)
ℓ be the weights of the ℓ-th layers of the models θa and θb, respectively.

Let
∑

i u
(a)
ℓ,i s

(a)
ℓ,i (v

(a)
ℓ,i)

⊤ and
∑

i u
(b)
ℓ,i s

(b)
ℓ,i (v

(b)
ℓ,i)

⊤ be the SVDs of these weights. Also, let s(a) and
s(b) be the maximum singular values in all the layers of the models θa and θb, respectively. The R
value with the threshold γ is calculated as follows:

Rγ(θa,θb) =

∑
ℓ,i,j I[(s

(a)
ℓ,i ≥ γs(a)) ∧ (s

(b)
ℓ,i ≥ γs(b))](u

(a)
ℓ,i)

⊤(u
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(v
(b)
ℓ,j)∑

ℓ min{n(a)
ℓ , n

(b)
ℓ }

,

where n(a)
ℓ and n

(b)
ℓ are the numbers of singular values greater than γs(a) and γs(b), respectively, and

I is an indicator function that returns one if the given logical expression is true and zero if it is false.

Finally, we will briefly explain that |Rγ(θa,θb)| ≤ 1 holds. We first define the new weight matrices
by W

′(a)
ℓ =

∑
i u

(a)
ℓ,i I[(s

(a)
ℓ,i ≥ γs(a))](v

(a)
ℓ,i)

⊤ and W
′(b)
ℓ =

∑
i u

(b)
ℓ,i I[(s

(b)
ℓ,j ≥ γs(b))](v

(b)
ℓ,i)

⊤.
From the definition, we have:

tr
(
(W

′(a)
ℓ)⊤W

′(b)
ℓ

)
=
∑
i,j

I[(s
(a)
ℓ,i ≥ γs(a)) ∧ (s

(b)
ℓ,j ≥ γs(b))](u

(a)
ℓ,i)

⊤(u
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(v
(b)
ℓ,j). (9)

Note that the i-th singular values of these weights W ′(a)
ℓ and W ′(b)

ℓ can be regarded as I[s(a)ℓ,i ≥ γs(a)]

and I[s
(b)
ℓ,i ≥ γs(b)], respectively. Therefore, von Neumann’s trace inequality (von Neumann, 1962)

yields that:

tr
(
(W

′(a)
ℓ)⊤W

′(b)
ℓ

)
≤
∑
i

I[s
(a)
ℓ,i ≥ γs(a)]I[s

(b)
ℓ,i ≥ γs(b)] = min{n(a)

ℓ , n
(b)
ℓ }. (10)

From Equations (9) and (10), we have:∑
i,j

I[(s
(a)
ℓ,i ≥ γs(a)) ∧ (s

(b)
ℓ,j ≥ γs(b))](u

(a)
ℓ,i)

⊤(u
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(v
(b)
ℓ,j) ≤ min{n(a)

ℓ , n
(b)
ℓ }.

By summing both sides for ℓ, we get |Rγ(θa,θb)| ≤ 1.

C SIMPLE EXAMPLE OF THEOREM 4.2

In Section 4.4, we explained that even when the L2 distance between the weights of two models is
large, their outputs can be close depending on the input distribution. Here, we use a simple example
for a more detailed analysis.

Consider the weights of two models, W (a) and W (b), given by:

W (a) =

(−0.398 −0.003 0.210
1.059 0.303 0.521
0.609 −0.785 −0.235

)
,W (b) =

(−0.255 −0.319 −0.559
1.031 −0.155 0.484
0.742 −0.114 −0.604

)
.

The SVDs of these matrices are represented by:

W (a) = U (a)S(a)(V (a))⊤

≈

(−0.260 −0.127 0.957
0.850 −0.501 0.165
0.458 0.856 0.238

)(
1.317 0 0
0 0.959 0
0 0 0.277

)(
0.974 −0.077 0.213
0.043 −0.859 −0.510
−0.222 −0.506 0.833

)⊤

,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

and

W (b) = U (b)S(b)(V (b))⊤

≈

(−0.261 0.587 0.767
0.850 −0.237 0.470
0.458 0.774 −0.437

)(
1.317 0 0
0 0.958 0
0 0 0.277

)(
0.974 −0.077 0.213
0.188 −0.249 −0.950
−0.126 −0.965 0.228

)⊤

,

respectively.

In this case, the distance between these weights is ∥W (a) −W (b)∥ ≈ 1.236. On the other hand, if
the input vector z is given by z = k (0.974 −0.077 0.213), where k is an arbitrary (but not too
large) real scalar value, then ∥σ(W (a)z)− σ(W (b)z)∥ ≈ 0 holds.

D EXPERIMENTAL SETUP

This section describes the experimental setup for training neural networks to obtain SGD solutions.
We apply Sinkhorn’s algorithm for permutation based on WM and STE. Thus, we also provide detailed
information on the experimental setup for Sinkhorn’s algorithm. Four datasets were used in this study:
MNIST (Lecun et al., 1998), Fashion-MNIST (FMNIST) (Xiao et al., 2017), CIFAR10 (Krizhevsky
et al., 2009), and ImageNet (Deng et al., 2009).

All experiments were conducted on a Linux workstation with two AMD EPYC 7543 32-Core
processors, eight NVIDIA A30 GPUs, and 512 GB of memory. The PyTorch 2.1.04, PyTorch
Lightning 2.1.05, and torchvision 0.16.06 libraries were used for model training and evaluation.

D.1 MODEL TRAINING

MLP on MNIST and FMNIST. Following the settings in (Ainsworth et al., 2023), we trained
a Multi-Layer Perceptron (MLP) with three hidden layers, each comprising 512 units. The hidden
layers use the ReLU function as their activation function. For the MNIST and FMNIST datasets, we
optimized using the Adam algorithm with a learning rate of 1× 10−3. The batch size and maximum
number of epochs were set to 512 and 100, respectively.

VGG11 and ResNet20 on CIFAR10. We utilized the VGG16 and ResNet20 architectures of
(Ainsworth et al., 2023). To accomplish Linear Mode Connectivity (LMC), we increased the widths
of VGG11 and ResNet20 by factors of 4 and 16, respectively. As described in (Jordan et al., 2023),
we used the training dataset to repair the BatchNorm layers in these models during model merging.
Optimization was conducted using Adam with a learning rate of 1 × 10−3. The batch size and
maximum number of epochs were set to 512 and 100, respectively. The following data augmentations
were performed during training: random 32× 32 pixel crops, and random horizontal flips.

ResNet50 on ImageNet. ResNet50 models were trained using a training script published on
GitHub7 by the FFCV library (Leclerc et al., 2023). The ”rn50 40 epochs.yaml” file in the repository
was used for the training setup. In the file, we changed use blurpool to “0”. As described in
(Jordan et al., 2023), we repaired the BatchNorm layers in these models during model merging by
using the training dataset. Since ImageNet is a large dataset, we used 50,000 randomly selected
images from the training set to repair the batch normalization layers.

D.2 PERMUTATION SEARCH

For permutation search in WM and STE, we employed the method based on Sinkhorn’s algorithm
as proposed by Peña et al. (2023). We utilized the implementation provided by the authors in their
GitHub repository8. DistL2Loss and MidLoss were used as loss functions for permutation searches

4https://pytorch.org/
5https://lightning.ai/docs/pytorch/stable/
6https://pytorch.org/vision/stable/index.html
7https://github.com/libffcv/ffcv-imagenet/tree/main
8https://github.com/fagp/sinkhorn-rebasin

17

https://pytorch.org/
https://lightning.ai/docs/pytorch/stable/
https://pytorch.org/vision/stable/index.html
https://github.com/libffcv/ffcv-imagenet/tree/main
https://github.com/fagp/sinkhorn-rebasin

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

corresponding to WM and STE, respectively. Optimization was performed using Adam with a
learning rate of 1 for MLP, VGG11, and ResNet20 and 10 for ResNet50, setting the maximum
number of epochs to 10 for DistL2Loss and five for MidLoss. For MidLoss, the batch size was set
to 512; for DistL2Loss, there was no batch size because the dataset was not used. 100 iterations of
parameter updates were performed per epoch for DistL2Loss.

For activation matching (AM), the permutation search is divided for each layer, so the optimal solution
can be obtained efficiently. We implemented AM-based permutation search following the GitHub
repository released by Ainsworth et al. (2023)9. In this paper, the linear sum assignment
function of Scipy (Virtanen et al., 2020) was used for the permutation search in AM.

E DISCUSSION ON COMMUTATIVITY PROPERTY

Zhou et al. (2023) show that LMC is satisfied if weak additivity for ReLU activations and
commutativity hold. Given two models, θa and θb, commutativity between them is satisfied
if for all layers ℓ ∈ [L], W

(a)
ℓ z

(a)
ℓ−1 + W

(b)
ℓ z

(b)
ℓ−1 = W

(a)
ℓ z

(b)
ℓ−1 + W

(b)
ℓ z

(a)
ℓ−1 holds, where

L is the number of layers of the models10. The commutativity property can be rewritten as
∀ℓ ∈ [L]; (W

(a)
ℓ −W

(b)
ℓ)(z

(a)
ℓ−1 − z

(b)
ℓ−1) = 0. Therefore, Zhou et al. (2023) in Section 5.2 justify

the WM-based permutation search method because WM aims to minimize Equation (1), which
corresponds to the first factor in the equation. However, as shown in our paper, WM only slightly
reduces the distance between the two models, contradicting their claim.

Appendix B.5 of (Zhou et al., 2023) explains in a different way why the commutativity property is
satisfied in WM. Specifically, they consider a stronger form of the commutativity property:

∀ℓ ∈ [L];W
(a)
ℓ z

(a)
ℓ−1 = W

(b)
ℓ z

(a)
ℓ−1 ∧W

(b)
ℓ z

(b)
ℓ−1 = W

(a)
ℓ z

(b)
ℓ−1. (11)

To ensure this stronger form, we need to find Pℓ and Pℓ−1 such that:

(W
(a)
ℓ − PℓW

(b)
ℓ P⊤

ℓ−1)z
(a)
ℓ−1 = 0 ∧ (PℓW

(b)
ℓ P⊤

ℓ−1 −W
(a)
ℓ)Pℓ−1z

(b)
ℓ−1 = 0. (12)

They argue that the commutativity property easily holds because it is easy to find permutation matrices
Pℓ and Pℓ−1 that satisfy Equation (12) due to the small actual dimension of the hidden layer inputs
z
(a)
ℓ−1 and z

(b)
ℓ−1 (i.e., these vectors are biased in a particular direction).

However, several points need to be addressed regarding this explanation. First, if Equation (11) holds,
then LMC is satisfied without any assumptions, such as the commutativity property or weak additivity
of ReLU activations. Since this equation must hold for all layers, it must also hold for the input layer
where z

(a)
ℓ−1 = z

(b)
ℓ−1 = x. In that case, the outputs of the input layers are equivalent between the

two models. The same holds for subsequent layers, so the outputs of the two models are the same
in all hidden layers. Therefore, the outputs of the hidden layers of the merged model must also be
identical to those of the pre-merged models in all layers. Thus, LMC obviously holds. In other words,
if the reason of the establishment of LMC is that Equation (11) holds, then the essential reason for
the establishment of LMC is that WM makes the outputs of the hidden layers of the two models close,
suggesting that our argument in this paper is more fundamental in establishing LMC.

Second, the small actual dimension of the hidden layer inputs z(a)
ℓ−1 and z

(b)
ℓ−1 does not necessarily

mean that Equation (12) is easier to satisfy by finding permutations that minimize Equation (1). As
shown in Section 4.3, WM preferentially aligns the directions of singular vectors with large singular
values, while other singular vectors are difficult to align. If the hidden layer inputs z(a)

ℓ−1 and z
(b)
ℓ−1 are

not oriented in the same directions as the right singular vectors with large singular values, then WM
will not help satisfy Equation (12). Zhou et al. (2023) did not mention this second point. On the other
hand, we analyzed this point in Section 4.4.

F CONVOLUTIONAL LAYERS

This section discusses a theorem similar to Theorem 4.1 for convolutional neural networks (CNNs).
9https://github.com/samuela/git-re-basin

10Strictly speaking, given a data distribution D, the commutativity property is satisfied if the equation almost
surely holds for D. This definition is equivalent to Zhou et al. (2023), although it differs slightly.

18

https://github.com/samuela/git-re-basin

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.1 NOTATION

We introduce the notation used in the following sections. Each element of a tensor is specified by a
simple italic variable with subscripts. For example, for a third-order tensor X , its i, j, k-th component
is denoted by Xi,j,k. We also use Python-like slice notation. For example, X1,: denotes the first row

of the matrix X . For a complex matrix X , let X∗ = X
⊤

be its unitary transpose, where X denotes
the complex conjugate of X .

F.2 MATRIX REPRESENTATION OF CONVOLUTIONAL LAYER

This subsection introduces the matrix representation of a convolutional layer. Let X ∈ Rm×n×n

and Y ∈ Rm×n×n be the input and the output of the ℓ-th convolutional layer, respectively. Here,
m denotes the number of input and output channels and n denotes the size of the height and width
of the input. For simplicity, we assume that the numbers of output channels and input channels are
identical, as well as the sizes of the height and width of the input, although our analysis is applicable
even when they are not. Let K ∈ Rn×n×m×m be the kernel of the ℓ-th layer. Then, for the c, r, i-th
element of the output Y is given by

Yc,r,i =
∑

d∈[m],p∈[n],q∈[n]

Xd,r+p,i+qKp,q,c,d.

There exists a matrix M such that vec(Y) = Mvec(X) holds (Sedghi et al., 2019; Jain, 1989;
Goodfellow et al., 2016), where

M =


B1,1 B1,2 . . . B1,m

B2,1 B2,2 . . . B2,m

...
...

. . .
...

Bm,1 Bm,2 . . . Bm,m

 . (13)

Here, for all c, d ∈ [m], Bc,d is a doubly circulant matrix defined by

Bc,d =


circ(K1,:,c,d) circ(K2,:,c,d) . . . circ(Kn,:,c,d)
circ(Kn,:,c,d) circ(K1,:,c,d) . . . circ(Kn−1,:,c,d)

...
...

. . .
...

circ(K2,:,c,d) circ(K3,:,c,d) . . . circ(K1,:,c,d)

 ,

where circ is a function to generate a circulant matrix from a given vector. For example, given a vector

a = (a1, a2, . . . , a3), the circulant matrix generated by a is given by circ(a) =

(
a1 a2 a3
a3 a1 a2
a2 a3 a1

)
.

F.3 SINGULAR VALUE DECOMPOSITION AND WEIGHT MATCHING OF CONVOLUTIONAL
LAYERS

Since Equation (13) represents the matrix form of the convolutional layer, we can reach a conclusion
similar to Theorem 4.1 by performing a singular value decomposition (SVD) on it. However, this
matrix is very large, with a size of mn2 × mn2, making direct SVD impractical. Therefore, we
decompose it into a more SVD-friendly form using a Fourier transform. Using the imaginary unit
as η =

√
−1, and setting ω = e−2πη/n, a one-dimensional Fourier transform matrix F is defined

by Fi,j = (ω(i−1)(j−1))i,j .11 A matrix for the two-dimensional Fourier transform can be defined as
Q = (F ⊗ F)/n. Here, ⊗ denotes the Kronecker product. By using this two-dimensional Fourier
transform matrix Q, the matrix M can be decomposed as follows:

M = (Im ⊗Q)∗L(Im ⊗Q),

11Usually, the alphabet letters i or j are used for the imaginary unit, but since they are used as indices here,
we use η.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where Im denotes the identity matrix of size m×m. We then have

L =


D1,1 D1,2 . . . D1,m

D2,1 D2,2 . . . D2,m

...
...

. . .
...

Dm,1 Dm,2 . . . Dm,m

 .

Here, for all c, d ∈ [m], Dc,d = QBc,dQ
∗ is a complex diagonal matrix (Sedghi et al., 2019). Let

G:,:,w be a matrix formed by extracting the w-th diagonal element of each diagonal matrix Dc,d and
arranging them (i.e., Gc,d,w = (Dc,d)w,w). Then, the following theorem holds:
Theorem F.1 (SVD of convolutional layer). Let sw,i, uw,i, and vw,i be the i-th singular value, left
singular vector, and right singular vector of G:,:,w, respectively. Then, the matrix M representing
the convolutional layer can be decomposed as follows:

M =
∑
w,i

(uw,i ⊗Q∗ew)sw,i(vw,i ⊗Q∗ew)
∗,

where ew represents the orthonormal basis in Euclidean space Rn2

, and sw,i, uw,i ⊗Q∗ew, and
vw,i⊗Q∗ew are the singular value, left singular vector, and right singular vector of M , respectively.

The proof is shown in Appendix G.3. From this theorem, the following theorem can be proved:
Theorem F.2. Let M (a) and M (b) be the matrix representations of convolutional layers of two CNNs.
From Theorem F.1, their SVDs are given by M (a) =

∑
w,i(u

(a)
w,i ⊗Q∗ew)s

(a)
w,i(v

(a)
w,i ⊗Q∗ew)

∗ and

M (b) =
∑

w,i(u
(b)
w,i ⊗Q∗ew)s

(b)
w,i(v

(b)
w,i ⊗Q∗ew)

∗, respectively. Then, the WM between M (a) and
M (b) is equivalent to finding permutation matrices Pℓ and Pℓ−1 such that

argmax
Pℓ,Pℓ−1

ℜ
∑
w,i,j

s
(a)
w,is

(b)
w,j(u

(a)
w,i)

∗(Pℓu
(b)
w,j)(v

(a)
w,i)

∗(Pℓ−1v
(b)
w,j),

where ℜz is the real part of z for a complex number z.

The proof is shown in Appendix G.4. Similar to the case of MLP (Theorem 4.1), Theorem F.2
indicates that WM has the effect of aligning the directions of the corresponding singular vectors in
convolutional layers.

G PROOFS

G.1 PROOF OF THEOREM 3.1

Proof. From the assumption and Taylor theorem centered at θa, we have

L(θc) = L(θa) + (θc − θa)∇L(θa) +
1

2
(θc − θa)

⊤Ha(θc − θa) +O(∥θc − θa∥3)

= L(θa) + (1− λ)βµ∇L(θa) +
1

2
(1− λ)2β2µ⊤Haµ+O(β3).

Similarly, using Taylor theorem centered at π(θb), we get

L(θc) = L(π(θb)) + (θc − π(θb))∇L(π(θb)) +
1

2
(θc − π(θb))

⊤Ha(θc − π(θb)) +O(∥θc − π(θb)∥3)

= L(π(θb))− λβµ∇L(π(θb)) +
1

2
λ2β2µ⊤Haµ+O(β3).

Combining these equations, the barrier can be obtained as
B(θa, π(θb)) = max

λ
(L(θc)− λL(θa)− (1− λ)L(π(θb)))

= max
λ

(λ(L(θc)− L(θa)) + (1− λ)(L(θc)− L(π(θb))))

= max
λ

(
βλ(1− λ)µ⊤(∇L(θa)−∇L(π(θb)))

+
1

2
β2λ(1− λ)µ⊤ ((1− λ)Ha + λHb)µ

)
+O(β3).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G.2 PROOF OF THEOREM 4.1

Proof. Consider the L2 norm of the ℓ-th layer ∥W (a)
ℓ − PℓW

(b)
ℓ P⊤

ℓ−1∥2. Using the fact that the L2

norm can be rewritten using trace, we have

∥W (a)
ℓ − PℓW

(b)
ℓ P⊤

ℓ−1∥2 = tr
(
(W

(a)
ℓ − PℓW

(b)
ℓ P⊤

ℓ−1)(W
(a)
ℓ − PℓW

(b)
ℓ P⊤

ℓ−1)
⊤
)

= tr
(
W

(a)
ℓ (W

(a)
ℓ)⊤

)
+ tr

(
W

(b)
ℓ (W

(b)
ℓ)⊤

)
− 2 tr

(
PℓW

(b)
ℓ P⊤

ℓ−1(W
(a)
ℓ)⊤

)
. (14)

We focus on the last term because only it depends on the permutation matrices. The SVDs of the
weights W

(a)
ℓ and W

(b)
ℓ are denoted by W

(a)
ℓ = U

(a)
ℓ S

(a)
ℓ (V

(a)
ℓ)⊤ =

∑
i u

(a)
ℓ,i s

(a)
ℓ,i (v

(a)
ℓ,i)

⊤ and

W
(b)
ℓ = U

(b)
ℓ S

(b)
ℓ (V

(b)
ℓ)⊤ =

∑
j u

(b)
ℓ,js

(b)
ℓ,j (v

(b)
ℓ,j)

⊤, respectively. Thus, the last term of Equation (14)
can be rewritten as

−2 tr
(
PℓW

(b)
ℓ P⊤

ℓ−1(W
(a)
ℓ)⊤

)
= −2

∑
i,j

s
(a)
ℓ,i s

(b)
ℓ,j (u

(a)
ℓ,i)

⊤(Pℓu
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j).

Therefore, Equation (1) equals

argmin
π

∥θa − π(θb)∥2 = argmax
π=(Pℓ)ℓ

∑
ℓ,i,j

s
(a)
ℓ,i s

(b)
ℓ,j (u

(a)
ℓ,i)

⊤(Pℓu
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j),

which completes the proof.

G.3 PROOF OF THEOREM F.1

Proof. Note that the matrix L can be decomposed to L =
∑

w G:,:,w ⊗ (ewe
⊤
w) by using the tensor

G, where ew is the orthonormal basis in Eucrlidean space Rn2

. Thus, the SVD of L is given by

L =
∑
w

(∑
i

uw,isw,iv
∗
w,i

)
⊗ (ewe

⊤
w)

=
∑
w

∑
i

sw,i(uw,iv
∗
w,i)⊗ (ewe

⊤
w)

=
∑
w

∑
i

sw,i(uw,i ⊗ ew)(vw,i ⊗ ew)
∗.

Thus, the SVD of M is also given by

M =
∑
w

∑
i

sw,i(Im ⊗Q)∗(uw,i ⊗ ew)(vw,i ⊗ ew)
∗(Im ⊗Q)

=
∑
w

∑
i

sw,i(uw,i ⊗Q∗ew)(v
∗
w,i ⊗ e⊤wQ),

which completes the proof.

G.4 PROOF OF THEOREM F.2

Before proving Theorem F.2, we first prove the following lemma:
Lemma G.1. Let K and K ′ be kernels of convolutional layers. We have ∥M −M ′∥2 = n2∥K −
K ′∥2, where M and M ′ are the matrix representations of K and K ′, respectively.

Proof. From the definition of M and M ′, we have

M =


B1,1 B1,2 . . . B1,m

B2,1 B2,2 . . . B2,m

...
...

. . .
...

Bm,1 Bm,2 . . . Bm,m

 , M ′ =


B′

1,1 B′
1,2 . . . B′

1,m

B′
2,1 B′

2,2 . . . B′
2,m

...
...

. . .
...

B′
m,1 B′

m,2 . . . B′
m,m

 ,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where for any c, d ∈ [m], Bc,d and B′
c,d denote the doubly circulant matrices obtained from the

kernels K and K ′. Thus, ∥M − M ′∥2 =
∑

c,d ∥Bc,d − B′
c,d∥2 = n

∑
c,d

∑
i ∥circ(Ki,:,c,d) −

circ(K ′
i,:,c,d)∥2 = n2

∑
c,d

∑
i,j(Ki,j,c,d −K ′

i,j,c,d)
2 = n2∥K −K ′∥2 holds.

Proof of Theorem F.2. In convolutional layers, permutation matrices permute the input and output
channels of the kernel. Therefore, the permutation matrices Pℓ and Pℓ−1 corresponding to the input
and output are m×m matrices. By using these matrices, the permutation of the matrix representation
of the convolutional layer of the model θb is denoted by (Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤. Lemma G.1
indicates that finding the permutation matrices that minimize the L2 distance between the two kernels
is equivalent to minimizing ∥M (a) − (Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤∥. Therefore, we have

∥M (a) − (Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤∥2

= tr
((

M (a) − (Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤
)(

M (a) − (Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤
)∗)

= tr
(
M (a)(M (a))⊤

)
+ tr

(
M (b)(M (b))⊤

)
− tr

(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)
− tr

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤(M (a))∗

)
. (15)

In Equation (15), the permutation matrices Pℓ and Pℓ−1 are only related to the last two terms.
Therefore, we focus only on them. By using some properties of trace, we have

− tr
(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)
− tr

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤(M (a))∗

)
= − tr

(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)
− tr

((
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)∗)
= − tr

(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)
− tr

(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)
= −2ℜ tr

(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)
.

Here, from Theorem F.1,

M (a) =
∑
w,i

(u
(a)
w,i ⊗Q∗ew)s

(a)
w,i(v

(a)
w,i ⊗Q∗ew)

∗

=
∑
w,i

s
(a)
w,i(u

(a)
w,i(v

(a)
w,i)

∗ ⊗Q∗ewe
⊤
wQ)

=
∑
w

(C(a)
w ⊗Q∗ewe

⊤
wQ), (16)

and
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤ =

∑
w,i

s
(b)
w,i(Pℓ ⊗ Im)(u

(b)
w,i ⊗Q∗ew)(v

(b)
w,i ⊗Q∗ew)

∗(Pℓ−1 ⊗ Im)⊤

=
∑
w,i

s
(b)
w,i(Pℓu

(b)
w,i(Pℓ−1v

(b)
w,i)

∗ ⊗Q∗ewe
⊤
wQ)

=
∑
w

(C(b)
w ⊗Q∗ewe

⊤
wQ) (17)

holds, where we let C(a)
w =

∑
i s

(a)
w,iu

(a)
w,i(v

(a)
w,i)

∗ and C
(b)
w =

∑
i s

(b)
w,i(Pℓu

(a)
w,i)(Pℓ−1v

(a)
w,i)

∗. From
Equation (16) and Equation (17), we have

−2ℜ tr
(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)∗)
= −2ℜ tr

(∑
w

(C(a)
w ⊗Q∗ewe

⊤
wQ)

(∑
w′

(C
(b)
w′ ⊗Q∗ew′e⊤w′Q)

)∗)

= −2ℜ tr

∑
w,w′

(
C(a)

w (C
(b)
w′)

∗ ⊗Q∗ewe
⊤
wew′e⊤w′Q

) .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Using the fact that if w ̸= w′, then e⊤wew′ = 0, and otherwise, e⊤wew′ = 1, we have

−2ℜ tr

(
M (a)

(
(Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤

)⊤)
= −2ℜ

∑
w

tr
(
C(a)

w (C(b)
w)∗ ⊗Q∗ewe

⊤
wQ
)

= −2ℜ
∑
w

tr
(
C(a)

w (C(b)
w)∗

)
tr
(
Q∗ewe

⊤
wQ
)

= −2ℜ
∑
w

tr
(
C(a)

w (C(b)
w)∗

)

= −2ℜ
∑
w

tr

(∑
i

s
(a)
w,iu

(a)
w,i(v

(a)
w,i)

∗

)∑
j

s
(b)
w,j(Pℓu

(b)
w,j)(Pℓ−1v

(b)
w,j)

∗

∗
= −2ℜ

∑
w

∑
i,j

s
(a)
w,is

(b)
w,j

(
(u

(a)
w,i)

∗(Pℓu
(b)
w,j)

)∗ (
(v

(a)
w,i)

∗(Pℓ−1v
(b)
w,j)

)
.

From the above, the minimization of ∥M (a) − (Pℓ ⊗ Im)M (b)(Pℓ−1 ⊗ Im)⊤∥ is equivalent to the

maximization of ℜ
∑

w

∑
i,j s

(a)
w,is

(b)
w,j

(
(u

(a)
w,i)

∗(Pℓu
(b)
w,j)

)∗
((v

(a)
w,i)

∗(Pℓ−1v
(b)
w,j)).

G.5 PROOF OF |R(θa, π(θb))| ≤ 1

This subsection proves the following theorem:
Theorem G.2. Let θa and θb be the parameters of two MLPs with L-layers. For any permutation
π = (Pℓ)ℓ∈[L], we have

|R(θa, π(θb))| =

∣∣∣∑ℓ,i,j(u
(a)
ℓ,i)

⊤(Pℓu
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j)
∣∣∣∑

ℓ nℓ
≤ 1. (18)

The equality holds if, for all ℓ, i, u(a)
ℓ,i = Pℓu

(b)
ℓ,i and v

(a)
ℓ,i = Pℓ−1v

(b)
ℓ,i .

Proof. If, for all ℓ, i, u(a)
ℓ,i = Pℓu

(b)
ℓ,i and v

(a)
ℓ,i = Pℓ−1v

(b)
ℓ,i , then the equality obviously holds. Thus,

we prove that Equation (18) holds. Using the property of trace, we have∑
ℓ,i,j

(u
(a)
ℓ,i)

⊤(Pℓu
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j) =

∑
ℓ,i,j

(Pℓu
(b)
ℓ,j)

⊤(u
(a)
ℓ,i)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j)

=
∑
ℓ

tr

∑
i

(u
(a)
ℓ,i)(v

(a)
ℓ,i)

⊤
∑
j

(
(Pℓu

(b)
ℓ,j)(Pℓ−1v

(b)
ℓ,j)

⊤
)⊤ .

Let W ′(a)
ℓ =

∑
i(u

(a)
ℓ,i)(v

(a)
ℓ,i)

⊤ and W
′(b)
ℓ =

∑
j(Pℓu

(b)
ℓ,j)(Pℓ−1v

(b)
ℓ,j)

⊤. Obviously, they are matri-
ces with all singular values of 1, and thus by using von Neuman’s trace inequality (von Neumann,
1962), we have ∑

ℓ

∣∣∣tr(W ′(b)
ℓ (W

′(a)
ℓ)⊤

)∣∣∣ ≤∑
ℓ

nℓ.

Therefore, the triangle inequality yields that∣∣∣∣∣∣
∑
ℓ,i,j

(u
(a)
ℓ,i)

⊤(Pℓu
(b)
ℓ,j)(v

(a)
ℓ,i)

⊤(Pℓ−1v
(b)
ℓ,j)

∣∣∣∣∣∣ =
∣∣∣∣∣∑

ℓ

tr
(
W

′(b)
ℓ (W

′(a)
ℓ)⊤

)∣∣∣∣∣
≤
∑
ℓ

∣∣∣tr(W ′(b)
ℓ (W

′(a)
ℓ)⊤

)∣∣∣
≤
∑
ℓ

nℓ,

which completes the proof.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

3 6 9 12 15 18
epoch

750

800

a
(

b)

3 6 9 12 15 18
epoch

2

4

Te
st

 lo
ss

3 6 9 12 15 18
epoch

0.50

0.75

Te
st

 a
cc

.

(a) Results of VGG11

1 2 3 4 5 6 7 8 9 10
epoch

650

700

a
(

b)

1 2 3 4 5 6 7 8 9 10
epoch

1.0

1.5

Te
st

 lo
ss

1 2 3 4 5 6 7 8 9 10
epoch

0.6

0.8

Te
st

 a
cc

.

(b) Results of ResNet20

Figure 6: L2 distance between two models, test loss, and accuracy of merged models when optimizing
permutations using Sinkhorn’s algorithm for WM. Five permutation search trials were conducted
with independently trained models (i.e., 10 independently trained models were prepared to form five
model pairs, and WM was performed for each pair). These results are plotted in different colors.

G.6 PROOF OF THEOREM 4.2

Proof. Because σ is Lipschitz continuous with the constant C, we have

E∥σ(W (a)
ℓ z)− σ(W

(b)
ℓ z)∥ ≤ CE∥W (a)

ℓ z −W
(b)
ℓ z∥ ≤ C

√
E∥W (a)

ℓ z −W
(b)
ℓ z∥2, (19)

where we use Jensen’s inequality since the squre root function is concave. Focusing on the difference
between the outputs in the square root, we get

∥W (a)
ℓ z −W

(b)
ℓ z∥2 = z⊤(W

(a)
ℓ)⊤W

(a)
ℓ z + z⊤(W

(b)
ℓ)⊤W

(b)
ℓ z − 2z⊤(W

(a)
ℓ)⊤W

(b)
ℓ z.

From the SVDs of weights W
(a)
ℓ =

∑
i u

(a)
ℓ,i s

(a)
i v

(a)
ℓ,i and W

(b)
ℓ =

∑
i u

(b)
ℓ,i s

(b)
i v

(b)
ℓ,i , we

have z⊤(W
(a)
ℓ)⊤W

(a)
ℓ z =

∑
i(s

(a)
i)2(v

(a)
ℓ,i z)

2, z⊤(W
(b)
ℓ)⊤W

(b)
ℓ z =

∑
i(s

(b)
i)2(v

(b)
ℓ,i z)

2, and

z⊤(W
(a)
ℓ)⊤W

(b)
ℓ z =

∑
i,j s

(a)
i s

(b)
j (u

(a)
ℓ,i)

⊤u
(b)
ℓ,j (v

(a)
ℓ,i)

⊤z(v
(b)
ℓ,j)

⊤z. Therefore, Equation (19) can
be rewritten as

E∥σ(W (a)
ℓ z)− σ(W

(b)
ℓ z)∥

≤ C

√∑
i

(s
(a)
ℓ,i)

2E((v(a)
ℓ,i)

⊤z)2 +
∑
i

(s
(b)
ℓ,i)

2E((v(b)
ℓ,i)

⊤z)2 − 2
∑
i,j

s
(a)
ℓ,i s

(b)
ℓ,j (u

(a)
ℓ,i)

⊤u
(b)
ℓ,jE(v

(a)
ℓ,i)

⊤z(v
(b)
ℓ,j)

⊤z.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 LEARNING CURVE OF WM

In this subsection, Figure 6 show the learning curves for VGG11 and ResNet20 when WM is
performed using Sinkhorn’s algorithm. The figure shows that the distance between the two models
decreases as the training progresses, and the performance of the merged model also improves. In this
paper, for both VGG11 and ResNet20, we used permutations at the 10th epoch, when the loss of the
merged model is stably small.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 500
0

5

10
FC 1

0 500
0

5

10

FC 2

0 500
0

5

FC 3

0 5

1

2

FC 4

Index

Si
ng

ul
ar

 v
al

ue

(a) MLP, MNIST.

0 500
0

10

FC 1

0 500
0

5

10

FC 2

0 500
0

10

FC 3

0 5

2

4

FC 4

Index

Si
ng

ul
ar

 v
al

ue

(b) MLP, FMNIST.

0 2000

4

6

8

Conv 1

0 2500050000
0

20

40

Conv 2

0 20000
0

20

40

60

Conv 3

0 2500050000
0

50

100

Conv 4

0 10000
0

50

100
Conv 5

0 20000
0

50

100

150
Conv 6

0 5000
0

20

40

60

Conv 7

0 5000
0

25

50

75
Conv 8

0 5

1.0

1.5

FC 1

Index

Si
ng

ul
ar

 v
al

ue

(c) VGG11, CIFAR10.

0 2500

10

15
Conv 1

0 250000
0

25

Conv 2

0 250000
0

20

Conv 3

0 250000
0

20

Conv 4

0 250000
0

20

Conv 5

0 250000
0

20

Conv 6

0 250000
0

50
Conv 7

0 250000
0

25

Conv 8

0 100000
0

50
Conv 9

0 250000
0

50
Conv 10

0 100000
0

50
Conv 11

0 100000
0

50

Conv 12

0 100000
0

50

Conv 13

0 100000
0

100
Conv 14

0 100000
0

50

Conv 15

0 50000
0

50

Conv 16

0 100000
0

50

Conv 17

0 50000
0

100

Conv 18

0 50000
0

100
Conv 19

0 50000
0

100

Conv 20

0 50000
0

100

Conv 21

0 5
1.5
2.0
2.5

FC 1

Index

Si
ng

ul
ar

 v
al

ue

(d) ResNet20, CIFAR10.

Figure 7: Distributions of the singular values of each layer.

0 2 4 6 8
Index

1.00

1.25

1.50

1.75

2.00

Si
ng

ul
ar

 v
al

ue

MLP, MNIST

0 2 4 6 8
Index

2

3

4

Si
ng

ul
ar

 v
al

ue

MLP, FMNIST

0 2 4 6 8
Index

0.75

1.00

1.25

1.50

1.75

Si
ng

ul
ar

 v
al

ue

VGG11, CIFAR10

0 2 4 6 8
Index

1.5

2.0

2.5

Si
ng

ul
ar

 v
al

ue

ResNet20, CIFAR10

Figure 8: Adjusted distributions of the singular values of output layer.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

H.2 DISTRIBUTION OF SINGULAR VALUES

Figure 7 shows the distributions of the singular values of all the layers. The figure demonstrates
that, in all layers except for the output layer, the singular values are very similar across all models.
Meanwhile, in the output layer, there is variability in the singular values. However, this variability
does not affect the accuracy of the merged model. Let W (a)

L =
∑

i s
(a)
L,iu

(a)
L,i(v

(a))⊤L,i and W
(b)
L =∑

i s
(b)
L,iu

(b)
L,i(v

(b)
L,i)

⊤ represent the output layer weights of the two trained models. The figure shows
that the difference between the singular values of the two models is approximately a constant
multiple. In other words, there exists a constant α such that s(a)L,i ≈ αs

(b)
L,i for all i. To confirm

this, Figure 8 shows the distribution of singular values when the constant α is calculated and the
weight of the output layer is adjusted, demonstrating that correcting the output layer by a constant
factor can address the differences in the distribution. If the singular vectors of the two weights
are equal (i.e., v(a)

L,i = v
(b)
L,i and u

(a)
L,i = u

(b)
L,i for all i), then W

(a)
L ≈ αW

(b)
L holds (indeed, as

mentioned in Section 4.3, the permutation matrix aligns the directions of the singular vectors).
Therefore, the weight of the output layer of the merged model at the ratio λ ∈ [0, 1] is given by
λW

(a)
L +(1−λ)W

(b)
L ≈ λW

(a)
L +(1−λ)αW

(a)
L = (λ+(1−λ)α)W

(a)
L . Thus, we can consider

that the weight and the activation function of the merged model are given by W
(a)
L and a softmax

function with an inverse temperature of 1/(λ+(1−λ)α), respectively. Since the inverse temperature
does not affect the accuracy value, the difference in the singular values of the output layer would not
matter in satisfying LMC, at least in terms of accuracy.

H.3 INNER PRODUCTS BETWEEN RIGHT SINGULAR VECTORS OF HIDDEN LAYERS AND
THEIR INPUT

Figure 9 shows the average absolute values of inner products between the right singular vectors and
the input in each layer of models trained by SGD. The figure demonstrates that, except for the input
and output layers, the singular vectors with larger singular values generally have larger inner products
with the inputs. Note that the results of the input layers do not affect the permutation search based on
WM because their right singular vectors are not changed by the permutations.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 500
0

5

10
Layer 1

0 500
0

5

10
Layer 2

0 500
0

50

Layer 3

0 5

250

500

Layer 4

Index

|v
z|

²

(a) MLP, MNIST.

0 500
0

20

Layer 1

0 500
0

5

Layer 2

0 500
0

20

Layer 3

0 5

100

200

Layer 4

Index

|v
z|

²

(b) MLP, FMNIST.

0 2000
0

1
1e6 Layer 1

0 50000
0

1
1e6 Layer 2

0 20000
0

50000

Layer 3

0 50000
0

25000

Layer 4

0 10000
0

2000

Layer 5

0 20000
0

5000
Layer 6

0 5000
0

5000

Layer 7

0 5000
0

5000
Layer 8

0 5

100

200
Layer 9

Index

|v
z|

²

(c) VGG11, CIFAR10.

0 2500
0

1
1e6

Layer 1

0 250000
0

1
1e7

Layer 2

0 250000
0.0

2.5

1e6
Layer 3

0 250000
0

2

1e7
Layer 4

0 250000
0.0

2.5

1e6
Layer 5

0 250000
0

5
1e7

Layer 6

0 250000
0

5

1e6
Layer 7

0 250000
0.0

2.5

1e7
Layer 8

0 100000
0

5

1e5
Layer 9

0 250000
0

2

1e7
Layer 10

0 100000
0

2

1e6
Layer 11

0 100000
0

5
1e5
Layer 12

0 100000
0

5
1e6
Layer 13

0 100000
0

1

1e6
Layer 14

0 100000
0

2
1e6
Layer 15

0 50000
0

1
1e5
Layer 16

0 100000
0

1
1e6
Layer 17

0 50000
0.0

2.5

1e5
Layer 18

0 50000
0

1
1e5
Layer 19

0 50000
0

1 1e6
Layer 20

0 50000
0

1
1e6
Layer 21

0 5

50

100

Layer 22

Index

|v
z|

²

(d) ResNet20, CIFAR10.

Figure 9: Average absolute values of inner products between the right singular vectors and the input
of each layer. The horizontal axis represents the index of the left singular vector, while the vertical
axis shows the mean square of the inner product. The left side of the horizontal axis corresponds to
singular vectors with large singular values.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0
Ratio

0.0

0.5

1.0

Si
ng

ul
ar

 v
al

ue
 r

at
io VGG11

× 1/8
× 1/4
× 1/2

× 1
× 2
× 4

0.0 0.5 1.0
Ratio

0.0

0.5

1.0

Si
ng

ul
ar

 v
al

ue
 r

at
io ResNet20

× 1
× 2
× 4

× 8
× 16

Figure 10: Distribution of all singular values normalized by the largest one in the model as the model
width multiplier changes. The vertical axis represents the singular values divided by the maximum
singular value of each model, and the horizontal axis represents the ratio among all singular values
(e.g., the point at 0.5 on the horizontal axis represents the singular value in the middle of all values
sorted in descending order).

H.4 RELATIONSHIP WITH MODEL WIDTH

Previous studies have demonstrated that the width of the model architecture affects the ease of
achieving LMC. In this subsection, we explain this phenomenon based on the following three facts:
as the model width increases, (i) the proportion of dominant singular values decreases, (ii) the right
singular vectors corresponding to these dominant singular values will have large inner product values
with the inputs of the hidden layers, and (iii) the WM preferentially aligns the directions of singular
vectors corresponding to these dominant singular values.

(i) Dependency of model width on singular values. As we mentioned, the proportion of relatively
large singular values in all singular values decreases as the model width increases. To verify this,
Figure 10 shows the distribution of the singular values of all layers of VGG11 and ResNet20 trained
on CIFAR10. Figure 10 shows the results of different model widths (i.e., dimensionality). As can
be seen, the proportion of relatively large singular values decreases as the model width increases.
Thus, the proportion of singular vectors that need to be aligned in the model decreases as the width
increases.

(ii) Dependency of model width on inner products of right singular vectors. We also investigated
the effect of model width on the inner products between the hidden layer inputs and the right singular
vectors. Figures 11 and 12 show the values of these inner products for each layer as model width
changes. Figures 11 and 12 show the distributions of inner products for VGG11 and ResNet20 models
trained on CIFAR10, respectively. These figures demonstrate that as model width increases, the inner
products between the right singular vectors with large singular values and the inputs also increase.

(iii) Singular-vector alignment. We conducted an experiment to examine how well the directions
of singular vectors are aligned as model width increases when applying permutations found by WM.
The results are shown in Figure 13. The figures display the evaluation of R(θa, π(θb)) for the trained
models θa and θb by searching for permutations π. For comparison, the case where no permutations
are applied (i.e., π is an identity map) is also shown. Additionally, a threshold γ was introduced to
assess the alignment of singular vectors with large singular values.

First, focusing on the results in Figure 13(a) with γ = 0, we observe that the value of R decreases
even when the width increases and WM is used. Conversely, Figure 13(b) shows that the directions
of singular vectors with particularly large singular values are aligned by permutation as model width
increases. This suggests that even with WM, it is difficult to perfectly align the directions of singular
vectors between the two models. However, increasing the width decreases the fraction of singular
vectors with large singular values, and thus, making it easier for WM to align the directions of these
dominant singular vectors.

As shown in Figure 10, when the model is sufficiently wide, the proportion of large singular values
is very small compared to the total number of singular values. Furthermore, Figures 11 and 12
demonstrate that the right singular vectors associated with these relatively large singular values have
a large inner product with the hidden layer input. This means that the number of singular vectors
that WM needs to align to achieve LMC is reduced when the model is wide enough, as discussed in

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 2000
0

1
1e6 Layer 1

0 2000
0

2
1e5 Layer 2

0 1000
0

20000

Layer 3

0 2000
0

10000
Layer 4

0 500
0

1000

Layer 5

0 1000
0

250

Layer 6

0 200
0

50

Layer 7

0 200
0

20

Layer 8

0 5
0

100
Layer 9

Index

|v
z|

²

(a) Width multiplier is 0.125.

0 2000
0

1
1e6 Layer 1

0 2500
0

1

1e5 Layer 2

0 2000
0

20000

Layer 3

0 2500
0

10000

Layer 4

0 1000
0

500

Layer 5

0 2000
0

250

Layer 6

0 500
0

100
Layer 7

0 500
0

50

Layer 8

0 5
0

100

Layer 9

Index

|v
z|

²
(b) Width multiplier is 0.25.

0 2000
0

1
1e6 Layer 1

0 5000
0

2

1e5 Layer 2

0 2500
0

20000

Layer 3

0 5000
0

20000
Layer 4

0 2000
0

500

Layer 5

0 2500
0

250

Layer 6

0 1000
0

200

Layer 7

0 1000
0

100

Layer 8

0 5

50
100
150

Layer 9

Index

|v
z|

²

(c) Width multiplier is 0.5.

0 2000
0

1
1e6 Layer 1

0 10000
0

2

1e5 Layer 2

0 5000
0

25000

Layer 3

0 10000
0

20000
Layer 4

0 2500
0

1000
Layer 5

0 5000
0

500

Layer 6

0 2000
0

1000
Layer 7

0 2000
0

500
Layer 8

0 5

50
100
150

Layer 9

Index

|v
z|

²

(d) Width multiplier is 1.

0 2000
0

1
1e6 Layer 1

0 20000
0

5
1e5 Layer 2

0 10000
0

50000
Layer 3

0 20000
0

20000

Layer 4

0 5000
0

1000

Layer 5

0 10000
0

2000
Layer 6

0 2500
0

2000

Layer 7

0 2500
0

1000

Layer 8

0 5

100

200
Layer 9

Index

|v
z|

²

(e) Width multiplier is 2.

0 2000
0

1
1e6 Layer 1

0 50000
0

1
1e6 Layer 2

0 20000
0

50000

Layer 3

0 50000
0

25000

Layer 4

0 10000
0

2000

Layer 5

0 20000
0

5000
Layer 6

0 5000
0

5000

Layer 7

0 5000
0

5000
Layer 8

0 5

100

200
Layer 9

Index

|v
z|

²

(f) Width multiplier is 4.

Figure 11: Average absolute values of inner products between the right singular vectors and the input
of each layer of VGG11 trained on CIFAR10.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 2500
0

1
1e6

Layer 1

0 10000
0

2
1e6

Layer 2

0 10000
0

1
1e6

Layer 3

0 10000
0

5
1e6

Layer 4

0 10000
0

1
1e6

Layer 5

0 10000
0

5
1e6

Layer 6

0 10000
0

5

1e5
Layer 7

0 10000
0

1
1e7

Layer 8

0 5000
0

1

1e5
Layer 9

0 10000
0

1
1e7

Layer 10

0 5000
0.0

2.5

1e5
Layer 11

0 5000
0

50000

Layer 12

0 5000
0
5

1e5
Layer 13

0 5000
0

50000

Layer 14

0 5000
0

1
1e6

Layer 15

0 2500
0

5000
Layer 16

0 5000
0

1
1e6

Layer 17

0 2500
0

10000

Layer 18

0 2500
0

2500
Layer 19

0 2500
0

20000
Layer 20

0 2500
0

2500
Layer 21

0 5
0

50
Layer 22

Index

|v
z|

²

(a) Width multiplier is 1.

0 2500
0

1
1e6

Layer 1

0 25000
0.0

2.5
1e6

Layer 2

0 25000
0
1

1e6
Layer 3

0 25000
0
5

1e6
Layer 4

0 25000
0

1
1e6

Layer 5

0 25000
0

1
1e7

Layer 6

0 25000
0

5
1e5

Layer 7

0 25000
0

1
1e7

Layer 8

0 10000
0

2
1e5

Layer 9

0 25000
0
1

1e7
Layer 10

0 10000
0

5
1e5

Layer 11

0 10000
0

1
1e5

Layer 12

0 10000
0

1

1e6
Layer 13

0 10000
0

50000
Layer 14

0 10000
0
5

1e5
Layer 15

0 5000
0

20000
Layer 16

0 10000
0
1

1e6
Layer 17

0 5000
0

50000
Layer 18

0 5000
0

2500
Layer 19

0 5000
0

50000
Layer 20

0 5000
0

2500
Layer 21

0 5

25
50
75

Layer 22

Index

|v
z|

²

(b) Width multiplier is 2.

0 2500
0

1
1e6

Layer 1

0 50000
0

5
1e6

Layer 2

0 50000
0.0

2.5
1e6

Layer 3

0 50000
0

1
1e7

Layer 4

0 50000
0

2
1e6

Layer 5

0 50000
0

2
1e7

Layer 6

0 50000
0

2 1e6
Layer 7

0 50000
0

2
1e7

Layer 8

0 25000
0.0
2.5

1e5
Layer 9

0 50000
0

1
1e7

Layer 10

0 25000
0

1
1e6

Layer 11

0 25000
0.0

2.5
1e5

Layer 12

0 25000
0

2
1e6

Layer 13

0 25000
0
1

1e5
Layer 14

0 25000
0

1
1e6

Layer 15

0 10000
0

25000

Layer 16

0 25000
0

2
1e6

Layer 17

0 10000
0

1
1e5

Layer 18

0 10000
0

5000

Layer 19

0 10000
0

1

1e5
Layer 20

0 10000
0

5000

Layer 21

0 5

25
50
75

Layer 22

Index

|v
z|

²

(c) Width multiplier is 4.

0 2000
0

1
1e6

Layer 1

0 100000
0

5

1e6
Layer 2

0 100000
0.0

2.5
1e6

Layer 3

0 100000
0
1

1e7
Layer 4

0 100000
0.0

2.5
1e6

Layer 5

0 100000
0.0

2.5

1e7
Layer 6

0 100000
0.0

2.5
1e6

Layer 7

0 100000
0.0

2.5
1e7

Layer 8

0 50000
0

5
1e5

Layer 9

0 100000
0.0

2.5
1e7

Layer 10

0 50000
0

1
1e6

Layer 11

0 50000
0.0

2.5
1e5

Layer 12

0 50000
0

2
1e6

Layer 13

0 50000
0.0

2.5
1e5

Layer 14

0 50000
0

1
1e6

Layer 15

0 20000
0

25000
Layer 16

0 50000
0

5

1e5
Layer 17

0 20000
0

2
1e5

Layer 18

0 20000
0

50000
Layer 19

0 20000
0

5
1e5

Layer 20

0 20000
0

1
1e5

Layer 21

0 5

50
100

Layer 22

Index

|v
z|

²

(d) Width multiplier is 8.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 2000
0

1
1e6

Layer 1

0 200000
0

1
1e7

Layer 2

0 200000
0.0
2.5

1e6
Layer 3

0 200000
0.0

2.5
1e7

Layer 4

0 200000
0.0

2.5

1e6
Layer 5

0 200000
0

5
1e7

Layer 6

0 200000
0

5
1e6

Layer 7

0 200000
0.0
2.5

1e7
Layer 8

0 100000
0
5

1e5
Layer 9

0 200000
0.0

2.5
1e7

Layer 10

0 100000
0.0

2.5
1e6

Layer 11

0 100000
0

5
1e5

Layer 12

0 100000
0

5
1e6

Layer 13

0 100000
0

1
1e6

Layer 14

0 100000
0

2
1e6

Layer 15

0 50000
0

1
1e5

Layer 16

0 100000
0

1
1e6

Layer 17

0 50000
0.0
2.5

1e5
Layer 18

0 50000
0

1
1e5

Layer 19

0 50000
0

1 1e6
Layer 20

0 50000
0

1
1e6

Layer 21

0 5

50
100

Layer 22

Index

|v
z|

²

(e) Width multiplier is 16.

Figure 12: Average absolute values of inner products between the right singular vectors and the input
of each layer of ResNet20 trained on CIFAR10.

1/8 1/4 1/2 1 2 4
Width multiplier

0.0

0.1

0.2

0.3

Va
lu

e
of

 R

VGG11
w/ WM
w/o WM

1 2 4 8 16
Width multiplier

0.0

0.1

0.2

0.3

Va
lu

e
of

 R

ResNet20
w/ WM
w/o WM

(a) Evaluation results of R(θa, π(θb)) for all the singu-
lar vectors.

1/8 1/4 1/2 1 2 4
Width multiplier

0.0

0.1

0.2

0.3

Va
lu

e
of

 R

VGG11
w/ WM
w/o WM

1 2 4 8 16
Width multiplier

0.0

0.1

0.2

0.3
Va

lu
e

of
 R

ResNet20
w/ WM
w/o WM

(b) Evaluation results of R(θa, π(θb)) for the singular
vectors with γ = 0.3.

Figure 13: Relation between the model width and the difficulty in aligning the directions of singular
vectors.

Section 4.4. Indeed, Figure 13(b) suggests that WM preferentially aligns these significant singular
vectors. Therefore, increasing the width is expected to make LMC more feasible.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

10 4 10 3 10 2

Learning rate

0.5

1.0

1.5

2.0

2.5

Lo
ss

Test loss of merged model

10 4 10 3 10 2

Learning rate

0.5

1.0

1.5

2.0

2.5

Lo
ss

Test loss of original model

10 4 10 3 10 2

Learning rate

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

Proportion of large singular values
weight decay = 1e-05
weight decay = 3e-05
weight decay = 0.0001
weight decay = 0.0003
weight decay = 0.001
weight decay = 0.003

(a) Evaluation results of ResNet20 (×16).

10 4 10 3 10 2

Learning rate

0.5

1.0

1.5

2.0

Lo
ss

Test loss of merged model

10 4 10 3 10 2

Learning rate

0.5

1.0

1.5

2.0

Lo
ss

Test loss of original model

10 4 10 3 10 2

Learning rate

0.00

0.05

0.10

0.15

0.20

Pr
op

or
tio

n

Proportion of large singular values
weight decay = 1e-05
weight decay = 3e-05
weight decay = 0.0001
weight decay = 0.0003
weight decay = 0.001
weight decay = 0.003

(b) Evaluation results of VGG11 (×2).

Figure 14: Experimental results of model merging with WM under different learning rates and weight
decay strength.

H.5 DEPENDENCY OF WEIGHT DECAY AND LEARNING RATE

Qu & Horvath (2024) have observed that strengthening weight decay and increasing the learning
rate make it easier for LMC to be established through WM. In this section, we will explain this
observation from the perspective of singular values of weights.

In Section 4, we stated that the reason why WM can establish LMC is that the permutation found
by WM aligns singular vectors with large singular values between two models. In other words, the
smaller the proportion of large singular values in the weights of each layer of the models, the more
likely LMC is to be established by WM. In fact, some previous studies (Galanti et al., 2023; Timor
et al., 2023) have shown that increasing the weight decay and learning rate during model training can
reduce the ranks of the weights in the trained model. Therefore, it is highly likely that the results
observed by Qu & Horvath (2024) were caused by the reduction in the ranks of the weights. In the
following, we will experimentally confirm this prediction.

Figure 14 shows the experimental results of ResNet20 and VGG11 models. During model training,
the learning rate was varied from 0.0001, 0.0003, . . . , 0.03 and the weight decay strength was varied
from 0.00001, 0.00003, . . . , 0.003. For each condition, six models were trained, and model merging
was performed three times by creating three pairs from them. The conditions for model training were
the same as in Appendix D, except for the learning rate and weight decay. For VGG11, when the
model width is quadrupled, the ratio of large singular values becomes very small regardless of the
learning rate or weight decay, making it difficult to understand the relationship between the loss of
the merged model and large singular values. Thus, the model width was doubled for VGG11 models.
In addition, the permutation search method used in WM was based on the method of Ainsworth et al.
(2023).

Figure 14 shows the test losses of the merged model and the original model, as well as the ratio
of the number of large singular values to the width of the original model. Figure 14 displays the
averaged results over three runs of model merging. The ratio in the figure was calculated as follows.
Let sℓ,1, sℓ,2, . . . , sℓ,nℓ

be the singular values of the ℓ-th layer, where nℓ represents the number of
singular values, and sℓ,1 is the largest singular value. Each singular value is divided by the largest
singular value, and those whose ratio is 0.3 or more are counted (i.e., sℓ,i/sℓ,1 ≥ 0.3 for i ∈ [nℓ]).
Next, for all layers, we calculate the sum of these numbers and divide it by the sum of nℓ for all layers.
This procedure can be written as

∑
ℓ,i I[sℓ,i/sℓ,1 ≥ 0.3]/

∑
ℓ nℓ, where I is an indicator function. In

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 4: Model Merging results with AM and the estimated barrier value using Taylor approximation
when λ = 1/2

Dataset Network Test acc. Barrier (λ = 1/2) Taylor approx. ∥θa − θb∥ ∥θa − π(θb)∥ Reduction rate [%]

CIFAR10 VGG11 88.786± 0.186 0.077± 0.044 2.491± 0.266 799.503± 16.396 742.300± 18.526 7.161± 0.572
ResNet20 89.190± 0.192 0.189± 0.031 7.431± 0.667 710.762± 16.261 671.373± 13.816 5.538± 0.226

FMNIST MLP 88.356± 0.221 −0.236± 0.024 0.948± 0.173 121.853± 5.830 108.968± 5.365 10.578± 0.343
MNIST MLP 98.274± 0.084 −0.020± 0.004 0.064± 0.035 81.231± 5.580 68.722± 5.197 15.428± 1.037

=0.3
MLP, MNIST

=0 =0.3
MLP, FMNIST

=0 =0.3
VGG11, CIFAR10

=0 =0.3
ResNet20, CIFAR10

=0
0.0

0.2

0.4

R(
a,

(
b)

)

w/ AM
w/o AM

Figure 15: Evaluation results of R(θa,θb) with and without AM.

other words, this ratio becomes smaller when the number of singular values that are relatively large
compared to the maximum singular value is small compared to the width of the model.

From Figure 14, we can see that the ratio of large singular values decreases as both the weight decay
and the learning rate increase. This has already been noted in previous research (Galanti et al., 2023;
Timor et al., 2023). Additionally, Figure 14 shows that the test loss of the merged model decreases
when both the test loss of the original model and the ratio of large singular values are small. This
can be explained by our analysis in Section 4. As we described, WM facilitates LMC by aligning
the singular vectors between the two models and making the functions of the middle layers of the
merged model and the original model more similar. In other words, this suggests that it is challenging
for the merged model to outperform the original model. Furthermore, the smaller the ratio of large
singular values, the easier it is to align the singular vectors using WM, so the functions of the merged
model and the original model become more closely aligned. From this, we conclude that the higher
the performance of the original model and the smaller the ratio of large singular values, the better the
performance of the merged model. This is consistent with the results shown in Figure 14.

H.6 ACTIVATION MATCHING

Table 4 shows the results of model merging using AM under the same conditions as in Section 3.
The table indicates that the loss barrier is sufficiently small when AM is applied. Interestingly, AM
reduces the distance between the two models to the same extent as WM.

Figure 15 shows the value of R between the two models θa and θb. The figure clearly shows that the
value of R is larger using AM when γ = 0.3. This indicates that AM aligns the directions of singular
vectors with large singular values for the two models, similar to the result of WM (Figure 2). To
further examine the relationship of singular vectors between the models before and after merging,
Figure 16 shows the values of R between these models. This result also demonstrates a similar trend
to the WM results shown in Figure 3, suggesting that the reasons for the establishment of the LMC
are almost the same for both WM and AM.

w/ AM
MLP, MNIST

w/o AM w/ AM
MLP, FMNIST

w/o AM w/ AM
VGG11, CIFAR10

w/o AM w/ AM
ResNet20, CIFAR10

w/o AM
0.4

0.6

0.8

1.0
R(a, (a + (b))/2) R((b), (a + (b))/2)

(a) Evaluation results with the threshold γ = 0.

w/ AM
MLP, MNIST

w/o AM w/ AM
MLP, FMNIST

w/o AM w/ AM
VGG11, CIFAR10

w/o AM w/ AM
ResNet20, CIFAR10

w/o AM
0.4

0.6

0.8

1.0
R(a, (a + (b))/2) R((b), (a + (b))/2)

(b) Evaluation results with the threshold γ = 0.3.

Figure 16: Evaluation results of R value between the merged model and the pre-merged models
(i.e., R(θa, (θa + π(θb))/2) and R(θa, (θa + π(θb))/2)) when AM is used. The blue and red bars
represent the evaluation results of R(θa, (θa + π(θb))/2) and R(θb, (θa + π(θb))/2), respectively.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 5: Evaluation results of barrier between each pair of models

Loss barrier Accuracy barrier
Dataset Network (θa + πb(θb))/2 (θa + πc(θc))/2 (πb(θb) + πc(θc))/2 (θa + πb(θb))/2 (θa + πc(θc))/2 (πb(θb) + πc(θc))/2

WM
CIFAR10 VGG11 0.094± 0.158 0.037± 0.156 0.141± 0.141 8.362± 5.677 7.555± 4.978 10.12± 5.117

ResNet20 0.135± 0.026 0.098± 0.011 0.294± 0.098 3.312± 0.61 2.995± 0.064 7.23± 0.99
FMNIST MLP −0.211± 0.029 −0.174± 0.044 −0.174± 0.051 1.947± 0.501 1.703± 0.289 4.337± 1.434
MNIST MLP −0.027± 0.005 −0.034± 0.003 −0.031± 0.003 0.173± 0.04 0.198± 0.032 0.475± 0.069

STE
CIFAR10 VGG11 0.081± 0.031 0.099± 0.042 2.172± 0.989 4.86± 0.815 5.76± 0.537 32.013± 8.193

ResNet20 0.466± 0.154 0.446± 0.138 1.693± 0.168 15.005± 3.765 13.942± 4.008 34.483± 2.426
FMNIST MLP −0.372± 0.016 −0.343± 0.055 0.023± 0.118 2.667± 0.248 2.483± 0.621 15.97± 1.724
MNIST MLP −0.037± 0.011 −0.039± 0.006 0.017± 0.014 0.253± 0.176 0.358± 0.198 2.312± 0.457

0 20 40 60
0

20

40

60

MLP MNIST

97
.9

3

0 50 100
0

20

40

60

80

100
MLP FMNIST 64.83

66.90
68.9771.03

73.10
75.17

77.24
79.31
81.3883.45

85
.5

2

87.59

87.59
89.66 89

.66

89.66

0 200 400 600
0

200

400

600
ResNet20 CIFAR10

83
.4

5

85
.5

2

87
.5

989.66

91.72

91
.7

2

91.72

0 250 500 750
0

200

400

600

VGG11 CIFAR10

75.1777.24 79.31

81.38

83.45

83
.4

5

83.45

85.52

85
.5

2

85.52

87.59

87
.5

9

87.59

89.66

89
.6

6

89.66

40.00
46.21
52.41
58.62
64.83
71.03
77.24
83.45
89.66
95.86

(a) Results of WM.

0 25 50 75
0

20

40

60

MLP MNIST

91
.7

2
93

.7
9

95
.8

6

97
.9

3

0 50 100
0

20

40

60

80

100

MLP FMNIST

60
.6

9
62

.7
6

64
.8

3
66

.9
0

68
.9

7
71

.0
3

73
.1

0
75

.1
7

77
.2

4
79

.3
1

81
.3

8

81
.3

8

83.45

83
.4

5

85.52

85
.5

2

87.59

87
.5

9

87.59

89.66

89.66

0 200 400 600
0

200

400

600
ResNet20 CIFAR10

66.9068.97

71.03

71.03
73

.1
0

73.10
73.10

75.17

77
.2

4
79

.3
179

.3
1

81.38

81
.3

8

83.45

83
.4

5

83.45

85.52

85
.5

2
85.5287.59

87
.5

9
87.59

89.66

89
.6

6
89.66

91.72

91
.7

2
91.72

0 250 500 750
0

200

400

600

VGG11 CIFAR10

50.34
52.4154.4856.5558.6260.69

62
.7

6

62.76

64.83
66.90
68.97

71.03
73.10
75.17

77.24
79.31

81.38

81
.3

8

83.45

83
.4

5

83
.4

5

85.52

85
.5

2

85.52

87.59

87
.5

9

87.59

89.66

89
.6

6

89.66

40.00
46.21
52.41
58.62
64.83
71.03
77.24
83.45
89.66
95.86

(b) Results of STE.

Figure 17: Accuracy landscape around θa, πb(θb) and πc(θc). The star in the lower left represents
θa, and the squares in the lower right and upper represent πb(θb), and πc(θc), respectively.

H.7 STE AND WM

In this subsection, additional experimental results for Section 6.3 are shown in Table 5 for the barrier
values between each pair of models. The table shows the model-merging results with λ = 1/2,
and the mean and standard deviation of three model merges. In the table, a negative value for the
barrier indicates an improvement in performance due to the merging. In addition, Figure 17 shows
the accuracy landscape around θa, πb(θb), and πc(θc). From Table 5 and Figure 17, we can see that
the barrier between πb(θb) and πc(θc) is also smaller for WM than for STE.

H.8 DEPENDENCY OF R ON THRESHOLD γ

Figure 18 shows the value of R when the threshold γ is varied. Figure 18(a) displays the R value
between model θa and the permuted model π(θb), along with the R value before permutation for
comparison. Figure 18(b) illustrates the R values between the merged model (θa + π(θb))/2 and the
original models θa and θb, also including the R value without permutation for comparison.

In Figure 18(a), the R value between the original models is nearly zero regardless of the γ value.
However, when permutation is applied, the R value increases as γ increases. This indicates that
WM preferentially aligns the directions of the larger singular vectors between models θa and θb. As
shown in Figure 18(b), this effect helps align the singular vectors with larger singular values between
the merged and original models. Aligning these singular vectors more closely makes LMC more
feasible because the outputs between the two models are closer, as discussed in Section 4.4.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4
0.00

0.25

0.50

R

MLP MNIST

0.0 0.2 0.4
0.00

0.25

0.50

R

MLP FMNIST

0.0 0.2 0.4
0.00

0.25

0.50

R

VGG11 CIFAR10

0.0 0.2 0.4
0.00

0.25

0.50

R

ResNet20 CIFAR10

R(a, b)
R(a, (b))

(a) R value between the models θa and θb.

0.0 0.2 0.4
0.4

0.6

0.8

1.0

R

MLP MNIST

0.0 0.2 0.4
0.4

0.6

0.8

1.0

R

MLP FMNIST

0.0 0.2 0.4
0.4

0.6

0.8

1.0

R

VGG11 CIFAR10

0.0 0.2 0.4
0.4

0.6

0.8

1.0

R

ResNet20 CIFAR10

R(a, (a + b)/2)
R(b, (a + b)/2)
R(a, (a + (b))/2)
R((b), (a + (b))/2)

(b) R value between the merged model and the original model.

Figure 18: R values when the threshold γ is changed.

Table 6: Results of model merging of ResNet50 models trained on ImageNet dataset.

(a) Test loss and top-1 accuracy of each model.

θc w/ WM θc w/o WM θa θb

Test loss 5.207± 0.073 6.897± 0.001 1.491± 0.011 1.493± 0.007
Test acc. 40.239± 2.088 0.179± 0.020 75.741± 2.088 75.856± 0.107

(b) L2 distance between θa and θb.

L2 dist. w/ WM L2 dist. w/o WM

126.823± 0.533 174.247± 0.577

H.9 LMC ON RESNET50 TRAINED ON IMAGENET

In the paper, most of the analysis was performed on relatively small datasets such as MNIST and
CIFAR10. In this subsection, we train ResNet50 models on a larger dataset, ImageNet, and analyze
the results of model merging based on WM.

Experimental results of model merging. Table 6 presents the results of merging ResNet50 models
trained on the ImageNet dataset. Table 6(a) shows the test loss and top-1 accuracy of the models
before and after merging (i.e., the pre-merged models θa and θb, and the merged model θc). Table 6(b)
shows the L2 distance between models θa and θb before and after applying permutations. These
tables report the mean and standard deviation for five independent model merges. According to
Table 6(a), the test loss and accuracy of the merged model are clearly improved by using WM.
However, they are still worse than those of the pre-merged models θa and θb, indicating that the
LMC cannot be considered satisfied. Table 6(b) demonstrates that using WM decreases the L2

distance between models θa and θb. This decrease in L2 distance is larger than that observed for
VGG11 and ResNet20 in Table 1, suggesting that the singular vectors of models θa and θb are better
aligned by permutations. Figure 19 presents the results of evaluating R for each model pair. When
γ = 0.3, Figure 19 shows that R(θa,θb) rises to about 0.5 with WM, and the value of R increases to
approximately 0.9 between the pre- and post-merged models (i.e., R(θa,θc) and R(θb,θc)). Thus,
even with ResNet50, the singular vectors with large singular values are aligned between the pre- and
post-merged models by using WM.

To investigate why LMC does not hold even though the singular vectors with large singular values
are aligned by using WM, we examine the distributions of singular values at each layer and the inner
products between right singular vectors and the inputs. Figure 20 shows the distribution of singular
values for each layer, and Figure 21 shows the distribution of the average absolute values of the inner
products between the right singular vectors and the inputs for each layer. Each figure is plotted in a
different color for the 10 trained models. Figure 20 demonstrates that the distributions of singular
values are nearly identical across all models. Thus, the difference in singular values between models
is not a reason for preventing LMC. In Figure 21, focusing on the distribution of the inner product
between the right singular vectors and the inputs, we observe that the right singular vectors with
large singular values does not necessarily have a large inner product with the input. As discussed
in Section 4.4, WM can only align singular vectors with large singular values, so this discrepancy
can be a reason preventing the establishment of LMC. As shown in Figures 11 and 12, the wider

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

= 0.3 = 0
0.0

0.5

R
va

lu
e

R(a, b)

w/ WM
w/o WM

= 0.3 = 0

0.6

0.8

1.0

R
va

lu
e

R(a, c)

w/ WM
w/o WM

= 0.3 = 0

0.6

0.8

1.0

R
va

lu
e

R(b, c)

w/ WM
w/o WM

Figure 19: Evaluation results of R values between each pair of ResNet50 models trained on ImageNet
dataset.

the model, the larger the inner product of the input and the right singular vectors with large singular
values in the hidden layers. Therefore, it is considered necessary to increase the width of the model
to establish LMC with ResNet50.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

0 100000
0

10

Conv 1

0 200000
0

2
Conv 2

0 200000
0

5
Conv 3

0 200000
0.0

2.5
Conv 4

0 200000
0.0

2.5
Conv 5

0 200000
0

2
Conv 6

0 200000
0

5

Conv 7

0 200000
0

1

Conv 8

0 200000
0

1

Conv 9

0 200000
0.0

2.5

Conv 10

0 200000

0.5
1.0

Conv 11

0 250000
0

2
Conv 12

0 250000
0

5
Conv 13

0 100000

1

2
Conv 14

0 500000
0.0

2.5
Conv 15

0 100000
0

2
Conv 16

0 100000
0

5
Conv 17

0 100000
0

1

Conv 18

0 100000

0.5
1.0
1.5

Conv 19

0 100000
0.0

2.5

Conv 20

0 100000
0

1

Conv 21

0 100000

1

2
Conv 22

0 100000
0.0

2.5

Conv 23

0 100000
0

2
Conv 24

0 200000
0.0

2.5
Conv 25

0 200000
0

5

Conv 26

0 50000

1
2

Conv 27

0 250000
0

1

Conv 28

0 50000
0

1

Conv 29

0 50000
0

5
Conv 30

0 50000
0

2
Conv 31

0 50000
0

1

Conv 32

0 50000
0.0

2.5

Conv 33

0 50000
0

2
Conv 34

0 50000

0.5
1.0
1.5

Conv 35

0 50000
0

5
Conv 36

0 50000
0.0

2.5
Conv 37

0 50000

0.5
1.0
1.5

Conv 38

0 50000
0

5
Conv 39

0 50000

1
2

Conv 40

0 50000

0.5
1.0
1.5

Conv 41

0 50000
0

5
Conv 42

0 50000
0.0

2.5

Conv 43

0 100000

1
2
3

Conv 44

0 100000
0

5

Conv 45

0 25000

1
2

Conv 46

0 200000
0

1
Conv 47

0 25000
0

2
Conv 48

0 25000
0

5

Conv 49

0 25000

1
2
3

Conv 50

0 25000

1
2
3

Conv 51

0 25000
0

10

Conv 52

0 25000
0

5

Conv 53

0 1000
0.0

2.5

FC 1

Singular vector index

Si
ng

ul
ar

 v
al

ue

Figure 20: Distributions of the singular values of each layer of ResNet50 models trained on ImageNet
dataset.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0 100000
0

2500

Layer 1

0 200000
0

2500

Layer 2

0 200000
0

250

Layer 3

0 200000
0

500

Layer 4

0 200000
0

5000
Layer 5

0 200000
0

50

Layer 6

0 200000
0

250

Layer 7

0 200000
0

200
Layer 8

0 200000
0

100
Layer 9

0 200000
0

100
Layer 10

0 200000
0

100

Layer 11

0 250000
0

100
Layer 12

0 250000
0

50

Layer 13

0 100000
0

25
Layer 14

0 500000
0

100

Layer 15

0 100000
0

10

Layer 16

0 100000
0

25
Layer 17

0 100000
0

10
Layer 18

0 100000
0

10
Layer 19

0 100000
0

5

Layer 20

0 100000
0

2
Layer 21

0 100000
0

5

Layer 22

0 100000
0

5
Layer 23

0 100000
0.0

2.5
Layer 24

0 200000
0

10

Layer 25

0 200000
0

1
Layer 26

0 50000
0

2
Layer 27

0 250000
0.0

2.5

Layer 28

0 50000
0.0

2.5
Layer 29

0 50000
0

1

Layer 30

0 50000
0.00

0.25
Layer 31

0 50000
0.0

0.5

Layer 32

0 50000
0.00

0.25

Layer 33

0 50000
0.0

0.1

Layer 34

0 50000
0

1
Layer 35

0 50000
0.0

0.2
Layer 36

0 50000
0.0

0.1

Layer 37

0 50000
0.0

0.5
Layer 38

0 50000
0.0

0.1

Layer 39

0 50000
0.0

0.1

Layer 40

0 50000
0.0

0.5
Layer 41

0 50000
0.0

0.1
Layer 42

0 50000
0.0

0.1

Layer 43

0 100000
0.0

0.5

Layer 44

0 100000
0.00

0.05

Layer 45

0 25000
0.0

0.1
Layer 46

0 200000
0.0

0.1

Layer 47

0 25000
0.0

0.5

Layer 48

0 25000
0.00

0.01

Layer 49

0 25000
0.000

0.005

Layer 50

0 25000
0.0

0.2
Layer 51

0 25000
0.000

0.005

Layer 52

0 25000
0.000

0.025

Layer 53

0 1000
0

5
1e 5
Layer 54

Singular vector index

|v
z|

²

Figure 21: Average absolute values of inner products between the right singular vectors and the input
of each layer in ResNet50 trained on ImageNet dataset (×106).

38

	Introduction
	Background and Preliminaries
	Notation
	Permutation Invariance
	Linear Mode Connectivity (LMC)
	Permutation Selection

	Motivating Observations
	Closeness of Two Models in Terms of Taylor Approximation
	Experimental Results

	Analysis of WM
	Analysis Based on SVD
	Differences Between Singular Values of Two Models
	Singular-Vector Alignment
	Importance of Singular Vectors in LMC

	Activation Matching
	Comparison with Straight-Through Estimator
	Straight-through Estimator (STE)
	Experimental Results of Model Merging by STE
	LMC among Three Models

	Conclusion
	Extended Related Work
	Calculation of R with Threshold
	Simple Example of thm:diffout
	Experimental Setup
	Model Training
	Permutation Search

	Discussion on Commutativity Property
	Convolutional Layers
	Notation
	Matrix Representation of Convolutional Layer
	Singular Value Decomposition and Weight Matching of Convolutional Layers

	Proofs
	Proof of thm:taylor
	Proof of thm:main
	Proof of thm:svdconv
	Proof of thm:wmconv
	Proof
	Proof of thm:diffout

	Additional Experimental results
	Learning curve of WM
	Distribution of Singular Values
	Inner Products Between Right Singular Vectors of Hidden Layers And Their Input
	Relationship with Model Width
	Dependency of Weight Decay and Learning Rate
	Activation Matching
	STE and WM
	Dependency of R on Threshold
	LMC on ResNet50 trained on ImageNet

