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ABSTRACT

Automated machine learning has been widely researched and adopted in the field
of supervised classification and regression, but progress in unsupervised settings
has been limited. We propose a novel approach to automate outlier detection
based on meta-learning from previous datasets with outliers. Our premise is that
the selection of the optimal outlier detection technique depends on the inherent
properties of the data distribution. We leverage optimal transport in particular, to
find the dataset with the most similar underlying distribution, and then apply the
outlier detection techniques that proved to work best for that data distribution. We
evaluate the robustness of our approach and find that it outperforms the state of
the art methods in unsupervised outlier detection. This approach can also be easily
generalized to automate other unsupervised settings.

1 INTRODUCTION

Outlier detection(OD) is the process of identifying data points that are significantly different from
the rest of the data. These data points can be caused by errors in the data collection process, incorrect
values, or unusual events. Outlier detection can be used to improve the quality of the data or to find
unusual events that could be interesting to different business and scientific domains . The term
”outlier detection” can be interchangeably used with ”anomaly detection”. For consistency, we will
use the term ”outlier detection” in this paper. Outlier detection has multiple applications such as
medicine (Chow & keung Tse, 1990; Ma et al., 2021b), chemistry (Egan & Morgan, 1998) and
molecular biology (Cho & Eo, 2016). Outlier detection has been a particularly hard problem. A
number of Outlier detection algorithms have been introduced in the last two decades (Aggarwal,
2013). Unsupervised outlier detection is a very challenging task with no universally good model
which works optimally on every task (Campos et al., 2015).

AutoML (Hutter et al., 2019) has shown reliable performance and benefits in model selection and
hyperparameter optimization (Hutter et al., 2019; Feurer et al., 2015; Thornton et al., 2013). The
research in Automated machine learning has been highly focused on supervised machine learning
where we can focus on the performance on the hold-out dataset to define an optimization metric
for the search algorithm which finds the optimal algorithms by iterating over the search space. This
setting is very reliable (Feurer et al., 2015) but the research on unsupervised setting is rather limited.
In recent years frameworks like MetaOD (Zhao et al., 2021) have appeared which attempt to solve
automated outlier detection via meta-learning (Vanschoren, 2018).

In this work we propose an automated framework for unsupervised machine learning tasks LO-
TUS(Learning to learn with Optimal Transport for Unsupervised Scenarios), which leverages meta-
learning (Vanschoren, 2018) and optimal transport distances (Peyré & Cuturi, 2019; Scetbon &
Cuturi, 2022). In this work we use LOTUS to perform model selection on a given unsupervised
outlier detection task. In summary, we make the following 4 contributions:

• A Meta-learner for outlier detection: We propose LOTUS: Learning to learn with Opti-
mal Transport for Unsupervised Scenarios, an optimal transport based meta-learner which
recommends an optimal outlier detection algorithm based on a historical collection of
datasets and models in a zero-shot learning scenario. Our solution can be used in cold
start settings for model selection on unsupervised outlier detection.
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• Experiments and results: We empirically evaluate LOTUS in combination with existing
state of the art methods. We demonstrate the robustness of our approach against existing
state of the art meta-learners and learners.

• Open source: We open-source the code for LOTUS for researchers to use and reproduce
our experiments. Our tools can be extended with new datasets and algorithms.

2 BACKGROUND

This section describes related work regarding Automated Machine learning for unsupervised outlier
detection, optimal transport and meta-learning.

2.1 AUTOML FOR OUTLIER DETECTION

AutoML (Hutter et al., 2019) for unsupervised outlier detection is an extremely hard problem due
lack of an optimization metric to perform algorithm selection. One can argue that the use of internal
metrics like Excess-Mass (Goix, 2016), Mass-Volume (Goix, 2016) and IREOS (Marques et al.,
2015) can make algorithm selection possible. Ma et al. (2021a) shows in their experiments that these
internal metrics are computationally very expensive and do not scale well for large datasets. This
makes it unfeasible to use these metrics in AutoML tools for most real world scenarios.

There has been recent research on AutoML for outlier detection. PyODDS and MetaOD (Li et al.,
2020; Zhao et al., 2021) are among the few tools which have been shown to automate outlier detec-
tion.

To the best of our knowledge MetaOD (Zhao et al., 2021) is the current state of the art meta-
learner for model selection on outlier detection tasks for tabular data. MetaOD uses meta-learning
as a recommendation engine using landmark meta-features and model based meta-features with
collaborative filtering (Stern et al., 2010) to perform model selection for a given task.

2.2 META LEARNING

Meta-learning or learning to learn in AutoML (Vanschoren) is the study of learning from historical
performances of machine learning models on a variety of tasks and using this knowledge to find
better models for new tasks. Meta-learning can help to speed up the model selection process and
find better architectures. Meta-learning is often proposed as a solution to cold start problem, by
initializing the hyperparameters or search space for the AutoML algorithm. This is often called
warm-starting for AutoML.

Meta-learning in existing AutoML tools: Different AutoML tools use different meta-learning
schemes to solve this cold start problem. AutoSklearn-2.0 (Feurer et al., 2020) learns pipeline
portfolios, MetaOD (Zhao et al., 2021) trains a collaborative filtering based algorithm (Stern et al.,
2010) with landmark-based and model-based metafeatures (Castiello et al., 2005), FLAML (Wang
et al., 2021) uses in-built meta-learned defaults for warm starting. MetaBu (Rakotoarison et al.,
2022) uses Fused Gromov Wasserstein with proximal gradient method on landmark meta-features
for warm-starting AutoSklearn (More discussion about LOTUS vs MetaBu is provided in the section
2.4.2).

2.3 OPTIMAL TRANSPORT AND DATASET DISTANCES

Optimal transport(OT) theory deals with the problem of finding an optimal transport map between
two probability measures, often on different metric spaces. It is closely related to Monge’s problem
(Villani, 2008), in which one searches for the optimal transport map between two given measures.

An Optimal transport problem consists of minimizing the cost of transporting mass from one dis-
tribution to another. For cost function(ground metric) between pair of points, we calculate the cost
matrix C with dimensionality n×m, the OT problem minimizes the loss function Lc(P ) := ⟨C,P ⟩
w.r.t a coupling matrix P . Most common approach with practitioners is to use a regularized ap-
proach which is computationally more efficient Lϵ

c(P ) := ⟨C,P ⟩ + ϵr(P ) where r is negative
entropy sinkhorn algorithm (Cuturi, 2013) which is computationally more efficient. A discrete OT
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problem can be defined with two finite pointclouds, {x(i)}ni=1 ,{y(j)}mj=1, x
(i), y(j) ∈ Rd, which

can be described as two empirical distributions: µ :=
∑n

i=1 aiδx(i) , ν :=
∑m

j=1 bjδy(j) . Here a
and b are the probability vectors of size n and m. In this work we are interested in the the Gromov
Wasserstein(GW) distance between these two discrete probability distributions. Gromomv Wasser-
stein allows us to match points taken within different metric spaces. This problem can be written as
a function of (a,A), (b, B) between our distributions A and B (Villani, 2008; Scetbon et al., 2022):

GW((a,A), (b, B)) = min
P∈Πa,b

QA,B(P ) (1)

where Πa,b := {P ∈ Rn×m
+ |P1m = a, PT1n = b}

the energy QA,B is a quadratic function of P which can be described as

QA,B(P ) :=
∑

i,j,i′ ,j′

(Ai,i′ −Bj,j′)
2Pi,jPi′,j′ (2)

In this work we are interested in the Entropic Gromov Wasserstein cost (Peyré et al., 2016):

GWε((a,A), (b, B)) = min
P∈Πa,b

QA,B(P )−ε H(P ) (3)

whereGWϵ is the Entropic Gromov Wasserstein cost between our distributionsA andB, and εH(P )
is the shannon entropy. The problem with Gromov Wasserstein is that it is NP-hard and the entropic
approximation of GW still has cubic complexity. To speed up the computations and use it in a realis-
tic AutoML settings we use the Low-Rank Gromov Wasserstein (GW-LR) approximation (Scetbon
et al., 2021; Scetbon & Cuturi, 2022; Scetbon et al., 2022), which reduces the computational cost
from cubic to linear time. Scetbon et al. (2022) consider the GW problem with low-rank couplings,
linked by a common marginal g. Therefore, the set of possible transport plans is restricted to those
adopting the factorization of the form Pr = Qdiag(1/g)RT . In this form Q and R are thin matrices
with dimensionality of n× r, r×m respectively and g is a r− dimensional probability vector. The
GW-LR distance is be described as:

GW-LR(r)((a,A), (b, B)) := min
(Q,R,g)∈Ca,b,r

QA,B(Qdiag(1/g)R
T ) (4)

Our primary inspiration for LOTUS comes from two different works.

1. Alvarez-Melis & Fusi (2020) proposes optimal transport dataset distance(OTDD) which
uses optimal transport to learn a mapping over the joint feature and label spaces. Alvarez-
Melis & Fusi (2020) proposed that optimal transport distances can be used as a similarity
metric between different datasets from different domains and subdomains.

2. Work of Nies et al. (2021) argues that optimal transport measures can be used as a correla-
tion measure between two random variables via transport dependency.

There have been other studies exploring the space of dataset and task similarity with distance mea-
sures. Gao & Chaudhari (2021) proposes “coupled transfer distance” which utilises optimal trans-
port distances as a transfer learning distance metric. Achille et al. (2021) explores connections
between Deep Learning, Complexity Theory, and Information Theory through their proposed asym-
metric distance on tasks.

2.4 RELATED WORKS

In this section we will discuss the difference between closest approaches to LOTUS which are
MetaOD and MetaBu. We have also added Table 1 to show how LOTUS differs from other meta-
learning approaches.

2.4.1 LOTUS VS METAOD

LOTUS and MetaOD solve the same problem of model selection problem for unsupervised outlier
detection. The major difference in LOTUS and MetaOD is meta-feature generation. LOTUS aims to
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Technique Meta-learning approach Unsupervised Tasks Use
MetaOD (Zhao et al., 2021) Metafeatures + CF Outlier detection only model selection

MetaBu (Rakotoarison et al., 2022) Supervised metafeatures +FusedGW ✗ warm-starting
AutoSklearn 2.0 (Feurer et al., 2020) Pipeline Portfolios ✗ warm-starting

FLAML (Wang et al., 2021) Built-in metafeatures ✗ warm-starting
LOTUS (Ours) Transformation+GWLR ✓ model selection

Table 1: Comparison of different meta-learning frameworks

capture the similarity of the given source and target representations via optimal transport. MetaOD
captures similarity with a combination of landmark-features and model-based features and uses
a rank-based criteria called discounted cumulative gain for model selection. MetaOD also uses
stochastic algorithms such as Isolation Forest and LODA for model-based meta-feature generation
which means that the absolute dataset similarity and ranking can differ based on the number of runs.
Our approach generalises better than MetaOD as well for different unsupervised tasks as it aims to
find similar dataset independent of task, whereas MetaOD’s similarity is highly coupled with the
task of outlier detection.

2.4.2 LOTUS VS METABU

MetaBu (Rakotoarison et al., 2022) was proposed as a solution to cold start problem in supervised
learning scenario. Rakotoarison et al. (2022) uses Fused-Gromov-Wasserstein distance with multi
dimensional scaling (Cox & Cox, 2008) by first extracting meta-features from the target representa-
tion and source representation and proximal gradient method (Xu et al., 2020). LOTUS is a solution
for unsupervised setting whereas MetaBu relies on landmark features from PyMFE (Alcobaça et al.,
2020) which are more reliable for datasets with labels. Similar to MetaOD, MetaBu setting is lim-
ited to only one task (supervised classification) as it relies on landmark-features which require
labels. MetaBu is used for warm starting not selecting the best pipline in a zero shot setting.

3 METHODOLOGY

We introduce LOTUS, Learning to learn with Optimal Transport for Unsupervised Scenario. LO-
TUS meta-learns how well different unsupervised algorithms work on prior labeled datasets. These
can be datasets where the correct labels are known, or proxy tasks. For instance, for outlier detec-
tion we can use extremely imbalanced classification tasks where examples of the smallest class are
considered outliers. More formally, we require:

• A collection of n prior labeled datasets Dmeta = {D1, ..., Dn} with test and train splits
such that Di = (Xtrain

i , ytraini ).
• A collection of n optimized algorithms A∗

i with associated tuned hyperparameters λ∗i (Use
of ∗ indicates tuned version of model/hyperparameters)for every dataset in Dmeta; A =
{A∗

λ∗
1
, ..., A∗

λ∗
n
}

3.1 META-TRAINING

In this section, we formally describe the problem of model selection for unsupervised outlier detec-
tion.
Problem Statement: Given a new dataset without any labels, our meta-learner needs to selects
an optimal algorithm with associated hyperparameters from a collection of previously evaluated
pipeline. In this setting, we cannot optimize the given model for the dataset as there are no given
labels. This problem becomes from a Combined model selection and hyperparameter optimization
problem to a zero-shot model reccomendation problem.
Given a new input dataset (i.e., detection task) Dnew = (Xnew) without any labels, Select a model
A∗

λ∗ ∈ A to employ on Xnew. Where A∗
λ∗ is a optimal model with tuned hyperparameters λ∗ for a

similar dataset to Xnew.

Problem Formulation: A Combined model selection and hyperparameter optimization problem
(Thornton et al., 2013) for a supervised learning task is as follows:
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Algorithm 1 Pseudocode for LOTUS

Inputs: Dnew,Dmeta,A
1: while Di ∈ Dmeta do
2: Oi ← ψ(ϕ(Dnew, Di)) ▷ Distance calculation
3: s← argmin

i
{O1, ...,On} ▷ Retrieval of most similar dataset

4: A∗
λ∗
new
← A∗

λ∗
s

▷ Model Selection

In equation 5, A∗
λ∗ is an optimal combination of learning algorithm from search space A with asso-

ciated hyperparameter space ΛA over k cross validation folds of dataset D where D = {X, y} with
training and validation splits. L is our evaluation measure.

A∗
λ∗ = argmin

∀Aj∈A
∀λ∈ΛA

1

k

k∑
f=1

L
(
Aj

λ,
{
Xtrain

f ,ytrain
f

}
,
{
Xval

f ,yval
f

})
(5)

The CASH problem from equation 5 relies on the validation split to optimise for the optimal config-
uration. However, in unsupervised outlier detection scenario the learning algorithm does not have
access to labels but the AutoML framework does. We do not perform k-fold CV as is not useful
in this setting. Our modified CASH formulation to select the optimal unsupervised algorithm with
access to labels is as follows:

A∗
λ∗ = argmin

∀Aj∈A
∀λ∈ΛA

L
(
Aj

λ,
{
Xtrain}

{
ytrain

})
(6)

GAMAOD: For meta-training in this work we develop GAMAOD as a solution to populate our
meta-data. GAMAOD is an extension to popular AutoML tool GAMA (Gijsbers & Vanschoren,
2021). GAMA is a general AutoML framework which allows researchers to integrate different
search spaces and search algorithms for model selection easily. More details about GAMAOD
architecture are provided in Appendix A.3

3.2 META-TESTING

Our premise is that, if a prior dataset exists that is very similar to the new dataset, then its optimal
algorithms will likely work well on the new dataset. We consider two datasets similar if they have
the same underlying data distribution, which we measure using Optimal Transport. We first require
a transformation function ϕ, the purpose of transformation function is to simply make input data
compatible to the distance function, for example if it is raw image data then a typical transformation
function is normalization of pixels, if it is dirty data then a transformation function can be a mix of
encoders and scalers. Next, we calculate the dataset similarity O based on some distance metric ψ
in equation 7.

O = ψ(ϕ(Da), ϕ(Db)) (7)

Because our distributions lie on different metric spaces, and we require computationally efficient
similarity estimates, we adopt the Low Rank Gromov-Wasserstein distance from equation 4 on these
transformed distributions, as summarized in equation 8, where r is the selected rank.

O = GW-LR(r)(ϕ(Da), ϕ(Db)) (8)

The most similar prior dataset Ds ∈ Dmeta is then the dataset with the smallest distance to the new
dataset Dnew. LOTUS then assigns the optimal configuration from A: A∗

λ∗
new

= A∗
λ∗
s

where A∗
λ∗
s

is predicted as the optimal configuration for Dnew. Meta-testing is summarized in Algorithm 1.
LOTUS framework with meta-training and meta-testing is shown in Figure 1
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Figure 1: An overview of LOTUS

4 EXPERIMENTS ON ADBENCH

For our experiments, we use ADBench (Han et al., 2022) and retrieve all tabular datasets. This
collection consists of 46 datasets. As we do not have access to multiple benchmarks we use a
leave-one-out strategy for the evaluation of our system, i.e., we take out one dataset at a time from
ADBench and use only the other datasets in the meta-data. This ensures independent meta-training
on the following datasets. We compare our approach against 7 outlier detection algorithms avail-
able in PyOD (Zhao et al., 2019) and the current state of the art meta-learner for outlier detection
MetaOD (Zhao et al., 2021). From PyOD we compare our approach with the following algorithms:
IForest (Liu et al., 2008), ABOD (Kriegel et al., 2008), OCSVM (Schölkopf et al., 1999), LODA
(Pevný, 2015), KNN (Angiulli & Pizzuti, 2002; Ramaswamy et al., 2000), HBOS (Goldstein &
Dengel, 2012).

For experimental consistency, we use the same search space in our experiments as MetaOD (A.3) to
ensure a fair comparison. We use an asynchronous evolutionary algorithm to iterate over the search
space and return the optimal pipeline.

5 RESULTS AND DISCUSSION

5.1 EXPERIMENTAL RESULTS

We use the Bayesian Wilcoxon signed-rank test (or ROPE test, Benavoli et al. (2017; 2014)) to
analyze the results of our experiments. ROPE defines an interval wherein the differences in model
performance are considered equivalent to the null value. Using this test allows us to compare model
performances in a more practical sense. We set the ROPE value to 1% for our experiments. We use
the baycomp library (Benavoli et al., 2017) to run and visualize the analyses.

5.1.1 LOTUS VS METAOD

For pairwise comparison of LOTUS and MetaOD, we use the Bayesian Wilcoxon signed-rank test
(or ROPE test Benavoli et al. (2017; 2014)). We use AUC as our performance measure and set the
ROPE value to 1%.1 Results are shown in Figure 2. We find that, based on experiments over the 46

1We use the baycomp library Benavoli et al. (2017) to run and visualize the analysis
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Estimator name p(LOTUS) p(rope) p(Estimator)
IForest 0.99954 0.0 0.00046
ABOD 1.0 0.0 0.0
OCSVM 1.0 0.0 0.0
LODA 1.0 0.0 0.0
KNN 1.0 0.0 0.0
HBOS 0.99982 0.0 0.00018
COF 1.0 0.0 0.0
LOF 1.0 0.0 0.0

Table 2: Rope testing results with LOTUS vs PyOD estimators with rope=1%

datasets, there is a 74.0 % probability that LOTUS will outperform MetaOD. Since p(LOTUS) >
p(MetaOD) LOTUS proves to be more robust. We show the per-dataset performances in Appendix
A.1.

Figure 2: ROPE test LOTUS vs MetaOD.

5.1.2 LOTUS VS INDIVIDUAL METHODS

The results of the ROPE test comparing LOTUS with individual outlier detection techniques are
shown in Table 2. LOTUS proves to be significantly better than other techniques, with default
parameters. In this case P (LOTUS) >> P (Estimator). We also include the critical difference
plot of LOTUS vs PyOD estimators in Figure 3, again showing that it performs significantly better.
The detailed experimental results are reported in appendix A.1 table 4 and Figure 4.

Figure 3: Comparison of average rank (lower is better) of methods w.r.t. performance across datasets
in ADBench.
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(a) LOTUS vs ABOD (b) LOTUS vs HBOS (c) LOTUS vs COF

(d) LOTUS vs IForest (e) LOTUS vs LODA (f) LOTUS vs KNN

(g) LOTUS vs OCSVM (h) LOTUS vs LOF

Figure 4: ROPE test result of LOTUS vs (a) ABOD (b) HBOS (c) COF (d) IForest (e) LODA (f)
KNN (g) OCSVM (h) LOF

5.2 USING OPTIMAL TRANSPORT DISTANCES AS A SIMILARITY MEASURE

In our experiments, we show that LOTUS is more robust and better than current state of the art
meta-learner MetaOD for unsupervised outlier detection tasks and other outlier detection algorithms
in default configuration.

In our method we experimentally show that using optimal transport distances like GW-LR is a
feasible approach for dataset similarity and meta-learning. We would like to emphasize that this
similarity measure should only be used as a relative similarity measure, for e.g. in our case where
we use this similarity measure to find the most similar dataset from a collection of datasets inDmeta.
To estimate to what degree datasets are similar Nies et al. (2021) proposes optimal transport based
correlation measures that can be leveraged. Our approach assumes that Wasserstein distances can
capture intrinsic properties of datasets and can capture the similarity between them, Alvarez-Melis
& Fusi (2020) also proposes their approach with optimal transport distances to provide some sort of
distance between dataset.

6 CONCLUSION AND FUTURE WORK

Model selection for unsupervised outlier detection is a challenging task. We do not have efficient
internal metrics for evaluating an algorithm without ground truth. In this work, we proposed a new
meta-learner: LOTUS, which uses optimal transport distances to capture the similarity between
datasets and uses that similarity measure to recommend pipelines from a meta-data. Through our
experiments, we demonstrate that LOTUS outperforms MetaOD and other built-in estimators in
PyOD. The LOTUS approach also enables researchers to use a simplified meta-learning framework
as compared to other landmark and model-based meta-features methods where meta-features are
highly specialized according to the domain. LOTUS comes with its own set of limitations as follows:
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1. LOTUS depends on the quality of meta-data, i.e. range of datasets and algorithms in our
case. In the worst case scenario, if there are no similar datasets in the Dmeta, LOTUS can
recommend a dataset which is not sufficiently similar to new dataset. On the other hand, it
is expected to improve as more benchmarks and datasets with different properties become
available.

2. The computation cost of GW-LR on really large datasets can still be very high. In these
cases we recommend using stratified sampling or random sampling depending on the nature
of dataset and problem.

3. Tuning rank of GW-LR can be tricky. Low rank can result in faster computation but high
loss and high rank can result in less efficient algorithm. Scetbon et al. (2022) states an
experiment where they study the affect of rank of GW-LR. This rank can also be tuned by
minimizing the loss between GW and GW-LR.

Despite the limitations we believe that our approach can be easily extended as a meta-learner to
perform model selection in other unsupervised machine learning tasks as well. These include clus-
tering, distance metric learning, density estimation and covariance estimation. This approach can
also be used as a meta-learner to warm-start neural architecture search(NAS) problems.

7 REPRODUCIBILTY STATEMENT

We opensource both LOTUS and GAMAOD with hyperparameters used for this experiment. We
also provide scripts which can be used to perform these experiment for just one dataset without
making the meta-data first(not reccomended). We aim to provide modularity to researchers therefore
we users them to save and retrieve meta-data in whatever format they want. More information
about reproducing our experiments can be found in the README.md of the supplementary code
repository. To reproduce LOTUS for other tasks and dataset, users are simply required to change the
datasets and algorithms in meta-data. The approach works out of the box for other scenarios. While
reproducing the experiments, the results can differ due to stochasticity of few algorithms.
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Dataset LOTUS MetaOD
19 landsat 0.7902 0.5931
25 musk 0.9895 0.9655
24 mnist 1.0000 1.0000
32 shuttle 0.9216 0.9163

23 mammography 0.6434 0.6477
42 WBC 0.8521 0.8655

15 Hepatitis 0.9353 0.9353
43 WDBC 0.8548 0.9671

12 fault 0.9246 0.9043
10 cover 0.9463 0.9436
34 smtp 0.2744 0.5212

11 donors 0.8064 0.8049
29 Pima 0.8804 0.7197

37 Stamps 0.9275 0.9339
44 Wilt 0.7765 0.5327

40 vowels 0.8491 0.9355
8 celeba 0.9908 0.9906
1 ALOI 0.8954 0.8957

30 satellite 0.8913 0.7890
26 optdigits 0.9996 0.9997
2 annthyroid 0.8472 0.8445
41 Waveform 0.9758 0.9413
28 pendigits 0.8597 0.9265

4 breastw 0.7466 0.7438
21 Lymphography 0.9441 0.9861

20 letter 0.9701 0.9891
39 vertebral 0.7634 0.8424

47 yeast 0.9089 0.9097
3 backdoor 1.0000 1.0000

13 fraud 0.9646 0.8904
45 wine 0.9841 0.9481

22 magic.gamma 0.9322 0.8122
9 census 0.9819 1.0000

7 Cardiotocography 0.9392 0.9378
35 SpamBase 0.9446 0.9015

46 WPBC 0.7811 0.8088
36 speech 1.0000 0.4344
6 cardio 0.9794 0.9793

31 satimage-2 0.9552 0.8100
18 Ionosphere 0.8072 0.8338
27 PageBlocks 0.7164 0.7668

5 campaign 0.9922 0.9996

Table 3: AUC scores of MetaOD vs LOTUS on ADBench

A APPENDIX

A.1 PERFORMANCES

Table 3 contains the performances of LOTUS and MetaOD on 42 datasets, we had to remove 4
datasets from this experiment because MetaOD returned invalid models for these datasets(i.e.
models with invalid values). Scores are in bold where AUC of LOTUS > MetaOD or differ by less
than a %. The dataset names are as they were in ADBench (Han et al., 2022).

Table 4 reports the auc scores over datasets from ADBench. The bold number shows scores where
LOTUS is better than all other estimators in PyOD.
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Dataset IForest ABOD OCSVM LODA KNN HBOS COF LOF LOTUS
44 Wilt 0.4719 0.5682 0.3013 0.4082 0.4720 0.2814 0.5442 0.4742 0.7765
6 cardio 0.9437 0.4985 0.9396 0.8927 0.7415 0.8653 0.5445 0.6283 0.9794

43 WDBC 0.9872 0.987241 0.9896 0.9875 0.9603 0.9989 0.7710 0.7231 0.8548
4 breastw 0.9763 0.9763 0.7786 0.9819 0.9473 0.9693 0.3813 0.3283 0.7466
42 WBC 0.9935 0.9935 0.9941 0.9959 0.9119 0.5708 0.9916 0.7547 0.8521
47 yeast 0.4310 0.4171 0.4483 0.4925 0.4136 0.4100 0.4286 0.4718 0.9089
45 wine 0.7352 0.7352 0.6816 0.9231 0.4712 0.8917 0.4122 0.3491 0.9841

5 campaign 0.692549 0.6429 0.6455 0.5664 0.6968 0.7713 0.5645 0.5569 0.9922
46 WPBC 0.5224 0.5224 0.4759 0.5621 0.4191 0.5552 0.4951 0.4862 0.7811

7 Cardiotocography 0.7524 0.5394 0.8104 0.7859 0.5825 0.6233 0.5725 0.6119 0.9392
8 celeba 0.7578 0.7578 0.761861 0.7182 0.6322 0.8059 0.3935 0.4354 0.9908
9 census 0.5981 0.5981 0.523211 0.3255 0.6506 0.6333 0.4132 0.4371 0.9819

39 vertebral 0.3777 0.3777 0.4273 0.2844 0.4171 0.2823 0.3219 0.4285 0.7634
41 Waveform 0.6697 0.6981 0.4744 0.6112 0.7821 0.6397 0.8041 0.7760 0.9758

38 thyroid 0.9796 0.9796 0.8677 0.6995 0.9511 0.9528 0.8719 0.8404 0.7910
40 vowels 0.7083 0.9567 0.5327 0.6559 0.9717 0.6461 0.8497 0.9530 0.8491
3 backdoor 0.7343 0.7343 0.8022 0.7089 0.7386 0.6654 0.7289 0.7464 1.00
32 shuttle 0.9962 0.6187 0.9874 0.9510 0.6785 0.9949 0.5576 0.5374 0.9216

31 satimage-2 0.9968 0.7626 0.9835 0.9871 0.9098 0.9859 0.4513 0.4362 0.9552
26 optdigits 0.7714 0.5255 0.5272 0.6234 0.3981 0.8528 0.4236 0.5701 0.99

1 ALOI 0.5018 0.6095 0.5328 0.5495 0.5556 0.4780 0.6355 0.6296 0.8954
35 SpamBase 0.6570 0.3907 0.5205 0.2739 0.5153 0.651507 0.4164 0.4152 0.9446

36 speech 0.4699 0.7294 0.4620 0.4485 0.4731 0.4763 0.5531 0.4863 1.00
34 smtp 0.6968 0.6702 0.0180 0.3721 0.7445 0.8786 0.8906 0.7185 0.2744

22 magic.gamma 0.7044 0.7991 0.5942 0.6359 0.8232 0.6817 0.6635 0.6684 0.9322
23 mammography 0.8594 0.8594 0.854704 0.814810 0.8596 0.8717 0.7920 0.7647 0.6434

24 mnist 0.7944 0.7503 0.8347 0.7435 0.8282 0.6190 0.7333 0.6986 1.00
20 letter 0.5815 0.8808 0.4851 0.6274 0.8671 0.5405 0.8297 0.8330 0.9701

30 satellite 0.7077 0.5380 0.6054 0.6092 0.6460 0.7681 0.5569 0.5241 0.8913
19 landsat 0.4955 0.50 0.3740 0.3823 0.5771 0.5567 0.5420 0.5268 0.7902
37 Stamps 0.9095 0.9095 0.8782 0.9445 0.7464 0.9285 0.6363 0.5249 0.9275

18 Ionosphere 0.8678 0.8678 0.765359 0.8583 0.8622 0.6674 0.8504 0.9209 0.8072
21 Lymphography 0.9970 0.9970 0.9935 0.6675 0.5128 0.9950 0.9343 0.7045 0.9441

25 musk 0.9999 0.0859 0.8186 0.9590 0.7011 1.00 0.4003 0.7045 0.9895
17 InternetAds 0.7004 0.6733 0.7100 0.5808 0.7123 0.7043 0.6939 0.6760 1.00

16 http 1.00 1.00 0.9953 0.00 0.0013 0.9946 0.5831 0.2536 0.7106
15 Hepatitis 0.7427 0.7427 0.7222 0.7728 0.4678 0.8132 0.4253 0.3346 0.9353

14 glass 0.8184 0.8184 0.4592 0.6322 0.7407 0.7917 0.8826 0.5756 0.8374
13 fraud 0.9340 0.9415 0.9143 0.7511 0.9163 0.9411 0.9145 0.9345 0.9646

11 donors 0.7942 0.7942 0.7234 0.2607 0.8299 0.7639 0.7202 0.5693 0.8064
12 fault 0.5714 0.6764 0.4944 0.4360 0.7130 0.4792 0.6121 0.6088 0.9246

2 annthyroid 0.8249 0.8249 0.6060 0.3058 0.7302 0.6915 0.7048 0.7060 0.8472
27 PageBlocks 0.8896 0.6844 0.8926 0.7532 0.7699 0.7886 0.6732 0.7019 0.7164

28 pendigits 0.9497 0.6730 0.9386 0.9511 0.7058 0.9211 0.4756 0.4501 0.8597
29 Pima 0.6600 0.6600 0.5801 0.6061 0.6856 0.7135 0.5667 0.5777 0.8804
10 cover 0.9143 0.7676 0.8864 0.8668 0.8997 0.7952 0.8702 0.8802 0.9463

Table 4: AUC Scores: LOTUS vs PyOD estimators with default configuration
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A.2 BASLINES

The 8 baslines estimators and frameworks are listed below with brief description from PyOD’s
(Zhao et al., 2019) documentation for reference here:

1. MetaOD: MetaOD is the first automated tool for outlier detection. MetaOD use collabora-
tive filtering, landmark and model based meta-features to recommend the model for given
task.

2. IForest: IsolationForest ‘isolates’ observations by randomly selecting a feature and then
randomly selecting a split value between the maximum and minimum values of the selected
feature.

3. LOF:The anomaly score of each sample is called Local Outlier Factor. It measures the
local deviation of density of a given sample with respect to its neighbors. It is local in that
the anomaly score depends on how isolated the object is with respect to the surrounding
neighborhood. More precisely, locality is given by k-nearest neighbors, whose distance is
used to estimate the local density. By comparing the local density of a sample to the local
densities of its neighbors, one can identify samples that have a substantially lower density
than their neighbors. These are considered outliers.

4. ABOD:For an observation, the variance of its weighted cosine scores to all neighbors could
be viewed as the outlying score.

5. HBOS: Histogram- based outlier detection assumes the feature independence and calcu-
lates the degree of outlier by building histograms.

6. KNN: kNN class for outlier detection. For an observation, its distance to its kth nearest
neighbor could be viewed as the outlying score.

7. COF: Connectivity-Based Outlier Factor uses the ratio of average chaining distance of data
point and the average of average chaining distance of k nearest neighbor of the data point,
as the outlier score for observations.

8. LODA: Lightweight on-line detector of anomalies detects anomalies in a dataset by com-
puting the likelihood of data points using an ensemble of one-dimensional histograms.

9. OCSVM: One class support vector machines unsupervised outlier Detection. Estimate the
support of a high-dimensional distribution.

A.3 LOTUS+GAMAOD SEARCH SPACE AND METAOD REPRODUCIBILITY

We implement the same searchspace as MetaOD’s github repository for a fair comparison 2, MetaOD
also uses all the existing datasets from ADbench. We believe that we have fairly evaluated MetaOD
against out baseline. We believe that our Benchmark setting was more challenging than the one
evaluated in Zhao et al. (2021) where it take child and parent datasets. 3

A.4 ARCHITECTURE

An overview of GAMAOD system can be found in Figure 5. GAMAOD is build on top of GAMA.
We replace search space from scikit-learn estimators to PyOD estimators. For evaluation of the
pipeline we avoid cross-validation and tune the models on the AUC score. These models are then
used in meta-data

2https://github.com/yzhao062/MetaOD/blob/master/metaod/models/base_
detectors.py

3https://github.com/yzhao062/MetaOD/blob/2a8ed2761468d2f8ee2cd8194ce36b0f817576d1/
metaod/models/train_metaod.py#L44
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Figure 5: An overview of GAMAOD

A.5 EXPERIMENTAL IMPLEMENTATION

Implementation details: We use Independent Component Analysis(ICA) from scikit-learn as our
transformation function ϕ. We use OTT-JAX library (Cuturi et al., 2022) to implement Low Rank
Gromov Wassersstein distance. For this experiment, we set the rank parameter of Low Rank Gromov
Wasserstein to 6. The model selection phase of LOTUS in our experiments is as follows: First the
datasets are transformed via ICA and then converted into JAX pointclouds geometry objects 4 and
then we turn these distributions into a quadratic regularized optimal transport problem. We input this
quadratic problem to our Gromov Wasserstein Low Rank solver which returns us the distance(cost)
between two datasets. When a new dataset is given to LOTUS, the pipeline corresponding to the
dataset with the lowest distance(except the new dataset itself) is chosen from the optimal pipeline
database.

16


	Introduction
	Background
	automl for outlier detection
	meta learning
	Optimal transport and dataset distances
	related works
	lotus vs metaod
	lotus vs metabu


	Methodology
	meta-training
	meta-testing

	experiments on adbench
	Results and discussion
	experimental results
	lotus vs metaod
	lotus vs individual methods

	using optimal transport distances as a similarity measure

	conclusion and future work
	reproducibilty statement
	Appendix
	performances
	baslines
	LOTUS+GAMAOD search space and MetaOD reproducibility
	Architecture
	Experimental Implementation


