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Abstract—The Vehicle Routing Problem (VRP) is a fundamen-
tal combinatorial optimization problem with broad applications
in logistics, supply chain management, and transportation. Tradi-
tional approaches, including exact algorithms and metaheuristics,
often struggle with scalability and computational efficiency when
applied to large-scale VRP instances. In this work, we propose a
novel Hierarchical Deep Reinforcement Learning (HDRL) frame-
work designed to tackle large-scale VRP efficiently. Our method
employs a two-level hierarchical model, where a high-level meta-
controller partitions the problem space into manageable subprob-
lems, and a lower-level controller generates high-quality routes
for these subproblems using deep reinforcement learning. This
hierarchical decomposition significantly reduces the complexity
of solving large-scale instances while maintaining competitive
solution quality. We evaluate our approach on benchmark VRP
datasets with up to 10,000 customers and compare its perfor-
mance against state-of-the-art solvers, including LKH-3 and OR-
Tools. Experimental results demonstrate that HDRL achieves
near-optimal solutions with significantly reduced computational
time, making it a promising approach for solving real-world VRP
instances at scale.

Index Terms—Vehicle Routing Problem, Reinforcement Learn-
ing, Divide and Conquer, Markov Decision Process, Hierarchical
Reinforcement Learning.

I. INTRODUCTION

Vehicle routing problem(VRP) is a well-known question in
combinatorial optimization with significant practical applica-
tion, such as supply chain management, transportation and
robotic routing. The complexity of VRP grows rapidly with
the scale of the network and the intricacy of the constraints,
classifying them as NP-hard problems that can not be solved
efficiently by traditional algorithms.

Historically, a wide range of methods from exact algorithms
to metaheuristic approaches have been employed to solve VRP.
Exact algorithms like search algorithm [1] can provide optimal
solution with an exponential time cost. Metaheuristic algo-
rithms like evolutionary algorithm [2] and ant colony system
[3] can costs much less time to find an approximate optimal
solution. However, these methods are no longer commonly
used due to the limitation of their scalability.

To overcome those limitations, recent advancements in deep
reinforcement learning (DRL) have provided new choices for
addressing VRP. Deep learning was first introduced in VRP [4]
by supervised machine learning method with a seq2seq model.
After that, reinforcement learning also shows a potential to
drastically reduce inference time for VRP.

DRL methods enable the development of policies that
learn directly from interaction with the environment, offering

a powerful alternative to classical optimization techniques.
However, directly applying DRL to VRP often struggle with
the vast and intricate action spaces involved in vehicle routing,
leading to more cost to find the optimal result. The adoption of
hierarchical deep reinforcement learning(HDRL) is motivated
by the inherent complexity and nature of multiple vehicle
routing times.By decomposing the decision-making process
into hierarchical layers, HDRL enables the high-level policy
to focus on long-term strategic planning and gives context-
specific tasks to lower-level controllers. This separation not
only enhances learning efficiency and solution scalability but
also improves the interpretability of the learned policies. These
effects make HDRL a particularly powerful approach for
solving large-scale VRP.

In this paper, we propose a novel HDRL framework tailored
for VRP. Our algorithm integrates domain-specific insights
with advanced reinforcement learning techniques to address
the scalability and adaptability challenges of traditional meth-
ods. The experiment shows that with HDRL we can signifi-
cantly scale the solvable size to 10k nodes and still remains
a very close result with former SOTA approach LKH3 [11],
[12] based on metaheuristic method. The key contributions of
our work are as follows:

o We introduce a Hierarchical Deep Reinforcement Learn-
ing (HDRL) framework specifically tailored for large-
scale VRP. By decomposing the decision-making process
into hierarchical layers, our method effectively tackles the
complexity of VRP, enabling both strategic planning and
fine-grained optimization.

o Our approach employs an adaptive and dynamic decom-
position mechanism in the upper-level model. This strat-
egy interleaves decomposition with merging, allowing
the meta-controller to continuously update its partitioning
decisions based on the evolving partial solution and the
distribution of remaining nodes, thus ensuring that sub-
problems integrate seamlessly into a high-quality overall
solution.

o We design a robust lower-level controller that leverages
state-of-the-art deep reinforcement learning techniques,
including a Transformer-based encoder-decoder architec-
ture. This model efficiently solves open-loop VRP sub-
problems with fixed endpoints, maintaining high solution
quality while operating under minimal computational
overhead.



II. RELATED WORK

In this section, we will briefly list existing VRP researches
with some related TSP work, since they share a lot of
similarities to a certain extent.

A. Reinforcement learning in VRP

Recent advances in deep reinforcement learning (DRL) have
paved the way for novel approaches to solving the Vehicle
Routing Problem. Pioneering works such as Bello et al. [5]
choosed pointer networks and policy gradient methods to
construct solutions for routing problems. Subsequent research
[6]-[8] extended these ideas, incorporating attention mecha-
nisms to better capture the spatial and sequential relationships
inherent in VRP. These methods learn to generate high-quality
routes directly from data, often outperforming traditional
methods on benchmark instances.

B. Divide and conquer in VRP

Divide and conquer method has been applied to TSP and
VRP in both traditional algorithms [9], [10] and reinforcement
learning methods [13]-[17]. Traditional algorithms often de-
compose the original large-scale problem into smaller, more
manageable subproblems by clustering customer nodes based
on geographical or demand-related criteria. These subproblems
are then solved independently, and their solutions are merged
to form a complete route for the entire network. Such methods
not only reduce computational complexity but also enable the
application of tailored heuristics and optimization techniques
to localized regions.

C. Hierarchical Reinforcement learning

Hierarchical reinforcement learning (HRL) [19] is an ad-
vanced approach in reinforcement learning that decomposes
complex tasks into a hierarchy of subtasks. In HRL, the
overall decision-making process is to split the problem into
multiple levels of abstraction. At the higher level, a high-level
policy makes strategic decisions and manage sub-tasks. At the
lower level, lower-level policies focus on executing the specific
actions needed to achieve those goals. In VRP, the nodes are
divided into separate groups by high-level manager to reduce
problem size for low-level workers. Both levels are managed
by deep reinforcement learning, which differs from former
divide and conquer methods based on other algorithms at
higher-level. Some TSP solver [15] used HRL, but no current
work has introduced it into VRP so far.

III. PROBLEM DEFINITION

Given:

o A set of customers C = {c1,ca,...,c,}, where each
customer ¢; has a specific demand d;.

o A depot ¢y where all vehicles begin and end their routes.

o A fleet of m vehicles V = {v1,va,...,v,,}, each with a
maximum capacity Q.

o A cost matrix D = [d;;] representing the distance or cost
between customer locations ¢; and c;.

The goal is to determine a set of routes R =
{ry1,r2,...,7m}, where each route rj is a sequence of cus-
tomer visits for vehicle vy, such that:

1) Each customer is visited exactly once by one vehicle.

2) The total demand on each route does not exceed the

vehicle’s capacity:

Y di<Q Vk
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3) Each route starts and ends at the depot cg.
4) The total cost across all routes is minimized:

Minimize Zm: Z dij;.
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IV. MODEL ARCHITECTURE

In this section, we proposed a two-level architecture based
on HDRL method to solve large scale VRP. The model
pipeline consists of both controller and meta controller,
which are responsible for partitioning nodes and solving sub-
problems respectively. Figure 1 illustrates the overall architec-
ture of our model.
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Fig. 1. Overall Architecture

When a new VRP instance is presented, the meta con-
troller first processes the overall network information and
strategically partitions the nodes into several clusters. Once
partitioned, each cluster is forwarded to the controller, which
uses a specialized reinforcement learning policy to solve the
corresponding sub-problem. The sub-problem solution will be
then passed back to the meta controller to merge into the final
routes. Algorithm 1 illustrates the whole model procedure.

A. High-level model

Our upper-level model is designed to break down a large-
scale VRP into manageable sub-problems that can be solved
efficiently without compromising the final solution quality. To
achieve this, we employ an adaptive and dynamic decompo-
sition strategy. By interleaving decomposition and merging
processes, our model continuously updates its strategy based
on the evolving partial solution and the current distribution
of remaining nodes. This approach enables the upper-level



Algorithm 1 Hierarchical VRP algorithm

Algorithm 2 Sub-problem Partition

Require: VRP instance V' = {vy, v2, ..
Tinit = {Ud}

Ensure: Solution routes 7 = {71, 72, . ..
1: T < T, the nearest node v of vy
2: while len(7) < N do
3:  SubProb < GenerateSubProb(V, 7)
4:  SubSol « SolveSubProb(SubProb)
5. T < MergeSubSol(SubSol, 7)

6: end while
7: return T
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policy to make informed, context-aware decisions at every
step, ensuring that the sub-solutions integrate seamlessly into
a coherent and high-quality final route.

Sub-problem generation and merging are core components
of our hierarchical framework. The action space of the upper-
level policy is continuous with two dimensions, where each
action corresponds to a coordinate in a unit grid. Given an
action Coordpred, the process begins by selecting vc, the
unvisited node closest to Coordpred, and then identifying vb,
the nearest already visited node to vc. The sub-problem is
expanded by exploring unvisited nodes from the neighborhood
of vb using a k-Nearest Neighbor (kNN) graph; this expansion
follows a breadth-first search strategy until the sub-problem
reaches a predefined maximum size (maxNum) or all nodes
have been either visited or selected. To ensure the sub-problem
remains well-integrated with the existing route, a fragment
of visited nodes centered around vb (SelectFragment) is ap-
pended, resulting in a segment with two endpoints. Solving
this segment as an open-loop VRP yields a refined path that
can be seamlessly merged with the overall solution.

We formalize this process within a Markov Decision Process
(MDP) framework, denoted as MG =< S,A,P,R,yv >
for a given VRP instance G = (V, E). In this formulation,
S represents the set of all states, each corresponding to a
possible path fragment 7, while the action space A is defined
as [0,1] x [0, 1], encompassing all points in a unit grid. The
deterministic transition function P : § x A — S captures the
evolution of the state based on both upper-level and lower-level
policies. The reward function R : S x A x S — is defined
as R(T,a, )=L(N=L(T  where L denotes the route length,
thus quantifying the improvement from taking action a. With
a discount factor «y set to 1, the MDP framework emphasizes
the cumulative benefits of each decision throughout the routing
process, ensuring that the upper-level policy is trained to gen-
erate and merge sub-problems in a manner that progressively
refines the overall solution.

B. Low-level model

The lower-level model is designed to efficiently solve VRP
with fixed nodes provided by the upper-level model. To ensure
robust and rapid solutions for these smaller subproblems,
we build on recent end-to-end approaches that have proven
effective in solving VRP. By adapting their core ideas, our

Require: k-NN graph Gynw = (V, E), the partial solu-
tion at step t 7 = {vi,vh,...}, length of the sub-
problem subLength, maximum number of unvisited nodes
maxNum, upper layer model UpperModel

Ensure: Sub-problem P = {v{,03, ..., V3 pLengm}> tWO end-

points vs, v € P

P+ 0, S, + 7t Quew < Deque()

: UpperModel inputs Gy and 7¢, outputs Coordpred

: v, is the unvisited node closest to Coordpred

vp 18 the visited node closest to v,

: Push v, to the end of Qew

: while len(P) < maxNum and Qe is not empty do

v; < PopFront(Qpew)

for each v; € NGynn(v;) and v; ¢ S, do

Push v; to the end of Qpew
Add v into S, and P

end for

: end while

. oldLength «+ subLength — len(P)

. P, < SelectFragment (7, vy, oldLength)

15 P+~ PUP,

16: vs, v < SetEndpoints(P;)

17: return P, v, v,
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lower-level policy gives high-quality routes with minimal
computational overhead, even when executed frequently. This
integration not only enhances the efficiency of solving individ-
ual subproblems but also significantly contributes to the overall
scalability and performance of our approach in tackling large-
scale VRP.

The neural network behind our lower-level model is a
Transformer, chosen for its proven effectiveness in capturing
long-range dependencies in both natural language processing
and computer vision. Our network comprises a Multi-Head
Attention module and a Multi-Layer Perceptron (MLP) layer,
augmented by a masking mechanism that eliminates invalid
actions during node selection. The model follows an encoder-
decoder architecture where the encoder leverages self-attention
layers to encode the input node sequence, and the decoder
generates the solution in an auto-regressive fashion.

The lower-level model’s decision-making process is formal-
ized as a Markov Decision Process (MDP) similar to that in
prior works. Here, the state space S comprises all possible
contexts defined by the extended encoder input. The action
space A includes all nodes in the VRP, with a dynamic
masking mechanism ensuring that visited nodes are excluded
from future selections. The transition function P deterministi-
cally updates the state based on the chosen actions, while the
reward function R assigns a reward equal to the negative cost
of the route when a state corresponding to a complete and
feasible solution is reached; otherwise, the reward remains 0.
This MDP formulation ensures that the lower-level policy is
continuously optimized to generate efficient and cost-effective
routes under the constraints imposed by the VRP framework.



V. TRAINING

In our HDRL methods, the meta controller and controller
use different reinforcement learning algorithms to tackle with
their task which are Markov Decision Processes.

A. Upper-level model

The upper-level model leverages Proximal Policy Optimiza-
tion (PPO) [19], a popular policy gradient method known
for its balance between robust performance and stable policy
updates. The optimize objective function defined as:

Lerip(0) = Eymin(r(0) Ay, clip(ri(0),1 — €, 1 4 €) Ay)]
Where r:(0) = % is the probability ratio compar-
ing the new policy 7y to the old policy 7y, ,, for action a; in
state s;, At is an estimator of the advantage at time ¢, and € is
a small hyperparameter that controls the clipping range. This
clipped objective ensures that updates do not deviate too far
from the previous policy, thereby maintaining training stability
while still allowing for effective policy improvement. Addi-
tionally, the overall loss function typically includes a value
function loss and an entropy bonus to encourage exploration,
further enhancing the robustness of the learning process in our
hierarchical framework.

B. Lower-level model

The lower-level model is designed as an end-to-end ap-
proach to solve VRP that involve a relatively small number of
nodes. It is trained using the classic REINFORCE algorithm
[20] with a shared baseline, following the methodologies
presented in prior works [21], [22] . In this setup, experience
is collected via Monte Carlo sampling, and the policy gradient
is computed as:

VoJ(0) = Ery[Vologmo(7|s)Ar, (T)]

1 N

~ Z(R(Tz) — b(5)) Vg log mo(is)

i=1

where 7 denotes a trajectory corresponding to a feasible
solution of a VRP instance, and the reward R(7;) = L(7;)
is defined as the negative cost of the route 7;. The shared
baseline b(s) is used to reduce the variance of the gradient
estimates and improve training stability by averaging returns
over trajectories generated from the same instance.

Together, these upper- and lower-level models form a hier-
archical framework that effectively tackles large-scale VRPs.
The upper-level model, optimized via PPO, is responsible
for high-level decision-making and decomposing the problem,
while the lower-level model efficiently solves the smaller sub-
problems generated during the decomposition process.

VI. EXPERIMENT

This paper focuses on the large-scale VRP problem. To
demonstrate the effectiveness of our approach, we evaluate it
on four datasets containing VRP instances with problem sizes
of 1000, 2000, 5000, and 10000 customers, denoted as Ran-
dom1000, Random2000, Random5000, and Random10000,
respectively. Each dataset contains 16 VRP instances except
Random1000, which contains 128 instances.

TABLE 1
COMPARISONS WITH OTHER SOLVERS ON VRP

Algorithm Random1000

Length (%) | Gap (%) | Time (s)
LKH-3 23.16 0.17 22.01
OR-Tools 24.23 4.82 104.34
HDRL 24.65 6.62 0.33
Algorithm Random2000

Length (%) | Gap (%) | Time (s)
LKH-3 32.64 0.49 79.75
OR-Tools 34.04 4.82 532.14
HDRL 34.88 7.39 0.72
Algorithm Random5000

Length (%) | Gap (%) | Time (s)
LKH-3 51.36 0.00 561.74
OR-Tools 53.35 3.86 5368.24
HDRL 55.01 7.10 1.66
Algorithm Random10000

Length (%) | Gap (%) | Time (s)
LKH-3 72.45 0.00 4746.59
OR-Tools 74.95 3.44 21358.66
HDRL 77.75 7.32 3.32

Table 1 presents the performance comparison between
HDRL, LKH-3, and OR-Tools across different VRP instance
sizes. HDRL achieves competitive results, producing solutions
close to LKH-3 in quality while being significantly faster.
On the Random1000 dataset, HDRL achieves an optimality
gap of 6.62% in only 0.33 seconds, while LKH-3 produces
better-quality solutions with a gap of 0.17% but requires
22.01 seconds. Similarly, on Random10000, HDRL maintains
an optimality gap of 7.32% while running in 3.32 seconds,
whereas LKH-3 achieves better solution quality but takes
4746.59 seconds.

OR-Tools, while offering an efficient solution, tends to have
a higher optimality gap than both HDRL and LKH-3. On
Random5000, OR-Tools achieves a 3.86% gap with a runtime
of 5368.24 seconds, whereas HDRL completes the task in
only 1.66 seconds with a slightly higher gap of 7.10%. The
efficiency of HDRL makes it particularly well-suited for large-
scale and real-time VRP applications.

Overall, our experimental results confirm that HDRL bal-
ances solution quality and computational efficiency effectively,
making it a strong candidate for solving large-scale VRP
instances in real-world applications.



VII. CONCLUSION

In this paper, we introduced a Hierarchical Deep Rein-
forcement Learning (HDRL) framework for solving large-
scale Vehicle Routing Problems. By leveraging a hierarchical
structure, our method effectively decomposes complex VRP
instances into smaller, more manageable subproblems while
preserving solution quality. The upper-level meta-controller
strategically partitions customer nodes, while the lower-level
controller efficiently optimizes routes within each subproblem
using a deep reinforcement learning-based approach. Our
experiments demonstrate that HDRL achieves near-optimal
solutions with substantial improvements in computational ef-
ficiency compared to traditional solvers such as LKH-3 and
OR-Tools. The scalability of our approach enables the effective
handling of VRP instances with up to 10,000 customers,
making it highly suitable for real-world logistics applications.
Future work will explore further refinements in subproblem
partitioning strategies and adaptive learning mechanisms to
enhance generalization and performance across diverse VRP
variants.
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