

000 001 002 003 004 005 006 007 TRAINING-FREE PSEUDO-FUSION STRATEGIES FOR 008 COMPOSED IMAGE RETRIEVAL VIA DIFFUSION AND 009 MULTIMODAL LARGE LANGUAGE MODELS 010 011

012 **Anonymous authors**
013 Paper under double-blind review
014
015
016
017
018
019
020
021
022
023
024
025
026

027 ABSTRACT 028

029 Composed Image Retrieval (CIR) is an emerging paradigm in content-based im-
030 age retrieval that enables users to formulate complex visual queries by combin-
031 ing a reference image with an auxiliary modality, usually text-based. This ap-
032 proach supports fine-grained search where the target image shares structural el-
033 ements with the user query but is modified according to the provided auxiliary
034 text. Conventional CIR methods rely on multimodal fusion to combine visual and
035 textual features into a joint query embedding. In this work, we propose PEFUSE
036 (for pseudo-fusion), a training-free framework that leverages pretrained models to
037 bridge modalities via generative conversion. We introduce two novel strategies:
038 uni-directional and bi-directional conversion, both implemented using diffusion
039 models and multimodal large language models. These methods reformulate CIR
040 as either intra-modal or cross-modal retrieval, bypassing the need for dedicated
041 training. Extensive experiments on standard benchmarks show that our approach
042 achieves competitive or superior performance compared to state-of-the-art meth-
043 ods, highlighting the efficacy and flexibility of our pseudo-fusion paradigm for
044 composed retrieval. Our code is available at: <https://github.com/TBA>.
045

046 1 INTRODUCTION 047

048 Traditional Content-Based Image Retrieval systems allow users to submit image-based queries,
049 bridging the so-called *semantic gap* (Smeulders et al., 2000). This constraint hinders their ability
050 to accommodate nuanced search intents that are inherently multimodal. Composed Image Retrieval
051 (CIR) addresses this limitation by enabling users to formulate a query using a reference image cou-
052 pled with an auxiliary modality to specify desired modifications, often a natural language descrip-
053 tion. This approach facilitates fine-grained retrieval, such as finding “this chair but in blue” or “the
054 same scene at sunset,” which is particularly valuable in domains like e-commerce (Baldrati et al.,
055 2022), digital asset management (Net & Gomez, 2025), and creative design (Song et al., 2025).
056

057 CIR introduces distinct technical challenges. An effective system must not only comprehend the
058 individual modalities but also model their compositional semantics, capturing how the auxiliary
059 input alters the meaning of the reference image. A prevalent solution involves multimodal fea-
060 ture fusion, in which visual and auxiliary representations are integrated into a unified embedding
061 prior to retrieval. Although recent advances in deep convolutional and transformer-based archi-
062 tectures (Vaswani et al., 2017; Dosovitskiy et al., 2021) have improved cross-modal alignment
063 and compositional reasoning, the majority of existing methods rely heavily on dedicated training
064 on large-scale, annotated CIR datasets. To relieve the restrictions, researcher either synthesize
065 triplet datasets (Li et al., 2025; Wang et al., 2025; Xing et al., 2025) or rely on existing image-text
066 pairs (Jiang et al., 2024) to train models. This dependency limits their scalability and adaptability to
067 significant domain shifts, wherein zero-shot CIR is regarded as an effective solution.
068

069 In this work, we investigate *training-free pseudo-fusion* strategies for zero-shot CIR that circum-
070 vent the need for additional task-specific fusion. We propose to pseudo-fuse the multimodal query
071 through *uni-directional* and *bi-directional conversion* techniques, leveraging recent advancements
072 in Diffusion Models (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022) and Multimodal
073 Large Language Models (MLLMs) (Liu et al., 2023; Grattafiori et al., 2024; Yang et al., 2025).
074 The uni-directional approach reformulates the multimodal query CIR task into a standard uni-modal
075

query problem by converting the reference image and auxiliary text into a synthesized image or a detailed textual description. The bi-directional approach extends this by additionally converting the candidate images in the gallery into texts, enabling a text-based matching paradigm. These strategies facilitate flexible adaptation of existing, off-the-shelf retrieval systems without requiring architectural modifications, fine-tuning, or any training.

Extensive experiments on standard CIR benchmarks demonstrate that our proposed training-free methods achieve competitive or superior performance compared to the state-of-the-art (SOTA) trained models and other training-free methods. Our findings underscore the significant potential of training-free approaches in compositional retrieval when deploying efficient CIR systems in resource-constrained or rapidly evolving domains. To the best of our knowledge, this is the first work to systematically explore and benchmark modality conversion strategies utilizing both diffusion models and MLLMs for CIR. In summary, our contributions are as follows:

- Novel training-free pseudo-fusion strategies for zero-shot CIR that seamlessly convert multi-modal queries into a single modality, enabling compatibility with existing retrieval systems.
- A systematic study and comprehensive benchmarking of both uni-directional and bi-directional modality conversion paradigms for CIR using diffusion models and MLLMs.
- A quantitative analysis to elucidate the relationship between CIR performance and key hyperparameters of both MLLMs and diffusion models.
- **A component-based computational analysis when resorting MLLMs and diffusion models when reframing CIR task to single modality retrieval tasks.**
- Empirical evidence that reformulating CIR to text-to-image retrieval is more effective than other tasks, and that our method achieves on-par or better performance than SOTA models.

2 RELATED WORK

2.1 TRAINING-DEMANDING COMPOSED IMAGE RETRIEVAL METHODS

Early CIR approaches like TIRG (Vo et al., 2019) relied on joint embedding spaces trained with contrastive objectives (van den Oord et al., 2018; Chen et al., 2020; He et al., 2020), where the fused image–text representation was directly compared against candidate image embeddings. Subsequent transformer-based methods (Jia et al., 2021; Li et al., 2022; 2023), pretrained on large-scale vision–language datasets, achieved stronger cross-modal alignment. Building on this foundation, Combiner (Baldrati et al., 2022) leverages CLIP (Radford et al., 2021) to compute integrated features from reference images and accompanying textual descriptions.

A notable line of work builds upon the idea of representing images as pseudo-word tokens within a text sequence. Inspired by Textual Inversion (Gal et al., 2023), methods such as SEARLE (Baldrati et al., 2023b), Pic2Word (Saito et al., 2023), and LinCIR (Gu et al., 2024) map reference images into token embeddings that can be processed by language models, achieving SOTA performance through joint training. Other approaches like CLIP4CIR (Baldrati et al., 2024) introduce learnable fusion operators to better capture compositional semantics.

More recently, the generative capabilities of diffusion models (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022) have also been explored for CIR. For example, CIG (Wang et al., 2025) uses a pretrained textual inversion network to convert a reference image into tokens and employs a latent diffusion model to generate a visual representation of the target image, which is then fused with the query. Despite these advances, the use of LLMs or MLLMs remains more prevalent. For example, DQU-CIR (Wen et al., 2024) fuses unified textual and visual information extracted via LLMs or captioning models. Notably, HyCIR (Jiang et al., 2024) enhances model training by incorporating contrastive learning on synthetic triplets, demonstrating the efficacy of synthetic supervision. Further advancing this approach, Feng et al. (2024) scales both negative and positive samples for contrastive learning using a MLLM. Furthermore, MRA-CIR (Tu et al., 2025) circumvents error-prone intermediate text generation by using a Multimodal Reasoning Agent to directly construct high-quality triplets from unlabeled images. Similarly, CoLLM (Huynh et al., 2025) mitigates data scarcity by synthesizing training triplets from image-caption pairs using LLMs, enabling deeper multimodal fusion.

108 A common characteristic of all the above methods is their reliance on ad-hoc training, either fine-
 109 tuning on synthetic triplets or training from scratch on existing image-text datasets. In contrast, our
 110 approach requires no training. Instead of synthesizing training data or inverting images to tokens, we
 111 convert multimodal queries into real text tokens (via MLLMs) or real images (via diffusion models),
 112 making them directly compatible with existing retrieval models. This allows implicit fusion of both
 113 modalities using purely pretrained models, in a fully training-free manner.
 114

115 **2.2 TRAINING-FREE COMPOSED IMAGE RETRIEVAL METHODS**
 116

117 Although learnable fusion methods achieve strong performance, their requirement for task-specific
 118 training limits flexibility and generalizability to new domains or modalities. To overcome these
 119 limitations, several training-free CIR methods have been proposed. CIReVL (Karthik et al., 2024)
 120 uses an LLM to refine captions (generated by a vision-language model from a reference image) by
 121 incorporating the text modification. The resulting caption is then used for text-to-image retrieval.
 122 Similarly, WeiMoCIR (Wu et al., 2025) employs an MLLM to caption candidate target images, ef-
 123 fectively reducing CIR to a matching problem. Our method extends this idea by using the MLLM to
 124 process both the reference image and the modification text, effectively using the MLLM as a fusion
 125 module. Another relevant framework, ImageScope (Luo et al., 2025), unifies various language-
 126 guided image retrieval tasks into a text-to-image retrieval setup using descriptions generated by a
 127 MLLM. However, it relies on multiple models applied in stages, leading to cumulative error propa-
 128 gation and increased inference time. In contrast, our approach uses only a single MLLM or diffusion
 129 model, resulting in a simpler yet effective pipeline.
 130

131 Unlike these prior works, which often involve multi-stage text generation or ensemble multiple mod-
 132 els, we demonstrate that a single MLLM can effectively capture interactions between the reference
 133 image and modification text to produce informative textual descriptions of the desired target. Fur-
 134 thermore, we systematically explore and benchmark alternative formulations of CIR, including con-
 135 version to one-query intra-modal or cross-modal retrieval tasks. Specifically, our work introduces
 136 training-free pseudo-fusion strategies that reformulate CIR as either text-based or image-based re-
 137 trieval. By leveraging pretrained diffusion models and MLLMs without any additional training, our
 138 approach offers a flexible, modular, and plug-and-play solution for composed image retrieval.
 139

140 **3 METHODOLOGY**

141 As depicted in Figure 1, our method employs a dual-strategy pipeline. The uni-directional conver-
 142 sion facilitates retrieval by projecting the query into a target modality (**purple dashed box**); either
 143 by using an MLLM to generate descriptive texts from images and modifications or by using a diffu-
 144 sion model to generate images from reference images and MLLM-generated texts. Specifically, we
 145 use MLLMs to convert reference images plus corresponding modifications to texts or use diffusion
 146 models to generate alternative target images based on such composed queries. The bi-directional
 147 conversion extends this by subsequently using the MLLM to also project target images into the
 148 textual modality, enabling a text-based retrieval process (**green dashed box**). Namely, we additionally
 149 generate texts based on target images, and then match with texts or images from uni-directional
 150 conversion.

151 Let \mathcal{I} and \mathcal{T} be the image and text spaces, respectively. Assume we have a retrieval model $\Psi(\cdot)$ that
 152 takes both image modality $I \in \mathcal{I}$ and text modality $T \in \mathcal{T}$ as inputs, and outputs a similarity score
 153 $s = \text{sim}(\Psi(I), \Psi(T)) \in \mathbb{R}$ based on extracted embeddings $\Psi(I) \in \mathbb{R}^m$ and $\Psi(T) \in \mathbb{R}^m$, a MLLM
 154 $f(\cdot)$ which can generate textual descriptions T_f based on arbitrary combination of images I and
 155 texts T given the proper dataset-specific prompt p , and a diffusion model $g(\cdot)$ that generates image
 156 I_g based on both images I and texts T . For CIR, a reference image $I_{ref}^i \in \mathcal{I}$ with correspond-
 157 ing text modification $T_i \in \mathcal{T}$ are paired as a paired query (I_{ref}^i, T^i) , to find the most relevant candidate
 158 images in dataset $\mathcal{D} = \{I_{tar}^1, I_{tar}^2, \dots, I_{tar}^n\}$ based on (cosine) similarity scores.
 159

160 For uni-directional conversion, we use the MLLM f to fuse (I_{ref}^i, T^i) : $T_f^i = f(I_{ref}^i, T^i, p) \in \mathcal{T}$
 161 while diffusion model g is used to synthesize images based on MLLM-generated descriptions
 T_f^i : $I_g^i = g(I_{ref}^i, T_f^i) \in \mathcal{I}$. To use pretrained retrieval models, we feed the generated texts T_f^i
 162 to retrieval model Ψ to compute cosine similarity with respect to all candidate images. $s_{ij} =$

162 $\cos(\Psi(T_f^i), \Psi(I_{tar}^j))$, Through this method, we reformulate CIR to two types of image retrieval
 163 tasks: text-to-image and image-to-image.
 164

165 For bi-directional conversion, we additionally convert target images I_{tar} to texts via MLLM given
 166 another dataset-specific prompt q : $T_f^j = f(I_{tar}^j, q)$ and compute the cosine similarity based on
 167 previously generated modalities, either by $s_{ij} = \cos(\Psi(T_f^i), \Psi(T_f^j))$ or $s_{ij} = \cos(\Psi(I_g^i), \Psi(T_f^j))$
 168 for $j \in \{1, \dots, n\}$, which reformulates the CIR tasks to text-to-text retrieval and image-to-text
 169 retrieval tasks, respectively. Based on the ranked scores, we return the top- K candidate image IDs
 170 for performance evaluation.
 171

185 Figure 1: Our proposed training-free pseudo-fusion methods for Composed Image Retrieval.
 186 Dashed green box indicates bi-directional conversion, while the dashed purple box is uni-directional
 187 conversion. T2I: text-to-image; T2T: text-to-text; I2T: image-to-text; I2I: image-to-image.
 188

189 Our method is pseudo-fusion as it relies on generative models to synthesize new data (images or
 190 text) from pairs of elements within a triplet, thereby achieving an implicit fusion of modalities. This
 191 approach is distinct from typical early fusion paradigms, which explicitly combine modalities into
 192 intermediate embeddings. In contrast, our method directly generates coherent and interpretable data
 193 in a target modality, preserving latent semantics throughout the process.
 194

4 EXPERIMENTS

197 We first state the experiment setups such as datasets and models used, and then present results after
 198 evaluating these models for different conversion methods.
 199

4.1 DATA AND MODELS

201 We employ four CIR benchmark datasets: Fashion-IQ (Wu et al., 2021), CIRR (Liu et al., 2021),
 202 CIRCO (Baldrati et al., 2023a), and GeneCIS (Vaze et al., 2023). Fashion-IQ is designed for interac-
 203 tive fashion image retrieval using natural language feedback, incorporating human-written relative
 204 captions and derived visual attributes. CIRR extends the scope to open-domain images with human-
 205 annotated modifying text, though it is known to contain a significant number of false negatives (Bal-
 206 drati et al., 2023a). To mitigate this issue, CIRCO provides multiple ground-truth images per query,
 207 with all images sourced from the MS-COCO (Lin et al., 2014) dataset. In addition, GeneCIS mea-
 208 sures models’ ability to adapt to a range of similarity conditions in terms of attributes and objects. In
 209 line with standard evaluation protocols, we report recall@ K for Fashion-IQ, CIRR, and GeneCIS,
 210 and mean average precision (mAP@ K) for CIRCO, reflecting their respective annotation structures.
 211

212 For image synthesis based on textual and visual inputs, we utilize the pretrained
 213 SDXL-InstructPix2Pix model from the diffusers library, an instruction-tuned variant of
 214 InstructPix2Pix (Brooks et al., 2023), selected for its strong generative performance. Text genera-
 215 tion is handled by Qwen2.5-VL-7B-Instruct, an advanced instruction-tuned MLLM based on
 216 Qwen (Yang et al., 2025). We later use other MLLMs and diffusion models to analyze computational
 217 overhead incurred by our pipeline in section 5. To evaluate the effectiveness of our approach, we
 218

216 employ several retrieval models as feature extractors, starting with models sharing the same back-
 217 bone architecture: CLIP (ViT-B/32) (Radford et al., 2021), OpenCLIP (ViT-B/32) (Cherti et al.,
 218 2023), and SigLIP2 (Base-Patch16) (Tschannen et al., 2025). Both CLIP and OpenCLIP adopt the
 219 softmax function in their contrastive loss formulations, with OpenCLIP additionally benefiting from
 220 training on substantially larger datasets. In contrast, SigLIP2 incorporates several enhancements to
 221 improve semantic understanding over SigLIP (Zhai et al., 2023) that was trained with sigmoid-based
 222 contrastive loss function. We later explore larger model variants to investigate scaling behavior.

223 All retrieval models operate on input images resized to 224×224 pixels, normalized to the $[0, 1]$
 224 range using model-specific normalization parameters. The diffusion model requires 768×768 pixel
 225 inputs and produces outputs at the same resolution. For consistency, all images across datasets are
 226 resized to 768×768 and normalized to $[0, 1]$ prior to diffusion processing. During image generation
 227 with the diffusion model, we use a guidance scale of 7.5, image guidance scale of 3.0, and 30 denoising
 228 steps. For text generation with the MLLM, we set the temperature to 0.1, top- P to 0.9, and top- K
 229 to 50. A sensitivity study in subsection 4.5 examines the impact of varying these hyperparameters.
 230 Our implementation uses PyTorch on a single NVIDIA A100 with 40GB memory.

231 4.2 UNI-DIRECTIONAL CONVERSION

233 As introduced in section 3, uni-directional conversion can be implemented using either MLLMs or
 234 diffusion models, and both serve as pseudo-fusion methods.

236 Table 1 presents the text-to-image and image-to-image retrieval results on the Fashion-IQ dataset.
 237 Among the compared zero-shot methods, most require training new models, with CIReVL being the
 238 notable exception. When reformulating CIR as a text-to-image retrieval task, both CLIP and Open-
 239 CLIP—utilizing the ViT-B/32 backbone—outperform CIReVL. Notably, employing OpenCLIP as
 240 the retriever surpasses the performance of most zero-shot methods that necessitate model training,
 241 with results comparable to, though slightly lower than, LinCIR, which uses larger ViT-L/14 back-
 242 bone.

243 In general, text-to-image retrieval demonstrates superior performance compared to image-to-image
 244 retrieval; the sole exception is observed with the SigLIP2 model. Across all retrieval models eval-
 245 uated, we note a significant inconsistency in performance: SigLIP2 yields the weakest results for
 246 text-to-image retrieval, yet achieves the strongest performance for image-to-image retrieval. This
 247 disparity underscores the substantial variation in semantic understanding capabilities among re-
 248 trieval models on varying tasks, highlighting their critical and impactful role in the effectiveness
 249 of CIR systems.

250 Table 1: Performance (%) comparison on **Fashion-IQ** validation split using different retrieval mod-
 251 els via PEfUSE to convert reference images and modifications to composed text or synthesized
 252 images. All the retrieval models use ViT-B/32 backbone. Best results in boldface while the second
 253 best underscored. *: reproduced results; [†]: results from original papers.

254 255 256 Method	257 258 259 260 261 262 263 264 265 266 267 Retrieval Model	258 259 260 261 262 263 264 265 266 267 Shirt		258 259 260 261 262 263 264 265 266 267 Dress		258 259 260 261 262 263 264 265 266 267 Toptee		258 259 260 261 262 263 264 265 266 267 Average	
258 259 260 261 262 263 264 265 266 267 R@10	258 259 260 261 262 263 264 265 266 267 R@50	258 259 260 261 262 263 264 265 266 267 R@10	258 259 260 261 262 263 264 265 266 267 R@50	258 259 260 261 262 263 264 265 266 267 R@10	258 259 260 261 262 263 264 265 266 267 R@50	258 259 260 261 262 263 264 265 266 267 R@10	258 259 260 261 262 263 264 265 266 267 R@50		
Pic2Word [†]	CLIP (ViT-L/14)	26.20	43.60	20.00	40.20	27.90	47.40	24.70	43.70
SEARLE-OTI*	CLIP (ViT-B/32)	24.43	41.39	19.85	40.72	24.85	45.47	23.05	42.53
SEARLE*	CLIP (ViT-B/32)	24.85	41.60	19.37	39.21	25.12	46.22	23.11	42.34
CIReVL*	CLIP (ViT-B/32)	18.40	30.82	14.25	30.45	18.00	34.33	16.88	31.87
CollM [†]	CLIP (ViT-B/32)	24.90	45.10	22.90	43.80	26.40	46.80	24.80	45.20
LinCIR*	CLIP (ViT-L/14)	29.69	48.14	22.32	45.13	30.85	52.01	27.62	48.43
SEARLE+CIG-XL turbo [†]	CLIP (ViT-B/32)	24.73	41.46	18.94	39.66	25.50	46.66	23.06	42.59
HycIR [†]	CLIP (ViT-L/14)	27.62	44.94	19.98	40.80	28.14	47.67	25.25	44.47
PEfUSE (T→I)	CLIP	20.62	37.11	13.99	32.54	19.93	39.58	18.18	36.41
	OpenCLIP	<u>28.30</u>	<u>46.19</u>	24.05	<u>44.11</u>	32.46	53.94	28.27	<u>48.08</u>
	SigLIP2	6.49	13.61	7.32	17.05	7.23	16.93	7.01	<u>15.86</u>
PEfUSE (I→I)	CLIP	8.97	17.01	4.95	13.82	7.71	16.76	7.21	15.87
	OpenCLIP	14.28	24.48	10.33	22.43	12.69	24.37	12.43	23.76
	SigLIP2	15.00	26.39	9.25	20.93	13.77	25.01	12.67	24.11

268 The retrieval performance on the CIRR and CIRCO datasets is further detailed in Table 2 and Ta-
 269 ble 3, respectively. On the CIRR dataset, for the text-to-image retrieval task, the CLIP model slightly

underperforms compared to other methods while being notably better on CIRR subsets. In contrast, SigLIP and OpenCLIP achieve significantly stronger performance, on both the CIRR and its subsets. For the image-to-image task on CIRR, all retrieval models fall behind the established baselines, underscoring the superiority of reformulating CIR as a text-to-image rather than an image-to-image retrieval task.

A similar phenomenon is observed on the CIRCO dataset, where text-to-image retrieval outperforms baseline methods, while the baselines surpass image-to-image conversion. Specifically, text-to-image retrieval using CLIP performs competitively, exceeding training-free methods such as CIREVL, though it remains behind LinCIR and HyCIR, both of which employ a larger ViT-L/14 backbone and demand training. Notably, within the same task, using OpenCLIP and SigLIP with a ViT-B/32 backbone surpasses all baseline methods by a considerable margin. This indicates that employing a more powerful retrieval model can substantially enhance system performance. Conversely, experiments on image-to-image retrieval for CIRCO demonstrate inferior results, highlighting a need for improvement in diffusion-based conversion methods. [We show results on GeneCIS in Table 7 in Appendix C, which further corroborates our analysis.](#)

The experimental results across all datasets demonstrate that our method is effective for the zero-shot CIR task, despite its simplicity and training-free nature. Although CLIP has been widely adopted in previous studies, our results indicate that it is a suboptimal choice for CIR systems compared to OpenCLIP. We further note that methods which separately generate captions via an image captioner and then combine them with modification text using a LLM (e.g., CIREVL) can be effective for simple images, such as fashion items. However, in complex scenarios like those in CIRCO, which involve a large pool of candidate images (123K), such pipelines often fail to adequately capture the intricate interactions between reference images and textual modifications. This leads to inferior retrieval performance compared to ours. Consequently, employing a MLLM proves to be both sufficient and less error-prone, outperforming lengthy, chained pipelines for complex image retrieval task.

Table 2: Performance (%) comparison on **CIRR** test split using different retrieval models via PEFUSE to convert reference images and modifications to composed texts or synthesized images. All the retrieval models use ViT-B/32 backbone. Best results in **boldface** while the second best underlined. \dagger : results from original papers; $*$: reproduced results; $—$: results not available.

Method	Retrieval Model	Recall					Recall _{subset}		
		@1	@2	@5	@10	@50	@1	@2	@3
Pic2Word †	CLIP (ViT-L/14)	23.90	—	51.70	65.30	87.80	53.76	74.46	87.08
SEARLE-OTI *	CLIP (ViT-B/32)	23.18	34.72	52.31	66.00	89.21	52.02	74.43	86.75
SEARLE *	CLIP (ViT-B/32)	23.33	34.89	52.89	66.99	89.81	53.90	76.19	87.76
CIREVL *	CLIP (ViT-B/32)	21.40	31.86	47.74	60.72	84.99	56.27	77.08	88.63
CoLLM †	CLIP (ViT-B/32)	28.60	—	—	71.80	92.70	—	—	—
LinCIR *	CLIP (ViT-L/14)	25.04	36.22	53.78	67.18	88.75	56.53	76.82	88.70
SEARLE+CIG-XL turbo †	CLIP (ViT-B/32)	25.54	—	55.01	68.24	90.72	57.52	78.36	89.35
HyCIR †	CLIP (ViT-L/14)	25.08	—	53.49	67.03	89.85	53.83	75.06	87.18
PEFUSE (T \rightarrow I)		CLIP	22.58	32.96	49.81	63.59	87.47	63.28	82.27
PEFUSE (T \rightarrow I)		OpenCLIP	34.00	47.49	65.57	77.47	93.28	71.59	88.39
PEFUSE (T \rightarrow I)		SigLIP2	<u>30.65</u>	<u>43.13</u>	<u>60.60</u>	<u>72.43</u>	<u>91.35</u>	<u>70.00</u>	<u>86.48</u>
PEFUSE (I \rightarrow I)		CLIP	2.77	9.78	23.06	35.42	64.58	29.90	52.19
PEFUSE (I \rightarrow I)		OpenCLIP	3.28	11.64	27.76	41.45	71.37	31.01	53.83
PEFUSE (I \rightarrow I)		SigLIP2	3.78	12.72	28.39	42.12	70.07	32.43	54.15

4.3 BI-DIRECTIONAL CONVERSION

Besides leveraging a MLLM to fuse the information from reference images and their corresponding modification texts into unified textual descriptions, now the same model is additionally employed to generate descriptive captions for target images. This methodology effectively reformulates the CIR task into a text-to-text retrieval problem. Together with generated images via diffusion models, CIR task is reframed as image-to-text retrieval task. The performance of text-retrieval-based conversion is presented in Appendix C and Appendix E.

We observe that reformulating CIR as a text-to-text retrieval task generally yields stronger performance compared to image-to-text retrieval. We hypothesize that this is due to artifacts in gen-

324
 325 Table 3: Performance (%) comparison on **CIRCO** test split using different retrieval models via
 326 PEFUSE to convert reference images and modification texts to composed texts or to synthesized
 327 images. All the retrieval models use ViT-B/32 backbone. Best results in boldface while the second
 328 best underscored. \ddagger : results from CIReVL; $*$: reproduced results; —: results not available.

Method	Retrieval Model	mAP@5	mAP@10	mAP@25	mAP@50
Pic2Word \ddagger	CLIP (ViT-L/14)	8.72	9.51	10.64	11.29
SEARLE-OTI*	CLIP (ViT-B/32)	7.29	7.99	9.21	9.85
SEARLE*	CLIP (ViT-B/32)	9.38	9.95	11.13	11.85
CIReVL $*$	CLIP (ViT-B/32)	10.36	10.70	11.88	12.47
CoLLM \dagger	CLIP (ViT-B/32)	12.90	13.20	—	15.00
LinCIR*	CLIP (ViT-L/14)	12.33	13.13	14.56	15.46
SEARLE+CIG-XL turbo \dagger	CLIP (ViT-B/32)	10.45	11.02	12.34	13.00
HyCIR \dagger	CLIP (ViT-L/14)	14.12	15.02	16.72	17.56
PEFUSE (T \rightarrow I)		CLIP	11.12	11.47	12.86
PEFUSE (T \rightarrow I)		OpenCLIP	16.89	17.56	19.14
PEFUSE (T \rightarrow I)		SigLIP2	18.53	19.68	21.58
PEFUSE (I \rightarrow I)		CLIP	2.39	2.57	3.08
PEFUSE (I \rightarrow I)		OpenCLIP	3.03	3.49	4.10
PEFUSE (I \rightarrow I)		SigLIP2	4.06	4.63	5.47

341
 342
 343
 344 erated images, which introduce a larger semantic gap between modalities for retrieval models,
 345 whereas texts generated by MLLMs retain more semantically meaningful information. Furthermore,
 346 as shown in subsection 4.2, both text-to-text and image-to-text retrieval underperform relative
 347 to text-to-image retrieval. However, image-to-text retrieval generally surpasses image-to-image per-
 348 formance. These findings further instantiate that reformulating CIR as a text-to-image retrieval task
 349 is generally more effective than other conversion strategies under the same settings.
 350
 351

4.4 SCALING LAW

352 Having evaluated our method’s performance using retrieval models with a ViT-B/32 backbone in
 353 subsection 4.2, a subsequent question arises regarding the potential benefits of larger backbone ar-
 354 chitectures. To investigate this, we assess the performance of OpenCLIP—selected for its superior
 355 overall performance among the three retrieval models—using ViT backbones of varying sizes across
 356 all datasets. The overall results are presented in Table 4, with detailed category-specific results for
 357 Fashion-IQ and CIRR subsets provided in Table 8 in Appendix D. As shown in Table 4, we observe
 358 a general trend of improving performance for the text-to-image retrieval task as the backbone size
 359 increases, although performance fluctuates across specific model sizes. Notably, on Fashion-IQ,
 360 Recall@10 decreases and Recall@50 saturates when using the ViT-g/14 backbone. Performance on
 361 CIRR also improves consistently with model scale, with the exception of a slight decrease in Re-
 362 call@1 and Recall@10 for ViT-g/14. A similar performance drop with ViT-g/14 is observed on the
 363 CIRCO dataset. Furthermore, this trend of scaling benefits extends beyond text-to-image retrieval;
 364 larger models consistently achieve superior performance on image-to-image, text-to-text, and image-
 365 to-text retrieval tasks as well when using our proposed methods to reformulate CIR task. **Similar**
 366 **trend holds for GeneCIS. Category results of GeneCIS can be found in Table 9 in Appendix D.**
 367

368
 369 Table 4: Scaling law when using different backbones for OpenCLIP for text-to-image retrieval on
 370 each benchmark.

Backbone	Fashion-IQ				CIRR				CIRCO				GeneCIS
	R@10	R@50	R@1	R@2	R@5	R@10	R@50	mAP@5	mAP@10	mAP@25	mAP@50	R@1	
ViT-L/14	29.49	48.37	36.17	50.07	67.13	78.72	94.17	21.69	22.99	25.07	26.14	16.85	
ViT-H/14	30.40	50.09	38.55	52.02	69.49	80.29	94.29	23.78	24.78	27.10	28.24	17.50	
ViT-g/14	30.15	50.12	38.41	52.15	70.15	80.27	94.58	22.62	23.93	26.39	27.42	17.39	
ViT-bigG/14	30.44	49.49	40.41	54.63	71.13	81.06	94.89	25.03	26.63	29.17	30.28	17.99	

378
379

4.5 SENSITIVITY ANALYSIS

380
381
382

We study how the model performance can be impacted by varying values for hyperparameters of the MLLM and the diffusion model we used. To the best of our knowledge, this is the first time that relationship between CIR performance and these hyperparameters is studied.

383

384

4.5.1 MULTIMODAL LARGE LANGUAGE MODELS

385

386

387

388

389

390

391

For MLLM, temperature controls the determinism of the LLM when generating tokens, Top- P is the probability that model selects tokens up to probability P , and Top- K sampling limits the model to consider only the k most likely tokens at each step. For consistency with previous experiments, we use 0.1 for temperature, 0.9 for top- P , 50 for top- K as base combination and only alter one parameter while the other are fixed. For example, when we investigate how temperature would impact the retrieval performance, we fix top- P to 0.9 and top- K to 50, and change values for temperature in range (0, 1). We use the average of mAP@ K for y-axis, where $K \in \{1, 5, 10, 25, 50\}$.

392

393

394

395

396

397

398

We investigate the performance of different values of hyperparameters on CIRCO validation dataset (due to its manageable size and diverse nature of images) using OpenCLIP as the retrieval model in Figure 2. From Figure 2 we inspect that retrieval performance is much impacted by temperature instead of top- P or top- K . For higher temperature, the model will produce more diverse tokens, which hurts retrieval performance when matching with images, whereas the performance of top- P and top- K are very stable overall. The figure indicates that a lower temperature and a moderate top- P with higher top- K would result in better retrieval performance.

399

400

401

402

403

404

405

406

407

Figure 2: CIR performance (%) for 3 different runs via the MLLM under varying values for hyperparameters on CIRCO validation split. We use OpenCLIP with ViT-B/32 backbone to perform text-to-image task. **Shadowed regions indicate standard deviation.**

408

409

410

411

412

413

414

415

4.5.2 DIFFUSION MODELS

416

417

418

419

420

421

422

In the inference process of diffusion models, a strong correlation exists between key hyperparameters and the properties of the synthesized output. Specifically, a larger number of inference steps correlates strongly with the enhanced photorealism of the generated images. Furthermore, increasing the image guidance scale elevates the fidelity of the output to a given reference image. Conversely, a higher text guidance scale promotes stricter adherence to the input text prompt, often at the expense of output diversity. We use 7.5 for guidance scale, 3.0 for image guidance scale, and 30 for inference steps as base combination and only change one hyperparameter and fix the rest.

423

424

425

426

427

428

429

We show the retrieval performance when using different values for hyperparameters in diffusion models on CIRCO validation dataset with and without using MLLM in Figure 3. From Figure 3 we can see that using MLLM generated descriptions for generating images improves the retrieval performance for all three hyperparameters, which emphasizes the importance of using MLLM-generated descriptions as prompts instead of the original captions from datasets. We also show qualitative results of using MLLM for diffusion models in Appendix F. From the synthesized images, we observe more distinguishable artifacts when directly using raw modifications from CIRCO dataset.

430

431

The performance gap of using and not using MLLM is increasing for the guidance scale while the gap is decreasing with more inference steps, and the performance gap is almost consistent with varying values for image guidance scale. Across three hyperparameters, image guidance scale has

the most significant impact on retrieval performance, and higher values cause much worse performance. With larger image guidance scale, the generated images would be more like original input images instead of intended target images, thus deviating from target images and leading to worse performance. This indicates the importance of low values for image guidance scale to achieve good performance when reformulating CIR task to image-to-image task. We also noticed that retrieval performance increases first and then drops for varying number of inference steps, as more inference step produces more photorealistic images but also adds more artifacts. For time efficiency, a moderate number of inference steps should be sufficient, as indicated from the figure. Finally, we acknowledge that carefully selecting values for hyperparameters is labor-intensive, as different datasets and models might perform differently for the same setting of hyperparameters.

Figure 3: CIR performance (%) for 3 different runs via diffusion models under varying values of hyperparameters on CIRCO validation split *with* and *without* using composed descriptions from the MLLM as textual conditions. Raw captions from the dataset are used when not using MLLM. We use OpenCLIP with ViT-B/32 backbone to perform image-to-image task. **Shadowed regions indicate standard deviation.**

5 COMPUTE ANALYSIS

We analyze the computational overhead of the proposed framework for the CIR task. We focus on PEFUSE (T→I) and PEFUSE (I→I), as they involve both MLLMs and diffusion models. The former leverages MLLMs to compose target descriptions, while the latter employs diffusion models, either guided by MLLM-generated descriptions or by raw modifications, to generate target images. It is worth noting that both settings involve image-retrieval-based uni-directional conversion, without converting the generated target images into text. For consistency, we use the CIRCO validation split for both tasks across experiments. Specifically, we employ the lightweight Qwen2.5-VL-3B to examine the scaling effects of MLLMs, and the similarly sized LLaVA-1.5-7B-hf (Liu et al., 2024) to investigate the impact of different training strategies. Notably, Qwen2.5-VL-7B is trained with large-scale joint vision-language pretraining, whereas LLaVA-1.5-7B-hf aligns visual features with those of a frozen LLM. In addition, we include SDXL-Turbo (Sauer et al., 2024), a stable diffusion variant with a comparable parameter scale to SDXL-InstructPix2Pix, but supporting faster inference, thereby illustrating the trade-off between inference speed and output quality. We report the GPU memory consumption of each model during inference under `torch.bfloat16`, the average inference time per sample using the corresponding model, and the pipeline time, defined as the average end-to-end processing time per sample. The latter includes dataset loading, model loading, data generation, feature extraction, and performance evaluation. We adopt OpenCLIP for feature extraction in both PEFUSE (T→I) and PEFUSE (I→I), a batch size of 8, and the same MLLM sampling hyperparameters as in subsection 4.5. We apply identical settings for SDXL-InstructPix2Pix, while for SDXL-Turbo we use 60 denoising steps and an image guidance scale of 0.5, resulting in $60 \times 0.5 = 30$ effective inference steps.¹ Performance is evaluated using the average mAP across {1, 5, 10, 25, 50}.

We show the computational information in Table 5. In Table 5, for PEFUSE (T→I), we observe that Qwen2.5-VL-7B has the best performance among three MLLMs, where the same-sized LlaVA-1.5-7B-hf performs much worse than Qwen2.5-VL-7B, which stresses the importance of choosing

¹<https://huggingface.co/stabilityai/sdxl-turbo>

proper MLLMs when converting queries to texts. Another important observations is that Qwen2.5-VL-7B surpasses Qwen2.5-VL-3B by 1.67% while being faster at inference time. On the other hand, we utilize Qwen2.5-VL-7B for PEFUSE (I→I), as it is optimal among 3 MLLMs. From Table 5, SDXL-Turbo is more than 3× faster and outperforms SDXL-InstructPix2Pix by 2.27% when using raw modifications. When employing generated descriptions, similar trends are observed. This implies that using MLLMs can produce more performance gains for both models, whereas SDXL-InstructPix2Pix benefits more (↑ 2.11%) than the SDXL-Turbo (↑ 0.75%) from generated target descriptions.

Table 5: Compute analysis of the proposed pipeline on the CIRCO validation split over 3 runs. Inference time and pipeline time are reported per sample, with mean and standard deviation. SDXL-Instr denotes SDXL-InstructPix2Pix.

Method	Models	Memory (MB)	Inference Time (s)	Pipeline Time (s)	Avg mAP (%)
PEFUSE (T→I)	Qwen2.5-VL-3B	7161	0.77 (± 0.06)	1.03 (± 0.09)	81.52 (± 0.23)
	Qwen2.5-VL-7B	15816	0.44 (± 0.04)	0.69 (± 0.07)	83.19 (± 0.36)
	LlaVA-1.5-7B-hf	13472	0.73 (± 0.05)	2.10 (± 0.16)	73.41 (± 0.47)
PEFUSE (I→I)	SDXL-Instr.	6725	4.19 (± 0.10)	5.58 (± 0.04)	57.60 (± 0.63)
	SDXL-Turbo	6725	1.27 (± 0.03)	2.12 (± 0.49)	59.87 (± 0.22)
	Qwen2.5-VL-7B + SDXL-Instr.	15816 + 6725	4.74 (± 0.16)	6.11 (± 0.05)	59.71 (± 0.11)
	Qwen2.5-VL-7B + SDXL-Turbo	15816 + 6725	1.77 (± 0.07)	2.64 (± 0.46)	60.62 (± 0.18)

6 CONCLUSION

This work represents the first systematic exploration of pseudo-fusion for both uni-directional and bi-directional modality conversion within CIR. We empirically quantify the relationship between CIR performance and the critical hyperparameters of modern generative models, and conduct computational analysis when using MLLMs and diffusion models. Our results demonstrate that the challenge of CIR can be effectively reframed by converting heterogeneous modalities into a single, unified modality. This approach enables the use of standard single-query retrieval systems, either intra-modal or cross-modal, leveraging existing high-performance models in a plug-and-play manner without training new modules. Furthermore, our analysis establishes that reformulating the CIR task as text-to-image retrieval is a more effective strategy compared to other conversion modes, and emphasizing the importance of choosing proper MLLMs and diffusion models when converting queries. The strong performance of generative models in this pseudo-fusion role underscores their potential as a powerful tool for modality unification and points to a promising future for generative, model-based fusion methods in multimodal learning.

REFERENCES

Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. Effective conditioned and composed image retrieval combining clip-based features. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022. doi: 10.1109/CVPR52688.2022.02080.

Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto Del Bimbo. Zero-shot composed image retrieval with textual inversion. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023a. doi: 10.1109/ICCV51070.2023.01407.

Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto Del Bimbo. Zero-shot composed image retrieval with textual inversion. In *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023b. doi: 10.1109/ICCV51070.2023.01407.

Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. Composed image retrieval using contrastive learning and task-oriented clip-based features. *ACM Transactions on Multimedia Computing, Communications and Applications (TOMCCAP)*, 2024. doi: 10.1145/3617597.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image editing instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2023.

540 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
 541 contrastive learning of visual representations. In *Proceedings of the 37th International Conference*
 542 *on Machine Learning (ICML)*, 2020.

543 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
 544 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
 545 contrastive language-image learning. In *IEEE/CVF Conference on Computer Vision and Pattern*
 546 *Recognition (CVPR)*, 2023. doi: 10.1109/CVPR52729.2023.00276.

547 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 548 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 549 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 550 scale. In *9th International Conference on Learning Representations (ICLR)*, 2021.

551 Zhangchi Feng, Richong Zhang, and Zhijie Nie. Improving composed image retrieval via contrastive
 552 learning with scaling positives and negatives. In *Proceedings of the 32nd ACM International*
 553 *Conference on Multimedia (MM)*, 2024. doi: 10.1145/3664647.3680808.

554 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
 555 Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
 556 textual inversion. In *The Eleventh International Conference on Learning Representations (ICLR)*,
 557 2023.

558 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey. The llama 3 herd of
 559 models. *CoRR arXiv:abs/2407.21783*, 2024.

560 Geonmo Gu, Sanghyuk Chun, Wonjae Kim, Yoohoon Kang, and Sangdoo Yun. Language-only
 561 efficient training of zero-shot composed image retrieval. In *IEEE/CVF Conference on Computer*
 562 *Vision and Pattern Recognition, CVPR*, 2024. doi: 10.1109/CVPR52733.2024.01256.

563 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
 564 unsupervised visual representation learning. In *2020 IEEE/CVF Conference on Computer Vision*
 565 *and Pattern Recognition (CVPR)*, 2020. doi: 10.1109/CVPR42600.2020.00975.

566 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances*
 567 *in Neural Information Processing Systems 33: Annual Conference on Neural Information Pro-*
 568 *cessing Systems 2020 (NeurIPS)*, 2020.

569 Chuong Huynh, Jinyu Yang, Ashish Tawari, Mubarak Shah, Son Tran, Raffay Hamid, Trishul
 570 Chilimbi, and Abhinav Shrivastava. Collm: A large language model for composed image re-
 571 trieval. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

572 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan
 573 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 574 with noisy text supervision. In *Proceedings of the 38th International Conference on Machine*
 575 *Learning (ICML)*, 2021.

576 Yingying Jiang, Hanchao Jia, Xiaobing Wang, and Peng Hao. Hycir: Boosting zero-shot composed
 577 image retrieval with synthetic labels. *CoRR arXiv:abs/2407.05795*, 2024.

578 Shyamgopal Karthik, Karsten Roth, Massimiliano Mancini, and Zeynep Akata. Vision-by-language
 579 for training-free compositional image retrieval. In *The Twelfth International Conference on*
 580 *Learning Representations (ICLR)*, 2024.

581 Haiwen Li, Delong Liu, Zhaohui Hou, Zhicheng Zhao, and Fei Su. Automatic synthesis of high-
 582 quality triplet data for composed image retrieval. *CoRR ArXiv:abs/2507.05970*, 2025.

583 Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. Blip: Bootstrapping language-
 584 image pre-training for unified vision-language understanding and generation. In *International*
 585 *Conference on Machine Learning (ICML)*, 2022.

586 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. Blip-2: Bootstrapping language-
 587 image pre-training with frozen image encoders and large language models. In *International Con-*
 588 *ference on Machine Learning (ICML)*, 2023.

594 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 595 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In *13th European*
 596 *Computer Vision Association (ECCV)*, 2014. doi: 10.1007/978-3-319-10602-1_48.

597

598 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Proceed-
 599 ings of the 37th International Conference on Neural Information Processing Systems (NeurIPS)*,
 600 2023.

601 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 602 tuning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR)*, 2024.
 603 doi: 10.1109/CVPR52733.2024.02484.

604

605 Zheyuan Liu, Cristian Rodriguez Opazo, Damien Teney, and Stephen Gould. Image retrieval on
 606 real-life images with pre-trained vision-and-language models. In *2021 IEEE/CVF International*
 607 *Conference on Computer Vision (ICCV)*, 2021. doi: 10.1109/ICCV48922.2021.00213.

608 Pengfei Luo, Jingbo Zhou, Tong Xu, Yuan Xia, Linli Xu, and Enhong Chen. Imagescope: Unifying
 609 language-guided image retrieval via large multimodal model collective reasoning. In *Proceedings*
 610 *of the ACM on Web Conference 2025 (WWW)*, 2025. doi: 10.1145/3696410.3714777.

611

612 Francesc Net and Lluis Gomez. Eufcc-cir: A composed image retrieval dataset for glam collections.
 613 In *Computer Vision – ECCV 2024 Workshops*, 2025.

614

615 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 616 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 617 Sutskever. Learning transferable visual models from natural language supervision. In *Proceed-
 618 ings of the 38th International Conference on Machine Learning (ICML)*, 2021.

619 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 620 resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer*
 621 *Vision and Pattern Recognition (CVPR)*, 2022. doi: 10.1109/CVPR52688.2022.01042.

622

623 Kuniaki Saito, Kihyuk Sohn, Xiang Zhang, Chun-Liang Li, Chen-Yu Lee, Kate Saenko, and
 624 Tomas Pfister. Pic2word: Mapping pictures to words for zero-shot composed image retrieval.
 625 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023. doi:
 10.1109/CVPR52729.2023.01850.

626

627 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
 628 tillation. In *ECCV*, 2024. doi: 10.1007/978-3-031-73016-0_6.

629

630 Arnold W.M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and Ramesh Jain.
 631 Content-based image retrieval at the end of the early years. *IEEE Transactions on Pattern Analysis*
 632 *and Machine Intelligence*, 2000.

633

634 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *9th*
 635 *International Conference on Learning Representations (ICLR)*, 2021.

636

637 Xuemeng Song, Haoqiang Lin, Haokun Wen, Bohan Hou, Mingzhu Xu, and Liqiang Nie. A com-
 638 prehensive survey on composed image retrieval. *ACM Trans. Inf. Syst.*, 2025. doi: 10.1145/3767328.

639

640 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alab-
 641 dulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier
 642 Hénaff, Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-
 643 language encoders with improved semantic understanding, localization, and dense features. *CoRR*
 644 *ArXiv:abs/2502.14786*, 2025.

645

646 Rong-Cheng Tu, Wenhao Sun, Hanzhe You, Yingjie Wang, Jiaxing Huang, Li Shen, and
 647 Dacheng Tao. Multimodal reasoning agent for zero-shot composed image retrieval. *ArXiv*
 648 *CoRR:abs/2505.19952*, 2025.

649

650 Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 651 tive coding. *CoRR arXiv:abs/1807.03748*, 2018.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 649 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
 650 *mation Processing Systems 30: Annual Conference on Neural Information Processing Systems*
 651 *(NeurIPS)*, 2017.

652 Sagar Vaze, Nicolas Carion, and Ishan Misra. Genecis: A benchmark for general conditional image
 653 similarity. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.
 654 doi: 10.1109/CVPR52729.2023.00663.

655 Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays. Composing text
 656 and image for image retrieval - an empirical odyssey. In *IEEE Conference on Computer Vision*
 657 *and Pattern Recognition (CVPR)*, 2019. doi: 10.1109/CVPR.2019.00660.

658 Lan Wang, Wei Ao, Vishnu Naresh Boddeti, and Ser-Nam Lim. Generative zero-shot composed
 659 image retrieval. In *Proceedings of the Computer Vision and Pattern Recognition Conference*
 660 *(CVPR)*, 2025.

661 Haokun Wen, Xuemeng Song, Xiaolin Chen, Yinwei Wei, Liqiang Nie, and Tat-Seng Chua. Simple
 662 but effective raw-data level multimodal fusion for composed image retrieval. In *Proceedings*
 663 *of the 47th International ACM SIGIR Conference on Research and Development in Information*
 664 *Retrieval (SIGIR)*, 2024. doi: 10.1145/3626772.3657727.

665 Hui Wu, Yupeng Gao, Xiaoxiao Guo, Ziad Al-Halah, Steven Rennie, Kristen Grauman, and Rogerio
 666 Feris. Fashion iq: A new dataset towards retrieving images by natural language feedback. In *Proceedings*
 667 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 668 2021. doi: 10.1109/CVPR46437.2021.01115.

669 Ren-Di Wu, Yu-Yen Lin, and Huei-Fang Yang. Training-free zero-shot composed image retrieval
 670 via weighted modality fusion and similarity. In *Technologies and Applications of Artificial Intel-*
 671 *ligence (TAAI)*, 2025.

672 Eric Xing, Pranavi Kolouju, Robert Pless, Abby Stylianou, and Nathan Jacobs. Context-cir: Learn-
 673 ing from concepts in text for composed image retrieval. In *IEEE/CVF Conference on Computer*
 674 *Vision and Pattern Recognition (CVPR)*, 2025.

675 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 676 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 677 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 678 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
 679 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 680 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.

681 Zhenyu Yang, Dizhan Xue, Shengsheng Qian, Weiming Dong, and Changsheng Xu. Ldm-
 682 based divergent reasoning and ensemble for zero-shot composed image retrieval. In *Proceedings*
 683 *of the 47th International ACM SIGIR Conference on Research and Development in Information*
 684 *Retrieval (SIGIR)*, 2024. doi: 10.1145/3626772.3657740.

685 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov 0003, and Lucas Beyer. Sigmoid loss for
 686 language image pre-training. In *IEEE/CVF International Conference on Computer Vision (ICCV)*,
 687 2023. doi: 10.1109/ICCV51070.2023.01100.

688

689

690

691

692

693 **A LIMITATIONS AND FUTURE WORK**

694

695 While our method demonstrates promising performance, and be highly compatible with techniques
 696 like LDRE (Yang et al., 2024) that further enhance the CIR performance, it is subject to several
 697 challenges inherent to its design, which at the same time present opportunities for future research.
 698 First, the integration of diffusion models and MLLMs for the pseudo-fusion of modalities can lead
 699 to the accumulation of biases and the propagation of errors through the pipeline. Consequently,
 700 chaining multiple models can be error-prone and presents a significant challenge for optimizing CIR
 701 performance. Second, our method considers non-preprocessed user-provided text modifiers as inputs
 to the MLLM. We posit that performance could be enhanced through advanced text paraphrasing,

structured formatting, or prompt engineering strategies. However, such techniques must be carefully designed to mitigate the inherent risk of LLM hallucinations. Third, diffusion models and MLLMs are highly sensitive to their respective hyperparameters, nevertheless, tuning these parameters is a labor-intensive process that may lack generalizability across diverse datasets.

Based on these limitations, we identify several promising directions for future work. Efforts could focus on developing robust integration techniques to minimize error propagation in multi-model pipelines and on leveraging more powerful yet lightweight foundation models. Furthermore, considering more complex scenarios remains a compelling long-term goal. For example, compositions involving multiple input images, longer text narratives, or additional modalities like video, can be investigated. Another promising avenue is to explore iterative, multi-round fusion of images and texts to generate progressively more refined and more accurate descriptions. Finally, we realize such conversion paradigms cause latency, therefore, to massively deploy interpretable CIR systems as such, well-performed, and light-weighted models should be developed.

B DATASETS

Table 6 shows the details of each dataset we used in our experiments. Due to broken links in the Fashion-IQ dataset, we are missing some images comparing to the original dataset. Due to this fact, we reproduce some results on the data we obtained. CIRCO, CIRCO, and GeneCIS datasets are the same as the original ones.

Table 6: Public benchmarks used in our experiments. We use the validation split for FashionIQ and test splits for CIRCO, CIRCO, and GeneCIS.

Dataset	# of Queries	# of Candidates
Fashion-IQ (Shirt)	1940	6181
Fashion-IQ (Dress)	1859	3648
Fashion-IQ (Toptee)	1867	5261
CIRCO	800	123403
CIRCO	4148	2315
GeneCIS (Focus Attr)	2000	20000
GeneCIS (Change Attr)	2112	31680
GeneCIS (Focus Obj)	1960	29400
GeneCIS (Change Obj)	1960	29400

C RESULTS ON GENECIS

We show the experiment results on GeneCIS in Table 7. From the table, we find text-to-image still performs the best while other conversion modes still be competitive with the baselines.

D SCALING LAW ON CATEGORIES OF FASHION-IQ AND CIRR SUBSETS

We report results of scaling law for each category of Fashion-IQ dataset and the subsets of CIRR in Table 8 and that of GeneCIS in Table 9.

E TEXT RETRIEVAL RESULTS

Formerly, we reformulated the CIR to either image-to-image retrieval via diffusion model or text-to-image retrieval via MLLM. Now, we show the results when reformulating CIR to text retrieval tasks with additional conversion on targeting images using MLLM. We report results in Table 10, Table 11, and Table 12, respectively.

F QUALITATIVE RESULTS USING MLLM FOR DIFFUSION MODELS

We show the superiority of generated images based on MLLM-generated texts over raw captions for CIRCO validation split in Figure 4 and Figure 5. It can be observed that using raw captions to

756

757 **Table 7: Performance (%) comparison on **GeneCIS** test split using different retrieval models via**
 758 **PEFUSE to convert reference images and modification texts to composed texts or to synthesized**
 759 **images. All the retrieval models use ViT-B/32 backbone. Best results in boldface while the second**
 760 **best underscored. \dagger : results from original papers.**

761

Method	Retrival Model	Focus Attribute			Change Attribute			Focus Object			Change Object			Average
		R@1	R@2	R@3	R@1	R@2	R@3	R@1	R@2	R@3	R@1	R@2	R@3	
Pic2Word \dagger	CLIP (ViT-L/14)	15.65	28.16	38.65	13.87	24.67	33.05	8.42	18.01	25.77	6.68	15.05	24.03	11.16
SEARLE \dagger	CLIP (ViT-B/32)	<u>18.90</u>	30.60	41.20	13.00	23.80	33.70	12.20	23.00	33.30	13.60	23.80	33.30	14.40
CIReVL \dagger	CLIP (ViT-B/32)	17.90	29.40	40.40	14.80	25.80	35.80	14.60	24.30	33.30	16.10	27.80	37.60	15.90
LinCIR \dagger	CLIP (ViT-L/14)	16.90	29.95	41.45	16.19	<u>27.98</u>	<u>36.84</u>	8.27	17.40	26.22	7.40	15.71	25.00	12.19
LinCIR+CIG-XL turbo \dagger	CLIP (ViT-L/14)	16.80	29.70	40.90	<u>15.91</u>	28.88	37.45	8.37	17.35	25.10	7.86	15.46	24.29	12.24
PEFUSE (T \rightarrow I)	CLIP	18.20	<u>31.15</u>	41.85	14.54	25.76	35.89	13.67	25.26	34.90	17.40	29.03	38.67	15.95
	OpenCLIP	19.55	31.95	43.70	14.73	26.28	36.51	<u>17.96</u>	<u>28.27</u>	<u>38.06</u>	16.73	<u>30.97</u>	<u>41.33</u>	<u>17.22</u>
	SigLIP2	17.00	29.35	39.65	14.63	26.70	36.17	18.27	29.34	38.27	19.59	31.58	42.24	17.37
PEFUSE (I \rightarrow I)	CLIP	15.90	27.15	37.50	11.03	20.36	27.60	9.18	18.88	27.35	8.16	17.60	27.65	11.07
	OpenCLIP	17.60	30.65	41.70	11.22	21.07	29.36	10.41	19.90	28.42	9.08	18.83	28.06	12.08
	SigLIP2	17.95	29.15	40.00	11.17	21.69	30.21	10.20	19.49	27.91	9.90	20.71	30.71	12.31
PEFUSE (T \rightarrow T)	CLIP	16.55	28.80	39.65	10.18	20.45	29.02	14.85	24.44	33.27	12.30	23.98	32.60	13.47
	OpenCLIP	16.60	30.90	<u>41.95</u>	12.26	22.44	32.81	16.53	27.35	35.87	16.17	27.91	37.96	15.39
	SigLIP2	14.60	25.75	35.65	9.42	17.95	25.95	11.84	20.00	28.37	11.02	19.64	29.44	11.72
PEFUSE (I \rightarrow T)	CLIP	17.45	30.70	41.00	10.94	21.07	30.45	10.97	19.74	28.16	11.58	20.82	29.64	12.74
	OpenCLIP	17.45	30.45	41.75	10.84	21.40	31.20	11.84	21.89	30.77	11.22	21.07	30.26	12.84
	SigLIP2	17.40	29.60	39.80	9.90	20.69	31.11	11.22	20.61	28.78	10.51	19.80	29.54	12.26

774

775

776

777 **Table 8: Scaling law on each category of **Fashion-IQ** and **CIRR** subsets using OpenCLIP for text-**
 778 **to-image task.**

779

Backbone	Shirt		Dress		Toptee		CIRR		
	R@10	R@50	R@10	R@50	R@10	R@50	R _{subset} @1	R _{subset} @2	R _{subset} @3
ViT-L/14	29.54	47.01	25.23	43.73	33.69	54.37	73.49	88.82	95.08
ViT-H/14	30.41	47.22	26.90	47.71	33.90	55.33	74.41	89.23	95.33
ViT-g/14	30.52	48.87	25.12	46.05	34.82	55.44	74.15	89.57	95.45
ViT-bigG/14	31.39	47.32	25.12	45.56	34.82	55.60	75.90	89.37	95.59

785

786

787

788 **Table 9: Scaling law on each category of **GeneCIS** using OpenCLIP for text-to-image task.**

789

Backbone	Focus Attribute			Change Attribute			Focus Object			Change Object		
	R@1	R@2	R@3	R@1	R@2	R@3	R@1	R@2	R@3	R@1	R@2	R@3
ViT-L/14	17.85	30.30	41.90	14.25	27.27	37.12	16.63	27.50	38.21	18.67	31.02	40.61
ViT-H/14	19.10	31.35	43.50	15.58	27.18	37.97	17.50	28.16	37.09	17.81	29.59	39.54
ViT-g/14	19.25	32.05	42.10	15.77	27.94	37.83	17.35	27.50	37.24	17.19	29.69	39.39
ViT-bigG/14	19.00	31.15	42.95	16.57	28.79	39.44	17.55	27.91	37.45	18.83	30.77	40.87

795

796

797

798 **Table 10: Performance (%) comparison on **Fashion-IQ** validation split using different retrieval**
 799 **models when additionally converting targeting images to texts. All retrieval models use ViT-B/32**
 800 **backbone.**

801

Method	Retrieval Model	Shirt		Dress		Toptee		Average	
		R@10	R@50	R@10	R@50	R@10	R@50	R@10	R@50
PEFUSE (T \rightarrow T)	CLIP	14.33	25.57	8.82	20.55	16.01	29.57	13.06	25.23
	OpenCLIP	16.39	26.96	13.23	27.92	19.39	34.33	16.34	29.74
	SigLIP2	2.53	5.88	1.72	5.38	3.05	7.61	2.43	6.29
PEFUSE (I \rightarrow T)	CLIP	10.67	20.93	5.16	16.41	8.94	20.03	8.26	19.12
	OpenCLIP	14.28	26.55	8.18	19.96	12.32	25.44	11.59	23.98
	SigLIP2	8.61	17.27	5.59	15.33	8.94	19.34	7.72	17.31

809

810
811 Table 11: Performance (%) comparison on **CIRR** test split using different retrieval models when
812 additionally converting targeting images to texts. All retrieval models use ViT-B/32 backbone.

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	Method	Retrieval Model	Recall					Recall _{subset}		
			@1	@2	@5	@10	@50	@1	@2	@3
PEFUSE (T→T)	CLIP	21.81	31.13	45.06	56.72	78.51	59.47	79.66	90.48	
	OpenCLIP	30.65	42.96	58.99	70.68	89.25	69.45	86.00	93.81	
	SigLIP2	16.07	24.19	37.40	47.81	68.82	52.77	72.39	84.65	
PEFUSE (I→T)	CLIP	6.80	13.76	28.27	42.12	72.27	36.12	57.83	74.80	
	OpenCLIP	7.40	15.86	31.71	45.16	74.29	36.10	58.72	75.47	
	SigLIP2	7.52	14.12	26.82	39.13	67.49	34.41	56.63	74.41	

Table 12: Performance (%) comparison on **CIRCO** test split using different retrieval models when additionally converting targeting images to texts. All retrieval models use ViT-B/32 backbone.

Method	Retrieval Model	mAP@5	mAP@10	mAP@25	mAP@50
PEFUSE (T→T)	CLIP	7.71	7.97	8.76	9.26
	OpenCLIP	11.52	11.86	13.07	13.71
	SigLIP2	6.68	6.56	7.14	7.48
PEFUSE (I→T)	CLIP	3.89	4.35	4.88	5.29
	OpenCLIP	4.10	4.62	5.26	5.74
	SigLIP2	3.65	3.84	4.40	4.78

generate images incurs more distinguishable artifacts for both diffusion models, and SDXL-Turbo-generated images has more artifacts than those of SDXL-InstructPix2Pix.

G PROMPTS

We show the prompts used for MLLMs when generating composed descriptions based on reference images and text modifications. When using the prompts, images are converted to base64 format and then insert into the prompts. We stress that MLLMs can also be employed to generate multiple texts from different aspects or views per query like in LDRE Yang et al. (2024), which further enhances CIR performance at the cost of extra computational overheads.

Fashion-IQ

You are an expert at visual perception and imagination of fashion items. Given a reference image of fashion items and modification instructions, mentally apply the changes and produce an accurate and complete natural-language description of the resulting fashion items. The modifications may describe direct attributes (e.g., “solid white with buttons”), comparisons (e.g., “longer sleeves,” “lighter in color”), combined attributes (e.g., “black with a red cherry pattern and deep V neckline”), or negations (e.g., “no lace design”). Image: `base64_image`. Here are the modification instructions: `caption`. Focus on the fashion item and its attributes such as type, color, pattern, material, shape, fit, and style details. Ignore people and background from the image. Avoid imaginary things. Be specific and objective so that I can find targeting images based on your description solely without knowing the reference image or modification instructions. Do not use vague comparative terms like ‘same/different/smaller/larger/shorter/longer/unchanged’, etc. Instead, you should specify these differences clearly, like: another color instead of red (if no specific targeting color is mentioned), and a clear sky (if mentioned) instead of unchanged sky, etc. Now, describe how the final fashion item looks after applying the modifications. Write in 1 to 3 coherent sentences.

864
865
866
867
868869
870
871
872
873
874
875
876877
878
879
880
881
882
883
884885
886
887
888
889
890
891
892893
894
895
896
897
898
899
900

(a) With raw captions.

(b) With MLLM-generated descriptions.

914 Figure 4: Qualitative results of **SDXL-InstructPix2Pix**-generated images with Qwen2.5-VL-7B-
915 generated descriptions and with raw captions from CIRCO validation split. We use 3.0 for image
916 guidance scale, 7.5 for guidance scale, and 30 denoising steps.
917

918
919
920
921
922923
924
925
926
927
928
929
930931
932
933
934
935
936
937
938939
940
941
942
943
944
945
946947
948
949
950
951
952
953
954955
956
957
958
959
960
961
962963
964
965
966
967

(a) With raw captions.

(b) With MLLM-generated descriptions.

968
969
970
971
Figure 5: Qualitative results of **SDXL-Turbo**-generated images with Qwen2.5-VL-7B-generated descriptions and with raw captions from CIRCO validation split. We use 0.5 for strength, 0.0 for guidance scale, and 30 denoising steps.

972
973**CIRR**

You are an expert at visual imagination of real-world scenes. Given a reference image and modification instructions, mentally apply the modifications to the reference image and describe the resulting image in clear, complete English. Apply the modifications exactly as described, and ensure the final description reflects the scene after the changes. The modifications may include: 1. Cardinality: adjusting the number of objects (e.g., “only one bird remains”). 2. Addition: adding new objects or attributes (e.g., “add a red chair in the corner”). 3. Negation: removing elements (e.g., “remove the table”). 4. Direct Addressing: ensuring specific mentioned objects are clearly included. 5. Compare & Change: replacing one attribute with another (e.g., “same sofa but in leather”). 6. Comparative Statement: relative size, quantity, or intensity changes (e.g., “a larger group of people”). 7. Conjunction Statements: multiple modifications combined (e.g., “remove the tree and add two benches”). 8. Spatial Relations & Background: modifying positions, layout, or setting (e.g., “change the background to a beach”). 9. Viewpoint: adjusting perspective or framing (e.g., “zoom out to show the whole scene”). Image: `base64_image`. Here are the modification instructions: `caption`. Focus on the elements (like objects, people, and animals), their attributes (like color, size, shape, and quantity), spatial relations, and background. Avoid imaginary details and unnecessary repetitions. Be specific and objective so that I can find the targeting image from an image gallery based on your description solely without knowing the reference image or modification instructions. Do not use vague comparative terms like ‘same/different/smaller/larger/shorter/longer/unchanged’, etc. Instead, you should specify these differences clearly, like: another color instead of red (if no specific targeting color is mentioned), and a clear sky (if mentioned) instead of unchanged sky, etc. Write in 1 to 3 coherent sentences in English. Now, describe how the final image looks after applying the modifications.

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001**CIRCO**1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

You are an expert at visual imagination of real-world scenes. Given a reference image and modification instructions, mentally apply the modifications and produce an accurate, detailed description of the resulting scene. Apply the modifications exactly as described, and describe the final scene after the changes. The modifications may involve: 1. Cardinality: adjusting the number of objects (e.g., “has two boxes”). 2. Addition: introducing new objects or attributes (e.g., “a child under the umbrella”). 3. Negation: removing elements (e.g., “shows no bike”). 4. Direct Addressing: ensuring a specific object is present (e.g., “next to a window”). 5. Compare & Change: altering attributes (e.g., “different color,” “surrounded by flowers”). 6. Comparative Statements: relative size, number, or intensity (e.g., “more stickers,” “larger crowd”). 7. Conjunction Statements: multiple edits at once (e.g., “surrounded by snow and trees are more bare”). 8. Spatial Relations & Background: positioning or environment changes (e.g., “skyscrapers in the background”). 9. Viewpoint: changes in perspective or framing (e.g., “shot from above”). Image: `base64_image`. Here are the modification instructions: `caption`. Focus on the objects, people, animals, attributes (color, size, shape, quantity), spatial relations, and background context. Be specific and objective. Avoid imaginary details not supported by the reference image or the modification. Do not use vague comparative terms like ‘same/different/smaller/larger/shorter/longer/unchanged’, etc. Instead, you should specify these differences clearly, like: another color instead of red (if no specific targeting color is mentioned), and a clear sky (if mentioned) instead of unchanged sky, etc. Write 1 to 3 complete and coherent sentences so that I can find targeting images based on your description solely without knowing the reference image or modification instructions. Now, describe how the final image looks after applying these modifications.

1026
1027**GeneCIS**

1028 You are an expert at visual imagination of real-world scenes. Given a reference image
1029 and modification instructions, you should distinguish the objects and their attributes from
1030 the reference image, and then mentally apply the modifications to the reference image,
1031 and describe the objects and their attributes in the final image after the changes. Image:
1032 `base64_image`. Here are the modification instructions: `caption`. Avoid imaginary
1033 details not supported by the reference image or the modification. Write 1 to 3 complete
1034 and coherent sentences so that I can find targeting images based on your description
1035 solely without knowing the reference image or modification instructions. Now, describe
1036 the objects and their attributes after applying the modification.

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079