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Abstract

We propose a data-driven approach to analyz-
ing query complexity in Video Question Answer-
ing (VideoQA). Previous efforts in benchmark
design have relied on human expertise to de-
sign challenging questions, yet we experimen-
tally show that humans struggle to predict which
questions are difficult for machine learning mod-
els. Our automatic approach leverages recent ad-
vances in code generation for visual question an-
swering, using the complexity of generated code
as a proxy for question difficulty. We demon-
strate that this measure correlates significantly
better with model performance than human esti-
mates. To operationalize this insight, we propose
an algorithm for estimating question complexity
from code. It identifies fine-grained primitives
that correlate with the hardest questions for any
given set of models, making it easy to scale to
new approaches in the future. Finally, to fur-
ther illustrate the utility of our method, we ex-
tend it to automatically generate complex ques-
tions, constructing a new benchmark that is 1.9
times harder than the popular NExT-QA.

1. Introduction

Humans can effortlessly reason about activities, whether
that reasoning requires understanding space and time,
cause and effect, or fine-grained details and high-level con-
text (Decety & Grezes, 1999; Decety et al., 1997; Wurm
& Caramazza, 2022; Aflalo et al., 2020). This versatility
allows us to function effectively in dynamic environments,
yet it simultaneously complicates our ability to assess what
is hard for machines. Consider the two video-question pairs
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shown in Figure 1 (top). In our study, human subjects over-
whelmingly perceive the question on the right as the more
complex to answer, but evaluating a variety of state-of-the-
art VideoQA models (Yu et al., 2023a; Wang et al., 2022a;
Suris et al., 2023; Fu et al., 2021) shows that the question on
the left presents a significantly greater challenge for them.

Experts might assume they would perform better at this
task, but the history of VideoQA benchmarks suggests oth-
erwise. Despite authors’ best efforts, studies show most
datasets are dominated by questions solvable by naive,
single-frame baselines (Buch et al., 2022; Huang et al.,
2018; Liu et al., 2021). Although many attempts have been
made to address this limitation, they predominantly adopt
a top-down approach. These works start from an expert
hypothesis of what is hard and validate this assumption by
evaluating models on samples that specifically target the
identified skill (Xiao et al., 2021; Mangalam et al., 2023).
While this has led to some progress, such static, heuristic-
based definitions of complexity are inherently myopic.

In this work, we propose a bottom-up approach instead that
discovers human-interpretable insights about the sources of
complexity for VideoQA models from the data. To this end,
we capitalize on a recent large language model (LLM)-
based code generation paradigm (Suris et al., 2023; Gupta
& Kembhavi, 2023; Subramanian et al., 2023), which pro-
duces modular executable programs to answer natural lan-
guage queries. While this approach has shown promise for
zero-shot VideoQA (Suris et al., 2023; Ge et al., 2024), we
are not interested in its task performance per se. Instead,
we use its rich, structured intermediate representations—
programs, as shown in Figure 1 (bottom)—to capture the
elusive complexity of the original questions.

Specifically, we begin by collecting visual programs gen-
erated by recent methods (Suris et al., 2023; Ge et al.,
2024) on the validation set of the challenging NExT-QA
benchmark (Xiao et al., 2021), together with predictions
of a large collection of diverse algorithms. We then cal-
culate several standard structural complexity metrics (Mc-
Cabe, 1976) for these programs and collect human judg-
ments for a subset of the dataset. Intriguingly, our analysis
demonstrates that, despite the programs being imperfect,
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Query: What does the dog do after letting go of the bone?

for frame in video:
if frame.simple ga("is the dog letting go of the bone?"):
let_go_started = True
elif let_go_started:
frame_after_started = frame
break
descrintion = frame after started.caption()

Query: Where is this?

middle_frame = video.get frame(video.num frames // 2)
middle_caption = middle_frame.caption()

location = middle_frame.classify location()

answer = answer_question(question, middle_caption, location)

Human Estimate: Easy!

Human Estimate: Hard!

CodePlexity Estimate: Hard

CodePlexity Estimate: Easy
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Figure 1. Humans struggle to judge which questions present higher challenges for machine learning models. In our study, the question
on the left is universally perceived as being easier than the one on the right, which is inversely correlated with the models’ performance.
We show that the complexity of the corresponding visual program can serve as a much more reliable predictor.

standard code complexity metrics correlate better with ma-
chine learning models’ performance than human estimates
(see Figure 3). Moreover, improvements in code generation
result in stronger corelation (Figure 19), and these observa-
tions generalize between benchmarks (Figure 20).

We then propose CodePlexity — a novel algorithm for es-
timating question complexity from code that takes into ac-
count the content of the program, in addition to its structure
(Section 3.2). In particular, it learns to correlate individual
subroutines with models’ performances, effectively mining
for human-interpretable patterns that summarize the error
modes of any given set of models. Crucially, like any data-
driven approach, our CodePlexity metric is easy to extend
to new models and datasets, ensuring sustained progress.
This is in stark contrast to the static, heuristic-based defini-
tions of complexity that are dominant in the field.

Finally, to further demonstrate the utility of our analysis
tool, we design an algorithm for automatically generating
challenging questions for any given collection of videos in
Section 3.4. In particular, our approach takes as input a
compact description of a video and uses an LLM (OpenAl,
2023a) to generate question candidates first. We then gen-
erate visual programs for each question and use our code-
based metric to select the hardest subset. We evaluate sev-
eral zero-shot VideoQA methods on the resulting bench-
mark and observe a 1.9 x gap in performance compared to
existing datasets like NExT-QA (Xiao et al., 2021).

To summarize, our contributions are as follows: (1) We
demonstrate that generated code complexity is a robust,
data-driven metric of question complexity in VideoQA,
generalizing across code generation methods and datasets;
(2) We present CodePlexity, an adaptable tool for evalu-
ating model-specific challenges in VideoQA, identifying
common failure modes and providing actionable insights
for future research; (3) We use CodePlexity to automati-
cally construct CodePlex-QA — a novel benchmark that is
1.9 times harder than the popular NExT-QA.

2. Related Work

Large single-stage models. Current methods for video-
language understanding explores various modeling strate-
gies. HGA (Jiang & Han, 2020) uses Graph Convolutional
Networks (GCNs) to align video and language. Mer-
lot (Zellers et al., 2021) leverages ASR-captioned videos
for self-supervised training. VIOLET (Fu et al., 2021) em-
ploys dVAE (Van Den Oord et al., 2017) for masked video-
text pretraining, evaluated on VideoQA and text-to-video
retrieval. Masked space-time autoencoders, such as Times-
Former (Bertasius et al., 2021) and VideoMAE (Feichten-
hofer et al., 2022), focus on action recognition. mPLUG-
2 (Xu et al., 2023) unifies image- and video-language
tasks with task-specific modules. More recently, large
language model (LLM)-based approaches, such as Tar-
sier (Wang et al., 2024), LLaVA-NeXT (Liu et al., 2024),
and VideoChat2 (Maaz et al., 2024), explore unified video-
language modeling by extending the language model with
visual adapters. Similarly, SeViLA (Yu et al., 2023a) fol-
lows this LLM-based paradigm but adds an additional stage
for frame selection, extending the select-then-answer ap-
proach popularized by ATP (Buch et al., 2022).

Code generation models. Recent works address frame se-
lection and question answering via code generation, lever-
aging text-to-code models like Codex (Chen et al., 2021).
VisProg (Gupta & Kembhavi, 2023) decomposes natural
language queries into compositional programs using zero-
shot pretrained models. ViperGPT (Suris et al., 2023) gen-
erates and executes Python code via a vision-API prompt,
achieving state-of-the-art results without additional train-
ing. CodeVQA (Subramanian et al., 2023), a concurrent
work, specializes in single-frame QA with a smaller APIL
RVP (Ge et al., 2024) introduces a recursive strategy to
break down complex queries into subproblems, enhancing
flexibility. Earlier models (Andreas et al., 2016; Johnson
et al., 2017b; Kim et al., 2018; Hu et al., 2017; Yi et al.,
2018) integrated code generation through supervised learn-
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ing or reinforcement learning.

Complexity estimation. Prior work has proposed ways to
estimate complexity for other settings and modalities. In
NLP, text complexity is often approximated by length (Pla-
tanios et al., 2019; Spitkovsky et al., 2010; Tay et al., 2019),
with variations including conjunction count (Kocmi & Bo-
jar, 2017), phrase count (Tsvetkov et al., 2016a), and de-
pendency tree depth (Tsvetkov et al., 2016b). In computer
vision, image complexity has been linked to object count
(Wei et al., 2016) or human annotations (Tudor Ionescu
et al., 2016; Soviany et al., 2020). Finally, (Graves, 2016)
suggested that, in reasoning tasks, complexity can be es-
timated by the number of steps required by a recurrent
model. Later (Eyzaguirre & Soto, 2020) used a similar ap-
proach it to quantify the complexity of VQA questions.

Complexity from code. Measuring complexity through
code has a rich history; Kolmogorov defines complexity
based on the succinctness of the program that can repre-
sent said object (Kolmogorov, 1963; Solomonoff, 2009).
However, its incomputability limits its practical application
(Zvonkin & Levin, 1970). Software engineering rely on
tangible metrics like cyclomatic complexity that measure
the number of independent paths in a program (McCabe,
1976), a computable yet less philosophically rich approach.

Synthetic datasets play a key role in Video Question
Answering by using symbolic programs to separate per-
ception from reasoning (Johnson et al., 2017a; Grunde-
McLaughlin et al., 2021; Yu et al., 2023b; Wu et al., 2021).
Grouping these programs into skill-based families enables
correlation of model performance with reasoning patterns.
In contrast, we leverage code generation to estimate ques-
tion complexity without costly annotations, extending to
diverse question types. Our approach provides a direct,
computable complexity measure, bridging theoretical and
practical aspects of machine learning.

3. Methodology
3.1. Preliminaries

We study the problem of estimating the complexity of
questions in VideoQA. We are given a dataset consist-
ing of collections of videos, questions, and answers D =
{V,Q, A}, along with a set of K models already trained
on the task M = {my, ..., mx }. Our goal then is to de-
sign a function C that allows us to categorize questions
¢; € Q into groups based on their complexity with re-
spect to M. Crucially, we are interested in a general met-
ric consistent across all models m; € M. Concretely,
for any two questions ¢1,q2 € Q, together with corre-
sponding videos v1,v2 € V, if C(q1) > C(q2), we ex-
pect model performance P(m,q,v) to vary accordingly:
P(mj,q1,v1) < P(mj,q2,v2) Vm; € M, indicating that

models perform worse on more complex questions.

However, directly estimating complexity C from natural
language question ¢ is a challenging problem even for hu-
mans, as we demonstrate in a Section 4.2. Instead, our
key idea, inspired by the notion of Kolmogorov Complex-
ity (KC) (Kolmogorov, 1963), is to utilize the rich and
highly-structured intermediate representations - programs,
to capture the elusive complexity of the original natural
language queries. Concretely, we capitalize on the recent
code generation-based methods (Suris et al., 2023; Gupta
& Kembhavi, 2023; Subramanian et al., 2023) that oper-
ate in a 2-stage fashion: first, given a question g a pro-
gram generator 7 from a Large Language Model (LLM) is
used to translate it into an executable program z = w(q).
An off-the-shelf execution engine like Python can then be
used to produce an answer & = ¢(v,z). Running such
an approach on a dataset D results in a set of programs
P(D) = {21, 22,..., 2N}

Next, in Section 3.2 we propose several techniques for code
analysis of increasing intricacy and show how they can be
used to build a function for question complexity estimation
via code C(q) o C(z). Then, in Section 3.3, we demon-
strate how analysis of the generated code can help gain in-
sights into the failure modes of VideoQA models. Finally,
in Section 3.4 we discuss how such algorithms can be used
to automatically construct challenging benchmarks.

3.2. CodePlexity: Estimating Question Complexity
from Code

As afirst step we review existing software engineering met-
rics that map code into complexity scores C(z) — R. In
particular, we focus on Lines of Code (LoC) and Cyclo-
matic Complexity (McCabe, 1976). The former simply
correlates the number of lines in a program with its com-
plexity C(z)  |z|, whereas the latter quantifies the number
of linearly-independent paths through the source code and
is denoted as C(z) = CC(z). To minimize the impact of
spurious factors, we pre-process the code by removing all
the comments and empty lines first, and make sure to use
the same set of basic primitives in all experiments. Both
metrics are indicative of the code’s structural complexity,
with higher values suggesting more intricate control flow.
However, they do not take the contents of the code into con-
sideration, which, as we shown in Section 4.2, limits their
predictive power.

To address this drawback, we propose a new method, Code-
Plexity, illustrated in Figure 2. CodePlexity involves an-
alyzing the components of the generated code that affect
question complexity, considering both its structure and se-
mantic content. More specifically, we develop a compiler
to parse each question’s code into its basic syntactic ele-
ments, creating a Abstract Syntax Tree or AST (Hoe et al.,
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What was the teacher
doing while he was playing
the piano for the first time? [t i i

Query Code Generation

©-==== 0
CodePlexity 0.85
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Complexity Estimation

Figure 2. Estimating question complexity via code. Our approach to estimating question complexity involves converting the question
into code, decomposing the pseudo-code into abstract syntax subtrees (.S;), before correlating subtree presence with model performance.

1986) T = compile(z) with nodes N and edges E. In
this model, nodes represent variables, functions, and con-
trol structures, while the edges capture the logical and hier-
archical relationships between them. The AST framework
abstracts the code away from its syntax, allowing us to fo-
cus on the underlying logic and structure. By generating
ASTs for the entire dataset, we obtain a comprehensive set
T(D) = {compile(z) | z € P(D)}, laying the ground-
work for a deeper analysis of code complexity factors.

Next, we mine 7 for common subroutines (recurring log-
ical patterns or functions) that occur in the code. In ASTs
subroutines manifest as subtrees, which we denote as S =
(N’,E"), where N C N, E' C EandV(u,v) € E', u €
N’ Av € N'. Importantly, not all subtrees constitute valid
Python code, since they might fail to comply with Python’s
syntax rules. To systematically identify valid subtrees, we
define a function G(T) that yields an unordered set of all
valid subtrees of T', denoted as G(T') = {S1,S2,...,5n}.
Considering the entire dataset, the collection of all valid
subtrees across the dataset can be represented as S(D) =

Urerm) 9(T).

Then, to avoid duplicates, we merge subtrees that always
co-occur when one is a descendant of the other. Specif-
ically, Syergea(D) is defined as the subset of S(D) that
excludes S5 if there exists a subtree S; such that S7 and Ss
always co-occur and S5 is contained in 57 (see Section 7.1
for formal definition). The presence of a specific subrou-
tine within a program’s AST can be verified via a subgraph
isomorphism check:

ISO(T,S) = S € G(T). (1)

To aggregate the identified subtrees into a quantitative met-
ric of complexity, we assign each subtree in Syergea(D)
an index and encode each question ¢; in the dataset using
one-hot encoding x; € RISmergea(P)l where a 1 in index k
of x; signifies the presence of subtree S in question’s AST
T;.

o {1 if ISO'(TZ,Sk) °

0 otherwise

This representation transforms the complex structure of
code into a fixed-size vector, enabling straightforward ap-
plication of machine learning models. We then employ a

logistic regression model trained on these one-hot encod-
ings to predict the success of models m; € M. Note that
©)

i

the training set effectively treats each (x;,y
distinct instance, where ygj ) is the binary outcome for ques-
tion 4 with respect to model m; (1 for success, O for fail-
ure). This approach is justified by our objective to identify
subtrees that universally challenge the models, implying a
structural complexity in the code that transcends specific

models. We then obtain the final complexity function via:

) pair as a

CodePlexity(z) = —§; = —o(wx; + b). (3)

Next, we discuss how our subtree analysis approach allows
to obtain deeper insights into the sources of complexity for
existing VideoQA models.

3.3. Subtree Analysis

Unlike black-box metrics, in addition to a numerical score,
our approach also outputs an interpretable set of subtrees
that correlate with challenging questions. We now demon-
strate how to identify subroutines that have a high impact
on model performance. More specifically, we are interested
in subtrees that are linked to a decrease in model m;’s per-
formance with a high degree of statistical significance (set
at 0.99). To test this, we establish a null hypothesis (H0)
stating that the proportion of successes is the same with and
without the subtree present:

HO: P(mj,q:]S € S(D)) = P(mj, q1|S € S(D)). 4)

Conversely, our alternative hypothesis posits that the pro-
portion of successes without the subtree is greater, imply-
ing that its presence hurts performance:

HA: P(mj,q:|S € S(D)) < P(mj,q1|S ¢ S(D)).
(&)
We conduct a one-sided test to evaluate these hypotheses
and define a subset of subtrees, denoted as S, (D), for
which their presence is statistically correlated with a de-
crease in the performance of the model m;:
S*

mj

(D) ={S €S(D)|p(S,m;) <0.01}, (6

where p(S,m;) denotes the corresponding p-value. Fi-
nally, to identify the subroutines that are associated with
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performance decrease for multiple models, we consider the
intersection of the sets:

s'= ) S, ™

m;EM

Identifying the specific subtrees that cause a decrease in
models’ performance allows us to obtain deeper insights
into where and how they may falter. In Section 4.3, we
perform this analysis for several state-of-the-art approaches
and suggest areas for improvement in model design.

3.4. Learning to Ask Hard Questions

We now build on our code-based question complexity met-
ric described in Section 3.2, and propose a method for auto-
matically generating challenging question-answer pairs for
any given set of videos. Concretely, our approach takes as
input a set of videos V paired with natural language sum-
maries C. We then follow prior work by (Mangalam et al.,
2023) and prompt a large language model (LLM) to gener-
ate question and answer candidates based on each summary
individually ¢,a = LLM (¢, prompt). The exact prompts
are listed in Section 7.4 of the appendix.

Importantly, our approach is agnostic to the nature of C,
which can either be annotated manually, or generated auto-
matically. In this work, we take the latter approach and
capitalize on existing datasets with scene graph annota-
tions (Luo et al., 2021; 2022; Zhou et al., 2019; Ji et al.,
2020) paired with an image captioning model to generate
natural language summaries of the video such that a lan-
guage model can understand them (Menon & Vondrick,
2022; Wang et al., 2022b; Zeng et al., 2023). We detail this
algorithm in Section 8 of the appendix.

Following our approach from Section 3.2, we then convert
each generated question ¢ into code, and use our trained
CodePlexity model (Equation 3) to estimate its complexity.
A set of candidate questions Q* can be selected by setting
a threshold § for minimum complexity:

Q" = {g € Q|c(9) > d}. (8)

Finally, we manually filter the candidate dataset D* =
{V, Q* , A*} to remove the question/answer pairs that can-
not be accurately answered from the corresponding videos
due to inaccuracies in the generated summaries or LLM
hallucination. We emphasize that this final manual filter-
ing is only needed to ensure the perfect quality of the final
dataset D*. In practice, we only had to remove 12% of the
questions, demonstrating that the fully automatic pipeline
is capable of producing useful datasets by itself.

4. Evaluating Complexity Estimation

In this section, we compare different approaches to estimat-
ing question complexity in VideoQA. To this end, we first

define a thorough evaluation protocol and detail our exper-
imental setup in Section 4.1. We then evaluate how the
code-based metrics proposed in this work compare to hu-
man subjects and several simple baselines in predicting the
performance of a wide variety of contemporary approaches
on the popular NextQA benchmark in Section 4.2. We con-
clude by performing a detailed analysis of the subroutines
that show the strongest correlations with challenging ques-
tions in Section 4.3.

4.1. Experimental Setup

Evaluation protocol. Our goal is to compare the predictive
power of several approaches for estimating question com-
plexity in VideoQA with respect to a variety of machine
learning models M on a dataset D. Importantly, some of
the metrics we study require training data in the form of
questions paired with outcomes of a model m; € M on
them (q¢;, yz(j )). Thus we split the whole pool of models M
into the training M, and held-out validation M,,; sets

and report results on the latter.

To quantitatively compare the effectiveness of different ap-
proaches, some of which map a question to a numerical
value corresponding to its complexity, whereas others di-
rectly return an ordering of the questions, we propose a uni-
fying metric, Performance Extremity Gap (PEG). In partic-
ular, we first use numerical complexity estimates to sort
questions accordingly. We then measure the disparity in
model m;’s performance P between the easiest and the
hardest a% of the questions via:

1
Z P(mjvtbvq)

PEG(m;, ) =
o quhnrdes!,a (9)
1
Z P(m]’ q, Uq)

qE Qeasiest,

[e3

Finally, inspired by the mAP metric (Everingham et al.,
2010), we average the PEG values over a € (0,0.5] to
obtain the final mPEG score.

CodeGen Models. We leverage ViperGPT (Suris et al.,
2023) as our main approach for generating visual programs
from questions. To investigate the influence of the Code-
Gen model, we also re-ran our experiments with the recent
RVP (Ge et al., 2024) approach (see Section 10.4).

VideoQA Models. We ground our complexity metric in the
performance of seven representative VideoQA methods,
chosen for their coverage of existing architectural philoso-
phies, pre-training strategies, and state-of-the-art perfor-
mance. In particular, we use VIOLET (Fu et al., 2021)
and InternVideo (Wang et al., 2022a), which are pre-trained
with contrastive visual-language objectives and fine-tuned
for VideoQA. We also evaluate SeViLA (Yu et al., 2023a),
which is based on the BLIP-2 (Li et al., 2023) large-scale
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Figure 3. Correlation of various approaches for estimating question complexity with VideoQA models’ success rate on these questions.
We observe that humans struggle to accurately predict what is hard for machine learning models and that code can serve as a more

reliable source of prediction than natural language questions.

visual-language model; we assess both its zero-shot vari-
ant (SeViLA-ZS) and a fine-tuned version (SeViLA). Ad-
ditionally, we evaluate HGA (Jiang & Han, 2020), a GNN-
based model for video reasoning, representing earlier ap-
proaches prior to the prevalence of video large language
models (videoLLMs). We also evaluate the simple but ef-
fective ATP baseline (Buch et al., 2022), a model inten-
tionally restricted to processing only a single frame. Fur-
thermore, we include the results from executing the pro-
grams generated by ViperGPT (Suris et al., 2023). Fi-
nally, we evaluate the recent state-of-the-art model, Tar-
sier (Wang et al., 2024), and the current state-of-the-art
model LLaVa-Video (Zhang et al.,, 2024). The mod-
els are split into training and validation sets as follows:
My, = {VIOLET, SeViLA, ViperGPT, ATP}, M. =
{HGA, SeViLA-ZS, InternVideo, Tarsier, LLaVa-Video}.

Dataset. It is crucial that the dataset used to perform our
analysis features as many diverse challenges as possible.
We focus on the NExT-QA (Xiao et al., 2021) benchmark
for its size, variety of human-annotated questions, and its
focus on spatio-temporal reasoning in videos over mere
visual-fact retrieval (Zhong et al., 2022). In addition, its
popularity provides a large pool of models with pre-trained,
public checkpoints for our study. We perform the evalua-
tion on the validation set, further splitting the questions into
80% used to train the metrics and the other 20% held out
for computing mPEG. To assess generalizability, we also
evaluated our method on the recent MVBench dataset (Li
et al., 2024), including additional models such as LLaVA-
NeXT (Liu et al., 2024) and VideoChat2 (Li et al., 2024),
in Section 10.5 of the appendix.

Baselines. In addition to the code-based metrics introduced
in Section 3.2, we evaluate several baselines that attempt
to directly estimate question complexity from the natural
language query itself. In particular, as a learning-free base-
line, we follow (Tsvetkov et al., 2016b) and correlate the
complexity of a question with the maximum depth of its
parsed dependency tree. To more fairly compare to our
learnable, code-based metric we fine-tune BERT (Kenton

& Toutanova, 2019) to predict the probability of model
success given the question using exactly the same train-
ing data. We also prompt GPT-4 (OpenAl, 2023b) to esti-
mate the complexity of a question on a Likert scale (Likert,
1932). Details and prompts are provided in Section 7.3.

Finally, we conduct a human study on a subset of 150 ques-
tions. To this end, we recruited 30 human subjects via the
Prolific platform (Palan & Schitter, 2018). The subjects
were asked to sort three questions at a time according to
their perceived relative complexity. The final sequence or-
der of the entire subset was calculated via pairwise ELO
scores (Elo, 1967). More details and an example of the an-
notation interface are provided in Section 7.2.

4.2. Results

We begin by visualizing the correlation of human estimates
of question complexity with the performance of all 9 mod-
els used in our study on the manually annotated questions
from NExT-QA in Figure 3 (left). We observe that, while
a downward trend clearly exists, with the questions labeled
as the hardest by humans resulting in lower success rate
for models compared to the easiest ones, the correlation is
very weak. Notably, the questions that are ranked as being
average in complexity are in fact the hardest for the models.

We then evaluate two baselines on the same set of ques-
tions, one based on the natural language queries (depen-
dency tree depth shown in Figure 3, center) and one based
on the generated code (cyclomatic complexity, Figure 3,
right). Both show a much stronger correlation with the
models’ performance, with cyclomatic complexity being
the most consistent. These results demonstrate that human
intuition about sources of complexity in VideoQA does not
reflect the main challenges for machine learning models,
and that generated code can be a more reliable source for
estimating complexity than natural language.

Next, we report a more systematic comparison of different
text- and code-based metrics using mPEG on the validation
set of NExT-QA in Table 1. Comparing the three language-
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Train Models Val. Models
SeVILA ViperGPT ATP VIOLET HGA SeVIiLA ZS InternVideo Tarsier LLaVa-Video
Dependency Tree Depth 12.9 7.9 1.1 159 74 13.5 17.7 10.1 6.9
GPT-4 (OpenAl, 2023b) 9.6 8.9 116 58 7.8 14.6 139 10.8 5.2
BERT (Kenton & Toutanova, 2019) 7.7 14.3 21.1 10.8 11.4
Lines of Code 16.4 15.3 142 120 9.9 16.2 17.5 144 9.38
Cyclomatic Complexity 18.2 14.2 18.7 159 8.9 17.2 242 16.7 11.5
CodePlexity (Ours) 14.1 25.6 26.6 249 17.3

Table 1. Comparison of question complexity metrics using mPEG on the validation set of NEXT-QA. BERT and CodePlexity are trained
using the outputs of the first four models (labeled as Train in the table), and evaluated on the rest. Text-based metrics (above) perform
worse than the code-based ones (below), and our approach demonstrates the highest correlation with the models’ performance.

based metrics in the upper part of the table on the held-out
models, we find them to perform similarly. Notably, the
BERT-based model which is trained on the questions and
prediction outcomes of the four models, performs better
than the learning-free baselines for InternVideo and LlaVa-
Video, but fails to generalize to SeViLA. This demonstrates
that the space of the natural language is not structured
enough to fit a robust complexity estimation model.

In contrast, code-based metrics, shown in the lower part of
Table 1 demonstrate better predictive ability overall, with
even the simplest Lines of Code baseline outperforming
the text-based metrics in most scenarios. Cyclomatic Com-
plexity shows top results among all non-learning-based
metrics, and our proposed approach, CodePlexity, achieves
significant improvements over it by learning to identify
code primitives which correlate with challenging questions.

Notably, ViperGPT is the only model that executes gen-
erated programs, making it more sensitive to code com-
plexity — reflected in its declining success rate as program
intricacy increases. Yet, intriguingly, similar declines are
seen in models without access to code, suggesting our met-
rics capture broadly challenging patterns across architec-
tures and training regimes. Even cutting-edge models like
Tarsier and LLaVa-Video struggle with questions flagged
as hard by CodePlexity, despite it being trained on older
models. In addition, while all code-based metrics are af-
fected by code correctness (see Section 10.3), CodePlexity
demonstrates the greatest robustness.

In the next section, we apply the techniques introduced in
Section 3.3 to identify the code structures responsible for
this universal challenge to model performance.

4.3. Subtree Analysis

This brings us to the final aspect of our analysis: under-
standing these structural elements of the code that con-
tribute to question complexity. We follow the approach
proposed in Section 3.3 and identify the subtrees which are
statistically correlated with a decrease in the performance
Sk : for three models out of out training set My,.: SeVILA,

m

ViperGPT, and VIOLET. In Figure 4 (right) we visualize
the intersections between these three individual sets &*
(Equation 7) as a Venn diagram. A perceptible common
trend is apparent: different architectures have their own
weaknesses, but the commonalities are surprisingly fre-
quent. We manually inspect the eight subroutines that are
shared among all three sets and identify that they represent
two clear patterns (subtrees are listed in Section 9.3).

The first group of primitives, manifesting in such structures
as those containing For loops with complex control flow
in them, captures reasoning about not just the content of
the frame, but also its placement in a sequence of events.
We provide an example of a corresponding subtree together
with a question that requires this reasoning pattern in Fig-
ure 4 (left). The second group contains primitives that rep-
resent detailed analysis of specific elements (objects, rela-
tionships) within a scene. The examples include questions
that require identifying the precise placement of an object
within a frame.

In summary, we discovered that VideoQA methods strug-
gle with fine-grained temporal reasoning and lack spatio-
temporal, object-centric representations. This is in ac-
cord with prior studies (Buch et al., 2022; Huang et al.,
2018; Liu et al., 2021) that demonstrated that naive, single-
frame baselines can achieve top performance on main-
stream VideoQA benchmarks, which were used to develop
these methods.

Note that the granularity of the functions provided to the
code generation model controls the specificity of the in-
sights produced by our analysis tool. If too coarse — for
instance, collapsing all questions into a single function —
it could lose the ability to differentiate between questions.
In contrast, using finer-grained functions enables more nu-
anced analysis, such as revealing if models tend to struggle
more with “why” questions than with “how” questions.

Next, we show how our approach can be used to automat-
ically generate a new benchmark that challenges existing
approaches.
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[——— SeViLA ViperGPT
e ~————x,,@f/»ﬂ 55 - 58
8
QUERY: What did the ¢ 3
man sitting on top do
after he came off the 2
person on the ground? VIOLET

Figure 4. Detailed analysis of subtrees that correlate with challenging questions among several models. We find that, although each
model has its own error-modes, 8 subroutines are shared among all 3 of them (right). One of the patterns we find then analyzing the

shared code structures is reasoning about the order of events (left).

Dataset LLaVa-Video Tarsier SeViLA ZS ViperGPT InternVideo VIOLET Random
NExT-QA 82.5% 709%  64.2% 60.0% 50.9% 377%  20.0%
ATP-Hard 77.6% 59.8%  54.9% 51.8% 24.6% 254%  20.0%
CodeplexQA 65.0% 525%  43.7% 45.8% 29.9% 27.6%  20.0%

Table 2. Difference in prediction accuracy between the manually annotated NExT-QA, its adversarially selected subset ATP-Hard and
our automatically generated CodePlex-QA for a representative set of zero-shot VideoQA models. Our benchmark is empirically 1.9
times harder than NExT-QA, validating the effectiveness of our complexity estimation approach.

5. Dataset Generation

In this section, we apply our method to automatically create
a new, challenging VideoQA benchmark, CodePlex-QA.
We begin by detailing the source datasets and key imple-
mentation details in Section 5.1. We then compare the
performance of recent VideoQA methods on the popular
NExXT-QA (Xiao et al., 2021) to that on CodePlex-QA in
Section 5.2 to validate the effectiveness of our approach.
Our dataset will be released.

5.1. Experimental Setup

Source datasets. We generate questions using 3 differ-
ent datasets, all of which provide scene-graphs annotations:
MOMA (Luo et al., 2021; 2022); ActivityNet (Caba Heil-
bron et al., 2015), which we combine with ActivityNet-
Entities (Zhou et al., 2019) and ActivityNet-Captions (Kr-
ishna et al., 2017), and the ActionGenome (Ji et al., 2020)
annotations for Charades (Sigurdsson et al., 2016). This
results in pool of 4191 videos that are passed to our algo-
rithm. Additionally, Section 10.2 of the appendix includes
an ablation experiment that controls for video content while
keeping the question generation pipeline unchanged. To
this end, we use only videos from VidOR (Shang et al.,
2019), matching those used to construct NExT-QA.

Implementation details. We use GPT-4 (OpenAl, 2023b)
to generate question and answer candidates following prior
work by (Mangalam et al., 2023) and leverage a state-of-
the-art image captioning model, LLaVA 1.5 (Liu et al.,
2023a;b), to list visual attributes of the main actors and ob-

jects in the videos. Following (Xiao et al., 2021) we gener-
ate 5 answer candidates for each question (1 correct answer
and 4 distractors), and use accuracy as the evaluation met-
ric. We set the ¢ in Equation 8 to select the top 10% of the
data according to the estimated complexity (calibrated on
NEXT-QA). Further details are provided in Section 8.

5.2. Results

To construct CodePlex-QA, we run the generation pipeline
described in Section 3.4, obtaining 20791 candidate ques-
tions (several question candidates are generated for each
video). Then we calculate each question’s complexity
score using CodePlexity to only retain questions that meet
or exceed the minimum complexity threshold as in Equa-
tion 8. The resulting datasets consists of 2261 questions.
The final manual filtering to ensure the answerability of the
generated questions removes only 12% of the candidates,
leaving 1981 samples, all of which are used for evaluation.

We then evaluate the zero-shot baselines from our pool of
methods on CodePlex-QA and report their accuracy in Ta-
ble 2. We also report the results on the popular NExT-QA
benchmark and on ATP-Hard (Buch et al., 2022), an adver-
sarial split of NExT-QA, for reference. Note that the accu-
racy of the random baseline is the same for all the bench-
marks, so the numbers are directly comparable. We observe
that that the accuracy on our generated questions is signif-
icantly lower than on NExXT-QA. Specifically, CodePlex-
QA is 1.9 times harder than the manually annotated NExT-
QA (complexity estimated by averaging the accuracy of the
methods and subtracting random chance).
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QUERY: What action does the barber
perform most frequently?

QUERY: What does the man do after
painting the sofa?

8 QUERY: What was the person's reaction
to tripping on the stairs?

A) Washing hair

A) Leaves the sofa to dry

A) They cried and stopped walking

8) Applying shampoo

B) Starts painting another sofa

B) They laughed and kept walking

€) Combing hair

C) Places one unpainted seat cushion back on the sofa

€) They got angry and threw the book

D) Drying hair

D) Cleans up his painting supplies

D) They ignored it and kept walking

E) Massaging face

E) Places one painted seat cushion back on the sofa

E) They picked up the book and ran upstairs

Figure 5. Example questions in CodePlex-QA generated with our approach. It features many challenges that are under-represented in
existing, manually-designed benchmarks, motivating development of new approaches with enhanced spatio-temporal modeling capacity.

We further report models’ performance on ATP-Hard, a
subset of NExT-QA created using ground truth labels and
specifically designed to be adversarial to CLIP-based mod-
els. Despite this oracle nature of ATP-Hard, CodeplexQA
is substantially more challenging for the top performing
models and approximately equally hard for the weakest VI-
OLET baseline. ATP-Hard is somewhat more challenging
than CodeplexQA for InternVideo, because it is finetuned
from CLIP and the samples in ATP-Hard specifically target
CLIP-based models. These results support the effective-
ness of both our complexity metric and of our automatic
approach for generating VideoQA benchmarks.

Figure 5 includes a representative sample of gener-
ated questions that illustrate the variety of scenarios in
CodePlex-QA. They include questions that require fine-
grained temporal reasoning (e.g., comparing the frequency
of different actions), sequential event understanding (e.g.
identifying actions that follow specific trigger events), as
well as reasoning about objects. Data-driven nature of
our approach ensures that CodePlex-QA highlights under-
represented challenges in video-understanding. More ex-
amples are shown in the video.

Further experiments that isolate and evaluate specific com-
ponents of our pipeline can be found in the appendix. In
particular, in Section 10.1 we validate our question selec-
tion algorithm. Similarly, in Section 10.2 we isolate the
impact of video source on dataset difficulty, confirming the
effectiveness of our question generation approach.

6. Conclusion

We demonstrated that generated code complexity is an ef-
fective measure of question complexity in VideoQA, in-
troducing a novel metric that outperforms existing ones.
Our approach identifies subroutines associated with diffi-
cult questions across a wide range of models, providing in-
sights into key challenges in VideoQA. Finally, we have
shown how our metric can be used to automatically gen-
erate a novel benchmark — CodePlex-QA, which is 1.9
times harder for existing models than the manually labeled
NEXT-QA. As new methods are developed, our approach
can be re-applied, ensuring continued progress in the field.

Impact Statement

In our study, we utilize many distinct pre-trained mod-
els, each with its inherent biases, to identify challenging
questions within an existing dataset. Although they have
different pre-training schemes, these models likely encode
similar implicit biases, owning to their training on internet
scale data collections. In particular, several of our selected
models, along with our visual descriptors extractor, rely on
CLIP (Radford et al., 2021) as a visual encoder, meaning
they likely replicate the same biases including those identi-
fied in previous studies (Agarwal et al., 2021).

Furthermore, the dataset we base the majority of our analy-
sis on, NExT-QA (Xiao et al., 2021), is not fully represen-
tative of real-world diversity and complexity. This limita-
tion in addition to the biases present in the chosen models
can lead to skewed or incomplete analysis. In addition, our
analysis’ focus on interplay between the constituent syn-
tactic elements in code may overlooks critical sources of
complexity not apparent in the code structure. These in-
clude, for example, differences related to gender and eth-
nicity, which are not explicitly manifested in the code.

Our own proposed benchmark, CodePlex-QA, builds upon
the existing datasets MOMA (Luo et al., 2021; 2022), Ac-
tivityNet (Caba Heilbron et al., 2015), and Action Genome
(Jietal., 2020), and therefore includes the same biases. We
urge researchers and practitioners to refer to the relevant
dataset cards. Finally, our selection methodology for filter-
ing videos and questions may inadvertently introduce new
biases, or amplify existing ones.
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Appendix

This appendix includes further details, results and discus-
sions that were not included in the main paper due to space
limitations:

1. Section 7 provides additional technical details for
our baselines and complexity estimation methods.

. Section 8 compliments Section 5 in the main pa-
per providing extra technical specifics regarding the
dataset generation pipeline.

3. Section 9 reports additional results and analysis to
those in Sections 4.2 and 4.3 in main paper.

. Finally, Section 10 includes important ablations to
validate the importance of individual components of
our model and data generation pipeline.

We also include a separate video with qualitative ex-
amples of the analyzed questions and samples from
our new dataset at youtu.be/IMVZNpZPIWQ. Finally,
we release code, models, and other materials at ceyza-
guirre4.github.io/codeplexity.

7. Additional Technical Details
7.1. Merging Duplicate Subtrees

To avoid duplicated subtrees and reduce redundancy, we
merge subtrees that always co-occur when one is a descen-
dant of the other. Specifically, a subtree S is said to always
co-occur with another subtree .S if every occurrence of S
in the dataset D is also an occurrence of S;. In such cases,
since S9 is always contained within S, we can merge S,
into 57 without losing any unique patterns.

Merging these subtrees does not risk missing important pat-
terns because any syntactic or semantic information cap-
tured by S is inherently included in S;. This is due to the
fact that S; encompasses all occurrences of S3, ensuring
that the features associated with Sy are preserved within
S1. By eliminating redundant subtrees, we streamline the
dataset, which can improve computational efficiency with-
out compromising data integrity.

The merged set of subtrees Sperged (D) is defined as:

Smerged (D) =S(D) \ {52 € S(D) ] 38; € S(D) :
(VT € D, ISO(T, S2) — ISO(T, S1))

(S C8)}
(10)
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Here, ISO(T, S) indicates that subtree S is isomorphic to
a subtree within program 7', and S C S; denotes that Sy
is contained within S;.

By applying this merging strategy, we ensure that all sig-
nificant patterns are retained. The one-hot encodings of 51
and S, are identical across all programs where they appear,
so merging them does not alter the representation of the
data. This approach maintains the richness of the syntactic
structures while optimizing the dataset for analysis.

7.2. Human Annotation Interface and Processing

For our human baseline we conduct an annotation effort
on a subset of 150 questions from the validation set of the
NEXT-QA dataset. To this end, we recruited 65 human sub-
jects via the Prolific platform (Palan & Schitter, 2018), us-
ing the provided filters to select for annotators that are pro-
ficient in English.

The annotators were shown 50 sets of 3 questions (one set
at a time), where they were asked to sort the questions ac-
cording to their perceived complexity by indicating which
questions were the easiest and hardest. An example set
and the annotation interface is shown in Figure 6. Consis-
tency was validated by repeating pairs of questions multiple
times (the third question can vary). We check that relative
orders remain consistent and don’t consider subjects who
demonstrated low consistency. We further filter out anno-
tations that were done in too little time, and annotators who
finished the complete study in less than a minimum reason-
able time. The annotations from the remaining 30 subjects
were used to calculate the total ordering of the questions.

A. How many people can be seen dancing on the stage? (a) one. (b) six.
(c) three. (d) nine. (e) two.

B. How does the lady react to the man moving his hand to her waist? (a)
put on the girl s nose. (b) laugh. (c) dance. (d) plays the instrument. (e)
waves her hand.

C. Why does the man bend down while cutting? (a) dribbling ball. (b)
play with elmo. (c) chop leaves. (d) keep the rod fixed at one place. (e)
play game.

Which question is the *hardest* to
answer about a video?

Which question is the *easiest* to
answer about a video?

Move backward

Figure 6. We ask human annotators to provide the relative order-
ing of three provided questions according to the estimated com-
plexity of answering the question about an unseen video.

We compute the final order of the questions using Elo
scores (Elo, 1967). Originally developed to rank chess
players, the Elo system models the outcome probability of
unseen comparison between a pair of entities (eg. chess
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players or, in our case, questions) as a function of their
score ratings s;. In a comparison each entity’s comparative
performance is assumed to be Normally distributed around
their score with fixed variance 32. The probability of a fa-
vorable outcome for entity ¢ when compared to an opponent
entity j is given by the probability that the performance of
1 surpasses the performance of j:

Si — 82
o2
V26
where ® represents the cumulative distribution of a zero-

mean, unit-variance Gaussian. The scores are updated after
every comparison according to the Elo update rule.

(1)

7.3. GPT question complexity scoring

In order to automatically estimate the complexity of a ques-
tion directly from it’s text without biasing the method to-
wards any specific definition of complexity we refer to the
Natural Language Processing literature which has shown
that assessments made by Large Language Models corre-
late with human judgement (Madaan et al., 2023; Fu et al.,
2023; Chiang et al., 2023; Rafailov et al., 2023). To this
end, we leverage GPT-4 (OpenAl, 2023b) to generate a
complexity score on a Likert scale (Likert, 1932) (ranging
from one to five). We set the temperature to zero (for repli-
cable results) and generate a single token with the score.
We prompt the model as follows:

Prompt

[SYSTEM] You are an assistant that -for the pro-
vided question and its corresponding answer options-
estimates the complexity of answering said question
about an unknown video. Return your answer as score
from 1 to 5 (1 being the easiest and 5 being the hard-
est).

[USER] I'll provide a question and its candidate an-
swers. Estimate the complexity of answering the
question about a (unseen) video. Output should
ONLY be the integer score (1-5) that you assign to
the question (ie. no JSON, no text, no markdown, no
nothing).

query A: answers[0], B: answers[l], C:

answers(2], D: answers[3], E: answers[4]

7.4. CodeGen details

We use the same API as in the original ViperGPT pa-
per (Suris et al., 2023). For NExT-QA analysis we use the
programs and predictions from (Suris et al., 2023), which
were generated by Codex (Chen et al., 2021), a Code Com-
pletion LLM. Since Codex is no longer avaialble, for the
CodePlex-QA code generations we instead use a text vari-
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ant of GPT-3.5 with support for 16k context window (nec-
essary because of the long API Specification). We prompt
this model with both the API and a System message to
make sure the output is usable as code. Additionally, we
process the output to extract the code and format it such that
it can be executed and analyzed. We include the prompt
used:

Prompt

[SYSTEM]Only use the functions you have been
provided with.”

[SYSTEM]Only complete the code. Don’t include
markdown syntax (eg. ticks).
[USER]<API Spec.>

# query

# [answers[0], answers|1],
answers[3], answers[4]]

def execute_.command(video,
question):

# Reason every step

answers|2],

possible_answers,

7.5. Logistic Regression Parameters

We use the SciKit-Learn (Kramer & Kramer, 2016) imple-
mentation of Logistic Regression model. Each question-
subtree pair has multiple labels (one per model in the train-
ing set) so we average them into a single soft label. The
logistic regression model is then trained on these, allowing
it to capture consensus across the different models We train
until convergence and choose parameters based on the re-
ported mean accuracy over 5 folds. The resulting model
uses L2 regularization with weight ¢ = 1.0 and is trained
with the L-BFGS solver (Byrd et al., 1995).

7.6. Cyclomatic Complexity Calculation

We compute of Cyclomatic Complexity via an open source
implementation’.

8. Additional Question Generation Details

As noted in Section 5 of the main paper, we leverage ex-
isting video datasets with scene-graph annotations MOMA
(Luo et al., 2021; 2022), ActivityNet (Caba Heilbron et al.,
2015), and Action Genome (Ji et al., 2020). As necessary
step we need to translate the annotations into a textual for-
mat such that a generative language model could use it. We
begin by identifying the main activity and its sub-activities,
including the start and end times of each. This temporal
framework serves as a scaffold for the detailed enumera-
tion of the actors and objects involved. Actors and objects
are cataloged not just by their presence, but also in rela-

tion to specific sub-activities. When a high level textual

"https://radon.readthedocs.org
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description is not available we leverage captioning mod-
els to generate visual descriptors of the actors in the video.
More details in Section 8.1.

The resulting dataset has an average of 2.40 questions per
video. The duration of each video ranges from approxi-
mately 3 seconds to 10 minutes with an average video du-
ration of about 1.5 minutes. This diverse range of video
lengths is desirable as it is conducent to generating a wide
variety of questions.

The following sections describe the methods and prompts
we used to translate the graphs into textual scripts for each
specific dataset: MOMA (Luo et al., 2021; 2022) in Sec-
tion 8.2, ActivityNet (Caba Heilbron et al., 2015) in Sec-
tion 8.3, and Action Genome (Ji et al., 2020) in Section 8.4.
Finally, Section 8.5 describes how the generated scripts are
used to generate new questions.

8.1. Visual Descriptors extraction

A limitation of using Scene Graphs is that they tipically
don’t include visual descriptions of the nodes they relate.
This is in juxtaposition with the way humans typically refer
to actors and objects. To this end we describe the main
actors in the video using a Captioning model. In particular,
we use Llaval.5 (Liu et al., 2023a;b) to describe a single
instance of the actor in the video. We leverage the included
bounding box annotations for the actors in each annotated
interaction. We choose the bounding box with the largest
area (in pixels) in the first subactivity the actor appears in.
We then crop the relevant area and zero-pad the borders
to make the final image square, as this is the format that
Llaval.5 was trained with. The resulting cropped image
is passed into the captioning model along with a prompt
modified from Llava.

Prompt

”A chat between a curious human and an artificial in-
telligence assistant. The assistant gives helpful, de-
tailed, and polite answers to the human’s questions.
[USER]<image>

Look at the picture and tell me only about the per-
son’s looks that don’t change. Like what they’re wear-
ing, their hair color and style. Don’t talk about
where they are OR what they’re doing. (Tag is
<actor_classname>).

[ASSISTANT]

Importantly, we also pass in the textual identifier for the
actor, indicated in the prompt as <actor_classname>.

8.2. MOMA

A significant limitation specific to MOMA is the inconsis-
tency in annotated identifiers for object or actor through-
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out the entire video. Consequently, we exclude videos
in the dataset for which objects or actors cannot be reli-
ably identified. Our implementation of the filtering process
eliminates any videos from the dataset where the identities
of actors are not consistently recognizable based on their
class_name identifier. In practice, we define a Python
function to detect ’collisions’ - instances where the same
identifier is used for different class names within a subac-
tivity, or across different subastivities without a consistent

mapping.

As noted in Section 5 of the main paper, we need to trans-
late the contents of the scene-graph-in-time annotated in
MOMA into a textual format such that a generative lan-
guage model could use it. We now describe the method we
used to translate the graphs into textual scripts.

We begin by identifying the main activity and its sub-
activities, including the start and end times of each. This
temporal framework serves as a scaffold for the detailed
enumeration of the actors and objects involved. Actors and
objects are cataloged not just by their presence, but also in
relation to specific sub-activities. We identify their class
names and descriptive attributes along with arrival their de-
parture times within each sub-activity and store these for
later. We also track state changes and action, both tran-
sitive and intransitive, that occur during the sub-activities,
along with the identifiers that map to the actors and objects
involved.

The final script is structured in a hierarchical format, start-
ing with the main activity title and its timeframe, followed
by detailed sections for each sub-activity. These sections
enumerate the actors present, and a chronological account
of events, actions, and state changes. We also generate a
descriptive caption for each actor involved following Sec-
tion 8.1 and include it in the prompt. An example of an
activity and its first sub-activity is shown:

# Activity: ”"Dining” (0-597)
All actors:

* ROLE: customer. Visual description: The per-
son in the picture is a woman with long, dark
hair. She is wearing a white shirt and a black tie.

¢ ROLE: waiter. Visual description: The waiter
in the picture is a young man wearing a white
shirt and a black tie.

## Sub activity (0-10): The waiter is talking to the
customer or helping them into their seat

e Actors present: customer, waiter
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» Happened during sub-activity:

— (attribute) waiter standing

— (transitive action) waiter talking to cus-
tomer

— (intransitive action) waiter bending

8.3. ActivityNet

Although the original ActivityNet (Caba Heilbron et al.,
2015) dataset didn’t include scene-graphs, follow up work
ActivityNet-Entities (Zhou et al., 2019) provides additional
annotations for objects, attributes, relationships and ac-
tions. Further, we also use the per-subactivity captions in
the ActivityNet-Captions (Krishna et al., 2017) dataset.

As was the case with MOMA, we translate the contents
of the scene-graph-in-time annotated into a textual format
such that it can be parsed by a generative language model.
We once again divide a video into a main activity and its
component subactivities, and take note of their start and
end times. Actors present in a particular subactivity are
listed within the subactivity description, along with their
provided visual descriptions when available in ActivityNet-
Entities (Zhou et al., 2019). Finally, we filter relationships
such that we only keep those that involve actors and list
those for each actor. An example of an activity and a sub-
activity is shown below:

# Activity: doing archery” (time: 11-177)

## Sub activity (15-39): He loads an arrow in the
bow.
All actors descriptions from subactivity:

* Visual description (time: 31): attributeclass:
person - age&sex: man - hairstyle: straight -
hairlength: short - haircolor: [’black’] - acces-
sory: ['glove’] - skincolor: white - upperclothes-
type: t-shirt - upperclothescolor: [ white’]-
lowerclothestype: shorts - lowerclothescolor:
[’black’] - status: [’standing’, ’shooting’] - lo-
cation: outdoors

» Relations for actor in subactivity:

— person pulling bow
— person holding arrow

8.4. Action Genome

We leverage the scene-graph annotations in Ac-
tionGenome (Ji et al., 2020) for the Charades video
dataset (Sigurdsson et al., 2016) and use the annotated
activity along with its duration and high level description.
When available we also include the location and other

17

descriptions. We then list the annotated actions (along with
their respective start and end times). Finally, we iterate
over the annotated-per-frame object-actor relationships and
track when their state changes. We provide the timestamp
at which the state-change occurred and the change itself to
the generation model. As was the case with ActivityNet,
we don’t need to generate visual attributes as the high
level description often provides them. An example script
is shown below:

# Activity (duration: 30.62): A person sits at a desk
in the living room. The person laughs as they pick up
a bag of groceries from under the desk.”

Location: ”Bedroom”

Other descriptions:

» A person is sitting at adesk they pick up a bag
and then they get up

* The person is sitting at the computer desk and
bends over to pick up the garbage, which he sits
on his lap, and then gets up carrying the garbage.

Actions:

» Taking a bag from somewhere (9.00, 16.40)
« Sitting at a table (0.00, 29.30)

» Someone is standing up from somewhere (25.00,
30.80)

» Holding a bag (12.70, 32.00)
* Someone is laughing (0.00, 30.80)
* Sitting in a chair (0.00, 32.00)

Relation Changes (wrt. actor):

999

* bag goes from ’’holding’” to ’’touching’ at
18.0”

* bag goes from ’’touching’” to “’holding’ at
20.0”

e bag goes from ’holding’” to ’touching’ at
26.0”

* bag goes from ’touching’” to ’’holding’ at

27.0”
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999

* chair goes from *’sitting_on’” to "None at 28.0”

e chair goes from "None” to *’not_contacting’ at
28.0”

8.5. Question Generation from Scripts

Each textual script generated above is combined with a
prompt requesting that the language model output inter-
esting questions about the video, without specifying that
they should be hard, or how inferesting should be inter-
preted. The complete prompt is used to condition a Large
Language Model to generate the requested questions and
answer candidates in a JSON format. The chosen language
model is GPT-4. We set the sampling temperature to zero
and decode greedily (for replicability). We include the ex-
act prompt used here:

Prompt

[SYSTEM]You generate interesting questions to ask
about the video for which the description is provided.
Pretend you don’t get the exact description (ie. no
exact times or player ids) but you did watch the video,
so you have a notion of what happens, and when.
[SYSTEM]Return a list of Multiple Choice questions
formated as a json with q, ans, distl, dist2, dist3,
dist4 keys. ‘distN* are 4 distractors..

[USER]What are interesting questions to ask about
this video? (description provided)

Return a numbered list of Multiple Choice questions
formated as a json with q, ans, distl, dist2, dist3,
dist4 keys. ‘distN° are 4 distractors

Try to use visual descriptions of the actors instead of
their role sometimes (eg. the person with the red shirt
instead of the waiter).

**NEVER** say subactivities. Eg. don’t say “first
subactivity”, instead say “while the waiters served
the drinks”.

Video description:

<DESC>

Remember, **NEVER** say subactivities. Eg.
don’t say “first subactivity”, instead say “while the
waiters served the drinks”.

When generating questions for videos from the MOMA
dataset we also include an additional instruction to make
sure the model doesn’t refer to actors as unclassified when
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the annotations are missing descriptions:

Also avoid saying "unclassified ...” to refer to actors.
If you weren’t provided with a role use visual descrip-
tions instead.

9. Additional Results and Analysis
9.1. Relation to Video Complexity

Our approach to estimating the complexity of VideoQA
tasks is grounded in insights from classical complexity the-
ory, specifically the Chain Rule for Kolmogorov Complex-
ity. According to this rule, the complexity of a composite
entity, such as a (video, question) pair, can be expressed
as the sum of the complexity of one component (e.g., the
question) and the conditional complexity of the other com-
ponent (e.g., the video conditioned on the question), plus a
logarithmic term:

K(z,y) = K(x) + K(ylz) + O(log(K (z,y)))  (12)
In cases where there is minimal shared information be-
tween the video and the question, the complexity of the pair
can be approximated as the sum of their individual com-
plexities, up to this logarithmic term:

K(z,y) =~ K(x) + K(y) + O(log(K (z,y)))  (13)
In this work, we focus on estimating the complexity of
the question, which parallels the structure suggested by the
Chain Rule for Kolmogorov Complexity. If we treat the
video as x and the question as y, then the complexity of
the (video, question) pair can be thought of in a similar
way, where the complexity of the question K (y) is a key
component of the overall task complexity. While we do
not directly compute Kolmogorov complexities, this anal-
ogy provides a theoretical motivation for focusing only on
the question complexity. Estimating the complexity of the
question is valuable because it can later be combined with
robust methods for assessing the complexity of the video
to achieve a more comprehensive measure of the total task
complexity in future work.

The difference between the predicted complexity of the
question and the actual model performance on a given
question can be used as a proxy for estimating the video’s
complexity. Prior work by (Wei et al., 2016) has approxi-
mated image complexity by the number of objects present
in an image. We extend this approach to video complexity,
utilizing the VidOR dataset (Shang et al., 2019), which pro-
vides annotations of entities and their relations in videos.
Conveniently, VidOR and NextQA share the same video
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source, YFCC100M (Thomee et al., 2016), allowing us to
align entity counts with our models’ performance on Nex-
tQA.
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Figure 7. Comparison of the average number of entities (subjects
and objects) in videos where models perform poorly on low com-
plexity tasks (easier questions) versus where they perform well
on high complexity tasks (harder questions). More entities make
easy questions harder, while fewer entities make hard questions
easier.

Figure 7 compares the difference in the average number
of entities (subjects and objects) in videos where mod-
els perform poorly on low complexity tasks (easier ques-
tions) versus where they perform well on high complexity
tasks (harder questions). The trend indicates that, for easier
questions (low complexity), videos with more subjects/ob-
jects tend to result in poorer model performance, while for
harder questions (high complexity), models perform better
when fewer subjects/objects are present in the video.

This pattern supports the idea that the sources of complex-
ity of a VideoQA task can be combined. Simple questions
become more challenging when accompanied by complex
videos, and difficult questions can be made easier in the
presence of simpler videos. This relationship between
video complexity and question complexity reinforces the
importance of estimating both components. While our cur-
rent approach focuses on question complexity, combining
it with accurate video complexity estimations can yield a
more precise measure of the overall task complexity. We
leave the exploration of more accurate methods for video
complexity estimation to future work.

9.2. Applicability to other tasks

In principle, our approach applicable to any QA domain.
However, we limit the scope of this paper to VideoQA,
where the reasoning complexity is significantly higher and
model failure modes are more nuanced; thus, our approach
has the most significant utility.
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To illustrate this, we analyzed the GQA image QA bench-
mark (Hudson & Manning, 2019), generating programs
with ViperGPT (Suris et al., 2023). For consistency, we
evaluated the BLIP-2 (Li et al., 2023) VQA model (cho-
sen as it shares the same backbone with SeViLA) and
ViperGPT. We found that the overall complexity of gen-
erated programs is significantly lower in images (10% of
programs with cyclomatic complexity above 5 compared to
~45% in NExT-QA). As a result, the relationship between
cyclomatic complexity and model performance is much
stronger in VideoQA than in ImageQA, as evidenced by
a higher coefficient of determination R? of 0.75 vs. 0.39.

Intuitively, this difference in program complexity is not sur-
prising, as answering a question in a video typically re-
quires analyzing more content than in a single image. In the
case of NLP, the underlying tasks often involve even sim-
pler reasoning patterns. For example, the multi-step rea-
soning chains in HotPotQA (Yang et al., 2018) are linear,
and the dataset collected to evaluate HuggingGPT (Shen
et al., 2023) has fewer than 2 module calls per prompt on
average, and in simple patterns.

9.3. Subtrees Visualization

In this section, we present visualizations of subtrees which
correlate with question that are challenging to answer for
all 3 models analyzed in the main paper (see Sections 3.3
and 4.3). A majority of the nodes present in the ASTSs
encode non-essential information such as variable names,
while we care about the actual structure and the operations
being executed on the frames. For this reason, we ignore
variable names and values when comparing two subtrees to
one another. Similarly, we develop a tool to visualize the
general structure of subtrees that performs a related node-
trimming step. Finally, the visualizations of ASTs in the
paper (eg. Figure 4 of the main paper) include an addi-
tional simplification step in which nodes are merged to aid
in understanding and interpretability.

All the 8 subtrees that are shared by the 3 models in the
main paper are shown in Figure 16. There are two principal
patterns that can bee seen from analyzing them. The first
group includes primitives that allow for temporal reason-
ing (Figures 8 to 13). The other common pattern group in-
cludes questions that require more detailed analysis of spe-
cific elements (objects, relationships) within a scene (Fig-
ures 14 and 15).

First, we consider the primitives necessary for temporal
reasoning, i.e. for questions that necessitate taking into ac-
count a specific frame’s placement in a sequence of events.
The subtrees shown in Figures 8 and 9 both contain the
control flow necessary for identifying an event that happens
after a particular condition has been met. Figure 8 in partic-
ular illustrates a common pattern for finding the frame after
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Figure 16. Subtrees identified as hard.

something has happened, with a For Loop that identifies the
relevant part of the video, followed by an addition to look
after. Similarly, Figure 9 is common in programs that have
to identify a second condition that happens after a first one.
For this reason the control-flow is slightly more complex,
and includes a second conditional that is only checked for
after the first condition has been satisfied.

Figures 10 to 13, while also temporal, are less obviously
so. The presence of the primitives shown in Figure 10 cor-
relates with code that includes a loop over frames in the
video. This pattern is commonly used to setup for iterating
over the video until a relevant frame is found. Upon identi-
fication, the first boolean variable switches to True and the
other one is used to store the frame. Intuitively, this pattern
is useful for answering questions about a specific moment
of a video. The primitives in Figure 11 show code that se-
lects a frame from the middle of the video. In practice, pro-
grams include this code as a fail-safe when searching for a
specific frame, falling back to selecting the middle frame
in case no satisfying frame is found (eg. Fig. 8). Figure 12
shows a break statement that will halt an iteration over the

video_segment.frame _iterator()

Assign Const.

condition

Elself
Assign Const.

Figure 9.

ideo_segment.num_frames

Figure 11.

frame.detect_object()
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Figure 12.
Figure 15.

video when a frame that meets the required criteria is seen.
Intuitively, this pattern allows for the identification of the
first event in the video that meets some criteria, as the break
in the loop avoids overwriting the variable with frames that
come in the future. And Figure 13 shows an iterator over
the video, which is the main primitive necessary to consider
frames in order. This primitive is often used in conjunction
with others shown, eg. with the break statement in Fig. 12
to find the first frame that meets the condition.

The other common pattern group involves questions that
require a more granular consideration of specific elements
(objects, relationships) within a scene. For example, the
subtree shown in Figure 15 is included in questions that
require focusing on a single specific object or actor in a
frame of the video. Relatedly, programs that include the
subtree in Figure 14 require identifying at least two objects
or actors and then relating them (by calling simple_qa(), an
image question answering module).
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Success Rate per Model by Number of Frames in Temporal Support
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Figure 17. Temporal support (i.e. number of frames a question
needs) according to the generated program. All models tested per-
form significantly worse on questions that require more frames.
Counting questions are listed separately, as they potentially re-
quire every frame to be checked.

9.4. Additional Analysis Results: Temporal Support

The interpretable nature of subtrees allows us to manually
identify a subset of subtrees we know correspond to sub-
routines that store frames. We leverage Equation 1 to count
the appearance of said subtrees in each program’s ASTs
to find the temporal support of each question. As pre-
vious works have proposed (Mangalam et al., 2023), we
validate that a significant source of question complexity
in Video Question Answering is owed to the number of
frames needed to answer the question (Figure 17).

9.5. Dataset Statistics: CodePlex-QA

The outcome of the data generation process is summarized
in Table 3, which presents a breakdown of CodePlex-QA.
For each source dataset, the table shows the number of
questions and videos that pass the described CodePlexity
filter. Importantly, a majority of the questions are associ-
ated with a unique video.

10. Ablations
10.1. Validating Question Selection Algorithm

We now validate our approach for selecting hard questions
based on our complexity estimation using the NExT-QA
validation set. In particular, we follow the same approach
(and with the same threshold and parameters) as when con-
structing CodePlex-QA, and select the most challenging
questions from this set. We then evaluate the same models
from Section 5.2 on this subset, which we call NExT-QA™,
and compare to both the original NExT-QA dataset, and
CodePlex-QA. This allows to separate the effects of ques-
tion generation and question filtering when constructing
CodePlex-QA as NEXT-QA and NEXT-QA™ share exactly
the same base set of questions.
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Figure 18 indeed validates that our approach is success-
ful in identifying a subset of NExT-QA that is more chal-
lenging for all models evaluated compared to the original
dataset. However, our final dataset generation pipeline re-
sults in an even more challenging benchmark by first con-
structing a more diverse pool of videos and questions for
the filtering approach to select from.

10.2. Validating Question Generation Pipeline with
Same Videos

While the validation of the question selection algorithm
component of our dataset construction pipeline in Sec-
tion 10.1 shows that our selection algorithm is effective
in identifying challenging subsets of questions, this does
not fully guarantee that the higher observed complexity in
CodePlex-QA in Table 2 is exclusively due to the question
generation pipeline. Therefore in this section we isolate
the video source effects by adapting our pipeline to use the
same videos from VidOR (Shang et al., 2019) as NExT-QA.

To generate the questions, we use VidOR annotations and
augment them with annotations from VidSTG (Zhang et al.,
2020) and captions generated by ChatGPT (Zhang et al.,
2024). We then apply our full pipeline without modifica-
tions to obtain CodePlex-QA-VidOR. Finally, we evaluate
the baseline models from Table 2 and report the results in
Table 4.

As Table 4 shows, CodePlexQA-VidOR remains consis-
tently more difficult than NExT-QA across all models, de-
spite using identical video sources. CodePlexQA-Vidor is
slightly easier than our original CodePlexQA, both because
of divergent data sources and because the less detailed Vi-
dOR scenegraphs limit the expressivity of the generated
questions. This confirms that while video source con-
tributes to overall dataset characteristics, the key driver of
difficulty is our question generation and selection method-
ology, not merely differences in video content.

10.3. Impact of Code Generation Correctness on
Complexity Metrics

To investigate the relationship between code generation
correctness and the alignment of complexity metrics to
problem structure, we conduct an ablation study compar-
ing cases where the generated code produces correct an-
swers with those where it does not. Note that “incorrect
answers” do not necessarily imply that the code itself is in-
valid; rather, it may fail to produce the expected output.

The results are summarized in Table 5, which presents the
correlation between the complexity metrics and the mPEG
metric for various models. From Table 5, it is evident that
the correlation between the mPEG metric and the various
code-based complexity metrics is consistently higher for
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| #Questions # Videos

Action Genome (Ji et al., 2020)

ActivityNet (Caba Heilbron et al., 2015)

MOMA (Luo et al., 2021; 2022)

1572 1154
749 594
133 93

Table 3. Composition of CodePlex-QA in terms of number of questions and videos from each source dataset.

Dataset Tarsier SeViLA ZS ViperGPT InternVideo VIOLET Random
NEXT-QA 709%  64.2% 60.0% 50.9% 37.7%  20.0%
CodePlexQA 525%  43.7% 45.8% 29.9% 27.6%  20.0%
CodePlexQA-VidOR 59.6%  58.5% 50.4% 46.2% 30.0%  20.0%

Table 4. Difference in prediction accuracy of zero-shot VideoQA models between the manually annotated NExT-QA, our automatically
generated CodePlex-QA, and its VidOR-based variant. CodePlexQA-VidOR is consistently harder than NExT-QA despite sharing video

sources, while slightly easier than the full CodePlexQA.

Success Rate per Model in Easy vs. Hard Subsets

NEXT-QA NEXT-QA* CodePlex-QA

Models
SeVilLA ZS
InternVideo
VIOLET
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Average Success Rate

°
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=
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Figure 18. Filtering NExT-QA using our approach indeed results
in a more challenging subset for all the evaluated models. How-
ever, our full dataset construction pipeline results in an even more
challenging benchmark by first generating a more diverse pool of
samples to select from.

cases where the generated code produces correct answers.
However, we highlight that CodePlexity is a lot more ro-
bust to code generation errors than the baselines. In other
words, while the correlation between models’ performance
and metric value improves when code is correct, CodePlex-
ity consistently outperforms baselines in robustness to code
generation errors. This underscores its practicality even
when errors occur.

These results suggest that correct code generation often
aligns better with problem complexity, as reflected in
higher correlations with the mPEG metric. By contrast,
incorrect code, while potentially valid in syntax or struc-
ture, often fails to capture the underlying complexity of the
problem, thereby diluting the relationship between the met-
rics.

In a similar manner, Section 10.4 how that using more
advanced code generation models improves the predictive
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power of code-based complexity metrics.

10.4. Impact of Code Generation Model Choice

This section evaluates the influence of the code generation
model on the performance of our complexity estimation
framework. Specifically, we compare ViperGPT, the pri-
mary model used in our analysis, with Recursive Visual
Programming (RVP) (Ge et al., 2024), a newer model de-
signed for visual programming tasks. Unlike traditional ap-
proaches, RVP employs a recursive code generation strat-
egy, which systematically breaks down complex problems
into manageable subproblems. This allows it to handle in-
tricate question structures with greater flexibility.

Figure 19 illustrates the relationship between the estimated
complexity of questions and the performance of Visual Pro-
gramming models. For both ViperGPT and RVP, we ob-
serve a significant negative correlation between the com-
plexity metric and the model’s success rate. This trend
highlights that as the estimated complexity of a question
increases, the likelihood of the model correctly addressing
it decreases. This correlation underscores the utility of the
complexity metric as a predictive tool for identifying chal-
lenging questions.

10.5. Impact of Analysis Dataset Choice

To assess the generality and robustness of our find-
ings, we replicated our analysis using a different dataset,
MVBench (Li et al., 2024), which offers a diverse set
of videos and questions compared to NExT-QA. Specif-
ically, we repeat the same experimental setup as that in
Section 4.1, first generating programs for the questions in
MVBench, and then rerunning our pipeline to generate pro-
grams using ViperGPT, extract code based metrics, and
train our CodePlexity metric. Furthermore, we additionally
consider two new models in our analysis: VideoChat2 (Li
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Train Models Validation Models

SeVILA ViperGPT ATP VIOLET HGA SeVIiLA ZS InternVideo Tarsier
Lines of Code
Correct 0.1373 — 0.1747 0.1455 0.0712  0.1654 0.2022  0.1475
Incorrect 0.1245 — 0.0540 0.0656 0.0735  0.0756 0.0831  0.0696
Cyclomatic Complexity
Correct 0.1702 — 0.2128 0.1930 0.0649  0.1739 0.2825  0.1634
Incorrect 0.1351 — 0.1118 0.0881 0.0664  0.0973 0.1388  0.1071
CodePlexity
Correct 0.2608 — 0.3128 0.3178 0.0867  0.2095 0.2877  0.1950
Incorrect 0.2810 — 0.2041 0.2542 0.1087  0.1839 0.1700  0.1857

Table 5. Correlation of complexity metrics with mPEG for cases where the generated code produces correct and incorrect answers.

et al., 2024) and Llava-NEXT (Liu et al., 2024) as these
represent the state of the art on the MVBench dataset.

We first visualize the correlation between code-based com-
plexity metrics and the performance of various VideoQA
models on MVBench in Figure 20. Consistent with our ob-
servations on NExT-QA, we found that code-based com-
plexity metrics exhibit a strong negative correlation with
model performance on MVBench. Specifically, both Lines
of Code and Cyclomatic Complexity continued to demon-
strate a consistent and strong correlation, indicating that
questions requiring more intricate code are more challeng-
ing for all the models evaluated. This is despite the base
code generation model ViperGPT (and RVP) performing
worse on MVBench than on NExT-QA, where they achieve
accuracies of 38.4% and 35.0%, respectively. For refer-
ence, these are comparable to recent approaches such as
GPT-4V (run with 16 frames as input at 512x512 resolu-
tion), which obtains 43.5%, and VideoChat (Li et al., 2024)
(also with 16 frames), which achieves 35.5%.

We further conducted a systematic evaluation of different
code-based metrics using the mPEG metric on the val-
idation set of MVBench, summarized in Table 6. Our
proposed CodePlexity metric significantly outperformed
the naive code complexity measures, such as Lines of
Code and Cyclomatic Complexity. CodePlexity achieved
higher predictive accuracy in estimating question difficulty
across all evaluated models on MVBench. Note that Code-
Plexity generalizes to the held-out models in our analysis
(VideoChat2 (Li et al., 2024) and Llava-NEXT (Liu et al.,
2024)).

These consistent results across two distinct datasets sug-
gest that code-based complexity metrics, and CodePlexity
in particular, are effective tools for assessing question dif-
ficulty in VideoQA tasks regardless of the dataset’s charac-
teristics.
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10.6. Training on CodePlexQA

We split CodePlex-QA into train and val sets and fine-tuned
SeViLA. We observed that training on CodePlex-QA in-
deed can help improve the performance of VideoQA mod-
els on these hard questions (accuracy increases from 44.8
to 47.3). However, the gap is narrower compared to fine-
tuning the same method on NExT-QA (accuracy improve-
ment from 64.2 to 73.4). This suggests that our analysis un-
covered deeper reasoning limitations in existing VideoQA
approaches, which may not be easily resolved by simply
increasing the amount or diversity of the training data.
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Train Models Val. Models
InternVideo SeViLA ZS Tarsier VideoChat2 LLaVA-NeXT
Dependency Tree Depth 6.5 6.2 19.7 16.5 12.2
GPT-4 (OpenAl, 2023b) 2.3 0.0 14.8 12.8 8.9
BERT (Kenton & Toutanova, 2019) 20.9 21.6
Lines of Code 44 9.5 12.5 10.3 9.2
Cyclomatic Complexity 13.0 9.6 6.1 52 4.5
CodePlexity (Ours) 29.9 27.5

Table 6. Comparison of question complexity metrics using mPEG on the validation set of MVBench. CodePlexity is trained on the first
three models. Our approach demonstrates the highest correlation with the models’ performance.
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Figure 19. Comparison of code-based complexity metrics when
using different code generation models. Lines in both cases show
significant negative correlation of complexity metric with model
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Figure 20. Correlation of VideoQA models’ success rate on
MVBench for various approaches for estimating question com-
plexity. As was the case for NExT-QA, we observe that code
complexity correlated strongly with question complexity.



