
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEMANTIC REGEXES: AUTO-INTERPRETING LLM
FEATURES WITH A STRUCTURED LANGUAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated interpretability aims to translate large language model (LLM) features
into human understandable descriptions. However, natural language feature de-
scriptions are often vague, inconsistent, and require manual relabeling. In re-
sponse, we introduce semantic regexes, structured language descriptions of LLM
features. By combining primitives that capture linguistic and semantic patterns
with modifiers for contextualization, composition, and quantification, semantic
regexes produce precise and expressive feature descriptions. Across quantitative
benchmarks and qualitative analyses, semantic regexes match the accuracy of nat-
ural language while yielding more concise and consistent feature descriptions.
Their inherent structure affords new types of analyses, including quantifying fea-
ture complexity across layers, scaling automated interpretability from insights into
individual features to model-wide patterns. Finally, in user studies, we find that
semantic regexes help people build accurate mental models of LLM features.

1 INTRODUCTION

AI models represent their learned concepts, like the “Golden Gate Bridge”, as linear directions in
latent space, called features (Bricken et al., 2023). Understanding a model’s features helps us an-
ticipate its behavior, assess its human-alignment, and intervene to ensure safe outcomes (Templeton
et al., 2024). Towards this goal, automated interpretability assigns human-readable descriptions
to each feature by analyzing patterns in its response to input data (Paulo et al., 2024; Bills et al.,
2023; Lin, 2023). With feature descriptions, researchers have identified how models encode domain-
relevant concepts, like protein structures (Gujral et al., 2025), and reconstructed circuits of features
that correspond to complex behaviors, like medical diagnoses (Lindsey et al., 2025).

Despite the advantages of feature descriptions, natural language is an imprecise interface for describ-
ing the computational roles features play in a model’s inference. Current automated interpretability
methods often yield overly verbose or inconsistent descriptions (Huang et al., 2023), reflecting the
difficulty of capturing tightly bounded feature behaviors in free-form text. Moreover, because natu-
ral language is prone to ambiguity, it is poorly suited for interpretability tasks that require composi-
tional reasoning, such as studying feature complexity or identifying redundant features. As a result,
even recent work identifying feature circuits in LLMs report needing skilled human relabeling to
describe a feature’s role in the network (Ameisen et al., 2025).

In contrast, structured languages offer well-defined syntax and semantics (Chomsky, 1956). By com-
bining a constrained set of primitives with compositional rules, structured languages (e.g., regular
language and programming languages) can capture precise patterns while maintaining expressiv-
ity (Lawson, 2005). Their grammatical structure provides additional affordances, including consis-
tent ways of expressing the same pattern (Knuth, 1965), the ability to concisely capture complex pat-
terns (Lawson, 2005), and mechanisms for representing abstraction (Backus, 1959; Aho & Ullman,
1972). As a result, structured languages can construct complex yet specific expressions, ranging
from regular expressions (Lawson, 2005) to software (Python Software Foundation, 2025).

To leverage the affordances of structured language in automated interpretability, we introduce se-
mantic regexes. The semantic regex language is designed to capture the diverse activation patterns
of LLM features, while providing the additional affordances of a structured language. Its primitives
are grounded in commonly observed feature functions, including exact token matches (symbols),
syntactic variants of words and phrases (lexemes), and broader semantic relationships (fields).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To enable greater expressivity, we extend these primitives with modifiers for contextual modifica-
tion, composition, and quantification. As a result, the semantic regex language can express a range
of features, from early-layer token detectors (e.g., “on”→[:symbol on:]) to later-layer features
that capture complex linguistic phenomena (e.g., “the last name of a politician when it proceeds
their title”→[:field political title:][:field last name:].

Across automated interpretability evaluations, we find that semantic regexes as accurate as natu-
ral language, showing that constraining feature descriptions to the semantic regex language does
not reduce expressivity. Beyond accuracy, their structured form offers additional affordances for
interpretability, including producing more concise feature descriptions and enforcing description
consistency across functionally similar features. Moreover, since semantic regex primitives and
modifiers exist across levels of abstraction, they serve as a proxy for feature complexity, allowing us
to perform model-wise analysis of feature behavior. Finally, in a user study, we find that semantic
regexes help people build accurate mental models of LLM features.

2 RELATED WORK

Interpretability aims to expose LLMs’ internal concepts in order to explain their behavior and
evaluate their human-alignment (Lipton, 2018; Bricken et al., 2023; Olah et al., 2020; 2017).
LLMs are known to encode concepts along linear directions in latent space, often referred to as
features (or latents) (Park et al., 2024; Elhage et al., 2022). Methods like sparse autoencoders
(SAEs) (Huben et al., 2024; Gao et al., 2025; Rajamanoharan et al., 2024; Bussmann et al., 2025)
and transcoders (Ameisen et al., 2025; Dunefsky et al., 2024) extract LLM features, and have un-
covered human-interpretable features, including those that correspond to domain-specific and safety
relevant concepts (Lindsey et al., 2025; Gujral et al., 2025; Bricken et al., 2023).

While features correspond to concepts, which concept a feature encodes is not obvious a priori.
Early interpretability work approached this problem by manually analyzing the inputs that activate
each feature (Olah et al., 2020; 2017; 2018; Carter et al., 2019). To scale this process, automated
interpretability aims to automatically describe each feature’s concept (Bau et al., 2017; Hernandez
et al., 2022; Bills et al., 2023; Shaham et al., 2024). Given a feature’s activating data, automated
interpretability prompts a language model describe the feature (Bills et al., 2023; Paulo et al., 2024;
Gur-Arieh et al., 2025; Lin, 2023). Aligned with this goal, our method adopts a similar pipeline for
generating feature descriptions, but generates descriptions using a structured language.

Our approach is inspired by recent research showing that LLM features represent structured con-
cepts. Activation analyses show that feature complexity increases with depth (Jin et al., 2025) and
that models represent concepts across levels of abstraction (Boggust et al., 2025; Chanin et al., 2024;
Bussmann et al., 2025; Zaigrajew et al., 2025). In response, researchers have proposed lightweight
taxonomies that classify features by function (Ameisen et al., 2025; Lindsey et al., 2025; Gur-Arieh
et al., 2025), and called for feature description formalisms (Huang et al., 2023). These findings mo-
tivate our use of a structured language, enabling semantic regexes to describe a feature’s activation
pattern and express its level of abstraction.

3 SEMANTIC REGEXES

Semantic regexes use a structured language to describe LLM features. Built around a system of
human-interpretable primitives (Section 3.1.1) and modifiers (Section 3.1.2), semantic regexes cap-
ture the low-level syntactic patterns and higher-level semantic concepts that LLM features represent.
Unlike natural language, which is flexible but ambiguous, the semantic regex language restricts ex-
pressivity to ensure the resulting feature descriptions explicitly convey their meaning. On the other
hand, while inspired by regular expressions, the semantic regex language is not a regular language
and extends beyond one-to-one character patterns to capture more abstract concepts.

3.1 THE SEMANTIC REGEX LANGUAGE

The semantic regex language consists of compositional components: primitives define the textual
units a semantic regex matches, and modifiers refine or expand their scope (Figure 1). Together these
components form a compact, yet expressive language for specifying LLM feature patterns.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The semantic regex language consists of a set of primitives (top) that can be applied
independently or combined with modifiers (bottom) to express diverse feature activation patterns.

We developed the semantic regex language using a grounded-theory approach (Corbin & Strauss,
1998), deriving its components from empirical analysis of real LLM features. By manually survey-
ing of thousands of features across models, layers, and feature sources on Neuronpedia (Lin, 2023),
we identified recurring patterns (e.g., context dependent activations). We introduced new primitives
or modifiers only when they captured a recurring pattern, increased the language’s descriptive cover-
age, and preserved intelligibility of the language. We continued this iterative process until reaching
saturation, resulting in a language capable of describing all the features we examined.

3.1.1 PRIMITIVES

Primitives are the atomic components of a sematic regex. They specify the type of textual pattern a
semantic regex will match, ranging from exact characters to categorical relationships.

Symbols Symbols ([:symbol X:]) match exact strings X. For instance, [:symbol color:]

matches the string color, such as in a splash of color . These are the most specific and simplest
primitives, and they commonly describe features that activate on specific tokens or phrases.

Lexemes Lexemes ([:lexeme X:]) match syntactic variants of X. Drawing on linguistics, a lex-
eme is the abstract form of a word that encompasses all of its surface variants, like changes in
tense or plurality. For example, [:lexeme color:] matches color, colors, coloring, etc., such as
color in a coloring book . Lexemes typically describe features that capture a word’s meaning.

Fields Fields ([:field X:]) match semantic variants of X. Drawing on linguistics, fields refer to
words or phrases in a conceptual domain. For instance, [:field color:] matches red, orange,
blue, etc., as in blue jeans . Fields often apply to features that activate on a conceptual category.

3.1.2 MODIFIERS

Modifiers refine and extend primitives with context, composition, and quantification. This increases
the expressive power of semantic regexes, allowing them to represent a wider range of features.

Context Contexts (@{:context X:}(semantic regex)) match a semantic regex in the
context X. For instance, @{:context politics:}([:symbol color:]) only matches
[:symbol color:] in a political context, matching Green Party but not green apple . Con-
texts help match features that represent domain-dependent concepts.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Composition Semantic regexes can compose in sequence or alternation (|). For in-
stance, [:field color:]([:symbol and:]|[:symbol or:])[:field color:] matches
both green or yellow and black and white . Composing semantic regexes allows them to
match more complex features while maintaining precision.

Quantification Semantic regexes also make use of the regular expression quantifier zero or one (?).
As an example, [:symbol a:][:field color:]?[:field flower:] matches a red rose

and a da isy . Quantifiers allow additional flexibility in the semantic regex.

4 METHODS

To study how the semantic regex language alters feature interpretability, we embed it within a stan-
dard automated interpretability pipeline (Paulo et al., 2024; Templeton et al., 2024; Puri et al., 2025;
Bills et al., 2023). The pipeline consists of three components: a subject model whose features
we describe, an explainer model that generates feature descriptions, and an evaluator model that
scores them. Given a subject model feature and its activating data, we prompt an explainer model
to produce a description in natural or semantic regex language and use the evaluator model to score
how well the description matches the feature’s behavior. Following prior interpretability work (Bills
et al., 2023; Gur-Arieh et al., 2025) and our ablation study in Appendix B, we use GPT-4o-mini as
the explainer and evaluator. This pipeline allows us to directly compare semantic regexes to natural
language descriptions across varied axes of interpretability. It also demonstrates that, by decoupling
the format of the feature description from the generation process, semantic regexes are compatible
with existing and future automated interpretability pipelines.

4.1 COLLECTING MODEL FEATURES AND ACTIVATIONS

We study semantic regexes on two families of subject models, GPT-2 (Radford et al., 2019) and
Gemma-2 (Mesnard et al., 2024). While our approach could describe model neurons (or any com-
ponent matched to activating data), we focus on describing latent features identified by sparse coding
methods (e.g., SAEs), since they often represent monosemantic concepts that are easier to describe
and interpret (Bricken et al., 2023).

GPT-2 We apply semantic regexes to GPT-2-Small (Radford et al., 2019) and its residual layer
features from Bloom (2024), identified using SAEs with 24,576 features (GPT-2-RES-25k).

Gemma We also apply semantic regexes to Gemma-2-2B (Mesnard et al., 2024) and its
Gemma Scope (Lieberum et al., 2024) residual layer features (Gemma-2-2B-RES-16k and
Gemma-2-2B-RES-65k).

To collect activating data for each feature, we use the Neuronpedia (Lin, 2023) API. It provides
activating data from OpenWebText (Gokaslan et al., 2019) for GPT-2-Small and Pile Uncopy-
righted (Gao et al., 2021) for Gemma-2-2B.

4.2 GENERATING FEATURE DESCRIPTIONS

Given features and their activating data, we prompt an explainer model (GPT-4o-mini) to generate
feature descriptions. We compare our semantic-regex method against natural language feature
description methods: token-act-pair (Bills et al., 2023) and max-acts (Paulo et al., 2024).
These methods are commonly used and vary in how they generate descriptions, allowing us to get
a comprehensive understanding of how semantic regexes compare to natural language descriptions.
See Appendix F.1 for implementation details.

token-act-pair is based on Bills et al. (2023) and its Neuronpedia implementation (Lin, 2023)
(oai token-act-pair). Here, the explainer model is prompted with the feature description
task and three few-shot examples. Then, it is is shown a feature’s top five activating examples and
asked to continue the sentence “the main thing this neuron does is find”. Each example is displayed
as a list of tokens and their normalized activation values, like “these 8\n tokens 10\n activate 0”.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

max-acts follows Neuronpedia’s (Lin, 2023) implementation of Paulo et al. (2024)
(eleuther acts top2). Instead of showing each token’s activation value, like in
token-act-pair, it maintains a more natural text format by delimiting activating tokens within
the text, like “〈〈these tokens〉〉 activate”. It prompts the explainer model with the feature descrip-
tion task and three few-shot examples. Then, given the feature’s top 20 activating examples, the
explainer model is asked to “describe the text latents that are common in the examples”.

semantic-regex aims to accurately describe LLM features and only differs from natural lan-
guage methods in the language available to the explainer model. As a result, we simply inject
semantic-regex specific instructions into existing prompting strategies. To take advantage of its
efficient example formatting, we adapt max-acts’ prompt by updating the instructions to follow
the semantic regex language, adding a concise definition of the semantic regex language, and chang-
ing the few-shot examples to demonstrate semantic regex primitives and modifiers. We show the
explainer model a feature’s top 10 activating examples and ask it to “output a short explanation
followed by a semantic regex”, which we find improves the model’s ability to follow the syntax.

4.3 EVALUATING FEATURE DESCRIPTIONS

We evaluate feature descriptions using common automated interpretability metrics (Paulo et al.,
2024; Puri et al., 2025). Each metric uses an evaluator model (GPT-4o-mini) to evaluate the
descriptions’ fidelity to the feature’s behavior. Generation metrics test the description’s ability to
generate activating examples (akin to precision), discrimination metrics test the description’s ability
to match known activating examples (akin to recall), and faithfulness metrics test the description’s
ability to match steered generation (a measure of causality). Implementation details in Appendix F.2.

Generation metrics test a feature description’s precision by evaluating its ability to generate ac-
tivating examples. We use clarity (Puri et al., 2025), which compares generated and random
examples’ activations using the Gini index (a rescaling of the ROC AUC). Under this metric, overly
broad descriptions score low by generating data outside the feature’s activation space, while ideal or
overly narrow descriptions score high by only generating activating data.

Discrimination metrics test the description’s recall by evaluating its ability to match known
activating examples. We compute detection and fuzzing from Paulo et al. (2024) and
responsiveness and purityfrom Puri et al. (2025). These metrics ask the evaluator model
whether the feature description matches activating and random examples. Given the match results,
detection measures balanced accuracy, responsiveness the Gini index, and purity average
precision. Instead of matching the entire example, fuzzing asks if the description matches the ex-
ample’s activating tokens and computes the balanced accuracy of these more specific match results.
Under these metrics, overly narrow descriptions score low by missing activating examples, while
ideal or overly broad descriptions score high by covering the entire activation space.

Faithfulness metrics test the description’s faithfulness to causal interventions on the feature. We
use faithfulness (Puri et al., 2025), which asks the evaluation model whether the feature descrip-
tion matches continuations of random text when the feature is steered versus ablated.

5 RESULTS

5.1 SEMANTIC REGEXES ARE AS ACCURATE AS NATURAL LANGUAGE DESCRIPTIONS

The goal of automated interpretability is to generate feature descriptions that accurately characterize
a feature’s activations. We benchmark semantic regexes against common natural language descrip-
tion methods (token-act-pair and max-acts) using discrimination, generation, and faithfulness
metrics. To ensure our results generalize across models and features, we evaluate 100 features per
layer from GPT-2-RES-25k, Gemma-2-2B-RES-16k, and Gemma-2-2B-RES-65k.

We find that semantic-regex descriptions perform on par with natural language (Figure 2).
Specifically, semantic regexes are non-inferior (p < 0.051) to natural language on clarity across

1 One-sided paired t-test with non-inferiority margin ∆ = 5% and Bonferroni correction for superiority.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Semantic regexes perform on par with natural language feature descriptions across evalu-
ations on GPT-2-RES-25k, Gemma-2-2B-RES-16k, and Gemma-2-2B-RES-65k, suggesting that
the semantic regex language is appropriately expressive to describe LLM features.

all models, detection for GPT-2-RES-25k, and responsiveness for Gemma-2-2B-RES-65k.
Moreover, semantic-regex outperforms token-act-pair (p < 0.051) on clarity across
all models, and detection, fuzzing, and responsiveness on GPT-2-RES-25k and
Gemma-2-2B-RES-65k. This is non-obvious, as the semantic regex language is significantly con-
strained compared to the hundreds of thousands of words available in natural language. Moreover,
while the explanation and evaluation models are well-versed in natural language, they learned the
semantic regex language via only a brief description and few-shot examples. These results sug-
gest that imposing structure on feature descriptions does not reduce their accuracy, while offering
advantages that we explore in the following sections.

5.2 SEMANTIC REGEXES IMPROVE CONCISENESS AND CONSISTENCY

While semantic regexes are similarly accurate to natural language descriptions, their structure offers
distinct benefits for interpreting LLM feature behavior (Figure 3).

Semantic regexes are more concise than natural language descriptions. Concise feature de-
scriptions adhere to explanation norms (Tim Miller, 2019), making them easier to scan and interpret.
While natural language descriptions often require verbose phrases to capture a feature’s activation
pattern (Huang et al., 2023), semantic regexes can encode the same information in more compact
form using its signal-rich components. For example, in Figure 3 top, the verbose natural language
description “The presence of the sequence 54 indicating a year, time, or numeric reference frequently
associated with events” can be expressed as [:symbol 54:]. Quantitatively, semantic regexes
are consistently shorter. Across 100 randomly sampled features per layer in GPT-2-RES-25k,
Gemma-2-2B-RES-16k, and Gemma-2-2B-RES-65k, the median description length is 41 char-
acters (IQR: 19–59) compared to 139 (IQR: 119–166) for max-acts and 55 (IQR: 46–66) for
token-act-pair. This conciseness directly benefits interpretability, allowing human evaluators
in Section 5.4 to parse shorter descriptions without distracting details.

Semantic regexes are more consistent than natural language descriptions. LLMs often contain
redundant features that activate on similar inputs and serve the same function. In circuit identifica-
tion applications, recognizing redundant features helps reduce circuit complexity and identify the
complete mechanistic circuit (Ameisen et al., 2025). Since the semantic regex language constrains
the space of allowable expressions, it produces more consistent descriptions for similar features,
making redundancy easier to detect. For example, in Figure 3 middle, two redundant features from
different layers of Gemma-2-2B-RES-16k both activate on the token “Advertisement”. While their
natural language descriptions differ (“the word Advertisement” vs. “advertisement markers”), their
semantic regex descriptions are identical: [:symbol Advertisement:].

To quantify this effect, we measure consistency by asking how often a method produces the same
description when given different random samples of a feature’s activating data. This simulates
redundancy, since the underlying feature is fixed but observed activating examples vary. Eval-
uating semantic-regex, max-acts, and token-act-pair on five random features per layer
of GPT-2-RES-25k, each with five generated descriptions, we find that semantic-regex yields
identical descriptions 33.6% of the time, compared to 12.2% for token-act-pair and 0.0% for
max-acts. These results suggest that constraining the description space with semantic regexes
improves consistency, making it easier to detect redundant features.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Semantic regexes are often more concise (top), more consistently describe equivalent
features (middle), and better reflect feature complexity (bottom) than natural language descriptions.

5.3 SEMANTIC REGEXES REFLECT FEATURE COMPLEXITY

Beyond matching the accuracy of natural language descriptions and offering benefits like concise-
ness and consistency, the structured format of semantic regexes offers additional affordances for
model interpretability. Each semantic regex is built from primitives that span increasing levels of
abstraction, where symbols match specific characters, lexemes extend to syntactic variants, and
fields encode semantic relationships. Moreover, the number of components in a semantic regex
is also a proxy for feature complexity, where features described using a single primitive (e.g.,
[:symbol left:]) are typically conceptually simpler than features that require multiple compo-
sitions of primitives and modifiers (e.g., @{:context political affiliations:}([:symbol
left:]|[:symbol right:])).

We use the level of abstraction encoded in semantic regexes to measure feature complexity,
finding that features become more complex deeper in the model (Figure 4). We generate se-
mantic regexes for 1,000 features per layer in GPT-2-RES-25k, Gemma-2-2B-RES-16k, and
Gemma-2-2B-RES-65k. While early-layer features are described by smaller and simpler seman-
tic regexes, longer and more abstract semantic regexes are needed to describe later-layer features.
In particular, we find that the average number of components per semantic regex (i.e., symbols, lex-
emes, fields, and contexts) steadily increases across layers. This shift is mirrored in the composition
of a semantic regex, where early layers have a greater proportion of single-primitive descriptions
which decreases in favor or combinations of primitives and modifiers, particularly sequence and al-
ternation compositions. Similarly, we observe that the types of primitives reflect increasing feature
complexity. While all semantic regexes contain primitives, we see a decrease in low-level primi-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Semantic regexes encode feature complexity. The number (top) and abstraction (middle,
bottom) of components increase across model layers, indicating increasingly complex features.

tives, like lexemes, and an increase in fields (the most abstract primitive). We show an example of
increasing feature complexity from early to later layers in Figure 3 bottom.

Together, these trends indicate that later layers require longer and more abstract semantic regexes
to capture their complex feature behaviors. This aligns with prior research demonstrating that later
layers encode increasingly complex representations (Jin et al., 2025; Tenney et al., 2019; Sun et al.,
2025). However, unlike prior methods that rely on model probes or feature testing, we are able
to read this complexity directly from the semantic regex feature description. As a result, while
like natural language descriptions, semantic regexes allow us understand individual features, their
structure also allows us to interpret entire model attributes.

5.4 SEMANTIC REGEXES HELP PEOPLE BUILD MENTAL MODELS OF LLM FEATURES

A common role of feature descriptions is to convey the feature’s behavior to a human inter-
preter (Ameisen et al., 2025; Lin, 2023). Thus, we investigate how semantic regexes impact people’s
mental models of LLM features (full protocol in Appendix E). We conducted a 24-person study with
AI experts who were representative of people most likely to use feature descriptions in practice. To
obtain insights across a range of features, we used 12 GPT-2-RES-25k features that had diverse ac-
tivation patterns and accurate natural language and semantic regex descriptions. Given a description,
participants were asked to generate three activating phrases and one near-miss counterfactual. Each
participant generated phrases for three max-acts and three semantic-regex feature descriptions,
resulting in 425 positive and 143 counterfactual phrases.

Forming an accurate mental model of an LLM feature means being able to express the feature’s
decision boundary, i.e., what does and does not activate the feature. We quantify this by measur-
ing the difference between the feature’s maximum activation on each participant’s positive phrases
and their counterfactual phrase. Small or negative values indicate that the participant had difficulty
distinguishing activating and non-activating phrases, while large positive values reflect an under-
standing of the feature’s decision boundary. We compare the mean differences of max-acts and
semantic-regex descriptions of the same feature, finding that participants scored higher using
semantic regex descriptions on 9 of 12 features (Figure 5).

Although both description types were accurate, natural language often introduced extraneous de-
tails that misled participants. For instance, one feature activated on variants of the phrase “expected
to”, but its natural language description included “‘expected to’ is frequently used to indicate an-
ticipation or prediction regarding future events or outcomes”. A participant over-indexed on the
additional detail, expecting the highly activating phrase “He does not know meaning of the phrase
expected to” to be a counterexample because it did not indicate anticipation. In contrast, [:lexeme
expect:][:symbol to:] more concisely expresses the activation pattern (see Section 5.2) and
enabled participants to generate strongly activating positives and non-activating counterfactuals.

We also find that semantic regexes reduce ambiguity by conveying activation patterns via example.
For a feature that activates on times followed by “p.m.”, the semantic regex specifies this pattern
directly as [:field time:][:symbol p.m.:], and as a result, every participant included “p.m.”

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: With semantic regexes, user study participants generated strongly activating positive ex-
amples and non-activating counterfactuals, indicating their understanding of the feature.

in their positive phrases. In contrast, natural language descriptions can leave room for interpreta-
tion, where one participant misinterpreted “reference to time, specifically indicating hours in the
‘p.m.’ format” as any time in the evening and left off the critical “p.m.” A similar pattern oc-
curred in a feature for political conjunctions, where the semantic regex directly included [:symbol
and:]|[:symbol or:], making the intended conjunction pattern unambiguous.

While semantic regexes’ concise examples generally benefited participants, there were cases where
the verbosity of natural language was more effective. In the two features where natural language
substantially outperformed semantic regexes, the semantic regexes were accurate but too minimal to
elicit strongly activating phrases from participants. For example, one feature activates on days of the
week used within full sentences. The conciseness of the semantic regex [:field days of the
week:] led many participants to produce single-word outputs, like “Monday”, which activated
slightly. However, the natural language description “days of the week indicating specific events”
prompted longer phrases with larger activations.

Finally, we find that participants were able to understand and use semantic regexes with minimal
instruction. Despite receiving only a short description and a single example, participants generally
interpreted the language correctly. In fact, we received more clarification questions about how to
interpret the natural language descriptions than semantic regexes. This contrasts prior work sug-
gesting that structured languages come at a cost because they require “specialized training” (Huang
et al., 2023), and instead signals their promise as tools for LLM interpretability.

6 DISCUSSION AND LIMITATIONS

Semantic regexes provide a structured syntax for describing LLM features. In doing so, they result in
feature descriptions that are more consistent and concise than natural language while still matching
its expressive power. However, designing this structured language introduces trade-offs that create
both benefits and limitations of semantic regexes and point to several directions for future work.

Since natural language descriptions often contain irrelevant details, we designed semantic regexes to
be concise. While this generally helps identify the pertinent activation pattern, it can produce overly
terse descriptions. For example, [:field musicians:] describes a feature that activates on fa-
mous musicians like “Taylor Swift”, incorrectly implying that “guitarist” would strongly activate
the feature. Striking a balance between conciseness and expressivity across all features may involve
adjusting model prompts, extending the language to encode hierarchical concepts (e.g., [:field
musician.name:]), or using validation loops Shaham et al. (2024) to mitigate ambiguity.

Additionally, although semantic regexes increase consistency, they do not enforce a unique mapping
from activation pattern to description. Many valid semantic regexes can describe the same feature,
even if some are less readable, like @{:context Germany:}([:symbol German:]). This non-
uniqueness is not inherently problematic. In programming languages, for instance, there are many
equivalent ways to implement the same function. However, languages often develop style guides

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

that suggest the most readable syntax (van Rossum et al., 2001). Similar heuristics may benefit the
semantic regex language, particularly when people (rather than models) are the intended interpreters.

To keep the semantic regex syntax minimal, we leave some components underspecified. For ex-
ample, symbols match exact strings, but the semantic regex language does not specify if they also
match string variations (e.g., “fruit” and “Fruit”). This simplicity avoids an overly complex vocab-
ulary but can cause the model to make inconsistent assumptions across features (e.g., sometimes
outputting [:symbol fruit:] and other times [:symbol fruit:]|[:symbol Fruit:]). In-
corporating additional components, like case-insensitive flags, could reduce this ambiguity, espe-
cially as growing familiarity with semantic regexes may allow for more complex syntax.

These limitations also impact feature description evaluations. Since current metrics rely on discrete
judgments of the feature description, issues like non-uniqueness and ambiguity can led to false neg-
atives and false positives for both semantic regexes and natural language methods. Developing more
expressive metrics, such as continuous scoring schemes or readability evaluations, could provide a
more comprehensive understanding of the differences between feature description methods.

Although our results indicate that semantic regexes are expressive, structured, and helpful for human
interpretation, additional evaluations could deepen our understanding of feature descriptions. While
our repeated evaluations show that semantic regexes produce consistent descriptions, large-scale
repetitions of the quantitative analysis could measure pipeline stability. Additionally, our user study
provides qualitative insights, but larger crowdsourced studies could statistically quantify the value
of semantic regexes and whether LLM-as-a-judge evaluations faithfully capture human preferences
in this domain. These findings could inform improvements to future feature description pipelines.

Moreover, semantic regexes are not a solution to polysemanticity. While the OR modifier helps
capture simple polysemantic features (e.g., [:field clothing:]|[:field Ernest:]), the
current pipeline struggles with high degrees of concept entanglement, often resulting in inco-
herent descriptions, like @{:context syntax:}([:symbol by:]|[:symbol (:]|[:symbol
.:]|[:symbol last:]|[:symbol then:]|[:symbol Count:]|[:symbol ->:]). How-
ever, since semantic regexes are agnostic to the generation pipeline, they could easily slot into newly
developed methods for disentangling polysemantic activations (Kopf et al., 2025).

Finally, semantic regexes require models to learn the semantic regex language from only a brief
description and a few examples. As a result, we observe “grammatical” errors in generation (e.g.,
applying the wrong primitive) and evaluation (e.g., misinterpreting a primitive and making an incor-
rect match). Although models also makes mistakes on natural language descriptions, they typically
stem from misidentifying the activation pattern rather than misunderstanding the language. This gap
raises important questions for automated interpretability. As we increasingly think of LLM features
as computational units, structured language should better capture their patterns (akin to how pro-
grams better represent algorithms). However, if automated pipelines rely on models biased towards
natural language, structured languages face a substantial barrier to adoption. Moreover, people eas-
ily learn structured languages, so it is unclear whether automated evaluations reflect human ability.
Future work could investigate these discrepancies to understand how model and human reasoning
diverge on novel structured languages and its impact on interpretability pipelines.

7 CONCLUSION

We introduce semantic regexes, a structured language for automatically describing LLM features.
The semantic regex language is grounded in current understanding of LLM features. Each prim-
itive and modifier is designed to reflect patterns observed in interpretability research — i.e., that
features often respond to exact tokens (symbol), syntactic word forms (lexeme), and semantic cat-
egories (field), and their activations are domain-dependent (context) and co-occur with other
patterns (Lin, 2023; Templeton et al., 2024). As our understanding of LLM representations grows,
we expect the semantic regex language will evolve, with components added or altered to capture
new feature behaviors. Just as there are many programming languages to meet different goals, future
languages for interpretability may be developed with affordances suited to particular interpretability
tasks, such as highlighting input vs. output features, describing particular model components (e.g.,
attention heads), or exposing safety-relevant features. The affordances of consistency, conciseness,
and complexity that we build into semantic regexes expose a broader design space of structured
languages for interpretability that can improve our collective understanding and control of LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

As part of this research, we conducted a user study where we surveyed 24 participants from within
our institution (Section 5.4). All participants gave informed consent and were informed they could
withdraw at any time. We did not collect any identifying information and all participant responses
were anonymized. This study was approved under our institution’s internal user survey policies.

REPRODUCIBILITY STATEMENT

Implementation details for our method and the baseline methods are in Appendix F.1, including the
full prompts and hyperparameters. Implementation details for the evaluation metrics are provided
in Appendix F.2, including full prompts and hyperparameters. Code is available at redacted, and
an interactive interface displaying our results is available at redacted. Details to recreate our user
study, including our survey instructions, are listed in Appendix E.

REFERENCES

Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compiling. 1: Pars-
ing. Prentice-Hall, 1972. ISBN 0139145567. URL https://www.worldcat.org/oclc/
310805937.

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

John W. Backus. The syntax and semantics of the proposed international algebraic language of
the zurich ACM-GAMM conference. In Information Processing, Proceedings of the 1st Inter-
national Conference on Information Processing, UNESCO, Paris 15-20 June 1959, pp. 125–131.
UNESCO (Paris), 1959.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3319–3327. IEEE Computer Society, 2017. doi:
10.1109/CVPR.2017.354. URL https://doi.org/10.1109/CVPR.2017.354.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
neurons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html, 2023.

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of
gpt2 small. https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/
open-source-sparse-autoencoders-for-all-residual-stream, 2024.

Angie Boggust, Hyemin Bang, Hendrik Strobelt, and Arvind Satyanarayan. Abstraction alignment:
Comparing model-learned and human-encoded conceptual relationships. In Proceedings of the
CHI Conference on Human Factors in Computing (CHI), pp. 417:1–417:20. ACM, 2025. doi:
10.1145/3706598.3713406. URL https://doi.org/10.1145/3706598.3713406.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

11

https://www.worldcat.org/oclc/310805937
https://www.worldcat.org/oclc/310805937
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://doi.org/10.1109/CVPR.2017.354
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://doi.org/10.1145/3706598.3713406

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
with matryoshka sparse autoencoders. CoRR, abs/2503.17547, 2025. doi: 10.48550/ARXIV.
2503.17547. URL https://doi.org/10.48550/arXiv.2503.17547.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. Activation atlas.
Distill, 2019. doi: 10.23915/distill.00015. https://distill.pub/2019/activation-atlas.

David Chanin, James Wilken-Smith, Tomás Dulka, Hardik Bhatnagar, and Joseph Bloom. A
is for absorption: Studying feature splitting and absorption in sparse autoencoders. CoRR,
abs/2409.14507, 2024. doi: 10.48550/ARXIV.2409.14507. URL https://doi.org/10.
48550/arXiv.2409.14507.

Noam Chomsky. Three models for the description of language. IRE Trans. Inf. Theory, 2(3):
113–124, 1956. doi: 10.1109/TIT.1956.1056813. URL https://doi.org/10.1109/TIT.
1956.1056813.

Juliet Corbin and Anselm Strauss. Basics of the Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. SAGE Publications, 1998. doi: 10.4135/9781452230153.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM
feature circuits. In Advances in Neural Information Processing Systems (NeurIPS),
2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
2b8f4db0464cc5b6e9d5e6bea4b9f308-Abstract-Conference.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy model/index.html.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027, 2021. URL
https://arxiv.org/abs/2101.00027.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In In-
ternational Conference on Learning Representations (ICLR). OpenReview.net, 2025. URL
https://openreview.net/forum?id=tcsZt9ZNKD.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Onkar Gujral, Mihir Bafna, Eric Alm, and Bonnie Berger. Sparse autoencoders uncover biologically
interpretable features in protein language model representations. Proceedings of the National
Academy of Sciences, 122(34):e2506316122, 2025. doi: 10.1073/pnas.2506316122.

Yoav Gur-Arieh, Roy Mayan, Chen Agassy, Atticus Geiger, and Mor Geva. Enhancing automated
interpretability with output-centric feature descriptions. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 5757–5778. Association for Computa-
tional Linguistics, 2025. URL https://aclanthology.org/2025.acl-long.288/.

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
Andreas. Natural language descriptions of deep visual features. In International Conference
on Learning Representations (ICLR). OpenReview.net, 2022. URL https://openreview.
net/forum?id=NudBMY-tzDr.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts.
Rigorously assessing natural language explanations of neurons. In Proceedings of the
BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP (Black-
boxNLP@EMNLP), pp. 317–331. Association for Computational Linguistics, 2023. doi: 10.
18653/V1/2023.BLACKBOXNLP-1.24. URL https://doi.org/10.18653/v1/2023.
blackboxnlp-1.24.

12

https://doi.org/10.48550/arXiv.2503.17547
https://doi.org/10.48550/arXiv.2409.14507
https://doi.org/10.48550/arXiv.2409.14507
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
http://papers.nips.cc/paper_files/paper/2024/hash/2b8f4db0464cc5b6e9d5e6bea4b9f308-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/2b8f4db0464cc5b6e9d5e6bea4b9f308-Abstract-Conference.html
https://arxiv.org/abs/2101.00027
https://openreview.net/forum?id=tcsZt9ZNKD
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://aclanthology.org/2025.acl-long.288/
https://openreview.net/forum?id=NudBMY-tzDr
https://openreview.net/forum?id=NudBMY-tzDr
https://doi.org/10.18653/v1/2023.blackboxnlp-1.24
https://doi.org/10.18653/v1/2023.blackboxnlp-1.24

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In International Conference
on Learning Representations (ICLR). OpenReview.net, 2024. URL https://openreview.
net/forum?id=F76bwRSLeK.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, and Yongfeng Zhang.
Exploring concept depth: How large language models acquire knowledge and concept at dif-
ferent layers? In Proceedings of the International Conference on Computational Linguis-
tics (COLING), pp. 558–573. Association for Computational Linguistics, 2025. URL https:
//aclanthology.org/2025.coling-main.37/.

Donald E. Knuth. On the translation of languages from left to right. Inf. Control., 8(6):607–
639, 1965. doi: 10.1016/S0019-9958(65)90426-2. URL https://doi.org/10.1016/
S0019-9958(65)90426-2.

Laura Kopf, Nils Feldhus, Kirill Bykov, Philine Lou Bommer, Anna Hedström, Marina M.-C.
Höhne, and Oliver Eberle. Capturing polysemanticity with PRISM: A multi-concept feature de-
scription framework. CoRR, abs/2506.15538, 2025. doi: 10.48550/ARXIV.2506.15538. URL
https://doi.org/10.48550/arXiv.2506.15538.

Mark V. Lawson. Finite automata. In Dimitrios Hristu-Varsakelis and William S. Levine (eds.),
Handbook of Networked and Embedded Control Systems, pp. 117–144. Birkhäuser, 2005.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca D. Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. CoRR, abs/2408.05147, 2024. doi: 10.48550/
ARXIV.2408.05147. URL https://doi.org/10.48550/arXiv.2408.05147.

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

Zachary C. Lipton. The mythos of model interpretability. Commun. ACM, 61(10):36–43, 2018. doi:
10.1145/3233231. URL https://doi.org/10.1145/3233231.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose
Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak
Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne
Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Gr-
ishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway,
Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, and et al. Gemma: Open models based
on gemini research and technology. CoRR, abs/2403.08295, 2024. doi: 10.48550/ARXIV.2403.
08295. URL https://doi.org/10.48550/arXiv.2403.08295.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017. doi:
10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/
distill.00010. https://distill.pub/2018/building-blocks.

13

https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://aclanthology.org/2025.coling-main.37/
https://aclanthology.org/2025.coling-main.37/
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.48550/arXiv.2506.15538
https://doi.org/10.48550/arXiv.2408.05147
https://www.neuronpedia.org
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://doi.org/10.1145/3233231
https://doi.org/10.48550/arXiv.2403.08295

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the ge-
ometry of large language models. In International Conference on Machine Learning (ICML).
OpenReview.net, 2024. URL https://openreview.net/forum?id=UGpGkLzwpP.

Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions
of features in large language models. CoRR, abs/2410.13928, 2024. doi: 10.48550/ARXIV.2410.
13928. URL https://doi.org/10.48550/arXiv.2410.13928.

Bruno Puri, Aakriti Jain, Elena Golimblevskaia, Patrick Kahardipraja, Thomas Wiegand, Wojciech
Samek, and Sebastian Lapuschkin. FADE: why bad descriptions happen to good features. In
Findings of the Association for Computational Linguistics (ACL), pp. 17138–17160. Association
for Computational Linguistics, 2025.

Python Software Foundation. Full grammar specification. The Python Language Reference, Python
3.13.7, 2025. URL https://docs.python.org/3/reference/grammar.html.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. CoRR, abs/2407.14435, 2024. doi: 10.48550/ARXIV.2407.14435. URL https:
//doi.org/10.48550/arXiv.2407.14435.

Tamar Rott Shaham, Sarah Schwettmann, Franklin Wang, Achyuta Rajaram, Evan Hernandez, Ja-
cob Andreas, and Antonio Torralba. A multimodal automated interpretability agent. In In-
ternational Conference on Machine Learning (ICML). OpenReview.net, 2024. URL https:
//openreview.net/forum?id=mDw42ZanmE.

Xiaoqing Sun, Alessandro Stolfo, Joshua Engels, Ben Wu, Senthooran Rajamanoharan, Mrinmaya
Sachan, and Max Tegmark. Dense SAE latents are features, not bugs. CoRR, abs/2506.15679,
2025. doi: 10.48550/ARXIV.2506.15679. URL https://doi.org/10.48550/arXiv.
2506.15679.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In Pro-
ceedings of the Conference of the Association for Computational Linguistics (ACL), pp. 4593–
4601. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1452. URL
https://doi.org/10.18653/v1/p19-1452.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelli-
gence, 267:1–38, 2019. doi: 10.1016/J.ARTINT.2018.07.007. URL https://doi.org/10.
1016/j.artint.2018.07.007.

Guido van Rossum, Barry Warsaw, and Nick Coghlan. Style guide for Python code. PEP 8, 2001.
URL https://www.python.org/dev/peps/pep-0008/.

Vladimir Zaigrajew, Hubert Baniecki, and Przemyslaw Biecek. Interpreting CLIP with hierarchical
sparse autoencoders. CoRR, abs/2502.20578, 2025. doi: 10.48550/ARXIV.2502.20578. URL
https://doi.org/10.48550/arXiv.2502.20578.

14

https://openreview.net/forum?id=UGpGkLzwpP
https://doi.org/10.48550/arXiv.2410.13928
https://docs.python.org/3/reference/grammar.html
https://doi.org/10.48550/arXiv.2407.14435
https://doi.org/10.48550/arXiv.2407.14435
https://openreview.net/forum?id=mDw42ZanmE
https://openreview.net/forum?id=mDw42ZanmE
https://doi.org/10.48550/arXiv.2506.15679
https://doi.org/10.48550/arXiv.2506.15679
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://doi.org/10.18653/v1/p19-1452
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.48550/arXiv.2502.20578

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

Large language models (LLMs) are the subject of this work, and they were also used as general-
purpose tools to assist with writing and coding. All research ideas, study designs, analyses, and
substantive code implementations were developed by the authors.

B ADDITIONAL RESULTS

Here we show alternative views of the benchmarking results from Section 5.1. We show the numer-
ical means and standard deviations in Table A1 and the metric distributions in Figure A1.

Table A1: Across results on GPT-2-RES-25k, Gemma-2-2B-RES-16k, and
Gemma-2-2B-RES-65k, semantic-regex feature descriptions perform on par with natural
language feature description methods. These results suggest that the semantic regex language is
appropriately expressive to describe features with similar performance as unconstrained natural
language. Each metric is computed on 100 randomly selected features per model layer and
displayed as the mean ± the standard deviation.

Generation Discrimination Faithfulness
GPT-2-RES-25k clarity detection fuzzing responsiveness purity faithfulness

token-act-pair 0.45± 0.36 0.79± 0.15 0.80± 0.16 0.81± 0.23 0.71± 0.28 0.46± 0.46

max-acts 0.70± 0.35 0.86± 0.12 0.88± 0.10 0.87± 0.20 0.78± 0.26 0.52± 0.46

semantic-regex 0.68± 0.36 0.81± 0.14 0.83± 0.13 0.83± 0.21 0.66± 0.32 0.37± 0.45

Gemma-2-2B-RES-16k

token-act-pair 0.34± 0.34 0.78± 0.15 0.79± 0.15 0.76± 0.25 0.69± 0.26 0.38± 0.45

max-acts 0.59± 0.39 0.86± 0.11 0.86± 0.10 0.82± 0.22 0.77± 0.24 0.49± 0.46

semantic-regex 0.57± 0.40 0.79± 0.13 0.77± 0.13 0.76± 0.23 0.58± 0.30 0.38± 0.45

Gemma-2-2B-RES-65k

token-act-pair 0.25± 0.32 0.77± 0.15 0.77± 0.15 0.75± 0.26 0.69± 0.26 0.30± 0.41

max-acts 0.45± 0.40 0.85± 0.12 0.85± 0.12 0.79± 0.23 0.75± 0.25 0.40± 0.44

semantic-regex 0.47± 0.42 0.79± 0.13 0.79± 0.13 0.76± 0.22 0.59± 0.31 0.28± 0.40

Figure A1: Metric distributions comparing semantic-regex feature descriptions against natu-
ral language baseline methods. Results are shown for 100 feature per layer on GPT-2-RES-25k,
Gemma-2-2B-RES-16k, and Gemma-2-2B-RES-65k and visualized using kernel density estima-
tion with bandwidth estimated via Scott’s rule.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ABLATION STUDY

Our experiments (Section 5) use GPT-4o-mini as both the explainer and evaluator model. This
choice follows common practice in automated interpretability, where the same model is used to gen-
erate and evaluate feature descriptions (Bills et al., 2023; Gur-Arieh et al., 2025). Since verification
is typically easier than generation, a model can reliably judge its descriptions and the independence
of model calls prevents conditioning effects.

To assess whether our findings depend on the choice of model, we conduct an ablation using a more
capable model (GPT-4o) in place of GPT-4o-mini. This ablation tests whether the relative perfor-
mance between semantic regexes and natural language descriptions is sensitive to model capability
and evaluates the robustness of our results.

Our ablation study follows the same automated interpretability pipeline described in Section 4. All
components of the pipeline remain unchanged, including feature extraction, activation formatting,
and prompting strategy. The only difference is that GPT-4o is substituted for GPT-4o-mini in both
the explanation and evaluation steps. We apply this setup to a randomly sampled subset of 520
features from across layers of GPT-2-RES-25k. For each feature, we generate descriptions using
semantic-regex, max-acts, and token-act-pair using both GPT-4o and GPT-4o-mini, and
we evaluate each description using the same discrimination and generation metrics used in the main
experiments. This design isolates the effect of model capability while preserving all other aspects
of the experimental pipeline.

We report the results in Figures A2 and A3 and Table A2. Across all feature description methods
and evaluation metrics, the overall results remains the same regardless of whether the explainer
and evaluator are GPT-4o or GPT-4o-mini. Semantic regexes continue to match the performance
of natural language descriptions, and the relative differences between description types are nearly
identical across the two model settings. While some metrics are slightly higher under GPT-4o (e.g.,
slight improvements in purity and responsiveness) these gains arise uniformly across methods
and are well within the experimental noise.

Overall, the consistency between GPT-4o-mini and GPT-4o demonstrates that the comparative
performance of semantic regexes is not sensitive to the choice of model. Given this robustness,
along with the significantly improved efficiency and lower cost of GPT-4o-mini (Appendix D), we
use GPT-4o-mini for all experiments reported in the main text.

D COST ANALYSIS

The cost of generating semantic-regex feature descriptions is comparable to the cost of prior
natural language methods. Computing descriptions for all features in GPT-2-RES-25k would cost

Table A2: Across results on semantic-regex, max-acts, and token-act-pair feature de-
scriptions, the choice of explainer and evaluator model (either GPT-4o or GPT-4o-mini) does not
change the relative performance. These results validate our use of GPT-4o-mini in our main ex-
periments. Each metric is computed on 520 randomly selected features from GPT-2-RES-25k and
displayed as the mean ± the standard deviation.

Generation Discrimination
token-act-pair clarity detection fuzzing responsiveness purity

GPT-4o-mini 0.45± 0.37 0.79± 0.15 0.81± 0.15 0.83± 0.22 0.73± 0.26
GPT-4o 0.59± 0.37 0.83± 0.13 0.82± 0.13 0.90± 0.17 0.84± 0.21

max-acts
GPT-4o-mini 0.71± 0.36 0.86± 0.11 0.89± 0.10 0.88± 0.20 0.81± 0.24
GPT-4o 0.73± 0.33 0.86± 0.09 0.85± 0.09 0.91± 0.14 0.86± 0.19

semantic-regex
GPT-4o-mini 0.69± 0.37 0.81± 0.13 0.83± 0.12 0.84± 0.21 0.68± 0.32
GPT-4o 0.68± 0.36 0.82± 0.12 0.81± 0.12 0.84± 0.22 0.74± 0.30

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure A2: Metric box plots comparing different explainer and evaluator models (GPT-4o and
GPT-4o-mini) across semantic-regex and natural language baseline methods (max-acts and
token-act-pair). Results are shown for 520 features from GPT-2-RES-25k.

Figure A3: Metric distributions comparing different explainer and evaluator models (GPT-4o
and GPT-4o-mini) across semantic-regex and natural language baseline methods. Results are
shown for 520 features from GPT-2-RES-25k and visualized using kernel density estimation with
bandwidth estimated via Scott’s rule.

approximately $65.27 using GPT-4o-mini and $1,087.86 using GPT-4o. These values are on par
with to existing methods: generating all token-act-pair descriptions would cost $67.67, and all
max-actsdescriptions would cost $54.01 using GPT-4o-mini.

The description cost per feature depends on the number of input tokens in the prompt (system prompt
and few-shot examples, Tprompt and the feature’s tokens, Tfeature) and on the number of generated
output tokens, Tout.

Cost per feature = Pin (Tprompt + Tfeature) + Pout (Tout) , (1)

where Pin and Pout are the API prices for input and output tokens.

We report the token counts and resulting costs for each feature description method in Table A3. Dif-
ferences across methods are the result of formatting choices and the number of examples shown
to the explainer. For instance, the token-act-pairuses more verbose activation formatting
than max-acts and semantic-regex, and semantic-regexuses fewer activating examples than
max-acts but adds the semantic regex definition to the system prompt.

At the time of writing, the OpenAI API pricing2 is $0.15/$0.60 USD per million input/output tokens
for GPT-4o-mini and $2.50/$10.00 USD per million input/output tokens for GPT-4o. These esti-

2https://platform.openai.com/docs/pricing

17

https://platform.openai.com/docs/pricing

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table A3: Cost analysis for feature description generation. Costs are computed from the number
of input tokens (system prompt, few-shot examples, and feature input) and the number of generated
output tokens. We report the mean ± std of input and output token counts across 130 features from
GPT-2-RES-25k (10 per layer). Tokenization is performed using OpenAI’s GPT-4o model family
tokenizer.

token-act-pair max-acts semantic-regex

Input Tokens: system and few-shot examples (Tprompt) 919 483 993
Input Tokens: average per feature (Tfeature) 457± 213 524± 90 237± 47

Output Tokens: average per generation (Tout) 9± 3 30± 7 33± 12

GPT-4o-mini cost per feature $ 0.00021180 $ 0.00016905 $ 0.00020430

GPT-4o cost per feature $ 0.00353000 $ 0.00281750 $ 0.00340500

mates assume no input caching, so the reported prices are an upper bound on the total cost of feature
description generation.

E USER STUDY PROTOCOL

Here we provide the full protocol for our user study in Section 5.4.

Since we already evaluate semantic regex reliability across thousands of features in Section 5.1, the
purpose of our user study is not to obtain another quantitative reliability estimate. Instead, our goal
is to gain qualitative insight into how semantic regexes shape real-world AI experts’ interpretation
of model features. To do this effectively, we recruit a representative sample of the practitioners
most likely to use semantic regexes in practice and present them with a controlled but diverse set
of model features. We intentionally keep the study size at 24 experts and 12 features to make the
protocol feasible. Importantly, we find that these sample sizes are sufficient to draw insights about
the benefits and limitations of semantic regexes.

Participants Our target population consists of practitioners who would realistically interpret se-
mantic regex feature descriptions in their real-world tasks, including interpretability research, AI
safety, and model development. Therefore, we recruited 24 AI experts from within our organization
who work with LLMs. These participants have a broad range of technical roles and backgrounds,
ensuring that the study captures how semantic regexes are interpreted by the types of experts who
would use them in practice.

Features Our user study investigates how the format of a feature description influences people’s
understanding. To ensure that participants interpreted meaningful feature descriptions, we restricted
to features from GPT-2-RES-25k with both accurate semantic regex and natural language descrip-
tions. Because our goal was not to exhaustively evaluate all such features, but rather to study human
interpretation across a representative sample, we focused on selecting a diverse subset.

We first filtered to features whose semantic-regex and max-acts descriptions each achieved
a detection score above 75%. From this filtered set, we manually selected 12 features whose
descriptions we verified to be accurate. Our selection process emphasized feature diversity by se-
lecting features varying depths and with a range of activation patterns. We selected features from
across the model’s layers, resulting in 5 features from early layers (1-4), 4 from middle layers (5-8),
and 3 from late layers (9-12). And, we chose features that represented diverse activation patterns,
such that 2 activated on exact symbols, 1 on a lexeme, 3 on a field, 2 only activated in a particu-
lar context, and 4 were complex patterns that required concatenation or combination of semantic
regex components.

This selection process allowed us to study human interpretation across a controlled but diverse range
of features without overburdening participants. We show all selected features and their descriptions
in Figure A4.

Task Participants were tasked with writing phrases that matched or were a close counterfactual
to a given feature description. Each participant was shown three natural language descriptions and
three semantic regex descriptions. To avoid carryover effects, participants saw natural language and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

semantic regex descriptions from different features. To avoid learning effects, we randomized the
order, with half the participants seeing natural language descriptions first and the other half seeing
semantic regexes first.

Each participant completed the task for three natural language feature descriptions (max-acts)
and three semantic-regex feature descriptions. We showed each participant features of varying
complexity, with half the participants seeing the feature descriptions in the left column of Figure A4
and the other half seeing feature descriptions from the right column.

The task was completed asynchronously and distributed via a survey link. The survey began with an
introduction to the task, the semantic regex language, and an example of matching and counterfactual
phrases (Figure A5). Then, participants were shown an explanation of the feature description type
they would see first, followed by three feature descriptions they were asked to generate phrases
for. This was repeated with the alternate feature description type and the final three explanations
(Figures A6 and A7). For each feature description, they were asked to “Write 3 phrases/sentences
that match the feature description” and “Write 1 phrase/sentence that is a counterfactual for the
semantic regex feature description” (Figures A8 and A9).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure A4: The features we used in our user study (Section 5.4), displayed as their top activating
examples and semantic-regex and max-actsfeature descriptions. Half of the participants were
shown the features in the left column and the other half was shown features in the right column.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure A5: The user study introduction explains the task, the semantic regex language, and provides
an example.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure A6: The user study’s description of semantic regexes.

Figure A7: The user study’s description of natural language feature descriptions.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure A8: An example of a user study question for a semantic regex feature description.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure A9: An example of a user study question for a natural language feature description.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table A4: Hyperparameters used to generate feature descriptions using semantic-regex and the
natural language benchmarks (token-act-pair (Bills et al., 2023) and max-acts (Paulo et al.,
2024)). Benchmark hyperparameters follow Neuronpedia’s implementations of the original meth-
ods (Lin, 2023).

Parameter token-act-pair max-acts semantic-regex
Number of few shot examples 3 3 4
Number of data examples 5 20 10
Number of tokens per example 64 32 32
Explanation model temperature 1.0 0.7 1.0
Explanation model top-p 1.0 1.0 1.0
Activation threshold — 60% 30%

F IMPLEMENTATION DETAILS

F.1 FEATURE DESCRIPTION METHODS

We evaluate three approaches for generating natural language explanations of LLM features:
token-act-pair (Bills et al., 2023), max-acts (Paulo et al., 2024), and our proposed
semantic-regex method. All methods use gpt-4o-mini as the explainer model. We follow
Neuronpedia’s reference implementations (Lin, 2023) for each baseline method. Implementation
details for each method are provided below, and a summary of the settings is shown in Table A4.

token-act-pair We follow Neuronpedia’s implementation (Lin, 2023) of the feature description
method proposed in Bills et al. (2023), called oai token-act-pair in the Neuronpedia interface.
The explainer model is prompted with the original feature description system instructions and the
three few-shot examples used in their paper (Listing 2). For each feature, we supply the top five
activating data examples from Neuronpedia (Lin, 2023), where each example consists of up to a
64-token window centered on the maximally activating token. Tokens are presented in the format:

<start>
token_1 activation_1
token_2 activation_2
...
<end>

where activation i is the normalized activation value for the feature. Activations are linearly
scaled between 0 and 10, such that the feature’s maximum activation value maps to 10. The prompt
ends with the continuation cue “the main thing this neuron does is find”, following the original
protocol. Generation is performed with temperature = 1 and top-p = 1.

max-acts We follow Neuronpedia’s implementation (Lin, 2023) of the feature description method
proposed in Paulo et al. (2024), called eleuther acts top20 in the Neuronpedia interface. The
explainer model is prompted with the original system instructions and the three few-shot examples
provided in the original paper (Listing 3). For each feature, we supply the top 20 activating data
examples from Neuronpedia (Lin, 2023), where each example consists of up to a 32-token window
centered around the maximally activating token. Tokens exceeding 60% of the feature’s maximum
activation are highlighted and contiguous activating tokens are merged into a single highlighted
segment, like:

token_1<<token_2token_3>>token4...

The prompt ends with the instruction to “describe the text latents that are common in the examples”.
Generation is performed with temperature = 0.7 and top-p = 1, following Neuronpedia’s settings.

semantic-regex To generate semantic regexes, we prompt the explainer model with system
instructions adapted from max-acts, augmented with a concise definition of the semantic regex
language (Listing 1) and four few-shot examples illustrating the range of available primitives and

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

modifiers (Listing 4). For each feature, we supply the top 10 activating data examples from Neu-
ronpedia (Lin, 2023), where each example consists of up to a 32-token window centered on the
maximally activating token. Tokens exceeding 30% of the feature’s maximum activation are high-
lighted, and contiguous spans are merged into single segments, as in max-acts.

token_1<<token_2token_3>>token4...

We found this lower threshold produced more consistent highlights, which is important for mapping
activations to the structured semantic regex language. The prompt concludes with the instruction
to “output a short explanation followed by a semantic regex”, which we found improved syntactic
adherence. Generation is performed with temperature = 1 and top-p = 1.

A Semantic Regex is a structured pattern composed of:

* [:symbol X:] - matches an exact phrase X (e.g., [:symbol running:] matches "I am<< running>>" and "<<
running>> faster").

* [:lexeme X:] - matches a phrase X and its syntactic variants (e.g., [:lexeme run:] matches "she<< ran>>",
"it’s<< running>> quickly").

* [:field X:] - matches a phrase X and its semantic variants (e.g., [:field run:] matches "out for a << jog
>>" and "<< sprint>> for gold").
X can be a subword (e.g., ing), word (e.g., running), or phrase (e.g., running tempo).
These components can be combined to match more complex patterns:

* S1 S2 - matches a sequence where S1 is followed by S2 (e.g., [:symbol run:] [:lexeme fast:] matches "I<<
run fast>>" and "they<< run faster>>").

* S1|S2 - matches either S1 or S2 (e.g., [:symbol run:]|[:symbol walk:] matches "I<< run>>" and "I<< walk
>>").

* S? - matches S or nothing (e.g., [:lexeme run:] [:symbol very:]? [:symbol fast:] matches "I am<< running
fast>>" and "I<< run very fast>>").

* @{:context C:}(S) - matches S that only activates in the context C (e.g., @{:context political:}([:lexeme
run:]) matches "she<< ran>> for office" and "<<running>> for govenor" but not "I<< run>> marathons").

Listing 1: The semantic-regex description that we inject into method and metric prompts.

<system>
We’re studying neurons in a neural network. Each neuron looks for some particular thing in a short document
. Look at the parts of the document the neuron activates for and summarize in a single sentence what the
neuron is looking for. Don’t list examples of words.

The activation format is token<tab>activation. Activation values range from 0 to 10. A neuron finding what
it’s looking for is represented by a non-zero activation value. The higher the activation value, the
stronger the match.
</system>

<user>
Neuron 1
Activations:
<start>
t 0
urt 0
ur 0
ro 0
is 0
fab 0
ulously 0
funny 0
and 0
over 0
the 0
top 0
as 0
a 0
’ 0
very 0
sneaky 0
’ 1
but 0
ler 0
who 0
excel 0
s 0
in 0
the 0
art 0
of 0
impossible 0
disappearing 6
/ 0
re 0
app 0
earing 10
acts 0
<end>
<start>
esc 0
aping 9

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

the 4
studio 0
, 0
pic 0
col 0
i 0
is 0
warm 0
ly 0
affecting 3
and 0
so 0
is 0
this 0
ad 0
roit 0
ly 0
minimalist 0
movie 0
. 0
<end>

Same activations, but with all zeros filtered out:
<start>
’ 1
disappearing 6
earing 10
<end>
<start>
aping 9
the 4
affecting 3
<end>

Explanation of neuron 1 behavior: the main thing this neuron does is find
</user>

<assistant>
present tense verbs ending in ’ing’.
</asistant>

<user>
Neuron 2
Activations:
<start>
as 0
sac 0
char 0
ine 0
movies 0
go 0
, 0
this 0
is 0
likely 0
to 0
cause 0
massive 0
cardiac 0
arrest 10
if 0
taken 0
in 0
large 0
doses 0
. 0
<end>
<start>
shot 0
perhaps 0
’ 0
art 0
istically 0
’ 0
with 0
handheld 0
cameras 0
and 0
apparently 0
no 0
movie 0
lights 0
by 0
jo 0
aquin 0
b 0
aca 0
- 0
as 0
ay 0
, 0
the 0

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

low 0
- 0
budget 0
production 0
swings 0
annoy 0
ingly 0
between 0
vert 0
igo 9
and 0
opacity 0
. 0
<end>

Same activations, but with all zeros filtered out:
<start>
arrest 10
<end>
<start>
igo 9
<end>

Explanation of neuron 2 behavior: the main thing this neuron does is find
</user>

<assistant>
words related to physical medical conditions.
</assistant>

<user>
Neuron 3
Activations:
<start>
the 0
sense 0
of 0
together 3
ness 7
in 0
our 0
town 1
is 0
strong 0
. 0
<end>
<start>
a 0
buoy 0
ant 0
romantic 0
comedy 0
about 0
friendship 0
, 0
love 0
, 0
and 0
the 0
truth 0
that 0
we 2
’re 4
all 3
in 7
this 10
together 5
. 0
<end>

Explanation of neuron 3 behavior: the main thing this neuron does is find
</user>

<assistant>
phrases related to community.
</assistant>

Listing 2: The token-act-pair prompt and few-shot examples. <system></system>,
<user></user>, and <assistant></assistant> delineate the message roles passed to
the explainer model.

<system>
You are a meticulous AI researcher conducting an important investigation into patterns found in language.
Your task is to analyze text and provide an explanation that thoroughly encapsulates possible patterns
found in it.
Guidelines:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

You will be given a list of text examples on which special words are selected and between delimiters like
<<this>>. If a sequence of consecutive tokens all are important, the entire sequence of tokens will be
contained between delimiters <<just like this>>.

- Try to produce a concise final description. Simply describe the text latents that are common in the
examples, and what patterns you found.
- If the examples are uninformative, you don’t need to mention them. Don’t focus on giving examples of
important tokens, but try to summarize the patterns found in the examples.
- Do not mention the marker tokens (<< >>) in your explanation.
- Do not make lists of possible explanations. Keep your explanations short and concise.
- The last line of your response must be the formatted explanation, using [EXPLANATION]:
</system>

<user>
Example 1: and he was <<over the moon>> to find
Example 2: we’ll be laughing <<till the cows come home>>! Pro
Example 3: thought Scotland was boring, but really there’s more <<than meets the eye>>! I’d
</user>

<assistant>
[EXPLANATION]: Common idioms in text conveying positive sentiment.
</assistant>

<user>
Example 1: a river is wide but the ocean is wid<<er>>. The ocean
Example 2: every year you get tall<<er>>," she
Example 3: the hole was small<<er>> but deep<<er>> than the
</user>

<assistant>
[EXPLANATION]: The token "er" at the end of a comparative adjective describing size.
</assistant>

<user>
Example 1: something happening inside my <<house>>", he
Example 2: presumably was always contained in <<a box>>", according
Example 3: people were coming into the <<smoking area>>".

However he
Example 4: Patrick: "why are you getting in the << way?>>" Later,
</user>

<assistant>
[EXPLANATION]: Nouns representing a distinct objects that contains something, sometimes preciding a
quotation mark.
</assistant>

Listing 3: The max-acts prompt and few-shot examples. <system></system>,
<user></user>, and <assistant></assistant> delineate the message roles passed to
the explainer model.

<system>
You are interpreting the role of LLM features. Your task it to describe patterns across activating text
examples.

Input:
You will be given a list of text examples.
Activating phrases in each example are highlighted between delimiters like<< this and that>>.

Output:
You will output a **Semantic Regex** that describes patterns across the text examples.
A Semantic Regex is a structured pattern composed of:

* [:symbol X:] - matches an exact phrase X (e.g., [:symbol running:] matches "I am<< running>>" and "<<
running>> faster").

* [:lexeme X:] - matches a phrase X and its syntactic variants (e.g., [:lexeme run:] matches "she<< ran>>",
"it’s<< running>> quickly").

* [:field X:] - matches a phrase X and its semantic variants (e.g., [:field run:] matches "out for a << jog
>>" and "<< sprint>> for gold").
X can be a subword (e.g., ing), word (e.g., running), or phrase (e.g., running tempo).
These components can be combined to match more complex patterns:

* S1 S2 - matches a sequence where S1 is followed by S2 (e.g., [:symbol run:] [:lexeme fast:] matches "I<<
run fast>>" and "they<< run faster>>").

* S1|S2 - matches either S1 or S2 (e.g., [:symbol run:]|[:symbol walk:] matches "I<< run>>" and "I<< walk
>>").

* S? - matches S or nothing (e.g., [:lexeme run:] [:symbol very:]? [:symbol fast:] matches "I am<< running
fast>>" and "I<< run very fast>>").

* @{:context C:}(S) - matches S that only activates in the context C (e.g., @{:context political:}([:lexeme
run:]) matches "she<< ran>> for office" and "<<running>> for govenor" but not "I<< run>> marathons").

Instructions:
1. Look at the text examples to identify patterns that occur across **all** examples.
2. First, look for patterns within the << >> delimiters.

1. If you find an exact phrase, use a [:symbol X:].
2. If you find a phrase and its syntactic variants, use a [:lexeme X:].
3. If you find a phrase and its semantic variants, use a [:field X:].
4. Create a Semantic Regex (S) with the fewest components that precisely describes the pattern.

3. Next, look for patterns in the examples’ topics.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1. If all examples are related to the same topic (C) AND the topic is not redundant with the current
Semantic Regex (S), use a @{:context C:}(S) modifier.

4. Output the simplest and most concise Semantic Regex that precisely describes the patterns across all
examples.
5. Do not includer the delimiters tokens (<< >>) in your Semantic Regex.
6. Output a short explanation followed by "SR: " and then the Semantic Regex
</system>

<user>
1: ax=[figg.add_subplot(2,1,k+)<< for>> k in xrange(2)]
2: p = 0<< for>> q in qlist: pprev = p
3: << for>> lam, prob in suite.Items():
</user>

<assistant>
The phrase ’for’ activates only in the context of coding. SR: @{:context coding:}([:symbol for:])
</assistant>

<user>
1: extradition legislation<< prohibits an individual from being sent back>>
2: << whether Israel can lift the collective protection of asylum seekers>>
3: << called on Dutch>> authorities<< to do more to protect human rights>> workers
</user>

<assistant>
The activating phrases and their surrounding phrases are all related to human rights legislation. SR: [:
field human rights legislation:]
</assistant>

<user>
1: off the markets - 2<< times the size>> of India’s
2: needed to meet demand - seven times<< the existing>> number
3: That’s about three times<< the>> rate seen in Hawaii
</user>

<assistant>
The symbol ’the’ activates when it is between a numerical multiplier and an amount of something. SR: [:
field number:] [:symbol times the] [:field amount:]
</assistant>

<user>
1: sentenced to<< 30 years in>> prison
2: to<< ten months>> in prison suspended for<< 3 years>>
3: << 1 month>> behind bars but was ordered to
</user>

<assistant>
The activating phrases are durations of prison sentences. SR: @{:context prison sentences}([:field duration
:])
</assistant>

Listing 4: The semantic-regex prompt and few-shot examples. <system></system>,
<user></user>, and <assistant></assistant> delineate the message roles passed to
the explainer model.

F.2 EVALUATION METRICS

We evaluate the feature description metrics across a suite of evaluation metrics. We take these
evluation metrics from Paulo et al. (2024) (Eleuther) and Puri et al. (2025) (FADE). We follow their
implementations closely, but make some modifications for consistency across metrics. To account
for the semantic regex structure, we make small adjustments to the original prompts and inject a
description of the semantic regex language (full prompts in Listings 5, 6, 7, 8, 9, 10, 11 and 12).
The hyperparameters are listed in Table A5.

All metrics use gpt-4o-mini as the evaluator model. Metrics typically rely on a set of activat-
ing examples (positives) and random examples (negatives). Unless otherwise specified, we use 50
activating examples and 50 negative examples per feature, each consisting of a 32-token window
centered on the maximally activating token. Activating example sampling varies per metric, but all
random examples are sampled from alternative features in Neuronpedia; given the number and di-
versity of features, this approximates random dataset sampling. To evaluate the description, many of
the methods compute the feature’s activation on these data sets. Following prior work (Paulo et al.,
2024), when we compute activations, we ignore the beginning-of-sequence tokens.

F.2.1 ELEUTHER METRICS

We implement the detection and fuzzing metrics from Paulo et al. (2024), following Neuronpe-
dia’s implementation (eleuther recall and eleuther fuzz). For Eleuther metrics, activating

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table A5: The hyperparameters used to evaluate feature descriptions using metrics from Paulo
et al. (2024) (detection, fuzzing) and Puri et al. (2025) (clarity, responsiveness, purity,
faithfulness).

Parameter clarity detection fuzzing responsiveness purity faithfulness
Number of positive examples 50 50 50 50 50 —
Number of random examples 50 50 50 50 50 10
Number of tokens per example 32 32 32 32 32 32
Number of examples per model call — 5 5 15 15 15
Positive example sampling method — quantiles quantiles percentile percentile —
Number of quantiles — 10 10 — — —
Percentiles — — — 0, 50, 75, 95, 100 0, 50, 75, 95, 100 —
Top sampling percentage — — — 20% 20% —
Evaluation model temperature 1.0 0.7 0.7 1.0 1.0 1.0
Number of generation runs 10 — — — — —
Modification factors — — — — — 0, 1, 10, 100
Number of steered generation tokens — — — — — 30

examples are sampled uniformly across 10 activation quantiles. Across both metrics the evaluator
model is tasked with providing a binary judgment of whether the each example matches the fea-
ture description. The evaluator model processes 5 examples per call, with temperature = 0.7 and a
maximum of 500 completion tokens.

detection The detection metric evaluates description quality at the example level. The eval-
uator model prompts are shown in Listings 5 and 6. The evaluator is shown a feature description
and an example and asked whether the description matches the example’s text. The final score is the
balanced accuracy of these binary judgments compared to the ground-truth example labels (positive
= activating, negative = random).

fuzzing The fuzzing metric follows the same setup as detection but evaluates matches at the
activation level. In each of the examples, we highlight activating tokens, and the evaluator model
is asked whether the description matches the highlighted regions. The evaluator model prompts
are shown in Listings 7 and 8. For activating examples, we highlight tokens that activate higher
than the activation threshold (60% of the feature’s maximum activation for max-acts and 30% of
the feature’s maximum activation for semantic-regex) and merge contiguously activating tokens,
e.g.:

token_1<<token_2token_3>>token_4...

Random examples are highlighted using the activation pattern of the positive examples, which en-
sures an equal distribution of activating tokens across both example sets. The evaluator is asked
whether the description matches the highlighted regions, and the score is computed as the balanced
accuracy of these judgments relative to the ground-truth labels. This yields a stricter variant of
detection by focusing the match decision on the most activating regions.

F.2.2 FADE METRICS

We implement the clarity, responsiveness, purity, and faithfulness metrics from Puri
et al. (2025), adapting their setup for consistency with the Eleuther metrics. We sample activating
examples following FADE’s stratified sampling protocol: 20% from the top activations and the
remainder sampled uniformly across the percentile bins [0, 50), [50, 75), [75, 95), and [95, 100].

responsiveness and purity To compute responsiveness and purity, the evaluator model
is shown a feature description and a data example and asked to provide a discrete judgment (0, 1,
or 2) indicating how strongly the text matches the description. Following FADE, samples labeled
as 1 are discarded before scoring. The evaluator model prompts are shown in Listings 9 and 10.
We parallelize scoring, such that the evaluator judges 15 examples at once. responsiveness
computes the Gini index of the resulting scores, capturing how well the description’s matches rank-
order the data by activation strength. purity computes the average precision, capturing how well
the description separates activating from non-activating examples in a retrieval setting.

clarity Unlike the other metrics, clarity evaluates a feature description by testing whether
it can generate activating text. Here, the evaluator model is prompted with the description and

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

asked to generate candidate examples (full prompts are shown in Listings 11 and 12). We make 10
independent generation calls, producing a set of positives, and sample an equal number of random
examples as negatives. Each example is then passed through the subject model to obtain its activation
value. clarity is computed as the Gini index (a rescaled ROC AUC), measuring whether generated
examples achieve higher activations than the random negatives.

faithfulness faithfulness measures how well the feature description captures the feature’s
causal role in the LLM. Unlike the other metrics that are based on analyzing activating data,
faithfulness compares the feature description against steered model generations where the fea-
ture is amplified or ablated. Here, we sample 10 random examples. Then we have the model
continue each example by generating 30 additional tokens. We apply this strategy multiple times,
where each time the feature is ablated (set to 0) or amplified. In the amplified settings, we set its
strength equal to its maximum known data activation multiplied by its modification factor (1, 10,
100). Given the steered generations and the feature description, we follow the same rating task as
in responsiveness and purity, asking the evaluator model to provide a discrete judgment (0, 1,
or 2) indicating how strongly the text matches the description. Following FADE, samples labeled
as 1 are discarded before scoring. The evaluator model prompts are shown in Listings 9 and 10.
We compute faithfulness as the maximum proportion of matching generations at each modification
factor compared to the proportion of matching generations when the feature is ablated.

<system>
You are an intelligent and meticulous linguistics researcher.

You will be given a certain latent of text, such as "male pronouns" or "text with negative sentiment".

You will then be given several text examples. Your task is to determine which examples possess the latent.

For each example in turn, return 1 if the sentence is correctly labeled or 0 if the tokens are mislabeled.
You must return your response in a valid Python list. Do not return anything else besides a Python list.
</system>

<user>
Latent explanation: Words related to American football positions, specifically the tight end position.

Test examples:
Example 0:<|endoftext|>Getty Images\n\nPatriots tight end Rob Gronkowski had his boss’
Example 1: names of months used in The Lord of the Rings:\n\n"...the
Example 2: Media Day 2015\n\nLSU defensive end Isaiah Washington (94) speaks to the
Example 3: shown, is generally not eligible for ads. For example, videos about recent tragedies,
Example 4: line, with the left side - namely tackle Byron Bell at tackle and guard Amini
</user>

<assitant>
[1,0,1,0,1]
</assistant>

<user>
Latent explanation: The word ’guys’ in the phrase ’you guys’.

Test examples:
Example 0: if you are<< comfortable>> with it. You<< guys>> support me in many other ways already and
Example 1: birth control access<|endoftext|> but I assure you<< women>> in Kentucky aren’t laughing as they
struggle
Example 2:’s gig! I hope you guys<< LOVE>> her, and<< please>> be nice,
Example 3:American, told<< Hannity>> that "you<< guys>> are playing the race card."
Example 4:<< the>><|endoftext|>I want to<< remind>> you all that 10 days ago (director Massimil
</user>

<assistant>
[0,0,0,0,0]
</assistant>

<user>
Latent explanation: "of" before words that start with a capital letter.

Test examples:
Example 0: climate, Tomblin’s Chief of Staff Charlie Lorensen said.\n
Example 1: no wonderworking relics, no true Body and Blood of Christ, no true Baptism
Example 2: Deborah Sathe, Head of Talent Development and Production at Film London,
Example 3: It has been devised by Director of Public Prosecutions (DPP)
Example 4: and fair investigation not even include the Director of Athletics? Finally, we believe the
<user>

<assistant>
[1,1,1,1,1]
</assistant>

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Listing 5: The evaluation model prompt and few-shot examples used to compute the detection
scores of natural language feature descriptions. <system></system>, <user></user>, and
<assistant></assistant> delineate the message roles passed to the evaluation model.

<system>
You are an intelligent and meticulous linguistics researcher.

You will be given a certain latent of text formatted as a Semantic Regex. {SEMANTIC_REGEX_DESCRIPTION}

You will then be given several text examples. Your task is to determine which examples possess the latent.

For each example in turn, return 1 if the sentence is correctly labeled or 0 if the tokens are mislabeled.
You must return your response in a valid Python list. Do not return anything else besides a Python list.

</system>

<user>
Semantic Regex explanation: [:field American football position:]

Test examples:
Example 0:<|endoftext|>Getty Images\n\nPatriots tight end Rob Gronkowski had his boss’
Example 1: names of months used in The Lord of the Rings:\n\n"...the
Example 2: Media Day 2015\n\nLSU defensive end Isaiah Washington (94) speaks to the
Example 3: shown, is generally not eligible for ads. For example, videos about recent tragedies,
Example 4: line, with the left side - namely tackle Byron Bell at tackle and guard Amini
</user>

<assitant>
[1,0,1,0,1]
</assistant>

<user>
Semantic Regex explanation: [:symbol you guys:]

Test examples:
Example 0: if you are<< comfortable>> with it. You<< guys>> support me in many other ways already and
Example 1: birth control access<|endoftext|> but I assure you<< women>> in Kentucky aren’t laughing as they
struggle
Example 2:’s gig! I hope you guys<< LOVE>> her, and<< please>> be nice,
Example 3:American, told<< Hannity>> that "you<< guys>> are playing the race card."
Example 4:<< the>><|endoftext|>I want to<< remind>> you all that 10 days ago (director Massimil
</user>

<assistant>
[0,0,0,0,0]
</assistant>

<user>
Semantic Regex explanation: [:symbol of:] [:field Capitalized Word:]

Test examples:
Example 0: climate, Tomblin’s Chief of Staff Charlie Lorensen said.\n
Example 1: no wonderworking relics, no true Body and Blood of Christ, no true Baptism
Example 2: Deborah Sathe, Head of Talent Development and Production at Film London,
Example 3: It has been devised by Director of Public Prosecutions (DPP)
Example 4: and fair investigation not even include the Director of Athletics? Finally, we believe the
<user>

<assistant>
[1,1,1,1,1]
</assistant>

Listing 6: The evaluation model prompt and few-shot examples used to compute the detection
scores of semantic regex feature descriptions. <system></system>, <user></user>, and
<assistant></assistant> delineate the message roles passed to the evaluation model.
At prompt time, {SEMANTIC REGEX DESCRIPTION} is replaced with the semantic regex
description in Listing 1.

<system>
You are an intelligent and meticulous linguistics researcher.

You will be given a certain latent of text, such as "male pronouns" or "text with negative sentiment".

You will be given a few examples of text that contain this latent. Portions of the sentence which strongly
represent this latent are between tokens << and >>.

Some examples might be mislabeled. Your task is to determine if every single token within << and >> is
correctly labeled. Consider that all provided examples could be correct, none of the examples could be
correct, or a mix. An example is only correct if every marked token is representative of the latent

For each example in turn, return 1 if the sentence is correctly labeled or 0 if the tokens are mislabeled.
You must return your response in a valid Python list. Do not return anything else besides a Python list.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

</system>

<user>
Latent explanation: Words related to American football positions, specifically the tight end position.

Test examples:
Example 0:<|endoftext|>Getty Images\n\nPatriots<< tight end>> Rob Gronkowski had his boss’
Example 1: posted<|endoftext|>You should know this<< about>> offensive line coaches: they are large,
demanding<< men>>
Example 2: Media Day 2015\n\nLSU<< defensive>> end Isaiah Washington (94) speaks<< to the>>
Example 3:<< running backs>>," he said. .. Defensive<< end>> Carroll Phillips is improving and his injury
is
Example 4:<< line>>, with the left side - namely<< tackle>> Byron Bell at<< tackle>> and<< guard>> Amini
</user>

<assitant>
[1,0,1,0,1]
</assistant>

<user>
Latent explanation: The word ’guys’ in the phrase ’you guys’.

Test examples:
Example 0: if you are<< comfortable>> with it. You<< guys>> support me in many other ways already and
Example 1: birth control access<|endoftext|> but I assure you<< women>> in Kentucky aren’t laughing as they
struggle
Example 2:’s gig! I hope you guys<< LOVE>> her, and<< please>> be nice,
Example 3:American, told<< Hannity>> that "you<< guys>> are playing the race card."
Example 4:<< the>><|endoftext|>I want to<< remind>> you all that 10 days ago (director Massimil
</user>

<assistant>
[0,0,0,0,0]
</assistant>

<user>
Latent explanation: "of" before words that start with a capital letter.

Test examples:
Example 0: climate, Tomblin’s Chief Chief<< of>> Staff Charlie Lorensen said.\n
Example 1: no wonderworking relics, no true Body and Blood<< of>> Christ, no true Baptism
Example 2: Deborah Sathe, Head<< of>> Talent Development and Production at Film London,
Example 3: It has been devised by Director<< of>> Public Prosecutions (DPP)
Example 4: and fair investigation not even include the Director<< of>> Athletics? Finally, we believe the
<user>

<assistant>
[1,1,1,1,1]
</assistant>

Listing 7: The evaluation model prompt and few-shot examples used to compute the fuzzing
scores of natural language feature descriptions. <system></system>, <user></user>, and
<assistant></assistant> delineate the message roles passed to the evaluation model.

<system>
ou are an intelligent and meticulous linguistics researcher.

You will be given a certain latent of text formatted as a Semantic Regex. {SEMANTIC_REGEX_DESCRIPTION}

You will be given a few examples of text that contain this latent. Portions of the sentence which strongly
represent this latent are between tokens << and >>.

Some examples might be mislabeled. Your task is to determine if every single token within << and >> is
correctly labeled. Consider that all provided examples could be correct, none of the examples could be
correct, or a mix. An example is only correct if every marked token is representative of the latent

For each example in turn, return 1 if the sentence is correctly labeled or 0 if the tokens are mislabeled.
You must return your response in a valid Python list. Do not return anything else besides a Python list.

</system>

<user>
Semantic Regex explanation: [:field American football position:]

Test examples:
Example 0:<|endoftext|>Getty Images\n\nPatriots<< tight end>> Rob Gronkowski had his boss’
Example 1: posted<|endoftext|>You should know this<< about>> offensive line coaches: they are large,
demanding<< men>>
Example 2: Media Day 2015\n\nLSU<< defensive>> end Isaiah Washington (94) speaks<< to the>>
Example 3:<< running backs>>," he said. .. Defensive<< end>> Carroll Phillips is improving and his injury
is
Example 4:<< line>>, with the left side - namely<< tackle>> Byron Bell at<< tackle>> and<< guard>> Amini
</user>

<assitant>
[1,0,1,0,1]
</assistant>

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

<user>
Semantic Regex explanation: [:symbol you guys:]

Test examples:
Example 0: if you are<< comfortable>> with it. You<< guys>> support me in many other ways already and
Example 1: birth control access<|endoftext|> but I assure you<< women>> in Kentucky aren’t laughing as they
struggle
Example 2:’s gig! I hope you guys<< LOVE>> her, and<< please>> be nice,
Example 3:American, told<< Hannity>> that "you<< guys>> are playing the race card."
Example 4:<< the>><|endoftext|>I want to<< remind>> you all that 10 days ago (director Massimil
</user>

<assistant>
[0,0,0,0,0]
</assistant>

<user>
Semantic Regex explanation: [:symbol of:] [:field Capitalized Word:]

Test examples:
Example 0: climate, Tomblin’s Chief Chief<< of>> Staff Charlie Lorensen said.\n
Example 1: no wonderworking relics, no true Body and Blood<< of>> Christ, no true Baptism
Example 2: Deborah Sathe, Head<< of>> Talent Development and Production at Film London,
Example 3: It has been devised by Director<< of>> Public Prosecutions (DPP)
Example 4: and fair investigation not even include the Director<< of>> Athletics? Finally, we believe the
<user>

<assistant>
[1,1,1,1,1]
</assistant>

Listing 8: The evaluation model prompt and few-shot examples used to compute the fuzzing
scores of semantic regex feature descriptions. <system></system>, <user></user>, and
<assistant></assistant> delineate the message roles passed to the evaluation model.
At prompt time, {SEMANTIC REGEX DESCRIPTION} is replaced with the semantic regex
description in Listing 1.

<system>
You are tasked with building a database of sequences that best represent a specific concept.
To create this, you will review a dataset of varying sequences and rate each one according to how much the
concept is expressed.

For each sequence, assign a rating based on this scale:

0: The concept is not expressed.
1: The concept is vaguely or partially expressed.
2: The concept is clearly and unambiguously present.

Use conservative ratings. If uncertain, choose a lower rating to avoid including irrelevant sequences in
your database.
If no sequence expresses the concept, rate all sequences as 0.

Each sequence is identified by a unique ID. Provide your ratings as a Python dictionary with sequence IDs
as keys and their ratings as values.

Example Output: {{"14": 0, "15": 2, "20": 1, "27": 0}}

Output only the dictionary - no additional text, comments, or symbols.
</system>

Listing 9: The evaluation model prompt used to compute the responsiveness and purity scores
of natural language feature descriptions. <system></system> delineates the message roles
passed to the evaluation model.

<system>
You are tasked with building a database of sequences that best represent a specific concept.
To create this, you will review a dataset of varying sequences and rate each one according to how much the
concept is expressed.

The concept will be written as a Semantic Regex. {SEMANTIC_REGEX_DESCRIPTION}

For each sequence, assign a rating based on this scale:

0: The concept is not expressed.
1: The concept is vaguely or partially expressed.
2: The concept is clearly and unambiguously present.

Use conservative ratings. If uncertain, choose a lower rating to avoid including irrelevant sequences in
your database.
If no sequence expresses the concept, rate all sequences as 0.

Each sequence is identified by a unique ID. Provide your ratings as a Python dictionary with sequence IDs
as keys and their ratings as values.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Example Output: {{"14": 0, "15": 2, "20": 1, "27": 0}}

Output only the dictionary - no additional text, comments, or symbols.
</system>

Listing 10: The evaluation model prompt used to compute the responsiveness and purity
scores of semantic regex feature descriptions. <system></system> delineates the message
roles passed to the evaluation model. At prompt time, {SEMANTIC REGEX DESCRIPTION} is
replaced with the semantic regex description in Listing 1.

<system>
You are tasked with building a database of sequences that best represent a specific concept.
To create this, you will generate sequences that vary in style, tone, context, length, and structure, while
maintaining a clear connection to the concept.
The concept does not need to be explicitly stated in each sequence, but each should relate meaningfully to
it. Be creative and explore different ways to express the concept.

Here are examples of how different concepts might be expressed:

Concept: "German language" - Sequences might include German phrases, or sentences.
Concept: "Start of a Java Function" - Sequences might include Java code snippets defining a function.
Concept: "Irony" - Sequences might include ironic statements or expressions.

Provide your sequences as strings in a Python List format.

Example: ["This is a first example sequence.", "Second example sequence but it is much longer also there
are somy typos in it. wjo told you that I can type?"]

Output only the Python List object, without any additional comments, symbols, or extraneous content.
</system>

Listing 11: The evaluation model prompt used to compute the clarity scores of natural language
feature descriptions. <system></system> delineates the message roles passed to the evaluation
model.

<system>
You are tasked with building a database of sequences that best represent a specific concept.
To create this, you will generate sequences that vary in style, tone, context, length, and structure, while
maintaining a clear connection to the concept.

The concept will be expressed as a Semantic Regex. {SEMANTIC_REGEX_DESCRIPTION}
Be creative and explore different ways to express the concept, while faithfully expressing the semantic
regex.

Here are examples of how different concepts might be expressed:

Concept: "[:topic German Language:]" - Sequences might include German phrases, or sentences.
Concept: "@{{Java}}(functions)" - Sequences might include Java code snippets defining a function.
Concept: "[:lexeme irony:]" - Sequences that include the string ’irony’, ’ironic’, ’ironically’, etc.

Provide your sequences as strings in a Python List format.

Example: ["This is a first example sequence.", "Second example sequence but it is much longer also there
are somy typos in it. wjo told you that I can type?"]

Output only the Python List object, without any additional comments, symbols, or extraneous content.
</system>

Listing 12: The evaluation model prompt used to compute the clarity scores of semantic regex
feature descriptions. <system></system> delineates the message roles passed to the evaluation
model. At prompt time, {SEMANTIC REGEX DESCRIPTION} is replaced with the semantic regex
description in Listing 1.

36

	Introduction
	Related Work
	Semantic blueRegexes
	The Semantic Regex Language
	Primitives
	Modifiers

	Methods
	Collecting Model Features and Activations
	Generating Feature Descriptions
	Evaluating Feature Descriptions

	Results
	Semantic Regexes are as Accurate as Natural Language Descriptions
	Semantic Regexes Improve Conciseness and Consistency
	Semantic Regexes Reflect Feature Complexity
	Semantic Regexes Help People Build Mental Models of LLM Features

	Discussion and Limitations
	Conclusion
	LLM Usage Statement
	Additional Results
	Ablation Study
	Cost Analysis
	User Study Protocol
	Implementation Details
	Feature Description Methods
	Evaluation Metrics
	Eleuther Metrics
	FADE Metrics

