
On the Limit of Language Models as Planning Formalizers

Anonymous ACL submission

Abstract

Large Language Models have been shown to001
fail to create executable and verifiable plans002
in grounded environments. An emerging line003
of work shows success in using LLM as a004
formalizer to generate a formal representation005
(e.g., PDDL) of the planning domain, which006
can be deterministically solved to find a plan.007
We systematically evaluate this methodology008
while bridging some major gaps. While previ-009
ous work only generates a partial PDDL rep-010
resentation given templated and thus unrealis-011
tic environment descriptions, we generate the012
complete representation given descriptions of013
various naturalness levels. Among an array014
of observations critical to improve LLMs’ for-015
mal planning ability, we note that large enough016
models can effectively formalize descriptions017
as PDDL, outperforming those directly gener-018
ating plans, while being robust to lexical per-019
turbation. As the descriptions become more020
natural-sounding, we observe a decrease in per-021
formance and provide detailed error analysis.1022

1 Introduction023

Large language models (LLMs) can make informal024

plans, such as suggesting ideas for parties or giv-025

ing general advice on immigration. However, most026

users, let alone automated agents like robots, would027

not be able to actually execute those plans step-028

by-step to fruition – either to organize parties or029

acquire visas – without significant prior knowledge030

or external help. This inability to make executable031

plans lies in LLMs’ inability of grounding and for-032

mal reasoning (Liu et al., 2023b; Pan et al., 2023;033

Zhang et al., 2023). Cutting-edge research in the034

community has evaluated LLMs’ ability to make035

formal plans in grounded environments, such as036

textual simulations, where all objects and actions037

represent actualities in the real world. Therefore,038

1Our code and data can be found at https://anonymous.
4open.science/r/llm-as-pddl-formalizer-1BE2.

any resulting plan that formally involves those ob- 039

jects and actions would be executable and verifiable 040

by nature. Although formal planning has been de- 041

sirable in the history of AI (Weld, 1999), recent 042

work found that even state-of-the-art LLMs are un- 043

able to generate formal plans (Silver et al., 2024; 044

Valmeekam et al., 2024; Stechly et al., 2024). 045

Instead of using the LLM as a planner to gener- 046

ate the plan directly, an alternative line of work uses 047

the LLM as a formalizer. Here, the LLM gener- 048

ates a formal representation of a planning domain, 049

for example in the planning domain definition lan- 050

guage (PDDL), based on some natural language 051

descriptions of the environment. This representa- 052

tion can then be fed into a solver to find the plan 053

deterministically (see Figure 1). Previous work 054

achieved great success by showing that LLM-as- 055

formalizer greatly outperforms LLM-as-planner in 056

various domains (Lyu et al., 2023; Xie et al., 2023; 057

Liu et al., 2023a; Zhang et al., 2024a; Zuo et al., 058

2024; Zhang et al., 2024c; Zhu et al., 2024), as 059

LLMs are more capable of information extraction 060

than formal reasoning (Zhang et al., 2024b). How- 061

ever, the above work has two major shortcomings. 062

First, to simplify the task and evaluation, most have 063

only attempted to generate a partial PDDL repre- 064

sentation while assuming the rest is provided, often 065

unrealistic in real life. Second, the language used 066

to describe the environments is often artificially 067

templated and structured, leading to potential over- 068

estimation of models’ ability. 069

This paper explores the limit of LLM-as- 070

formalizer devoid of the above two simplifications. 071

We use LLMs to generate the entirety of a PDDL 072

representation, including the domain file and the 073

problem file, given a natural-sounding description 074

of the environment and the task (see Figure 1). On 075

4 widely used planning simulations from the In- 076

ternational Planning Competition, we benchmark 077

a suite of LLMs on generating PDDL that is both 078

solvable and correct. As the descriptions in these 079

1

 https://anonymous.4open.science/r/llm-as-pddl-formalizer-1BE2
 https://anonymous.4open.science/r/llm-as-pddl-formalizer-1BE2

I am playing with a set
of blocks. Here are the
actions I can do

 Pickup block
 Unstack block from
another block
 Putdown block
 Stack block on
another block

I have the following
restrictions on my
actions:
 To perform Pickup
action, the following
facts need to be true:
clear block, block on
table, arm-empty.
 Once Pickup action
is performed the
following facts will be
true: holding block.
 Once Pickup action
is performed the
following facts will be
false: clear block,
block on table, arm-
empty.
...

As initial conditions I
have that, block a is
clear, block c is clear,
arm-empty, block a is
on top of block b, block
b block is on the table,
and block c block is on
the table.
My goal is to have that
block a is on top of
block b, block b is on
top of block c, and
block c is on the table.

Templated Natural

The Blocksworld
domain involves a
collection of blocks
placed on a table. The
aim is to rearrange
these blocks to
achieve a specified
goal configuration
using a robot arm. The
robot arm can pick up
and move one block at
a time. The key
actions include picking
up a block, placing a
block on the table, and
stacking one block on
top of another. The
constraints are that a
block can only be
picked up if it has no
other block on top of it,
and it can only be
placed on another
block or on the table.

The Blocksworld
problem involves three
blocks identified as A,
B, and C. Initially,
block A is on top of
block B, and block B is
on the table. Block C is
also on the table. The
goal is to rearrange
these blocks such that
block B is on top of
block C, and block A is
on top of block B.

or LLM

(define (domain
blocksworld)
(:predicates (clear ?x)
 (on-table ?x)
 (arm-empty)
 (holding ?x)
 (on ?x ?y))

(:action pickup
 :parameters (?ob)
 :precondition (and
(clear ?ob) (on-table ?
ob) (arm-empty))
 :effect (and (holding ?
ob) (not (clear ?ob))
(not (on-table ?
ob)) (not (arm-
empty))))
...

(define (problem
blocksworld-p98)
 (:domain
blocksworld)
 (:objects a b c)
 (:init
 (on-table b)
 (on a b)
 (clear a)
 (on-table c)
 (clear c)
 (arm-empty)
)
 (:goal (and
 (on-table c)
 (on b c)
 (on a b)
))
)

Planner

(unstack a b)
(putdown a)
(pickup b)
(stack b c)
(pickup a)
(stack a b)

D
om

ai
n

D
es

cr
ip

tio
n

Pr
ob

le
m

 D
es

cr
ip

tio
n

Domain File

Problem File

Plan

b

a

c c

b

a

Figure 1: LLM-as-formalizer uses natural language descriptions to generate the Domain and Problem File in
PDDL, then these are given to a planner to find a plan. We explore the effect of natural-ness of the language in the
description, by giving the model both templated and natural descriptions. Examples of Domain Descriptions and
Problem Descriptions from the Blocksworld Domain are shown. The green text displays what the two examples
have in common (listing all possible actions and restrictions) and the red text displays text that is not considered
natural. The “Templated” text corresponds to the “Heavily Templated” version discussed in Section 4.

datasets are templated, we also construct model-080

generated, human-validated descriptions that are081

natural-sounding to different levels.082

Our work is the first to systematically ana-083

lyze state-of-the-art LLMs’ ability of the trending084

methodology of LLM-as-formalizer on the highly085

challenging task of formal planning. We put for-086

ward an array of observations that will benefit fu-087

ture efforts. Discussed in detail in Section 5, our088

key findings are as follows.089

• On various planning simulations, closed-090

source models like GPT can decently generate091

entire PDDL, while open-source models like092

Llama up to 405B cannot.093

• When feasible, LLM-as-formalizer greatly094

outperforms LLM-as-planner.095

• As the environment descriptions sound more096

human-like, the models are more challenged. 097

• The performance of LLM-as-formalizer is 098

robust to lexical perturbation, while that of 099

LLM-as-planner is not. 100

• Open-source models succumb to syntax errors 101

unlike GPT models, while semantic errors are 102

common for both types of models. 103

2 Task: Formal Planning with PDDL 104

Formal planning (or classical planning) with PDDL 105

involves a domain file (DF) and problem file (PF) 106

(Figure 1). DF describes general properties in a 107

planning domain that holds true across problems, 108

while PF describes specific configurations of each 109

problem instance. Concretely, the DF defines all 110

available actions (and their parameters and pre- and 111

2

Plan

LLM-as-Planner

DF

LLM

PF

planner

DD PD

LLM

Plan

LLM-as-Formalizer
DD PD

Figure 2: Methodologies for using LLMs in planning.
LLM-as-Planner generates the plan directly, while LLM-
as-Formalizer translates the DD and PD into PDDL.
Previous work like Liu et al. (2023a) use the LLM to
generate partial PDDL such as PF only, while we gen-
erate the entire PDDL including PF and DF. Note the
DD and PD are always provided and the DF and PF are
always generated by the LLM.

post-conditions) for a state-based environment as112

well as predicates that represent the properties of113

object types. The PF defines the involved objects,114

the initial states, and the goal states. These two files115

are then given to a deterministic planner which will116

algorithmically search for a plan. Such a plan is117

a series of executable, instantiated actions that se-118

quentially transition the world states from initial to119

goal. In the AI community, classical planning has120

been deemed an effective approach to solve real-121

world users’ problems, as the process is precise,122

explainable, verifiable, and deterministic.123

However, formal planning demands a well-124

crafted pair of DF and PF. In a real-world plan-125

ning scenario, an average user would not describe126

their environment and problem with PDDL, but127

more likely with a textual description of the do-128

main (DD) and the problem (PD), which can be129

specific or loose. Hence, we focus on the textual130

flavor of formal planning: given DD and PD, the131

model outputs a successful plan with regard to the132

DF and PF that are withheld from the model.133

3 Methodology: LLM-as-Formalizer134

To tackle the task above, recent work involving135

LLMs diverged into two methodologies. The first,136

LLM-as-planner, directly uses LLMs to gener-137

ate a plan based on the DD and a PD. The second,138

LLM-as-formalizer, uses LLMs to recover the DF139

and PF, before using a deterministic planner to ar-140

rive at the plan (Figure 2). Our work will focus on141

the second while using the first as a baseline. LLM- 142

as-formalizer is in essence neurosymbolic, where 143

LLMs help define the structured representation that 144

is otherwise prohibitively costly to annotate and 145

brittle to generalize. Existing works in this line 146

demonstrated success but only generated a partial 147

PDDL representation, while assuming the rest, in- 148

cluding PF goals (Lyu et al., 2023; Xie et al., 2023), 149

the PF (Liu et al., 2023a; Zhang et al., 2024a; Zuo 150

et al., 2024), the action semantics in the DF (Zhang 151

et al., 2024c; Zhu et al., 2024), and the domain file 152

(Wong et al., 2023; Guan et al., 2023). While this 153

simplifies the task and evaluation, the assumption 154

of provided PDDL components is often unrealistic. 155

Therefore, we bridge this gap by asking the LLM 156

to predict the entire PDDL – both the DF and PF.2 157

4 Evaluation: Datasets, Metrics, Models 158

To evaluate both approaches above, we work with 159

fully-observed textual environments. Here, the pro- 160

vided DD and PF contain all necessary information 161

for the model to make a complete plan. 162

4.1 Datasets 163

We consider four simulated planning domains, 164

BlocksWorld, Logistics, Barman from the Inter- 165

national Planning Competition (IPC, 1998), and 166

MysteryBlocksWorld (Valmeekam et al., 2024). 167

BlocksWorld, also used in Liu et al. (2023a), is 168

a domain to rearrange stacks of blocks on a table 169

using a robotic arm. There is 1 type of entities, 5 170

predicates, and 4 actions. 171

Mystery BlocksWorld obfuscates the original 172

BlocksWorld domain by replacing all the names of 173

the types, predicates, actions, and objects with non- 174

sensical words, akin to a wug test (Berko, 1958). 175

This dataset as an control group can effectively 176

test whether models create plans via lexical pattern- 177

matching and memorization. 178

Logistics, also used in Guan et al. (2023), is a 179

domain to transport packages across different lo- 180

cations using both trucks and airplanes. In this 181

domain, there are 6 types of entities, 3 predicates, 182

and 6 actions. 183

Barman, also used in Zhu et al. (2024), is a do- 184

main to to create cocktails from ingredients using 185

different containers and two robotic arms. In this 186

domain, there are 7 types of entities, 13 predicates, 187

and 12 actions. 188

2It is however minimally necessary to provide the action
space, the identifiers and parameters of the actions in DF, so
the agent knows what actions are possible.

3

Each dataset comes with ground-truth PDDL189

describing domains (DF) and problems (PF). The190

input to the model is a natural language description191

of the domain (DD) and the problem (DD). The192

output of the model is a plan, namely a sequence193

of instantiated actions defined in DF. For each194

of these datasets, the natural language description195

DDs and PDs were created in 3 different levels of196

naturalness.197

Heavily Templated. For BlocksWorld, Logistics198

and Barman, the heavily templated DD and PD199

are generated using the same template as Mystery-200

Blocksworld (Valmeekam et al., 2024). This de-201

scription is almost a word-by-word translation of202

PDDL. For example, for the ‘pick-up’ action in203

BlocksWorld, the ground-truth PDDL DF would204

be the following:205

(:action pick-up
:parameters (?b - block)
:precondition (and (clear ?b) (on-table ?b)
(arm-empty))
:effect (and (not (on-table ?b)) (not
(clear ?b)) (not (arm-empty)) (holding ?b))
)

206

while the Heavily Templated DD is:207

To perform Pickup action, the following
facts need to be true: clear block, block
on table, arm-empty.
Once Pickup action is performed the
following facts will be true: holding
block.
Once Pickup action is performed the
following facts will be false: clear block,
block on table, arm-empty.

208

From an application point of view, spelling out209

all preconditions and effects in terms of the predi-210

cates is paradoxical, as it assumes the user already211

have the algorithmic awareness of PDDL.212

Moderately Templated. The DD and PD are213

generated using the same template as the original214

BlocksWorld dataset, following Valmeekam et al.215

(2024). For example. the Moderately Templated216

description of the ‘pick-up’ action is:217

I can only pick up or unstack one block at
a time.
I can only pick up or unstack a block if my
hand is empty.
I can only pick up a block if the block is
clear. A block is clear if the block has no
other blocks on top of it and if the block
is not picked up.

218

While more natural-sounding than the Heavily219

Templated version, the description still explicitly220

discusses the preconditions and effects as well221

as predicates like ‘clear’. Moderately Templated222

datasets are available only for BlocksWorld and223

Logistics due to the size of Barman.224

Natural. A realistic pair of DD and PD should em- 225

ulate how real-life users would describe the plan- 226

ning domain and problem, such that a human prob- 227

lem solver would understand and have just enough 228

information to find a plan. To create such descrip- 229

tions, we use a human-in-the-loop, model-assisted 230

data generation approach. 231

To generate DD, we ask GPT-4o with high tem- 232

perature to generate and paraphrase a seed anno- 233

tated DD, and then manually verify the correctness 234

by making sure it lists the correct predicates, pre- 235

conditions and effects, which are not unique. We 236

next verify the naturalness of the generated text by 237

making there were variations in language through- 238

out all descriptions generated, but was not giving 239

out unnecessary information. 240

To generate PD, we provide the model with a 241

symbolic configuration that contains the number 242

blocks, the initial stack configuration and the goal 243

stack configuration. The model then ‘humanize’ 244

the problem by making it sound natural, given a 245

couple of seed exemplars. We manually verify 246

the correctness of the dataset of the non-templated 247

problems by hand by comparing them against the 248

problem configurations. We then verify the natu- 249

ralness of the PD by making sure there is variation 250

but no ambiguity in its language. 251

The robot arm can pick up and move one block
at a time from one position to another. It
is only able to move the top block from
any stack or table, and have only one block
held by the robot arm at a time. The main
actions available are ’pick up’, ...

252

The above example of the Natural description no 253

longer discusses the preconditions and effects of 254

each actions one by one, but rather focuses on the 255

general rules to the domain. These rules apply to 256

not only ‘pick-up’ but also other actions. Therefore, 257

the DD can be much more concise, requires less 258

algorithmic awareness, and more realistic. 259

In total, we construct 100 problems varying 260

in complexity for all domains. For each of the 261

two Templated descriptions, there is 1 DD paired 262

with each of 100 PDs. For the Natural descrip- 263

tion, there are 100 different pairs of DDs and PDs. 264

We refer to these dataset as BlocksWorld-100, 265

MysteryBlocksWorld-100, Logistics-100 and 266

Barman-100. Data examples can be found in Ap- 267

pendix A. 268

4.2 Metrics 269

Following past work (Guan et al., 2023; Zhu et al., 270

2024), the model-predicted plan is validated us- 271

4

Figure 3: Performance of both usages of LLMs on Heavily Templated BlocksWorld-100, Logistics-100, and
MysteryBlocksWorld-100. Detailed results are shown in Appendix C.

ing VAL (Howey et al., 2004) against the ground-272

truth DF and PF provided above, instead of being273

compared against “ground-truth” plans like some274

work (Lyu et al., 2023; Liu et al., 2023b; Pan et al.,275

2023) since there could be multiple correct plans.276

For the LLM-as-formalizer approach, the predicted277

DF and PF are similarly not compared against the278

ground-truth, as only the eventual plan is validated279

because there might be more than one way to for-280

malize the planning domain and problem in PDDL.281

We evaluate the predicted plans following Zuo282

et al. (2024): solvability and correctness. Solv-283

ability only applies to LLM-as-formalizer and in-284

dicates the percentage solvable predicted DF and285

PF, regardless of whether the resulting plan can be286

executed bsaed on the the gold DF and PF. Cor-287

rectness indicates the percentage of actually correct288

plans. Solvability was determined using the plan-289

ner dual-bfws-ffparser implemented by Muise290

(2016) and Correctness was evaluated using VAL3.291

4.3 Models292

For both of the LLM-as-planner and LLM-as-293

formalizer approach, we consider a number of294

models, including open-source and closed-source295

LLMs varying in size, including gemma-2-9b|27b-296

it (Team et al., 2024), llama-3.1-8B|70B|405B-297

Instruct (Dubey et al., 2024), DeepSeek-R1-Distill-298

Llama-8B|70B (Guo et al., 2025)4, gpt-4o-mini-299

2024-07-18, gpt-4o-2024-08-06, and o3-mini-300

2025-01-315. We query these models using KANI301

(Zhu et al., 2023) with default hyper-parameters.302

The open-source models are run using 4 RTX303

3nms.kcl.ac.uk/planning/software/val.html
4Due to the cost and zero solvability on our easiest dataset,

results of Llama-405B and DeepSeek-8B|70B are ommitted.
5platform.openai.com/docs/models

A6000 GPUs, averaging about 1062 input and out- 304

put tokens for the LLM-as-formalizer approach in 305

BlocksWorld-100. To emulate real-life applica- 306

tion with minimal user interference, we use zero- 307

shot prompts for all naturalness levels across all 308

datasets (see prompts in Appendix B). 309

5 Results and Observations 310

In this section, we display our results as well as 311

perform an in-depth analysis of the strengths and 312

weaknesses of LLMs in formal planning, to under- 313

stand the impact of the model choice, naturalness 314

of the description, content of the task, and difficulty 315

of the problem. 316

5.1 Can LLMs formalize? 317

We seek to understand the extent to which LLMs 318

can act as a formalizer to generate entire PDDL, in- 319

stead of partial components in previous work. Fig- 320

ure 3 displays the results on our experiments using 321

the most natural sounding descriptions on Heav- 322

ily Templated BlocksWorld-100, Logistics-100 323

and MysteryBlocksWorld-100. Results on the 324

most complex domain Barman-100 is omitted due 325

to close-to-zero performance for all models. 326

These results demonstrate that GPT-family 327

LLMs can decently generate PDDL, while 328

open-source models even up to 405B param- 329

eters struggle. As formalizer, gpt-4o-mini, 330

gpt-4o, o3-mini demonstrate non-trivial and in- 331

creasing performance on BlocksWorld-100. On 332

the more complex Logistics-100, gpt-4o-mini 333

succumbs to zero performance whereas the other 334

two show decreased performance. The solvabil- 335

ity of gpt-4o-mini is often much higher than 336

its correctness, suggesting a good grasp of the 337

5

nms.kcl.ac.uk/planning/software/val.html
platform.openai.com/docs/models

as-F as-P0

20

40

60

80

100

Co
rre

ct
ne

ss
Natural

Blocksworld-100

as-F as-P0

20

40

60

80

100

Moderately Templated
Blocksworld-100

as-F as-P0

20

40

60

80

100

Heavily Templated
Blocksworld-100

as-F as-P0

20

40

60

80

100

Natural
Logistics-100

as-F as-P0

20

40

60

80

100

Moderately Templated
Logistics-100

as-F as-P0

20

40

60

80

100

Heavily Templated
Logistics-100

gemma-2-9b-it gemma-2-27b-it gpt-4o-mini gpt-4o

Figure 4: Performance of LLM-as-planner (as-P) and LLM-as-formalzier (as-F) across different naturalness level of
description on BlocksWorld-100 and Logistics-100. Detailed results are shown in Appendix C.

PDDL syntax but a lack of semantic understand-338

ing. In contrast, the solvability of gpt-4o and339

o3-mini is often 80% to 100% of their correct-340

ness. On the other hand, open-sourced models can341

rarely generate PDDL, a low-resource language,342

despite them being reportedly strong at generat-343

ing high-resource languages like Python (Cassano344

et al., 2022). All Llama models up to 405B can-345

not generate any solvable PDDL across all three346

datasets, while gemma models show poor though347

non-zero performance on BlocksWorld-100 and348

Logistics-100, and strong performance on349

MysteryBlocksWorld-100.350

5.2 Should LLMs formalize?351

Between LLM-as-planner and LLM-as-formalizer,352

which is the preferred methodology? Figure 3353

shows that on BlocksWorld-100, gpt-4o is able354

to generate solvable PDDL 64/100 times, and of355

those 64 plans, 60 of them are correct. This356

far surpasses the LLM-as-planner baseline, which357

only found correct plans 33/100 times. This trend358

holds for Logistics-100 as well as the Moder-359

ately Templated and Natural BlocksWorld-100360

data (Figure 4). On MysteryBlocksWorld-100,361

we can see that LLM-as-formalizer can generate362

70/100 correct plans, which far surpassed LLM-363

as-planner which did not find a single correct plan364

as the description becomes unorthodox. The su-365

periority of LLM-as-formalizer also extends to366

gpt-4o-mini but not o3-mini, who shows strong367

performance as a planner. These results demon-368

strate that LLM-as-formalizer greatly outper-369

forms LLM-as-planner in most cases, whenever370

these LLMs can foramlize PDDL at all. However, 371

these results also show that models that cannot for- 372

malize (e.g., Llama models) can still plan, though 373

with close-to-zero performance. 374

5.3 The more natural, the harder? 375

We now examine whether using humanized descrip- 376

tions makes the problem more difficult. Results 377

from Figure 4 show that on BlocksWorld-100 as 378

the problem sounds more similar to PDDL and 379

less natural, the performance of all the models im- 380

proves. Similar results hold for the Logistics do- 381

main (see results in Appendix C). This suggests 382

that a more natural-sounding domain and prob- 383

lem description is much more challenging than 384

templated, less natural sounding descriptions. One 385

potential explanation is that pattern matching a tem- 386

plate back to PDDL is much easier than having to 387

first parse all the predicates and objects from a pas- 388

sage. Another reason is a more natural sounding 389

description may leave out implicit common-sense. 390

For example, the Natural BlocksWorld-100 does 391

not explicitly specify that a block is ‘clear’, be- 392

cause any human who reads that a block is “on top 393

of a stack” can understand that there is no block 394

on top of it and hence ‘clear’ to be moved. How- 395

ever, models often fail to invoke this knowledge 396

and will leave out the ‘clear’ predicate, leading to 397

unsolvable PDDL or incorrect plans. 398

5.4 Do LLMs memorize pretraining? 399

Do LLMs generate plans or formalize PDDL based 400

on what they have memorized in their training 401

data? We determine this by looking at the re- 402

6

sults on MysteryBlocksWorld-100, a derivative403

of BlocksWorld where all names are perturbed and404

nonsensical. From Figure 3, we can see that LLM-405

as-planner was not able to find a single correct plan406

using either gpt-4o-mini or gpt-4o. However,407

gpt-4o-as-formalizer surpassed this baseline with408

a Correctness score of 70/100. This suggests that409

LLM-as-formalizer is robust to lexical perturba-410

tion, and its success is not due to memorization of411

the domain which is a part of the pretraining data.412

5.5 What kind of errors?413

In this section, we discuss the kind of errors in414

PDDL generation. We perform an error analy-415

sis on a random 20 sample subset of problems416

where a plan was not found, or the found plan417

was not correct. From there, we categorize the418

errors by syntax errors in either file, semantic er-419

rors in the DF, and in the PF. Of the errors in420

the DF, we determine finer-grained errors such as421

incorrect action preconditions and effects, incor-422

rect or missing predicates, and missing or incorrect423

action parameters. The error analysis for Natural424

BlocksWorld-100, Logistics-100 and Heavily425

Templated MysteryBlocksWorld-100 and can be426

found in Table 1.427

For the open-source models, the most com-428

mon error is syntax errors on BlocksWorld-100429

and Logistics-100. For example, models re-430

peatedly use the keyword ‘preconditions’ instead431

of ‘precondition’ which might suggest a lack of432

grasp of the PDDL syntax. Gemma models like433

gemma-2-27b make significantly less syntax errors434

(3 out of 20 on BlocksWorld-100) than Llama435

models like Llama-3.1-70B (20 out of 20), despite436

being smaller. Despite the syntax errors, there are437

still many semantic errors in the DF and PF,438

which include missing predicates. As shown in Ta-439

ble 3, there is a significant gap between the number440

of plans that were found, and the number of found441

that were correct. We find that the most common442

error made was swapping the parameters in the443

preconditions of the ‘stack’ action, leading to incor-444

rect plans. While making much less syntax errors,445

GPT models frequently suffer from semantic446

errors. Interestingly, the most common error made447

for gpt-4o come from the PF, which is intuitively448

easier to generate than the DF. Common errors in449

the PF include incorrect predicates in the initial450

state and goal state. Common errors in the DF is451

incorrect effects in an action. For example, in the452

‘unstack’ action, the model does not make the next453

Models Syntax Error DF Error PF Error

Natural BlocksWorld-100

gemma-2-9b-it 15/20 20/20 20/20
gemma-2-27b-it 3/20 20/20 14/20

Llama-3.1-8B 20/20 20/20 18/20
Llama-3.1-70B 20/20 20/20 17/20

gpt-4o-mini 2/20 20/20 19/20
gpt-4o 2/20 2/20 18/20

Natural Logistics-100

gemma-2-9b-it 7/20 20/20 15/20
gemma-2-27b-it 8/20 20/20 20/20

Llama-3.1-8B 20/20 20/20 20/20
Llama-3.1-70B 20/20 20/20 10/20

gpt-4o-mini 2/20 20/20 19/20
gpt-4o 5/20 20/20 19/20

MysteryBlocksWorld-100
gpt-4o-mini 6/20 20/20 1/20
gpt-4o 5/20 16/20 0/20

Table 1: Error analysis of LLM-as-formalizer on various
datasets, manually annotated on a 20–example subset.

block ‘clear’ when the top block has been placed 454

in the hand. For MysteryBlocksWorld-100, there 455

are barely any syntax errors or semantic errors in 456

the PF but rather the most common errors come 457

from the DF. Since this domain is a result of lex- 458

ical perturbation, formalizing in PDDL is akin to 459

symbolic information extraction and translation, 460

devoid of much use of commonsense knowledge. 461

Due to the heavily templated descriptions, all the 462

predicates would be listed out in the PD and the 463

model would just need to match them to PDDL 464

syntax in the PF. While a similar essence, this is 465

more of a challenge for DF since the clauses of 466

preconditions and effects are more involved. From 467

Table 2, a similar trend between BlocksWorld-100 468

and MysteryBlocksWorld-100 also suggests that 469

the LLM-as-formalizer methodology is robust to 470

such perturbation. 471

6 Related Work 472

Planning with LLMs There has been a large 473

amount of research using LLMs for planning tasks. 474

Some use LLMs for informal planning, also known 475

as script or procedure learning (Zhang et al., 2020; 476

Lyu et al., 2021; Lal et al., 2024). While modern 477

LLMs can make coherent and plausible informal 478

plans, they are ungrounded and so lack executabil- 479

ity and verifiability. Work that use LLMs for formal 480

planning in grounded environments generally con- 481

clude the inability of such LLMs-as-planners (Sil- 482

7

Models Wrong Precondition Wrong Effect Missing Predicate Missing Action Missing Parameters

Natural BlocksWorld-100

gpt-4o-mini 11/20 18/20 19/20 1/20 2/20
gpt-4o 0/20 2/20 0/20 0/20 0/20

Natural Logistics-100

gpt-4o-mini 20/20 16/20 20/20 5/20 17/20
gpt-4o 17/20 9/20 19/20 1/20 9/20

Heavily Templated MysteryBlocksWorld-100

gpt-4o-mini 14/20 17/20 17/20 0/20 5/20
gpt-4o 13/20 14/20 0/20 0/20 2/20

Table 2: Analysis of errors found in DF for Natural BlocksWorld-100 and Heavily Templated
MysteryBlocksWorld-100 out of 20 randomly sampled instances.

ver et al., 2024; Valmeekam et al., 2024; Stechly483

et al., 2024). Follow-up work tackles this short-484

coming by using the LLM as a heuristic, not just a485

planner, such as by proposing candidate plans that486

are iteratively verified (Valmeekam et al., 2023;487

Kambhampati et al., 2024). While we consider the488

standard LLM-as-planner as a baseline, our focus is489

on LLM-as-formalizer, an alternative methodology490

for the same problem.491

LLMs as PDDL formalizer Here, LLMs do not492

provide plans but rather generate the a PDDL rep-493

resentation of the domain and problem, which is494

then run through a solver to find the plan. This495

methodology has proven successful in a number of496

recent works, where the LLM generates different497

parts but not all of the PDDL for simplified evalua-498

tion. Zuo et al. (2024); Zhang et al. (2024a); Liu499

et al. (2023a) use the LLM to predict the entire500

PF, while Xie et al. (2023); Lyu et al. (2023) pre-501

dict just the goal for the PF. Some predict the DF,502

such as Zhang et al. (2024c); Zhu et al. (2024) that503

generate the action semantics of the DF and Wong504

et al. (2023) who also predicts the predicates from505

a candidate list. Closest to our work is Guan et al.506

(2023) which predicts the DF as well as the PF507

goal. However, our work of holistically generating508

PDDL shows that coming up with the initial state509

in the PF is non-trivial (Section 5.5). Moreover,510

we vary the level of naturalness of descriptions in511

addition to the templated ones, which prove to be512

more challenging and insightful (Section 5.3).513

While the above discussions pertain to LLMs514

generating PDDL, many work on embodied agents515

outside the NLP community tackle similar prob-516

lems with different focus (Li et al., 2024).517

LLM code generation Our work hinges on modern518

LLMs’ ability to generate code (Chen et al., 2021).519

In addition to writing or debugging programs (Jiang 520

et al., 2024), LLMs are also used to generate for- 521

mal, interim representations that are not necessarily 522

PDDL for problem solving. For example, Gao et al. 523

(2023); Lyu et al. (2023); Tang et al. (2024) use 524

the LLM to generate executable Python code for 525

solving symbolic problems. In other work, the gen- 526

erated code may not be executable and is provided 527

to another LLMs to facilitate reasoning (Madaan 528

et al., 2022; Zhang et al., 2023). 529

A table comparing a couple of these works can 530

be seen in Table 7 in the Appendix (Section E). 531

7 Conclusion 532

We explore the limit of state-of-the-art LLMs to be 533

used as a PDDL formalizer for planning with nat- 534

ural language descriptions of different naturalness 535

levels. While the LLM-as-formalizer methodol- 536

ogy greatly outperforms the LLM-as-planner base- 537

line in various planning domains, we conclude that 538

with zero-shot prompting, only GPT models are 539

sufficiently capable for the task. Therefore, future 540

work should attempt to equip open-source mod- 541

els with similar ability to democratize the ability 542

of making executable plans. We also find that 543

LLM-as-formalizer is robust to lexical perturba- 544

tion, demonstrating strong performance in long-tail 545

domains that are underrepresented in pretraining. 546

Our work will inform future efforts of using LLM 547

as a planning formalizer, including experiments on 548

partially-observed environments that require explo- 549

ration and interaction, more complex environments 550

with a larger action space, and so on. 551

8

8 Limitation552

A common and valid criticism for using those simu-553

lations or text problems for evaluation is that these554

settings may be too contrived and removed from555

the reality. Nevertheless, it is likely that LLMs’556

satisfactory performance on these datasets is a nec-557

essary condition to success in real life.558

While we only consider zero-shot prompting559

without any attempt for prompt tuning, it is possi-560

ble that the models’ performance significantly in-561

creases otherwise. Therefore, experimental results562

in all settings may be underestimated. Moreover,563

advanced prompting techniques such as chain-of-564

thought, self-refine, and voting can all potentially565

improve model performance. However, the study566

of those is out of the scope of this work.567

While we advocate for the LLM-as-formalizer568

methodology over LLM-as-planner, the former’s569

success may be dependent on the task. Highly570

symbolic tasks which can be relatively easily de-571

scribed, like BlocksWorld, are likely to favor LLM-572

as-formalizer. However, LLM-as-planner might573

shine in tasks with a more complex action space re-574

quiring common-sense knowledge that is easily ac-575

cessed by pretraining. Furthermore, while we only576

consider the most straightforward LLM-as-planner577

prompting method, more involved methods, like578

Kambhampati et al. (2024) that combines LLM-as-579

planner with symbolic validation, will likely lead580

to a stronger baseline.581

Since this work uses only the BlocksWorld, Mys-582

tery BlocksWorld, Logistics and Barman domains,583

it is a small toy example to the usage of LLMs as584

formalizers and are not representative to problems585

in the real world, which would be much more chal-586

lenging. This may pose a risk to users using this587

code on real world problems.588

The datasets we use and we propose are all under589

the MIT License.590

Acknowledgment591

We thank Peter Clark for providing invaluable input592

throughout this work and Andrew Zhu for provid-593

ing technical support on LLM inference.594

References595

Jean Berko. 1958. The child’s learning of english mor-596
phology. Word, 14(2-3):150–177.597

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-598
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,599

Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, 600
Molly Q Feldman, et al. 2022. Multipl-e: A scal- 601
able and extensible approach to benchmarking neural 602
code generation. arXiv preprint arXiv:2208.08227. 603

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 604
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 605
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 606
Greg Brockman, et al. 2021. Evaluating large 607
language models trained on code. arXiv preprint 608
arXiv:2107.03374. 609

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 610
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 611
Akhil Mathur, Alan Schelten, Amy Yang, Angela 612
Fan, et al. 2024. The llama 3 herd of models. arXiv 613
preprint arXiv:2407.21783. 614

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 615
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 616
ham Neubig. 2023. Pal: Program-aided language 617
models. In International Conference on Machine 618
Learning, pages 10764–10799. PMLR. 619

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, 620
and Subbarao Kambhampati. 2023. Leveraging pre- 621
trained large language models to construct and utilize 622
world models for model-based task planning. Ad- 623
vances in Neural Information Processing Systems, 624
36:79081–79094. 625

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 626
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 627
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 628
centivizing reasoning capability in llms via reinforce- 629
ment learning. arXiv preprint arXiv:2501.12948. 630

R. Howey, D. Long, and M. Fox. 2004. Val: auto- 631
matic plan validation, continuous effects and mixed 632
initiative planning using pddl. In 16th IEEE Inter- 633
national Conference on Tools with Artificial Intelli- 634
gence, pages 294–301. 635

IPC. 1998. International planning competition. https: 636
//www.icaps-conference.org/competitions. 637

IPC. 2000. International planning competition. https: 638
//www.icaps-conference.org/competitions. 639

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 640
and Sunghun Kim. 2024. A survey on large lan- 641
guage models for code generation. arXiv preprint 642
arXiv:2406.00515. 643

Subbarao Kambhampati, Karthik Valmeekam, Lin 644
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham- 645
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t 646
plan, but can help planning in llm-modulo frame- 647
works. arXiv preprint arXiv:2402.01817. 648

Yash Kumar Lal, Li Zhang, Faeze Brahman, Bod- 649
hisattwa Prasad Majumder, Peter Clark, and Niket 650
Tandon. 2024. Tailoring with targeted precision: 651
Edit-based agents for open-domain procedure cus- 652
tomization. In Findings of the Association for Com- 653
putational Linguistics: ACL 2024, pages 15597– 654
15611, Bangkok, Thailand. Association for Compu- 655
tational Linguistics. 656

9

https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://www.icaps-conference.org/competitions
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921
https://doi.org/10.18653/v1/2024.findings-acl.921

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang,657
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony658
Lee, Li Erran Li, Ruohan Zhang, et al. 2024. Embod-659
ied agent interface: Benchmarking llms for embodied660
decision making. arXiv preprint arXiv:2410.07166.661

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,662
Shiqi Zhang, Joydeep Biswas, and Peter Stone.663
2023a. Llm+ p: Empowering large language models664
with optimal planning proficiency. arXiv preprint665
arXiv:2304.11477.666

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji667
Zhou, and Yue Zhang. 2023b. Evaluating the logical668
reasoning ability of chatgpt and gpt-4. arXiv preprint669
arXiv:2304.03439.670

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,671
Delip Rao, Eric Wong, Marianna Apidianaki, and672
Chris Callison-Burch. 2023. Faithful chain-of-673
thought reasoning. In Proceedings of the 13th In-674
ternational Joint Conference on Natural Language675
Processing and the 3rd Conference of the Asia-Pacific676
Chapter of the Association for Computational Lin-677
guistics (Volume 1: Long Papers), pages 305–329,678
Nusa Dua, Bali. Association for Computational Lin-679
guistics.680

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.681
Goal-oriented script construction. In Proceedings of682
the 14th International Conference on Natural Lan-683
guage Generation, pages 184–200, Aberdeen, Scot-684
land, UK. Association for Computational Linguistics.685

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,686
and Graham Neubig. 2022. Language models of code687
are few-shot commonsense learners. In Proceedings688
of the 2022 Conference on Empirical Methods in Nat-689
ural Language Processing, pages 1384–1403, Abu690
Dhabi, United Arab Emirates. Association for Com-691
putational Linguistics.692

Christian Muise. 2016. Planning.Domains. In The693
26th International Conference on Automated Plan-694
ning and Scheduling - Demonstrations.695

Liangming Pan, Alon Albalak, Xinyi Wang, and696
William Wang. 2023. Logic-LM: Empowering large697
language models with symbolic solvers for faithful698
logical reasoning. In Findings of the Association699
for Computational Linguistics: EMNLP 2023, pages700
3806–3824, Singapore. Association for Computa-701
tional Linguistics.702

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann.703
2022. PDDL generators. https://doi.org/10.704
5281/zenodo.6382173.705

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B706
Tenenbaum, Leslie Kaelbling, and Michael Katz.707
2024. Generalized planning in pddl domains with708
pretrained large language models. In Proceedings709
of the AAAI Conference on Artificial Intelligence,710
volume 38, pages 20256–20264.711

Kaya Stechly, Karthik Valmeekam, and Subbarao 712
Kambhampati. 2024. Chain of thoughtlessness: 713
An analysis of cot in planning. arXiv preprint 714
arXiv:2405.04776. 715

Hao Tang, Darren Key, and Kevin Ellis. 2024. World- 716
coder, a model-based llm agent: Building world mod- 717
els by writing code and interacting with the environ- 718
ment. Preprint, arXiv:2402.12275. 719

Gemma Team, Morgane Riviere, Shreya Pathak, 720
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati- 721
raju, Léonard Hussenot, Thomas Mesnard, Bobak 722
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2: 723
Improving open language models at a practical size. 724
arXiv preprint arXiv:2408.00118. 725

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, 726
Sarath Sreedharan, and Subbarao Kambhampati. 727
2024. Planbench: An extensible benchmark for eval- 728
uating large language models on planning and reason- 729
ing about change. Advances in Neural Information 730
Processing Systems, 36. 731

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar- 732
quez, Alberto Olmo, and Subbarao Kambhampati. 733
2023. On the planning abilities of large language 734
models (a critical investigation with a proposed 735
benchmark). Preprint, arXiv:2302.06706. 736

Daniel S Weld. 1999. Recent advances in ai planning. 737
AI magazine, 20(2):93–93. 738

Lionel Wong, Jiayuan Mao, Pratyusha Sharma, 739
Zachary S Siegel, Jiahai Feng, Noa Korneev, 740
Joshua B Tenenbaum, and Jacob Andreas. 2023. 741
Learning adaptive planning representations with 742
natural language guidance. arXiv preprint 743
arXiv:2312.08566. 744

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, 745
and Harold Soh. 2023. Translating natural language 746
to planning goals with large-language models. arXiv 747
preprint arXiv:2302.05128. 748

Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu 749
Song, and Dan Roth. 2020. Analogous process struc- 750
ture induction for sub-event sequence prediction. In 751
Proceedings of the 2020 Conference on Empirical 752
Methods in Natural Language Processing (EMNLP), 753
pages 1541–1550, Online. Association for Computa- 754
tional Linguistics. 755

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark, 756
Chris Callison-Burch, and Niket Tandon. 2024a. 757
PDDLEGO: Iterative planning in textual environ- 758
ments. In Proceedings of the 13th Joint Conference 759
on Lexical and Computational Semantics (*SEM 760
2024), pages 212–221, Mexico City, Mexico. As- 761
sociation for Computational Linguistics. 762

Li Zhang, Hainiu Xu, Abhinav Kommula, Chris 763
Callison-Burch, and Niket Tandon. 2024b. 764
OpenPI2.0: An improved dataset for entity 765
tracking in texts. In Proceedings of the 18th Confer- 766
ence of the European Chapter of the Association for 767

10

https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2021.inlg-1.19
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2402.12275
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://aclanthology.org/2024.eacl-long.10
https://aclanthology.org/2024.eacl-long.10
https://aclanthology.org/2024.eacl-long.10

Computational Linguistics (Volume 1: Long Papers),768
pages 166–178, St. Julian’s, Malta. Association for769
Computational Linguistics.770

Li Zhang, Hainiu Xu, Yue Yang, Shuyan Zhou, Weiqiu771
You, Manni Arora, and Chris Callison-Burch. 2023.772
Causal reasoning of entities and events in procedural773
texts. In Findings of the Association for Compu-774
tational Linguistics: EACL 2023, pages 415–431,775
Dubrovnik, Croatia. Association for Computational776
Linguistics.777

Tianyi Zhang, Li Zhang, Zhaoyi Hou, Ziyu Wang, Yul-778
ing Gu, Peter Clark, Chris Callison-Burch, and Niket779
Tandon. 2024c. PROC2PDDL: Open-domain plan-780
ning representations from texts. In Proceedings of781
the 2nd Workshop on Natural Language Reasoning782
and Structured Explanations (@ACL 2024), pages783
13–24, Bangkok, Thailand. Association for Compu-784
tational Linguistics.785

Andrew Zhu, Liam Dugan, Alyssa Hwang, and Chris786
Callison-Burch. 2023. Kani: A lightweight and787
highly hackable framework for building language788
model applications. In Proceedings of the 3rd Work-789
shop for Natural Language Processing Open Source790
Software (NLP-OSS 2023), pages 65–77, Singapore.791
Association for Computational Linguistics.792

Wang Zhu, Ishika Singh, Robin Jia, and Jesse Thoma-793
son. 2024. Language models can infer action seman-794
tics for classical planners from environment feedback.795
arXiv preprint arXiv:2406.02791.796

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li,797
Michael L Littman, and Stephen H Bach. 2024. Plan-798
etarium: A rigorous benchmark for translating text799
to structured planning languages. arXiv preprint800
arXiv:2407.03321.801

A Data Examples802

As discussed above, each dataset comes with803

ground-truth PDDL describing domains (DF) and804

problems (PF). To maximize flexibility when per-805

forming analysis, we construct problem instances806

ourselves for some datasets, so that we can mea-807

sure complexity with metrics like the number of808

Blocks in BlocksWorld, for which we ensure a uni-809

form distribution to avoid biases. Instances for810

BlocksWorld were randomly generated by vary-811

ing the number of blocks and number of stacks in812

the initial and goal states from 2 to 15. Instances813

for Mystery BlocksWorld were randomly sampled814

from (Valmeekam et al., 2024). Instances of Logis-815

tics were taken directly from (IPC, 1998) and (IPC,816

2000). Instances of Barman were generated by us-817

ing (Seipp et al., 2022) and varying the number of818

shot-glasses, ingredients and cocktails from 1 to 9.819

Below are the example PDDL and descriptions for820

all datasets.821

A.1 BlocksWorld-100 PDDL 822

The following are an example of the ground-truth 823

DF and PF for BlocksWorld-100. 824

DF: 825

(define (domain blocksworld)
(:predicates (clear ?x)
(on-table ?x)
(arm-empty)
(holding ?x)
(on ?x ?y))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table
?ob) (arm-empty))
:effect (and (holding ?ob) (not (clear
?ob)) (not (on-table ?ob))
(not (arm-empty))))

(:action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect (and (clear ?ob) (arm-empty)
(on-table ?ob)
(not (holding ?ob))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob)
(holding ?ob))
:effect (and (arm-empty) (clear ?ob) (on
?ob ?underob)
(not (clear ?underob)) (not (holding
?ob))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear
?ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob)
(not (on ?ob ?underob)) (not (clear ?ob))
(not (arm-empty)))))

826

The DF contains all four actions (pickup, put- 827

down, stack and unstack) and their pre-conditions 828

and post-conditions, as well as predicates needed 829

for the domain. 830

PF: 831

11

https://doi.org/10.18653/v1/2023.findings-eacl.31
https://doi.org/10.18653/v1/2023.findings-eacl.31
https://doi.org/10.18653/v1/2023.findings-eacl.31
https://aclanthology.org/2024.nlrse-1.2
https://aclanthology.org/2024.nlrse-1.2
https://aclanthology.org/2024.nlrse-1.2
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8
https://doi.org/10.18653/v1/2023.nlposs-1.8

(define (problem blocksworld-p99)
(:domain blocksworld)
(:objects red blue green yellow)
(:init
(on-table red)
(on blue red)
(clear blue)
(on-table green)
(on yellow green)
(clear yellow)
(arm-empty)
)
(:goal (and
(on-table red)
(on green red)
(on yellow green)
(on blue yellow)
))
)

832

The PF contains the objects, initial state and833

goal state for the problem.834

A.2 BlocksWorld-100 DD and PD835

The following display example DD and PD for all836

natural settings in the BlocksWorld-100 dataset.837

We can see that the descriptions have all the same838

components as the DF and PF in PDDL, but written839

in different levels of naturalness.840

For the Heavily Templated DD, all preconditions841

and post-conditions are written out explicitly and842

sound similar to PDDL. The PD is similar, in that it843

lists all the predicates needed for to solve the task.844

Heavily Templated DD: 845

I am playing with a set of blocks. Here
are the actions I can do

Pickup block
Unstack block from another block
Putdown block
Stack block on another block

I have the following restrictions on
my actions:
To perform Pickup action, the following
facts need to be true: clear block, block
on table, arm-empty.
Once Pickup action is performed the
following facts will be true: holding
block.
Once Pickup action is performed the
following facts will be false: clear block,
block on table, arm-empty.
To perform Putdown action, the following
facts need to be true: holding block.
Once Putdown action is performed the
following facts will be true: clear block,
block on table, arm-empty.
Once Putdown action is performed the
following facts will be false: holding
block.
To perform Stack action, the following
needs to be true: clear block2, holding
block1.
Once Stack action is performed the
following will be true: arm-empty, clear
block1, block1 on block2.
Once Stack action is performed the
following will be false: clear block2,
holding block1.
To perform Unstack action, the following
needs to be true: block1 on block2, clear
block1, arm-empty.
Once Unstack action is performed the
following will be true: holding block1,
clear block2.
Once Unstack action is performed the
following will be false:, block1 on block2,
clear block1, arm-empty.

846

Heavily Templated PD: 847

As initial conditions I have that, the
blue block is clear, the yellow block is
clear, arm-empty, the blue block is on top
of the red block, the yellow block is on
top of the green block, the red block is
on the table, and the green block is on
the table.
My goal is to have that the blue block is
on top of the yellow block, the green block
is on top of the red block, the yellow
block is on top of the green block, and
the red block is on the table.

848

12

For the Moderately Templated data, the DD and849

PD are much more natural than the Heavily Tem-850

plated data, but all predicates are still listed.851

Moderately Templated DD:852

I am playing with a set of blocks where
I need to arrange the blocks into stacks.
Here are the actions I can do

Pick up a block
Unstack a block from on top of another
block
Put down a block
Stack a block on top of another block

I have the following restrictions on
my actions:
I can only pick up or unstack one block at
a time.
I can only pick up or unstack a block if
my hand is empty.
I can only pick up a block if the block
is on the table and the block is clear. A
block is clear if the block has no other
blocks on top of it and if the block is
not picked up.
I can only unstack a block from on top of
another block if the block I am unstacking
was really on top of the other block.
I can only unstack a block from on top of
another block if the block I am unstacking
is clear.
Once I pick up or unstack a block, I am
holding the block.
I can only put down a block that I am
holding.
I can only stack a block on top of another
block if I am holding the block being
stacked.
I can only stack a block on top of another
block if the block onto which I am stacking
the block is clear.
Once I put down or stack a block, my hand
becomes empty.
Once you stack a block on top of a second
block, the second block is no longer clear.

853

Moderately Templated PD:854

As initial conditions I have that, the blue
block is clear, the yellow block is clear,
the hand is empty, the blue block is on
top of the red block, the yellow block is
on top of the green block, the red block
is on the table, and the green block is on
the table.
My goal is to have that the blue block is
on top of the yellow block, the green block
is on top of the red block, the yellow
block is on top of the green block, and
the red block is on the table.

855

Finally for the natural data, we can see that the 856

DD and PD give all necessary information to com- 857

plete the task, but does not sound like PDDL, and 858

does not describe all predicates needed to perform 859

the task. 860

Natural DD: 861

The Blocksworld game involves a set of
blocks of different colors, which can be
stacked on top of each other or placed on
the table. The objective is to move the
blocks from an initial configuration to a
goal configuration using a series of legal
moves. Legal moves in Blocksworld include:
picking up a block from the table or from
the top of another block, stacking a block
onto the table, or stacking a block onto
another block.

862

Natural PD: 863

In this particular game, there are 4
blocks: a red block, a blue block, a green
block, and a yellow block. At the start,
the red block is on the table, the blue
block is on top of the red block, the green
block is on the table, and the yellow block
is on top of the green block. The goal is
to have the red block on the table, the
green block on top of the red block, the
yellow block on top of the green block, and
the blue block on top of the yellow block.

864

13

A.3 MysteryBlocksWorld-100 PDDL865

This section displays an example of the groundtruth866

DF and PF for MysteryBlocksWorld-100.867

DF:868

(define (domain mystery_blocksworld)
(:predicates (province ?x)
(planet ?x)
(harmony)
(pain ?x)
(craves ?x ?y))

(:action attack
:parameters (?ob)
:precondition (and (province ?ob) (planet
?ob) (harmony))
:effect (and (pain ?ob) (not (province
?ob)) (not (planet ?ob))
(not (harmony))))

(:action succumb
:parameters (?ob)
:precondition (pain ?ob)
:effect (and (province ?ob) (harmony)
(planet ?ob)
(not (pain ?ob))))

(:action overcome
:parameters (?ob ?underob)
:precondition (and (province ?underob)
(pain ?ob))
:effect (and (harmony) (province ?ob)
(craves ?ob ?underob)
(not (province ?underob)) (not (pain
?ob))))

(:action feast
:parameters (?ob ?underob)
:precondition (and (craves ?ob ?underob)
(province ?ob) (harmony))
:effect (and (pain ?ob) (province ?underob)
(not (craves ?ob ?underob)) (not (province
?ob)) (not (harmony)))))

869

PF:870

(define (problem mystery_blocksworld-p01)
(:domain mystery_blocksworld)
(:objects a b c d)
(:init
(craves a b)
(craves b c)
(harmony)
(planet c)
(planet d)
(province a)
(province d)
)
(:goal (and
(craves a d)
(craves c a)
))
)

871

A.4 MysteryBlocksWorld-100 DD and PD 872

The following are example DD and PD of the Heav- 873

ily Templated MysteryBlocksWorld-100. Text 874

written in green demonstrates natural sounding 875

text while text written in red demonstrates text that 876

sounds the most like PDDL. 877

DD: 878

I am playing with a set of objects. Here
are the actions I can do

Attack object
Feast object from another object
Succumb object
Overcome object from another object

I have the following restrictions on
my actions:
To perform Attack action, the following
facts need to be true: Province object,
Planet object, Harmony.
Once Attack action is performed the
following facts will be true: Pain object.
Once Attack action is performed the
following facts will be false: Province
object, Planet object, Harmony.
To perform Succumb action, the following
facts need to be true: Pain object.
Once Succumb action is performed the
following facts will be true: Province
object, Planet object, Harmony.
Once Succumb action is performed the
following facts will be false: Pain
object.
To perform Overcome action, the following
needs to be true: Province other object,
Pain object.
Once Overcome action is performed the
following will be true: Harmony, Province
object, Object Craves other object.
Once Overcome action is performed the
following will be false: Province other
object, Pain object.
To perform Feast action, the following
needs to be true: Object Craves other
object, Province object, Harmony.
Once Feast action is performed the
following will be true: Pain object,
Province other object.
Once Feast action is performed the
following will be false:, Object Craves
other object, Province object, Harmony.

879

PD: 880

As initial conditions I have that, object
a craves object b, object b craves object
c, harmony, planet object c, planet object
d, province object a and province object
d.
My goal is to have that object a craves
object d and object c craves object a.

881

14

A.5 Logistics-100 PDDL882

The following are an example of the groundtruth883

DF and PF for Logistics-100.884

DF:885

(define (domain logistics)
(:requirements :strips)
(:predicates (package ?obj)
(truck ?truck)
(airplane ?airplane)
(airport ?airport)
(location ?loc)
(in-city ?obj ?city)
(city ?city)
(at ?obj ?loc)
(in ?obj ?obj))

(:action load-truck
:parameters
(?obj
?truck
?loc)
:precondition
(and (package ?obj) (truck ?truck)
(location ?loc)
(at ?truck ?loc) (at ?obj ?loc))
:effect
(and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:action load-airplane
:parameters
(?obj
?airplane
?loc)
:precondition
(and (package ?obj) (airplane ?airplane)
(location ?loc)
(at ?obj ?loc) (at ?airplane ?loc))
:effect
(and (not (at ?obj ?loc)) (in ?obj
?airplane)))

(:action unload-truck
:parameters
(?obj
?truck
?loc)
:precondition
(and (package ?obj) (truck ?truck)
(location ?loc)
(at ?truck ?loc) (in ?obj ?truck))
:effect
(and (not (in ?obj ?truck)) (at ?obj
?loc)))

886

DF (cont’d) 887

(:action unload-airplane
:parameters
(?obj
?airplane
?loc)
:precondition
(and (package ?obj) (airplane ?airplane)
(location ?loc)
(in ?obj ?airplane) (at ?airplane ?loc))
:effect
(and (not (in ?obj ?airplane)) (at ?obj
?loc)))

(:action drive-truck
:parameters
(?truck
?loc-from
?loc-to
?city)
:precondition
(and (truck ?truck) (location ?loc-from)
(location ?loc-to) (city ?city)
(at ?truck ?loc-from)
(in-city ?loc-from ?city)
(in-city ?loc-to ?city))
:effect
(and (not (at ?truck ?loc-from)) (at ?truck
?loc-to)))

(:action fly-airplane
:parameters
(?airplane
?loc-from
?loc-to)
:precondition
(and (airplane ?airplane) (airport
?loc-from) (airport ?loc-to)
(at ?airplane ?loc-from))
:effect
(and (not (at ?airplane ?loc-from)) (at
?airplane ?loc-to)))
)

888

The DF contains all six actions (load-truck, 889

load-airplane, unload-truck, unload-airplane, drive- 890

truck, drive-airplane) and their pre-conditions and 891

post-conditions, as well as predicates needed for 892

the domain. 893

PF: 894

15

(define (problem logistics-4-0)
(:domain logistics)
(:objects apn1 apt2 pos2 apt1 pos1 cit2
cit1 tru2 tru1 obj23 obj22 obj21 obj13
obj12 obj11)
(:init (package obj11) (package obj12)
(package obj13)
(package obj21)
(package obj22) (package obj23) (truck
tru1) (truck tru2)
(city cit1) (city cit2)
(location pos1) (location apt1) (location
pos2) (location apt2) (airport apt1)
(airport apt2) (airplane apn1) (at apn1
apt2) (at tru1 pos1) (at obj11 pos1)
(at obj12 pos1) (at obj13 pos1) (at tru2
pos2) (at obj21 pos2) (at obj22 pos2)
(at obj23 pos2) (in-city pos1 cit1)
(in-city apt1 cit1) (in-city pos2 cit2)
(in-city apt2 cit2))
(:goal (and (at obj11 apt1) (at obj23 pos1)
(at obj13 apt1) (at obj21 pos1)))
)

895

The PF contains the objects, initial state and896

goal state for the problem.897

A.6 Logistics-100 DD and PD898

The following display example DD and PD for899

all natural settings in the Logistics-100 dataset.900

We can see that the descriptions have all the same901

components as the DF and PF in PDDL, but written902

in different levels of naturalness.903

For the Heavily Templated DD, all preconditions904

and post-conditions are written out explicitly and905

sound similar to PDDL. The PD is similar, in that it906

lists all the predicates needed for to solve the task.907

Heavily Templated DD:908

I need to move packages between locations.
Here are the actions I can do

Load an package onto a truck at a location
(load-truck package truck location)
Load an package onto an airplane at a
location (load-airplane package airplane
location)
Unload an package from a truck at a
location (unload-truck package truck
location)
Unload an package from an airplane at a
location (unload-airplane package airplane
location)
Drive a truck from location1 to location2
in a city (drive-truck truck location1
location2 city)
Fly an airplane from airport1 to airport2
(fly-airplane airplane airport1 airport2)

I have the following restrictions on
my actions:
To perform load-truck action, the following
facts need to be true: o is an package,
t is a truck, l is a location, the truck
is at the location, the package is at the
location.
Once load-truck action is performed the
following facts will be true: the package
is in the truck.
Once load-truck action is performed the
following facts will be false: the package
is at the location.

To perform load-airplane action, the
following facts need to be true: o is
an package, a is an airplane, l is a
location, the airplane is at the location,
the package is at the location.
Once load-airplane action is performed the
following facts will be true: the package
is in the airplane.
Once load-airplane action is performed the
following facts will be false: the package
is at the location.

To perform unload-truck action, the
following facts need to be true: o is an
package, t is a truck, l is a location,
the truck is at the location, the package
is in the truck.
Once unload-truck action is performed the
following facts will be true: the package
is at the location.
Once unload-truck action is performed the
following facts will be false: the package
is in the truck.

909

DD (cont’d) 910

16

To perform unload-airplane action, the
following facts need to be true: o is an
package, a is a airplane, l is a location,
the airplane is at the location, the
package is in the airplane.
Once unload-airplane action is performed
the following facts will be true: the
package is at the location.
Once unload-airplane action is performed
the following facts will be false: the
package is in the airplane.

To perform drive-truck action, the
following need to be true: t is a truck,
l1 is a location, l2 is a location, c is
a city, the truck is at l1, l1 is in the
city, l2 is in the city.
Once drive-truck action is performed the
following facts will be true: the truck is
at l2.
Once drive-truck action is performed the
following facts will be false: the truck
is at l1.

To perform fly-airplane action, the
following must be true: p is an airplane,
a1 is an airport, a2 is an airport, the
airplane is at a1.
Once fly-airplane is performed the
following facts will be true: the airplane
is at a2.
Once fly-airplane is performed the
following facts will be false: the
airplane is at a1.

911

Heavily Templated PD:912

As initial conditions, I have that, obj11
is a package, obj12 is a package, obj13
is a package, obj21 is a package, obj22
is a package, obj23 is a package, tru1 is
a truck, tru2 is a truck, cit1 is a city,
cit2 is a city, pos1 is a location, apt1
is a location, pos2 is a location, apt2 is
a location, apt1 is an airport, apt2 is an
airport, apn1 is an airplane, apn1 is at
apt2, tru1 is at pos1, obj11 is at pos1,
obj12 is at pos1, obj13 is at pos1, tru2
is at pos2, obj21 is at pos2, obj22 is at
pos2, obj23 is at pos2, pos1 is in cit1,
apt1 is in cit1, pos2 is in cit2, and apt2
is in cit2.
My goal is to have that obj11 is at apt1,
obj23 is at pos1, obj13 is at apt1, and
obj21 is at pos1.

913

For the Moderately Templated data, the DD and 914

PD are much more natural than the Heavily Tem- 915

plated data, but all predicates are still listed. 916

Moderately Templated DD: 917

I need to move packages between locations.
Here are the actions I can do

Load an package onto a truck at a location
(load-truck package truck location)
Load an package onto an airplane at a
location (load-airplane package airplane
location)
Unload an package from a truck at a
location (unload-truck package truck
location)
Unload an package from an airplane at a
location (unload-airplane package airplane
location)
Drive a truck from location1 to location2
in a city (drive-truck truck location1
location2 city)
Fly an airplane from airport1 to airport2
(fly-airplane airplane airport1 airport2)

I have the following restrictions on
my actions:
I can only load a package onto a truck or
airplane if both the package and airplane
are at the location.
Once I load the package in the truck or
airplane, it is no longer at the location.
I can only unload a package from a truck
or airplane if the truck or airplane is
at the location and the package is in the
truck or airplane.
Once I unload the truck or airplane, the
object is at the location and no longer in
the truck or airplane.
I can only drive a truck between locations
if the truck is at the first location and
both the first and second locations are in
the same city. Once I drive a truck, the
truck is in the second city and no longer
in the first city.
I can only fly an airplane between two
airports and the airplane is at the first
airport.
Once I fly an airplane, the airplane is at
the second airport and no longer at the
first airport.

918

The PD for the Moderately Templated data is 919

the same as the PD for Heavily Templated data. 920

17

Finally for the natural data, we can see that the921

DD and PD give all necessary information to com-922

plete the task, but does not sound like PDDL, and923

does not describe all predicates needed to perform924

the task.925

Natural DD:926

In the Logistics game, your goal is
to transport packages between different
locations using trucks and airplanes. Here
are the actions you can perform: You can
load a package onto a truck at a particular
location if both the package and the truck
are present there. Similarly, loading a
package onto an airplane requires both the
package and the airplane to be at the same
location. Once a package is loaded onto a
truck or airplane, it leaves its original
location. To unload a package, the truck
or airplane must be at the same location
where you want to unload, and the package
should be inside the vehicle. When you
unload, the package arrives at the new
location and exits the vehicle. If you
want to drive a truck from one location to
another within a city, the truck needs to
begin its journey at the starting point,
and both locations must be within the city
boundaries. After driving, the truck will
find itself at the destination, leaving the
starting point behind. As for flying, an
airplane can travel between two airports,
but it must be ready for takeoff from the
initial airport. After the flight, the
airplane lands at the destination airport,
departing from the origin airport in the
process.

927

Natural PD:928

In this logistics scenario, we begin with
several objects and locations. Package
obj11, obj12, and obj13 are initially
at location pos1. Similarly, package
obj21, obj22, and obj23 start at location
pos2. We have two trucks: truck tru1
is stationed at pos1, and truck tru2 is
at pos2. Additionally, we have a single
airplane, apn1, which is located at airport
apt2. Our map comprises two cities: cit1
and cit2. City cit1 contains location
pos1 and airport apt1, while city cit2
includes location pos2 and airport apt2.
The ultimate objective is to relocate
package obj11 and obj13 to airport apt1
and to move package obj21 and obj23 to
location pos1.

929

A.7 Barman-100 PDDL 930

The following are an example of the groundtruth 931

DF and PF for Logistics-100. 932

DF: 933

(define (domain barman)
(:requirements :strips :typing)
(:types hand level beverage dispenser
container - object
ingredient cocktail - beverage
shot shaker - container)
(:predicates (ontable ?c - container)
(holding ?h - hand ?c - container)
(handempty ?h - hand)
(empty ?c - container)
(contains ?c - container ?b - beverage)
(clean ?c - container)
(used ?c - container ?b - beverage)
(dispenses ?d - dispenser ?i - ingredient)
(shaker-empty-level ?s - shaker ?l - level)
(shaker-level ?s - shaker ?l - level)
(next ?l1 ?l2 - level)
(unshaked ?s - shaker)
(shaked ?s - shaker)
(cocktail-part1 ?c - cocktail ?i -
ingredient)
(cocktail-part2 ?c - cocktail ?i -
ingredient))

(:action grasp
:parameters (?h - hand ?c - container)
:precondition (and (ontable ?c) (handempty
?h))
:effect (and (not (ontable ?c))
(not (handempty ?h))
(holding ?h ?c)))

(:action leave
:parameters (?h - hand ?c - container)
:precondition (holding ?h ?c)
:effect (and (not (holding ?h ?c))
(handempty ?h)
(ontable ?c)))

(:action fill-shot
:parameters (?s - shot ?i - ingredient ?h1
?h2 - hand ?d - dispenser)
:precondition (and (holding ?h1 ?s)
(handempty ?h2)
(dispenses ?d ?i)
(empty ?s)
(clean ?s))
:effect (and (not (empty ?s))
(contains ?s ?i)
(not (clean ?s))
(used ?s ?i)))

934

DF (cont’d) 935

18

(:action refill-shot
:parameters (?s - shot ?i - ingredient ?h1
?h2 - hand ?d - dispenser)
:precondition (and (holding ?h1 ?s)
(handempty ?h2)
(dispenses ?d ?i)
(empty ?s)
(used ?s ?i))
:effect (and (not (empty ?s))
(contains ?s ?i)))

(:action empty-shot
:parameters (?h - hand ?p - shot ?b -
beverage)
:precondition (and (holding ?h ?p)
(contains ?p ?b))
:effect (and (not (contains ?p ?b))
(empty ?p)))

(:action clean-shot
:parameters (?s - shot ?b - beverage ?h1
?h2 - hand)
:precondition (and (holding ?h1 ?s)
(handempty ?h2)
(empty ?s)
(used ?s ?b))
:effect (and (not (used ?s ?b))
(clean ?s)))

(:action pour-shot-to-clean-shaker
:parameters (?s - shot ?i - ingredient ?d
- shaker ?h1 - hand ?l ?l1 - level)
:precondition (and (holding ?h1 ?s)
(contains ?s ?i)
(empty ?d)
(clean ?d)
(shaker-level ?d ?l)
(next ?l ?l1))
:effect (and (not (contains ?s ?i))
(empty ?s)
(contains ?d ?i)
(not (empty ?d))
(not (clean ?d))
(unshaked ?d)
(not (shaker-level ?d ?l))
(shaker-level ?d ?l1)))

(:action pour-shot-to-used-shaker
:parameters (?s - shot ?i - ingredient ?d
- shaker ?h1 - hand ?l ?l1 - level)
:precondition (and (holding ?h1 ?s)
(contains ?s ?i)
(unshaked ?d)
(shaker-level ?d ?l)
(next ?l ?l1))
:effect (and (not (contains ?s ?i))
(contains ?d ?i)
(empty ?s)
(not (shaker-level ?d ?l))
(shaker-level ?d ?l1)))

936

DF (cont’d) 937

(:action empty-shaker
:parameters (?h - hand ?s - shaker ?b -
cocktail ?l ?l1 - level)
:precondition (and (holding ?h ?s)
(contains ?s ?b)
(shaked ?s)
(shaker-level ?s ?l)
(shaker-empty-level ?s ?l1))
:effect (and (not (shaked ?s))
(not (shaker-level ?s ?l))
(shaker-level ?s ?l1)
(not (contains ?s ?b))
(empty ?s)))

(:action clean-shaker
:parameters (?h1 ?h2 - hand ?s - shaker)
:precondition (and (holding ?h1 ?s)
(handempty ?h2)
(empty ?s))
:effect (and (clean ?s)))

(:action shake
:parameters (?b - cocktail ?d1 ?d2 -
ingredient ?s - shaker ?h1 ?h2 - hand)
:precondition (and (holding ?h1 ?s)
(handempty ?h2)
(contains ?s ?d1)
(contains ?s ?d2)
(cocktail-part1 ?b ?d1)
(cocktail-part2 ?b ?d2)
(unshaked ?s))
:effect (and (not (unshaked ?s))
(not (contains ?s ?d1))
(not (contains ?s ?d2))
(shaked ?s)
(contains ?s ?b)))

(:action pour-shaker-to-shot
:parameters (?b - beverage ?d - shot ?h -
hand ?s - shaker ?l ?l1 - level)
:precondition (and (holding ?h ?s)
(shaked ?s)
(empty ?d)
(clean ?d)
(contains ?s ?b)
(shaker-level ?s ?l)
(next ?l1 ?l))
:effect (and (not (clean ?d))
(not (empty ?d))
(contains ?d ?b)
(shaker-level ?s ?l1)
(not (shaker-level ?s ?l))))
)

938

The DF contains all twelve actions and their 939

pre-conditions and post-conditions, as well as pred- 940

icates needed for the domain. 941

PF: 942

19

(define (problem prob)
(:domain barman)
(:objects
shaker1 - shaker
left right - hand
shot1 - shot
ingredient1 ingredient2 - ingredient
cocktail1 - cocktail
dispenser1 dispenser2 - dispenser
l0 l1 l2 - level
)
(:init
(ontable shaker1)
(ontable shot1)
(dispenses dispenser1 ingredient1)
(dispenses dispenser2 ingredient2)
(clean shaker1)
(clean shot1)
(empty shaker1)
(empty shot1)
(handempty left)
(handempty right)
(shaker-empty-level shaker1 l0)
(shaker-level shaker1 l0)
(next l0 l1)
(next l1 l2)
(cocktail-part1 cocktail1 ingredient1)
(cocktail-part2 cocktail1 ingredient2)
)
(:goal
(and
(contains shot1 cocktail1)
)))

943

The PF contains the objects, initial state and944

goal state for the problem.945

A.8 Barman-100 DD and PD946

The following display example DD and PD for the947

heavily templated data for Barman-100. We can948

see that the descriptions have all the same compo-949

nents as the DF and PF in PDDL.950

For the Heavily Templated DD, all preconditions951

and post-conditions are written out explicitly and952

sound similar to PDDL. The PD is similar, in that it953

lists all the predicates needed for to solve the task.954

Heavily Templated DD: 955

I am creating a cocktail from a set of
ingredients. Here are the actions I can do

Grasp a container (grasp hand container)
Leave a container (leave hand container)
Fill a shot glass with with an ingredient
(fill-shot shot ingredient hand1 hand2
dispenser)
Re-fill a shot glass with an ingredient
(refill-shot shot ingredient hand1 hand2
dispenser)
Empty a shot glass (empty-shot hand shot
beverage)
Clean a shot glass (clean-shot shot
beverage hand hand2)
Pour an ingredient from a shot glass to
a clean shaker (pour-shot-to-clean-shaker
shot ingredient shaker hand level level1)
Pour an ingredient from a shot glass to a
used shaker (pour-shot-to-used-shaker shot
ingredient shaker hand level level1)
Empty a shaker (empty-shaker hand shaker
cocktail level level1)
Clean a shaker (clean-shaker hand1 hand2
shaker)
Shake a shaker (shaker cocktil ingredient1
ingredient2 shaker hand1 hand2)
Pour a cocktail from a shaker to a shot
glass (pour-shaker-to-shot beverage shot
hand shaker level level1)
I have the following restrictions on my
actions:
To perform Grasp action, the following
facts need to be true: container on table,
hand empty.
Once Grasp action is performed the
following facts will be true: hand holding
container.
Once Grasp action is performed the
following facts will be false: container
on table, hand empty.
To perform Leave action, the following
facts need to be true: hand holding
container.
Once Leave action is performed the
following facts will be true: hand empty,
container on table.
Once Leave action is performed the
following facts will be false: hand
holding container.
To perform Fill-shot action, the following
needs to be true: hand1 holding shot
glass, hand2 empty, dispenser dispenses
ingredient, empty shot glass, clean shot
glass.
Once Fill-shot action is performed the
following will be true: shot glass
contains ingredient, shot glass used with
ingredient.
Once Fill-shot action is performed the
following will be false: empty shot glass,
clean shot glass.

956

20

To perform Refill-shot action, the
following needs to be true: hand1 holding
shot glass, hand2 empty, dispenser
dispenses ingredient, empty shot glass,
shot glass used with ingredient.
Once Refill-shot action is performed the
following will be true: shot glass contains
ingredient.
Once Refill action is performed the
following will be false: empty shot glass.
To perform Empty-shot action, the following
needs to be true: hand holding shot glass,
shot glass contains beverage.
Once Empty-shot action is performed the
following will be true: empty shot glass.
Once Empty-shot action is performed the
following will be false: shot glass
contains beverage.
To perform Clean-shot action, the following
needs to be true: hand1 holding shot glass,
hand2 empty, empty shot glass, shot glass
used with beverage.
Once Clean-shot action is performed the
following will be true: clean shot glass.
Once Clean-shot action is performed the
following will be false: shot glass used
with beverage
To perform Pour-shot-to-clean-shaker
action, the following needs to be true:
hand1 holding shot glass, shot glass
contains ingredient, empty shaker, clean
shaker, shaker-level of shaker is l, next
level from l is l1.
Once Pour-shot-to-clean-shaker action is
performed the following will be true: empty
shot
glass, shaker contains ingredient, unshaked
shaker, shaker-level of shaker is l1.
Once Pour-shot-to-clean-shaker action is
performed the following will be false: shot
glass contains ingredient, empty shaker,
clean shaker, shaker-level of shaker is l.
To perform Pour-shot-to-used-shaker action,
the following needs to be true: hand1
holding shot glass, shot glass contains
ingredient, unshaked shaker, shaker-level
of shaker is l, next level from l is l1.
Once Pour-shot-to-used-shaker action is
performed the following will be true:
shaker contains ingredient, empty shot
glass, shaker-level of shaker is l1.
Once Pour-shot-to-used-shaker action is
performed the following will be false: shot
glass contains ingredient, shaker-level of
shaker is l.

957

DD (cont’d)958

To perform Empty-shaker action, the
following needs to be true: hand holding
shaker, shaker contains cocktail, shaked
shaker, shaker-level of shaker is l,
shaker-empty-level of shaker is l1.
Once Empty-shaker action is performed the
following will be true: shaker-level of
shaker is l1, empty shaker.
Once Empty-shaker action is performed the
following will be false: shaked shaker,
shaker-level of shaker is l, shaker
contains cocktail.
To perform Clean-shaker action, the
following needs to be true: hand1 holding
shaker, hand2 empty, empty shaker.
Once Clean-shaker action is performed the
following will be true: clean shaker.
To perform Shake action, the following
needs to be true: hand1 holding shaker,
empty hand2, shaker contains ingredient1,
shaker contains ingredient2, part 1 of
cocktail is ingredient1, part 2 of cocktail
is ingredient2, unshaked shaker.
Once Shake action is performed the
following will be true: shaked shaker,
shaker contains cocktail.
Once Shake action is performed the
following will be false: unshaked shaker,
shaker contains ingredient1, shaker
contains ingredient2.
To perform Pour-shaker-to-shot action, the
following needs to be true: hand holding
shaker, shaked shaker, empty shot glass,
clean shot glass, shaker contains cocktail,
shaker level of shaker is l, next level
from l1 is l.
Once Pour-shaker-to-shot action is
performed the following will be true: shot
glass contains cocktail, shot glass used
with cocktail, shaker-level of shaker is
l1.
Once Pour-shaker-to-shot action is
performed the following will be false:
clean shot glass, empty shot glass,
shaker-level of shaker is l.

959

Heavily Templated PD: 960

21

For this cocktail, I have the following:
shaker shaker1, my left hand, my right
hand, shot glass shot1, ingredient
ingredient1, ingredient ingredient2,
dispenser dispenser1, and dispenser
dispenser2. The shaker has the following
levels: l0, l1, and l2. I want to make the
following cocktails: cocktail1.
As initial conditions, I have that
shaker1 is on the table, shot1 is on the
table, dispenser1 dispenses ingredient1,
dispenser2 dispenses ingredient2, shaker1
is clean, shot1 is clean, shaker1 is empty,
shot1 is empty, handempty left, handempty
right, shaker-empty-level shaker1 l0,
shaker-level shaker1 l0, next l0 l1,
next l1 l2, cocktail-part1 cocktail1
ingredient1, and cocktail-part2 cocktail1
ingredient2.
My goal is to have that shot1 contains
cocktail1.

961

B Prompts962

For the LLM-as-planner, we give all the models the963

following prompt for BlocksWorld-100:964

Here is a game involving a table with
blocks on it.

{domain_description}

{problem_description}

Write the plan that would solve this
problem.

These are the available actions:
(PICK-UP block): pick up a block from the
table
(PUT-DOWN block): put down a block on the
table
(STACK block1 block2): stack block1 onto
block2
(UNSTACK block1 block2): unstack block1
from block2

Here is what the output should look
like:
(PICK-UP A)
(STACK A B)
(UNSTACK A B)
(PUT-DOWN A)

965

For MysteryBlocksWorld-100, we use the fol-966

lowing prompt:967

Here is a game involving a table with
blocks on it.

{domain_description}

{problem_description}

Write the plan that would solve this
problem.

These are the available actions:
(ATTACK object): attack object
(SUCCUMB object): succumb
(OVERCOME object1 object2): overcome
object1 from object2
(FEAST object1 object2): feast object1
from object2

Here is what the output should look like:
(ATTACK A)
(OVERCOME A B)
(FEAST A B)
(SUCCUMB A)

968

Whenever possible, we asked the model to return 969

the output in a JSON object for easier parsing. 970

C Detailed Results 971

Beyond the visualizations above, we show the de- 972

tailed results of all models on all simulations of all 973

naturalness levels. 974

C.1 Results for BlocksWorld-100 975

Table 3 displays results for all results for 976

BlocksWorld-100. 977

C.2 Results for MysteryBlocksWorld-100 978

Table 4 displays the results for Heavily Templated 979

MysteryBlocksWorld-100. 980

C.3 Results for Logistics-100 981

Table 5 displays results for all naturalness settings 982

for Logistics-100 983

C.4 Results for Barman-100 984

Table 6 displays results for Barman-100. 985

22

Metrics

Natural
Models Solvability Correctness

gemma-2-9b-it 3/100 3/100
gemma-2-9b-itp - 9/100
gemma-2-27b-it 0/100 0/100
gemma-2-27b-itp - 11/100

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 1/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 13/100

gpt-3.5-turbo 2/100 1/100
gpt-4o-mini 19/100 3/100
gpt-4o-minip - 7/100
gpt-4o 64/100 60/100
gpt-4op - 33/100
o1-preview 91/100 91/100
o1-previewp - 82/100
o3-mini 79/100 68/100
o3-minip - 87/100

Moderately Templated
Models Solvability Correctness

gemma-2-9b-it 0/100 0/100
gemma-2-9b-itp - 5/100
gemma-2-27b-it 17/100 10/100
gemma-2-27b-itp - 3/100

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 1/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 10/100

gpt-3.5-turbo 14/100 4/100
gpt-4o-mini 9/100 5/100
gpt-4o-minip - 7/100
gpt-4o 77/100 67/100
gpt-4op - 35/100
o3-mini 82/100 70/100
o3-minip - 87/100

Heavily Templated
Models Solvability Correctness

gemma-2-9b-it 61/100 10/100
gemma-2-9b-itp - 5/100
gemma-2-27b-it 81/100 80/100
gemma-2-27b-itp - 7/100

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 0/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 10/100

gpt-3.5-turbo 39/100 29/100
gpt-4o-mini 66/100 59/100
gpt-4o-minip - 1/100
gpt-4o 89/100 89/100
gpt-4op - 29/100
o3-mini 94/100 94/100
o3-minip - 96/100

Table 3: Performance of LLM-as-formalizer and LLM-
as-planner (p) all BlocksWorld-100 data.

Models Solvability Correctness

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 0/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 0/100

gemma-2-9b-it 100/100 99/100
gemma-2-9b-itp - 9/100
gemma-2-27b-it 99/100 98/100
gemma-2-27b-itp - 0/100

gpt-3.5-turbo 4/100 0/100
gpt-4o-mini 36/100 5/100
gpt-4o-minip - 0/100
gpt-4o 74/100 70/100
gpt-4op - 0/100
o3-mini 95/100 95/100
o3-minip - 74/100

Table 4: Performance of LLM-as-formalizer and
LLM-as-planner (p) on the Heavily Templated
MysteryBlocksWorld-100.

gpt-4o-mini
gpt-4o

o3-mini

gemma-2-9b-it

gemma-2-27b-it

Llama-3.1-8B-Instru
ct

Llama-3.1-70B-Instru
ct

0

25

50

75

100

Co
rre

ct
ne

ss
Heavily Templated

Barman-100

Formalizer
Planner

Figure 5: Performance for Barman-100.

D Sample Model Output 986

The following is an example DF and PF that 987

Llama-3.1-8B-Instruct gave. We can see that 988

there are syntax errors, as well as semantic errors 989

in the DF and PF. 990

23

Metrics

Natural
Models Solvability Correctness

gemma-2-9b-it 1/100 0/100
gemma-2-9b-itp - 0/100
gemma-2-27b-it 1/100 0/100
gemma-2-27b-itp - 0/100

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 1/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 0/100

gpt-3.5-turbo 1/100 0/100
gpt-3.5-turbop - 0/100
gpt-4o-mini 13/100 0/100
gpt-4o-minip - 0/100
gpt-4o 20/100 2/100
gpt-4op - 1/100
o3-mini 43/100 7/100
o3-minip - 14/100

Moderately Templated
Models Solvability Correctness

gemma-2-9b-it 0/100 0/100
gemma-2-9b-itp - 0/100
gemma-2-27b-it 3/100 0/100
gemma-2-27b-itp - 0/100

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 0/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 0/100

gpt-3.5-turbo 0/100 0/100
gpt-3.5-turbop - 0/100
gpt-4o-mini 29/100 0/100
gpt-4o-minip - 0/100
gpt-4o 34/100 13/100
gpt-4op - 0/100
o3-mini 51/100 39/100
o3-minip - 21/100

Heavily Templated
Models Solvability Correctness

gemma-2-9b-it 1/100 0/100
gemma-2-9b-itp - 0/100
gemma-2-27b-it 0/100 0/100
gemma-2-27b-itp - 1/100

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 0/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 0/100

gpt-3.5-turbo 1/100 1/100
gpt-3.5-turbop - 0/100
gpt-4o-mini 26/100 0/100
gpt-4o-minip - 0/100
gpt-4o 33/100 13/100
gpt-4op - 0/100
o3-mini 55/100 47/100
o3-minip - 21/100

Table 5: Performance of LLM-as-formalizer and LLM-
as-planner (p) all Logistics-100 data.

We give the model the following input DD and PD:991

Models Solvability Correctness

Llama-3.1-8B 0/100 0/100
Llama-3.1-8Bp - 0/100
Llama-3.1-70B 0/100 0/100
Llama-3.1-70Bp - 15/100

gemma-2-9b-it 0/100 0/100
gemma-2-9b-itp - 2/100
gemma-2-27b-it 0/100 0/100
gemma-2-27b-itp - 0/100

gpt-3.5-turbo 0/100 0/100
gpt-3.5-turbop - 4/100
gpt-4o-mini 0/100 0/100
gpt-4o-minip - 8/100
gpt-4o 1/100 0/100
gpt-4op - 3/100
o3-mini 1/100 0/100
o3-minip - 19/100

Table 6: Performance of LLM-as-formalizer and LLM-
as-planner (p) on the Heavily Templated Barman-100.

Blocksworld is a puzzle domain where the
aim is to move a set of blocks to achieve
a specific goal configuration. The domain
consists of a flat surface, often called
the ’table’, and an arbitrary number of
blocks. Every block can be stacked on top
of another block or placed on the table.
Blocks can be moved one at a time, and
only the block at the top of a stack can
be moved. The main actions available in
Blocksworld are:

1. **Pick Up (Pick-Up B)**: Picks up
block B from the table.
2. **Put Down (Put-Down B)**: Places block
B onto the table.
3. **Stack (Stack B1 B2)**: Stacks block
B1 on top of block B2.
4. **Unstack (Unstack B1 B2)**: Removes
block B1 from the top of block B2.

The goal is to transform an initial
configuration of blocks into a desired
target configuration using these actions.

In this Blocksworld problem, we will
consider a simple scenario with 2 blocks:
Block1 and Block2. The initial state of
the blocks is as follows:
Initial State:
- Block1 is on the table.
- Block2 is on Block1.

The goal is to achieve the following
configuration:

*Goal State**:
- Block2 is on the table.
- Block1 is on the table.

To solve this problem, you will need
to use the available actions to rearrange
the blocks from the initial state to the
goal state.

992

24

Which returns the following993

Output DF:994

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)
(:predicates
(on-table?b - block)
(on?b1 - block?b2 - block)
(clear?b - block)
)
(:action pick-up
:parameters (?b - block)
:preconditions (and (on-table?b)
(clear?b))
:effects (and (not (on-table?b)) (not
(clear?b)) (on-table?b))
)
(:action put-down
:parameters (?b - block)
:preconditions (and (not (on-table?b))
(clear?b))
:effects (and (on-table?b) (clear?b))
)
(:action stack
:parameters (?b1 - block?b2 - block)
:preconditions (and (on-table?b1)
(clear?b2))
:effects (and (not (on-table?b1)) (not
(clear?b2)) (on?b1?b2))
)
(:action unstack
:parameters (?b1 - block?b2 - block)
:preconditions (and (on?b1?b2) (clear?b1))
:effects (and (on-table?b1) (not
(on?b1?b2)) (clear?b2))
)
)

995

Output PF:996

(define (problem blocksworld-problem)
(:domain blocksworld)
(:objects block1 block2 - block)
(:init
(on-table block1)
(on block2 block1)
(clear block1)
(clear block2)
)
(:goal
(and (on-table block2)
(on-table block1)
(clear block1)
(clear block2)
)
)
)

997

Text in red displays errors outputted from the998

model. We can see that in the DF there are syntax999

errors (incorrect keyword “preconditions”) as well1000

as semantic errors (incorrect predicates in precon-1001

ditions and effects). For the output PF there are1002

semantic errors, such as incorrect preconditions (a1003

block cannot be clear and have another block on 1004

top of it) in the init section. 1005

E Related Works Comparison 1006

Table 7 compares works related to this paper. We 1007

can see that other works as the LLM to predict 1008

either the plan, parts of PDDL files and other lan- 1009

guages. We can also see that other works have 1010

mostly templated natural language descriptions, 1011

while this work uses both templated and natural 1012

descriptions. 1013

F Methodology Comparison 1014

Both methodologies used in this paper incorporate 1015

LLMs into planning. There are pros and cons to 1016

each methodology. When using LLM-as-planner, 1017

we have a lightweight solution that returns results 1018

very quickly. However, due to the lack of reasoning 1019

skills in LLMs, they often struggle to create for- 1020

mal plans. Meanwhile using LLM-as-formalizer 1021

provides better executability and interpretability, 1022

though it uses a solver, which may results in get- 1023

ting results slower. We believe that for perfor- 1024

mance reasons that LLM-as-formalizer is the supe- 1025

rior methodology. 1026

25

Environment LLM predicts? Natural Descriptions?

Zuo et al. (2024) fully-observed PF N
Zhang et al. (2024a) partially-observed PF N
Liu et al. (2023a) fully-observed PF N
Xie et al. (2023) fully-observed & partially-observed PF goal N
Lyu et al. (2023) fully-observed PF goal N
Zhang et al. (2024c) procedural texts DF action semantics N
Wong et al. (2023) partially-observed DF N
Guan et al. (2023) fully-observed DF & PF goal N
Zhu et al. (2024) fully-observed DF action semantics N

Tang et al. (2024) partially-observed Python N/A

Silver et al. (2024) fully-observed plan N
Valmeekam et al. (2024) fully-observed plan N
Stechly et al. (2024) fully-observed plan N

This work fully-observed DF & PF Y

Table 7: Comparison with related work.

26

	Introduction
	Task: Formal Planning with PDDL
	Methodology: LLM-as-Formalizer
	Evaluation: Datasets, Metrics, Models
	Datasets
	Metrics
	Models

	Results and Observations
	Can LLMs formalize?
	Should LLMs formalize?
	The more natural, the harder?
	Do LLMs memorize pretraining?
	What kind of errors?

	Related Work
	Conclusion
	Limitation
	Data Examples
	BlocksWorld-100 PDDL
	BlocksWorld-100DD and PD
	MysteryBlocksWorld-100 PDDL
	MysteryBlocksWorld-100DD and PD
	Logistics-100 PDDL
	Logistics-100DD and PD
	Barman-100 PDDL
	Barman-100DD and PD

	Prompts
	Detailed Results
	Results for BlocksWorld-100
	Results for MysteryBlocksWorld-100
	Results for Logistics-100
	Results for Barman-100

	Sample Model Output
	Related Works Comparison
	Methodology Comparison

