Under review as a conference paper at ICLR 2026

AudiFair: PRIVACY-PRESERVING FRAMEWORK FOR
AUDITING FAIRNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensuring fairness in Al is challenging, especially when privacy concerns prevent
access to proprietary models and training data. We propose a cryptographic frame-
work for auditing fairness without requiring model disclosure.

Unlike existing solutions—which either do not capture attack vectors enabling
dishonest model providers to manipulate a dataset to pass audits unfairly, or re-
quire involving real-world model users to protect against dishonest behaviors—
our framework realizes the following properties simultaneously for the first time:
1) Model Privacy: Proprietary model details remain hidden from verifiers. 2) Dis-
honest Provider Robustness: Even if model providers are dishonest, a verifier
can statistically attest to the fairness of the model without involving real-world
users. 3) Test Data Transparency: Test data for auditing is generated in a trans-
parent and accountable way, preventing dishonest parties from manipulating it.

We achieve these goals by carefully orchestrating cryptographic commitments,
coin tossing, and zero knowledge proofs, and we report the empirical per-
formance for auditing private decision tree models. Our solution is highly
communication-efficient, delivering a significant improvement (~200,000x for a
30k-sized dataset) over the current state-of-the-art methods.

1 INTRODUCTION

As Al adoption grows, organizations face increasing pressure to ensure fairness in machine learn-
ing systems (Fuster et al., 2022} |ProPublical 2016; [Reuters, 2018)). Demonstrating compliance can
be difficult, especially when models are proprietary. External examiners often question companies
about their training and fairness measures, but this is resource-intensive and yields limited insight.
A common alternative is black-box auditing (Panigutti et al., 2021} |[Krafft et al., 2024), where exam-
iners evaluate fairness through API access to the model’s public inference interface. For instance, if
a proprietary model performs a classification task, the examiner may query the model with sample
input data and analyze the outcomes conditioned on sensitive attributes. While black-box auditing
preserves the confidentiality of the model, it is vulnerable to model swapping, and a dishonest model
provider could return fabricated outputs just for the sake of passing the audit.

Thus, what is needed is the ability to certify desired properties, e.g., fairness above a given threshold,
while keeping model details such as weights private and ensuring that the same model is used both
during audit and deployment. Recent frameworks for such privacy-preserving and certifiable ML
use cryptographic and differential privacy techniques. Several works target fairness certification in
particular, but existing approaches still trade off security, the scope of fairness metrics, or practicality.

Among them, only two works—FairProof (Yadav et al.l 2024) and OATH (Franzese et al.
2024)—provide security against dishonest model providers (see Table [I)), deviating from the pro-
tocol specifications. Both, however, require client participation in fairness verification, which is
problematic since it exposes real users to potentially unfair models with harmful consequences.
OATH mitigates this with a pre-deployment certification step between provider and auditor, but de-
pending on the implementation, a dishonest provider may circumvent this check when deploying the
model (see Section[2). Moreover, neither work considers malicious auditors who may falsely accuse
an honest provider—e.g., to benefit a competitor who bribed themﬂ

This risk is less relevant in|Yadav et al.| (2024), where there is no audit per se; instead, clients can request
certificates for (individual) fairness guarantees on their own queries.

Under review as a conference paper at ICLR 2026

Table 1: Properties and security guarantees of privacy-preserving works on fairness certification.
v'= supported; X= not supported; v'= required; X= not required.

. Dishonest Provider Test Data Continuous

Work Model Fairness Type Robustness Transparency verification
Shamsabadi et al.|(2023) DT/RF Group X X X
Yadav et al.[(2024) NN Individual v X v
Franzese et al.| (2024) General Group v X v
Bourrée et al.[(2025) General Group X X X
This work DT/RF Group v v X

Continuous verification requires model provider’s clients to participate in verification during deployment.

All in all, it is crucial to design an auditing framework that does not rely on additional parties such as
clients, and is secure under the following threat models: (1) Dishonest Model Providers: A provider
might deviate from the protocol specifications to pass the fairness check with an unfair model, and
(2) Dishonest Model Verifiers: A verifier might deviate from the protocol specifications to break
the privacy of the model or the training data, or to misrepresent the fairness of the model.

We overcome the challenges mentioned above by proposing AudiFair, a privacy-preserving frame-
work for certifying model fairness that uses cryptographic commitments and zero-knowledge proofs.
AudiFair prevents potentially dishonest providers from bypassing the fairness checks by requiring
them to prove the fairness using a synthetically generated fresh test dataset, and does not require in-
volving real-world clients in the auditing process. Along the way, we identify the following key prop-
erties that a privacy-preserving auditing framework should satisfy, and formally prove that AudiFair
satisfies them:

Model Privacy: Model providers can protect the privacy of their proprietary model parameters and
training data from any external verifiers.

Dishonest Provider Robustness: Even if model providers are dishonest, a verifier can statistically
attest to the fairness of the proprietary model, using a jointly generated synthetic test dataset and
well-established fairness metrics.

Test Data Transparency: Neither verifiers nor model providers can arbitrarily deviate from the
prescribed test data generation process. This ensures that the test data used for fairness auditing
cannot be manipulated to artificially influence the outcome.

Our fairness certification framework is model-agnostic, but for implementation and evaluation we
focus on AudiFair instantiated with decision trees trained on standard benchmark datasets. We sig-
nificantly improve upon C-PROFITT in terms of communication bandwidth, achieving ~200,000x
improvement for a dataset with 30,000 datapoints and 23 features, albeit at the cost of a ~10x higher
prover time and a one-time setup phase.

2 RELATED WORK

The most related to us are OATH and C-PROFITT, which utilize zero-knowledge proofs to cer-
tify (group) fairness. In terms of security, in contrast to us, C-PROFITT does not guarantee fairness
if the model provider is dishonest and deviates from the protocol specifications. This is because
C-PROFITT lets the model provider select the dataset using which fairness is certified, and as-
sumes—rather than enforces—that it matches the training data. As a result, a dishonest provider
can pass fairness checks with an arbitrary “unfair” model by choosing a maliciously crafted dataset.
While this limitation was recently pointed out in OATH (Franzese et al., 2024), we show an even
easier attack in App.

To mitigate the risk of dishonest model providers manipulating data, OATH introduces additional
parties who supply independent samples. It involves three roles: the client, who provides a data
point for classification; the prover (i.e., model provider); and the verifier, who assesses fairness with
respect to both the calibration dataset and client queries. The calibration dataset may be selected
either by the prover or by the verifier, depending on the implementation. However, when chosen by

Under review as a conference paper at ICLR 2026

the prover, the fairness check is again vulnerable to data-forging attacks—same as C-PROFITT. In
such cases, OATH falls back to guarantees based solely on the client’s queries. However, another
problem is that a malicious client may itself launch a similar attack by choosing their queries in an
adversarial way. This is not excluded by the model, as OATH specifically aims to protect against
situations where a malicious client, frustrated by not achieving a desired outcome, seeks to retaliate
by framing the prover negatively in the eyes of the verifier. Our test data transparency helps with
mitigating this issue.

Further, similar to our work, recent studies (Bourrée et al., 2025; |[Yuan & Wang, 2025) investigate
the use of synthetic data for fairness auditing. In contrast to us, however, these works do not provide
cryptographic guarantees — in particular, Bourrée et al.| (2025) is vulnerable to model swapping
attacks, where the model provider swaps the model during the audit in order to pass the audit, and
Yuan & Wang|(2025) assumes a fully trusted auditor and lets model provider send the model to this
auditor in clear.

Finally, Zhang et al.| (2020) introduced zk proofs for inference and accuracy of decision trees. This
work serves as a basis for the instantiation of our framework when the model is a decision tree. In
contrast to our work, Zhang et al.| (2020) target inference and accuracy rather than fairness and do
not provide test data transparency.

We discuss further related works in Appendix [C|

3 PRELIMINARIES AND SETTING

Notation We use a bracket notation [r] to denote a set of integers {1, . .., n}. We denote the decision
tree by 7T, the height of the tree by h, and the number of attributes by d, respectively. A datapoint a
is represented by a key-value table, i.e., a = {attry : valy, ..., attry : val;}. The sensitive attribute

is denoted by s € [d]. We denote a cryptographic hash function by H(). The number of test data
points is n. For any algorithm A, we denote its output on input 2 by y + .A(x). Whenever the

randomness p is sampled by A internally, we write y £ A(x). We denote the process of uniformly
sampling an element = from a set S by & 5. We denote the function f (\) is negligible if for every
polynomial p(), there exists Ao such that for all A > Ao, f(A) < 5755. A function f(A) is said to

N
be overwhelming if 1 — f(\) is negligible.

Fairness Over the years, numerous fairness metrics have emerged Heidari et al| (2019), each
grounded in distinct philosophical and societal perspectives. These notions are often conflicting
and there is no consensus on a single, “universal” definition of fairness that suits all use cases. We
emphasize that it is not our goal to identify the most appropriate notion, nor is it to advertise for any
specific definition. We focus on the following traditional group-fairness notions:

* Demographic Parity (DP) ignores the ground truth and aims to equalize the probability
of a positive classifier output in each sensitive group. Let Y denote the predicted outcome,
then:

DP(Y;s)=|Pr[y =1|s=0] -Pr[Y =1|s=1]|

* Equalized Odds (EqOd) aims to equalize the false positive and true positive rates in each

sensitive group. Let Y denote the predicted outcome, and Y denote the true outcome. Then:

EOd(Y;s):yg%)i“Pr[Y:l‘szO,Y:y]
—Pr[y=1|s=1Y =y]|

We also consider the MRD metric, which is used by major US banks to evaluate the fairness of credit
scoring modelsf]

* Mean Residual Difference (MRD) measures systematic bias in the model’s prediction
errors (Zink & Rosel [2020; |Corbett-Davies et al.l [2023). If one group consistently has
higher or lower residuals, this suggests unfair treatment.

MRD(Y;s) = [E[Y =Y |s=0] —E[Y — Y |s = 1]|

Private communication

Under review as a conference paper at ICLR 2026

Cryptographic Commitment Cryptographic ML certification often uses commitment schemes
(Blum| [1981)). In particular, commitments allow a model provider to bind itself to a model in a
way that hides model internals, yet prevents the provider from swapping models during or after
certification. Formally, a commitment scheme COM is a tuple of the following algorithms:

* A commitment algorithm com a Commit(msg): Takes as input a message msg €
{0,1}¢m internally samples a randomness p € {0,1}**("), and returns a commitment
com € {0, 1}5“(’\). Here ¢,,, ¢, £, are some polynomials in)\, the security paramete

* An opening algorithm b < Open(com, msg, p): Outputs a decision bit b € {0, 1} indicat-
ing whether an opening of the commitment is valid or not.

We require standard security properties: Hiding (i.e., com reveals nothing about the committed mes-
sage m) and binding (i.e., the sender cannot open com to two distinct messages m and m’). See
Appendix [A.3] for a formal treatment. In the instantiation of our framework for decision trees, we
rely on a commitment scheme optimized for decision trees; see Appendix [E.T|for more.

Non-Interactive Zero-Knowledge Proofs Another key technique in cryptographic ML certification
are the zero-knowledge proofs. A zero-knowledge proof is a cryptographic protocol between two
parties that allows the prover to convince the verifier that a statement is true without revealing any
information beyond its validity. The statement’s validity is formally defined by an NP relation R:
a statement x is valid if there exists a witness w such that (x,w) € R. The statement is public and
known to both parties, while the witness is private and only known to the prover. For example, one
can prove that a model / outputs y on a public input a without revealing anything about h’s weights.
Here, the statement is x = (a, y), and the witness is w = h.

Formally, a non-interactive zero knowledge proof system (henceforth NIZK) is defined for an NP
relation R, i.e., a set of public statements x and private witnesses w, where the size of w is bounded
by a polynomial in the size of x, and (x,w) € R can be checked in polynomial time given (x, w). It
is denoted by a tuple ZK = (Gen, Prove, Verify) of three algorithms:

* pp + Gen(1*) is a setup algorithm that samples a public parameter pp, where A denotes a
security parameter.

» 1 < Prove(pp, x, w) is a prover that outputs a proof 7 asserting (x,w) € R.If (x,w) ¢ R,
Prove outputs L.

* b+ Verify(pp, x, 7) is a verifier that outputs a decision bit b € {0, 1}*.

We assume ZK to satisfy standard security properties: completeness (i.e., if Prove and Verify follow
the protocol, Verify always accepts), (knowledge) soundness (i.e., if Verify accepts the proof gen-
erated by a cheating prover A, then it must be that A owns a valid witness w satisfying given NP
relation w.r.t. statement x), and zero knowledge (i.e., if the proof generated by Prove leaks nothing
except that 3w such that (x,w) € R). See Appendixfor a formal treatment.

Problem Setting We consider a setting where a model provider holds a proprietary classification
model that must remain private. An auditor seeks to verify fairness properties of this model—for
example, whether its demographic parity gap is below a specified threshold on a uniformly random
sample from the target distribution. The model provider may be malicious and attempt to pass the
audit with a model that does not satisfy the required fairness guarantee. Conversely, the auditor may
be malicious and (i) attempt to extract proprietary information about the model or (ii) misrepresent
the achieved fairness guarantee, causing the Prover to fail the audit despite holding a fair model. In
the following, we will refer to the model provider as Prover, and to the auditor as Verifier.

4 ABSTRACT FAIRNESS AUDITING FRAMEWORK

We now design a mechanism which allows to prove that a proprietary model satisfies certain fair-
ness criteria without revealing anything about the model itself. Our framework applies to arbitrary

3Informally, the security parameter A sets the computational hardness of breaking the scheme; e.g., with
=128 any attack should need about 2'?® work, which is considered infeasible.

Under review as a conference paper at ICLR 2026

Unfairness = 0.1 Unfairness = 0.9

Unfairness < 0.87

Unfairness < 0.87
] 2 Committed Model Verity() X

Committed Model Verify([£8) = 1
> >
Test Data ‘@' Test Data
'? Randomness ggg{j Randomness ‘!‘ Randomness gg@@ Randomness '!'
iz > oot < o] - C o))
lnl g@ Proof o) g@ Proof =
Prover > Verifier Dishonest Prover > Verifier

Figure 1: Overview of our framework AudiFair for auditing fairness of proprietary models. Left: An
honest prover computes the fairness outcome and convinces the verifier. Right: A dishonest prover
with the model that does not pass the fairness check attempts to cheat during the proof generation,
but the verifier rejects. Icons are retrieved from flaticon.com.

classification models. We first present a high-level overview of our protocol (Section .1}, provide
a formal definition of the auditing framework and its security properties (Section {.2)), and then
present a generic construction of our protocol (Section [4.3).

4.1 OVERVIEW

The key idea in our framework it to check fairness on a freshly sampled synthetic test dataset.
While recently, a number of works (Bourrée et al.| [2025; 'Yuan & Wang, [2025) proposed to utilize
synthetic data generation for ML fairness auditing (see Section|2), these works assume that the model
provider (Bourrée et al., [2025) or the auditor |[Yuan & Wang|(2025) are trusted. We now explore this
idea in the context of cryptographic ML certification that is secure even if the corresponding parties
misbehave. We further empirically verify the effectiveness of testing fairness on synthetic data in
Sec.[5] Our framework is comprised of three phases:

(a) Commit: Model Provider (or Prover) P generates a commitment com to the model M, and
sends com to Model Verifier V.

(b) Data Generation: P and V jointly compute and agree on the randomness 7 for generating
the synthetic test dataset D and the corresponding ground truth labels), according to a
prescribed synthetic data generation algorithm DataGen.

(c) Prove Fairness: Using the commitment com, the test dataset D, and the ground truth la-
bels), P and V conduct zero-knowledge proof that committed M satisfies the fairness
condition with respect to D and).

In more detail, in Step [(a)] the Prover sends a cryptographic commitment com to the model, which
binds the prover to the specific model M (while hiding its internals). Crucially, we require that the
Prover does so without knowing the exact dataset D and the corresponding ground truth labels)
that will be used for the fairness check: If the order is reversed, i.e., a dishonest Prover first receives
D and Y, then it can commit to a model that is overfitted to the exact test dataset, thus cheating the
fairness check.

In Step[(b)] after the Prover and the Verifier jointly sample a uniformly random seed r, they locally
derive (D,)) < DataGen(r). This step prevents either party from manipulating the data genera-
tion process to their advantage. In our concrete instantiation presented later, we realize this step by
interleaving Blum’s two-party coin tossing protocol (Blum,|1981). Alternatively, one could rely on a
secure randomness beacon (e.g., of Standards & Technology| (2018)); Baum et al.| (2023))) to retrieve
fresh and uniform randomness from an external source.

Finally, Step[(c)]can be further decomposed into the following two-stage operations:

Computation of Fairness Score Prover first computes the prediction for the given public test dataset
D ={ay,...,a,}, by evaluating a previously committed model M on each data point a;. Finally,

the prover uses the predicted labels Y= {9i}ien) (along with the test data and the corresponding
ground-truth))) to obtain the fairness result. We abstract the process of calculating fairness metric

by a function FM(D,), Y, s), where s is a binary sensitive attribute. The function FM can be in-

Under review as a conference paper at ICLR 2026

stantiated in different ways, depending on which fairness metric is employed from Section [3] For
instance, to calculate Demographic Parity, one may define

- |[{aieD:afs]=0,9;=1}| |[{ai€D: as] =15 =1}|
FM(D, .Y, s) := {a, €D : ayfs|] =0} [{aieD: ajs] =1}

(D

and FM can be instantiated for other metrics analogously. Prover then checks that FM(D,), Yy ,8) <
t with respect to a pre-agreed threshold ¢ between the Prover and the Verifier.

Zero-knowledge Fairness Proof Assuming that the fairness check passes, in the last step, the Prover
uses a secure NIZK scheme on the previously computed data (predicted labels and fairness outcome)
along with the synthetic testdata D and commitment com to show the following statement in zero-
knowledge: I know a model M for which all of the following holds:

(1) It is committed under com
(2) M’s prediction for a; corresponds to g; for each i € [n]

(3) When the agreed upon fairness metric function FM is computed on the tuple (D,), =
{0}ieln) 8), the outcome is below threshold .

Note that our protocol allows for a flexible choice of the ZK scheme to prove these conditions.
Further, note that because we use a secure ZK, the protocol does not leak predictions Y w.rt test
data D; Prover only leaks the fact that a committed model M meets the fairness condition w.r.t. a
given test data set, sensitive attribute, and fairness threshold.

Extension 1: Proving exact fairness scores Above, we focused on the case where the Prover hides
the exact outcome of FM and the Verifier only learns a binary outcome (i.e., whether the committed
model is fair or not with respect to a public threshold ¢). If the Verifier is interested in understanding
the strengths or failings of the committed model, then one can easily tweak our protocol by having
the Prover reveal a fairness score v and generate a proof that v = FM(D,), J>, s) holds in Step
As this merely skips a comparison operation, the performance of this variant is the same as the
original protocol.

Extension 2: Supporting non-binary sensitive attributes While we focus on binary sensitive at-
tributes for simplicity, it is possible to extend our protocol to non-binary attributes. For this, we
compute the fairness score by simply comparing each protected minority group to the majority
group, and taking the maximum of the (absolute) differences.

4.2 DEFINITION OF PRIVACY-PRESERVING FAIRNESS AUDITING

We formally define the syntax and the security properties of the auditing framework sketched above.
While zero-knowledge proofs alone (Section [3) do not specify how and when a public statement x is
generated, our tailored syntax and security notions precisely define the requirements for generating
x—consisting of a commitment to the model and the synthetic data—in a specific way to prevent
manipulation of the fairness metric.

Definition 1. Define an NP relation
Resie = {(D,Y), M) : ¥ = M(D) AFM(D, Y, ,5) < t}

for fairness auditing parameterized by a sensitive attribute s, fairnss threshold t, and fairness met-
ric FM. Let DataGen be a randomized synthetic data generation algorithm with k-bit randomness
space. Let COM = (Commit, Open) be a commitment scheme that supports committing to a model
M using randomness p. Let Setup(1*) be a setup algorithm that generates public parameters pp. A
privacy-preserving fairness auditing protocol II for Ry, and DataGen consists of Setup, COM, and
an interactive process between Model Owner (or Prover) P and Verifier V.

We denote by ((Dp,Yp),(Dy, v, b)) < (P(M,p),V)(pp,com) the following process: given
(M, p) as a private input to P, and pp and com as common inputs to both parties, P and V in-
teract in a way that P eventually halts by locally outputting a pair (Dp,Yp) of synthetic data and
ground truth labels, while V halts by locally outputting (Dy, V), and a decision bit b € {0, 1}.

Under review as a conference paper at ICLR 2026

r-[Protocol 1: Generic Construction of IT }

Setup(1*): Run pp < ZK.Gen(1%). Output pp.

Interactive protocol (P(M, p), V)(pp,com): P and V run the following protocol sequentially. If any
check fails, the protocol aborts and V halts by outputting b = 0.

1: V sends ha = H(r2), where r2 + {0,1}*

2: P sends hy = H(r1), where 1 + {0, 1}"

3: V sends r2

4: P checks that ho = H(r2) and does:

@ r+«nrid®rs
(b) (Dp,Yp) < DataGen(r)
(c) check FM(Dp,Yp, M(Dp),s) < t
(d) 7+ ZK.Prove(pp, (com, Dp, Vp), (M, p))
(e) send (m,71) to V
(f) locally output (Dp, Vp)
5: V checks that h1 = H(r1) and does:
@ r<ridnr
(b) (Dy,Yv) < DataGen(r)
(c) run b + ZK.Verify(pp, (com, Dy, Vy),)
(d) locally output (Dy, Yy, b)

We are ready to state the security properties of II. For simplicity, we state the properties informally
below, and defer the exact definitions of other properties to Appendix [F}

Completeness requires that if both the Prover and Verifier honestly follow the protocol, and the
Prover owns a fair model M, then the Verifier is always convinced and they agree on the same
synthetic data.

Binding: Once the Prover commits to a model, it cannot change it without detection.

Dishonest Provider Robustness: The protocol is robust against dishonest model providers, mean-
ing that if P tries to cheat by committing to an unfair model M (i.e., not satisfying the fairness
condition described by Ry,), the V can detect it by outputting b = 0.

Model Privacy: The protocol leaks no information about the model M to V except that it satisfies
the fairness condition described by R+.i,-

Test Data Transparency: The protocol ensures that neither party can bias the distribution of the
test dataset D generated during the interactive protocol, provided the protocol does not abort.

Remark 1 (Running II Multiple Times). If 11 is run multiple times with the same commitment com,
it is crucial that 11 is binding. This is to ensure that the Prover cannot cheat by secretly swapping
models between different runs of the protocol to pass the fairness check in case the originally com-
mitted model fails. Thanks to the combination of binding and dishonest provider robustness, the
Prover can only convince the Verifier with a uniquely determined model that satisfies the fairness
condition for all runs of the protocol.

4.3 GENERIC CONSTRUCTION AND SECURITY

We provide a generic construction of privacy-preserving fairness auditing protocol in Protocol
Other than COM, the protocol utilizes the following cryptographic building blocks as subroutines:
hash function H : {0,1}* — {0, 1}, and non-interactive zero-knowledge (NIZK) proof system
ZK = (Gen, Prove, Verify) for “commit-and-prove” relation defined as

Rep = {((com,D,y), (M, p)) : 2?(%??5?%75)7;:}

Under review as a conference paper at ICLR 2026

Table 2: Performance of our AudiFair protocol for checking Equalized Odds. ‘SMP’ stands for
Security against Malicious Prover. n is the size of the test dataset, d is the number of features, and
h is the height of the decision tree. ‘Data’ includes both computation of hq, ho and an execution
of DataGen. The running times are in seconds and based on experiments conducted on an Amazon
EC2 c7a.12xlarge instance with 96GB RAM. For the first row, we parallelized FFT and elliptic curve
operations of the underlying Groth16 NIZK Setup and Prove using 48 vCPUs. For comparison, we
restate the benchmarks for C-PROFITT in the rows marked by ‘CP’.

(n,d,h) Setup (s) Data(s) Prove(s) Verify(s) Comm.(kB) SMP

ACSIncome (Ours) (15000, 10, 10) 103 288 52 <1 0.6 v
Credit (CP) (30000, 23, 10) - - 72 72 109875 x
Credit (Ours) (30000, 23, 10) 1430 750 826 <1 0.6 v
Adult (CP) (45222, 14, 10) - - 105 105 148685 x
Adult (Ours) (45222, 14, 10) 1982 968 1002 <1 0.6 v
o o o / /.\\f/l.

Figure 2: Comparison of Demographic Parity score A calculated using the reference dataset and
CTGAN-generated synthetic data with varying epochs (the number of times each data point is used
during synthesizer training), with the sensitive attribute set to gender. Dashed lines represent A
derived from the reference dataset. Both fair and biased models are trained on 70% of each reference
dataset, and the remaining 30% is used for calculating A for the reference set. For the synthetic data,
we use the same 30% of the reference dataset to generate synthetic data with CTGAN.

We now state the main security claim of our generic construction in Theorem [T The formal state-
ment and proof is deferred to Appendix [F Intuitively, dishonest provider robustness is realized by
the fact that a dataset is obtained after the Prover commits to a model, and that knowledge soundness
of ZK forces the Prover to use a model that was committed earlier and satisfies the fairness condi-
tion. Model privacy is achieved by secure instantiation of COM and ZK. Finally, data transparency
is achieved by the initial interaction exchanging hashes of randomness shares, which ensures that
neither party can bias the randomness used to generate the test dataset.

Theorem [I| (informal). We have the following security properties of Protocol [I} Suppose ZK and
COM satisfy the standard properties defined in App.|A.3|and and the hash function H is modeled
as a programmable random oracle (App.[A.2). Then Protocol|l|has completeness, binding, dishonest
provider robustness, model privacy, and test data transparency.

5 CONCRETE INSTANTIATIONS AND EVALUATIONS

5.1 AudiFair: INSTANTIATING II FOR DECISION TREES/RANDOM FORESTS

We now describe how to instantiate our protocol for decision trees (see Appendix [B|for decision tree
background). Each building block of Protocol 1 from the previous section is instantiated as follows;
additional implementation details are provided in Appendix [E]

* We use SHA3-256, available in hashlib Python library, as our hash function H.

* For our commitment COM we use the Authenticated Decision Tree (ADT) commitment
scheme (Zhang et al., 2020) with the SWIFFT hash function (Lyubashevsky et al., 2008))
as a subroutine, implemented in C++.

* We use CTGAN (Xu et al.| [2019), available in the SDV library (Developers, [2024), as
DataGen.

Under review as a conference paper at ICLR 2026

* Finally, we use Groth16 NIZK protocol |Groth| (2016) as a zero-knowledge proof sys-
tem ZK, implemented in C++ with low-level routines available in the libsnark library
Lab|(2014). We instantiated its parameters with the BN254 pairing-friendly elliptic curve.
As the most expensive operation of Grothl16 consists of Fast Fourier Transform (FFT)
and elliptic curve arithmetic, which are parallelizable, we compiled the libsnark library
while enabling parallelized execution of these low-level computations. To support R,
for decision trees, we instantiate a circuit amenable to Grothl6 to prove (1) com =
ADT.Commit(T; p), (2) prediction correctness based on the approach of Zhang et al.
(2020), and (3) proof of fairness metric w.r.t. an input data set.

We note that as|Zhang et al. (2020) supports random forest models, our AudiFair instantia-
tion can be extended to support random forests as well.

5.2 PERFORMANCE AND EFFECTIVENESS OF FAIRNESS TEST WITH SYNTHETIC DATA

We evaluate fair and biased decision trees trained on three widely-used datasets: ACSIncome Ding
et al.[(2021)), Adult Repository| (1996), and Default Credit |[Repository| (2009) by using CTGAN-
generated synthetic data. See Fig.[2] which shows that the fairness metric is close to the one with the
reference dataset, and thus the fairness test is effective. In Appendix [G] we also provide the results
for other metrics and synthetic data generation algorithms.

The performance of our AudiFair protocol is summarized in Table [2| AudiFair was executed on
the ACS dataset for checking Equalized Odds; performance for other metrics remains essentially
unchanged, since proof of correct prediction dominates the running time. For this experiment, we
selected 50000 data points from the ACS dataset, out of which 70% (i.e., 35000 entries) was used
to train the tree and the remaining 30% (i.e., n = 15000 entries) was used to train a synthe-
sizer. Then the synthesizer generated n fresh test samples. For Prove, we further enabled OpenMP
with 48 threads in order to showcase our approach is parallelization-friendly. To compare with C-
PROFITT, we also report the performance for Equalized Odds using the two largest datasets used by
Shamsabadi et al.| (2023) without parallelization. Following C-PROFITT, we run ZKP on the entire
datasets in this experiment.

As Groth16 ZK only outputs three group elements on BN254 elliptic curves, our AudiFair obtains
modest proof sizes. In contrast, the communication bandwidth of C-PROFITT is orders of magnitude
larger. Unlike C-PROFITT, however, our AudiFair additionally generates a synthetic test dataset,
which is used to prove fairness. In terms of prover running time, our current implementation of
AudiFair falls short of C-PROFITT. However, this is mitigated by the fact that, in contrast to C-
PROFITT, our AudiFair has provides dishonest provider robustness as well as test data transparency.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We proposed a secure solution to prove that a (proprietary and private) decision tree model satisfies
given fairness constraints. Our solution achieves model privacy, dishonest provider robustness, and
test data transparency simultaneiously for the first time. We leave several interesting questions for
future work: First, while an abstract framework in Section [4.3] supports arbitrary model types, our
concrete instantiation is tailored to decision trees/random forests. Designing efficient protocols to
support further models, e.g., the widely used XGBoost |Chen & Guestrin| (2016), is an important
direction. Second, as the prover time mainly hinges on the complexity of the backend NIZK scheme
Groth| (2016), we leave for future work the improvement of the prover time by employing a more
prover-efficient scheme as a backend of our AudiFair. Third, in this work we assume an idealized
DataGen that takes as input a randomness and produces a sample from the distribution. It would
be interesting to see how well the corresponding distribution represents the real data distribution.
Finally, it would be interesting to provide a solution in which the verifier’s test data remains private
while protecting against dishonest behaviors. General-purpose solutions for this scenario such as
secure multi-party computation exist, but these are not sufficiently efficient. Obtaining a practical
scheme likely requires developing new cryptographic techniques.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work proposes a cryptographic protocol enabling a model provider to convince a verifier that
a proprietary model satisfies certain fairness criteria in a privacy-preserving manner. While we put
forward a solution that aims to promote algorithmic fairness, it is important to acknowledge that the
definition of fairness can vary across different societal contexts and applications. We emphasize that
this study does not endorse any specific fairness metric, but rather focuses on providing a generic
tool that can be adapted to various definitions of fairness.

LLM Use. This paper has been written with the help of LLM to improve grammar and clarity, and
to assist with literature search. To obtain the results summarized in Figures 2} [and [6] we have
used LLM to help generate the Python code for testing synthetic data generation using CTGAN and
TVAE. The authors are responsible for the content of this paper.

REPRODUCIBILITY STATEMENT

We back up our theoretical claims on the security and privacy of our construction (Theorem [I))
with formal proofs in Appendix [} We provide a detailed description of our implementation and
experimental evaluation in Section[5]and Appendix [G]

REFERENCES

Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios Papadopoulos. Zero-
knowledge proofs of training for deep neural networks. In CCS, pp. 4316-4330. ACM, 2024.

Carsten Baum, Bernardo David, Rafael Dowsley, Ravi Kishore, Jesper Buus Nielsen, and Sabine
Oechsner. CRAFT: Composable randomness beacons and output-independent abort MPC from
time. In Alexandra Boldyreva and Vladimir Kolesnikov (eds.), PKC 2023, Part I, volume 13940
of LNCS, pp. 439—-470. Springer, Heidelberg, May 2023. doi: 10.1007/978-3-031-31368-4_16.

Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson
(ed.), CRYPTO’93, volume 773 of LNCS, pp. 232-249. Springer, Heidelberg, August 1994. doi:
10.1007/3-540-48329-2_21.

Manuel Blum. Coin flipping by telephone. In Allen Gersho (ed.), CRYPTO’81, volume ECE Report
82-04, pp. 11-15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng., 1981.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pp. 103-112. ACM Press, May 1988. doi: 10.1145/
62212.62222.

Jade Garcia Bourrée, Hadrien Lautraite, Sébastien Gambs, Gilles Trédan, Erwan Le Merrer, and
Benoit Rottembourg. P2NIA: privacy-preserving non-iterative auditing. CoRR, abs/2504.00874,
2025.

Jade Garcia Bourrée, Hadrien Lautraite, Sébastien Gambs, Gilles Tredan, Erwan Le Merrer, and
Benoit Rottembourg. P2nia: Privacy-preserving non-iterative auditing, 2025. URL https://arxiv.
org/abs/2504.00874.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016. URL https://do1.org/
10.1145/2939672.2939785.

Sam Corbett-Davies, Johann D. Gaebler, Hamed Nilforoshan, Ravi Shroff, and Sharad Goel. The
measure and mismeasure of fairness. J. Mach. Learn. Res., 24:312:1-312:117, 2023. URL http:
/fjmlr.org/papers/v24/22-1511.html.

SDV Developers. Sdv: Synthetic data vault library. https://github.com/sdv-dev/SDV, 2024. Version
1.12.0.

10

https://arxiv.org/abs/2504.00874
https://arxiv.org/abs/2504.00874
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://jmlr.org/papers/v24/22-1511.html
http://jmlr.org/papers/v24/22-1511.html
https://github.com/sdv-dev/SDV

Under review as a conference paper at ICLR 2026

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. In Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurlPS 2021, December
6-14, 2021, virtual, pp. 6478-6490, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
32e54441e6382a7fbacbbbat3c450059- Abstract.html.

Olive Franzese, Ali Shahin Shamsabadi, and Hamed Haddadi. OATH: efficient and flexible zero-
knowledge proofs of end-to-end ML fairness. CoRR, abs/2410.02777, 2024. doi: 10.48550/
ARXIV.2410.02777. URL https://doi.org/10.48550/arXiv.2410.02777.

Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In
Hovav Shacham and Alexandra Boldyreva (eds.), CRYPTO 2018, Part I, volume 10992 of LNCS,
pp- 33-62. Springer, Heidelberg, August 2018. doi: 10.1007/978-3-319-96881-0_2.

Andreas Fuster, Paul Goldsmith-Pinkham, Tarun Ramadorai, and Ansgar Walther. Predictably un-
equal? the effects of machine learning on credit markets. The Journal of Finance, 77(1):5-47,
2022.

Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers, 2006.
URL https://eprint.iacr.org/2006/165.pdf.

Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-Vamsi
Policharla, and Mingyuan Wang. Experimenting with zero-knowledge proofs of training. In CCS,
pp- 1880-1894. ACM, 2023.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen (eds.), EU-
ROCRYPT 2013, volume 7881 of LNCS, pp. 626—645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University Press,
Cambridge, UK, 2001. ISBN 0-521-79172-3 (hardback).

Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron (eds.), EUROCRYPT 2016, Part II, volume 9666 of LNCS, pp. 305-326.
Springer, Heidelberg, May 2016. doi: 10.1007/978-3-662-49896-5_11.

TAMU Crypto Group. Zkdt: Zero-knowledge decision tree release. https://github.com/
TAMUCrypto/ZKDT _release, 2024. Version 1.0.

Hoda Heidari, Michele Loi, Krishna P. Gummadi, and Andreas Krause. A moral framework for un-
derstanding fair ML through economic models of equality of opportunity. In Conference on Fair-
ness, Accountability, and Transparency, 2019. URL https://do1.org/10.1145/3287560.3287584.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC Press, third edition,
2020. ISBN 9780367331586.

Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov. Snarky ceremonies. In Mehdi
Tibouchi and Huaxiong Wang (eds.), ASIACRYPT 2021, Part III, volume 13092 of LNCS, pp.
98-127. Springer, Heidelberg, December 2021. doi: 10.1007/978-3-030-92078-4_4.

Tobias D. Krafft, Marc P. Hauer, and Katharina Anna Zweig. Black-box testing and auditing of
bias in ADM systems. Minds Mach., 34(2):15, 2024. doi: 10.1007/S11023-024-09666-0. URL
https://doi.org/10.1007/s11023-024-09666-0.

SCIPR Lab. libsnark: C++ library for zksnark proofs. https://github.com/scipr-lab/libsnark, 2014.
Version 0.1.

Yehuda Lindell. How to simulate it — a tutorial on the simulation proof technique. In Yehuda
Lindell (ed.), Tutorials on the Foundations of Cryptography, volume 5559 of Lecture Notes in
Computer Science, pp. 277-346. Springer, 2009. doi: 10.1007/978-3-642-04159-4_8. URL https:
//do1.0rg/10.1007/978-3-642-04159-4_8.

11

https://proceedings.neurips.cc/paper/2021/hash/32e54441e6382a7fbacbbbaf3c450059-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/32e54441e6382a7fbacbbbaf3c450059-Abstract.html
https://doi.org/10.48550/arXiv.2410.02777
https://eprint.iacr.org/2006/165.pdf
https://github.com/TAMUCrypto/ZKDT_release
https://github.com/TAMUCrypto/ZKDT_release
https://doi.org/10.1145/3287560.3287584
https://doi.org/10.1007/s11023-024-09666-0
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-04159-4_8
https://doi.org/10.1007/978-3-642-04159-4_8

Under review as a conference paper at ICLR 2026

Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest
proposal for FFT hashing. In Kaisa Nyberg (ed.), FSE 2008, volume 5086 of LNCS, pp. 54-72.
Springer, Heidelberg, February 2008. doi: 10.1007/978-3-540-71039-4_4.

National Institute of Standards and Technology. The nist randomness beacon 2.0, 2018. URL
https://csrc.nist.gov/Projects/interoperable-randomness- beacons/beacon-20,

Cecilia Panigutti, Alan Perotti, André Panisson, Paolo Bajardi, and Dino Pedreschi. Fairlens: Audit-
ing black-box clinical decision support systems. Inf. Process. Manag., 58(5):102657, 2021. doi:
10.1016/J.1PM.2021.102657. URL https://doi.org/10.1016/j.ipm.2021.102657.

Christodoulos Pappas and Dimitrios Papadopoulos. Sparrow: Space-efficient zksnark for data-
parallel circuits and applications to zero-knowledge decision trees. In CCS, pp. 3110-3124. ACM,
2024.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-
esnay. Scikit-learn: Machine learning in python, 2011. URL https://scikit-learn.org/.

ProPublica. Machine bias: There’s software used across the country to predict future criminals.
and it’s biased against blacks., 2016. URL https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing.

UCI Machine Learning Repository. Census income, 1996. URL https://doi.org/10.24432/C5GP7S!

UCI Machine Learning Repository. Default of credit card clients, 2009. URL https://doi.org/10.
24432/C5GP7S.

Reuters. Insight - amazon scraps secret ai recruiting tool that showed bias against women,
2018. URL https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-
tool-that-showed-bias-against-women-idUSKCNIMKOAG/.

Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas Franzese, Natalie Dullerud, Sébastien
Gambs, Nicolas Papernot, Xiao Wang, and Adrian Weller. Confidential-profitt: Confidential
proof of fair training of trees. In The Eleventh International Conference on Learning Repre-
sentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
/lopenreview.net/pdf 7id=11fDQVyuFD.

Haochen Sun, Tonghe Bai, Jason Li, and Hongyang Zhang. zkdl: Efficient zero-knowledge proofs
of deep learning training. IEEE Trans. Inf. Forensics Secur., 20:914-927, 2025.

Suppakit Waiwitlikhit, Ton Stoica, Yi Sun, Tatsunori Hashimoto, and Daniel Kang. Trustless audits
without revealing data or models. In /ICML. OpenReview.net, 2024.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Mod-
eling tabular data using conditional GAN. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurlPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 7333-7343, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
254ed7d2de3b23ab10936522dd547b78-Abstract.html.

Chhavi Yadav, Amrita Roy Chowdhury, Dan Boneh, and Kamalika Chaudhuri. Fairproof : Con-
fidential and certifiable fairness for neural networks. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=EKyeS6rLuv.

Chhavi Yadav, Evan Laufer, Dan Boneh, and Kamalika Chaudhuri. Expproof : Operationalizing
explanations for confidential models with zkps. CoRR, abs/2502.03773, 2025.

Chih-Cheng Rex Yuan and Bow-Yaw Wang. Quantitative auditing of Al fairness with differentially
private synthetic data. CoRR, abs/2504.21634, 2025. doi: 10.48550/ARXIV.2504.21634. URL
https://do1.org/10.48550/arXiv.2504.21634.

12

https://csrc.nist.gov/Projects/interoperable-randomness-beacons/beacon-20
https://doi.org/10.1016/j.ipm.2021.102657
https://scikit-learn.org/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.24432/C5GP7S
https://doi.org/10.24432/C5GP7S
https://doi.org/10.24432/C5GP7S
https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/
https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/
https://openreview.net/pdf?id=iIfDQVyuFD
https://openreview.net/pdf?id=iIfDQVyuFD
https://proceedings.neurips.cc/paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-Abstract.html
https://openreview.net/forum?id=EKye56rLuv
https://doi.org/10.48550/arXiv.2504.21634

Under review as a conference paper at ICLR 2026

Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs for decision
tree predictions and accuracy. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna
(eds.), ACM CCS 2020, pp. 2039-2053. ACM Press, November 2020. doi: 10.1145/3372297.
3417278.

Tianyu Zhang, Shen Dong, Oyku Deniz Kose, Yanning Shen, and Yupeng Zhang. Fairzk: A scalable
system to prove machine learning fairness in zero-knowledge. In SP, pp. 3460-3478. IEEE, 2025.

Anna Zink and Sherri Rose. Fair regression for health care spending. Biometrics, 76(3):973-982,
January 2020. ISSN 1541-0420. doi: 10.1111/biom.13206. URL http://dx.doi.org/10.1111/biom.
13206.

A EXTENDED PRELIMINARIES

A.1 BASIC NOTATION AND DEFINITIONS IN CRYPTOGRAPHY

In this section, we include minimal introductory material on the basic notation and definitions used
in the paper. For a more comprehensive introduction to cryptography, we refer the reader to standard
textbooks such as|Katz & Lindell| (2020); |Goldreich| (2001).

For two bit strings of equal length, we denote a b as the bitwise XOR of a and b. For any algorithm
A, we denote its output on input x by y < A(z). Whenever the randomness p is sampled by A

internally, we write y £ A(x). We denote the process of uniformly sampling an element x from a
set S by 2 & S.Let A € N be a security parameter. We denote the function f(\) is negligible if for

every polynomial p()\), there exists Ao such that for all A > Ao, f(A) < 5. A function f(1) is

said to be overwhelming if 1 — f () is negligible.

By PPT, we mean probabilistic polynomial time. For any probability distributions Dy (A) and D1 (A),
we say that Dy and D; are computationally indistinguishable if for any PPT algorithm A, the fol-
lowing is negligible in \:

[Pr 1+ A(1*, Do(N))] — Pr[1 + A1, Di(N)]]

If the above holds for any algorithm A (including unbounded ones), we say that Dy and D; are
statistically indistinguishable. If the above quantity is 0, we say that Dy and D; are perfectly indis-
tinguishable.

A.2 RANDOM ORACLE MODEL

In this work, we assume that the hash function H is modeled as a random oracle|Bellare & Rogaway
(1994). In the random oracle model, H is a function that maps arbitrary-length inputs to uniformly
random outputs of a fixed length. In this model, H is assumed to be a public function that is accessi-
ble to all parties, including the adversary. Thus, whenever a proof of security is in the random oracle
model, it is assumed that a reduction or a simulator can observe queries made by an adversary to the
random oracle. The random oracle model is an idealized abstraction of hash functions commonly
used in security proofs, allowing for the design of secure and efficient protocols. Importantly, when-
ever H receives a new query, it responds with a freshly and uniformly sampled value A & {0, 1}“’\).
Moreover, the random oracle is often assumed to be programmable, meaning that a reduction or a
simulator can predefine the output of the random oracle for a specific input, as long as the input has
not been queried before.

A.3 SECURITY PROPERTIES OF CRYPTOGRAPHIC COMMITMENTS
Our protocol relies on a cryptographic commitment scheme [Blum| (1981). In Appendix Ap-

pendix [E.T] we define an instantiation of a commitment scheme optimized for decision trees. A
commitment scheme COM is a tuple of the following algorithms:

13

http://dx.doi.org/10.1111/biom.13206
http://dx.doi.org/10.1111/biom.13206

Under review as a conference paper at ICLR 2026

* A commitment algorithm com a Commit(msg): Takes as input a message msg € {0, 1}¢m
from a message space M, internally samples a randomness p € {0, 1} (M), and returns a

commitment com € {0,1}%(™) . Here 4,,,¢,, /. are some polynomials in), the security
parameter.

* An opening algorithm b <— Open(com, msg, p): Outputs a decision bit b € {0, 1} indicat-
ing whether an opening of the commitment is valid or not.

We recall standard security properties of cryptographic commitment schemes.

Completeness COM is complete if for any message msg in the message space,

Pr |l « Open(com, msg7p) : com & Commit(msg)} =1

Binding COM is binding if for any PPT adversary .4, the following probability is negligible in A:

M#M' (com, M,p, M',p') < A(1Y)
Pr(Ab=1 : b < Open(com, M, p)
ANab =1 b' < Open(com, M’, p")

Hiding COM is hiding if for any PPT adversary A and any pair of messages (msg, msg’) in the
message space, the following is negligible in \:

Pr[l < A(com) : com < Commit(msg) |

Ehide = [

—Pr [1 < A(com) : com < Commit(msg’) |

A.4 SECURITY PROPERTIES OF ZERO KNOWLEDGE PROOFS

A (non-interactive) zero knowledge proof system (henceforth NIZK) is defined for NP relation R,
i.e., a set of public statements x and private witnesses w, where the size of w is bounded by a
polynomial in the size of x, and (x,w) € R can be checked in polynomial time given (x,w). It is
denoted by a tuple ZK = (Gen, Prove, Verify) of three algorithms:

* pp < Gen(1*) is a setup algorithm that samples a public parameter pp, where A denotes a
security parameter.

» 7w < Prove(pp, x, w) is a prover that outputs a proof 7 asserting (x,w) € R.If (x,w) ¢ R,
Prove outputs .

* b+ Verify(pp, x,) is a verifier that outputs a decision bit b € {0, 1}*.
The common input x to both parties is called statement, and Prove’s private input w is called witness.

For instance, if the prover is tasked to prove 7 (a) = y for public a and y for a private decision tree
T,onecansetx = (a,y) andw = T.

We recall standard security properties of (non-interactive) zero knowledge proof systems.

Completeness ZK is complete if for any (x,w) € R,

. 1);
Pr |1 « Verify(pp,x,7) : pp = Gen(17); =1
7 + Prove(pp, x, w)

Knowledge Soundness ZK is (adaptively) knowledge sound if for any PPT adversary A, there exists
a (non-blackbox) polynomial time extractor Ext 4 such that the following probability negligible in
Al

14

Under review as a conference paper at ICLR 2026

AY.
Prib=1A(xw)¢R: pP<I—Gen(1): (x,) + A(pp)
b <+ Verify(pp, x, m);w < Ext4(pp)

Zero Knowledge ZK is zero knowledge if there exists a PPT simulator Sim = (Simy, Sims) such
that for any PPT adversary A = (A;,.A2) where A; always outputs (x, w) satisfying (x,w) € R,
the following is negligible in A:

pp < Gen(1?) (pp, td) < Sim;(1*)
(x,w,st) < Ai(pp) prlp—1- (%, w, st) < A (pp)
7 < Prove(pp, x, w) 7 < Simy(td, x)
b%.AQ(St,?T) b(—AQ(St,T{')

Erk = Prib=1":

Note that the simulator Sim does not have access to the witness w; instead, it has the ability to sample
a trapdoor td that allows it to generate a proof 7 for any true statement x.

A.5 INTUITION FOR ZERO KNOWLEDGE PROOFS

In this part, we provide an informal overview of zero knowledge proofs. Consider two parties —
a prover and a verifier. The verifier is a color blind person. The prover possesses two objects that
are identical in every way except, potentially, their color. The prover claims that the colors of these
objects are different, but does not want to let the verifier know the colors. How can a color blind
verifier check whether the prover’s statement is indeed true, i.e., the two otherwise identical objects
differ in color? Consider the following protocol:

* First, the prover places both items next to each other on a table.

* Then, the prover leaves the room. The verifier can now flip a coin to decide whether to
swap the two objects or not.

* The prover returns and has to declare whether the objects were swapped or not.

At this point, there are two possible scenarios: Either the prover’s claim is true and the objects have
different colors, or the claim is false and the objects are identical. In the first case, the prover can
memorize the color of the left object when leaving the room, and once they return the prover simply
checks whether the color of the left object is still the same as before or not. This way, the prover
can always pass the check. If, however, the prover was lying and the two objects are completely
identical, they have only a % chance of guessing whether the verifier swapped the two objects or not.

Thus, the protocol is correct, in the sense that an honest prover can always pass the check. It is
further sound (with probability %), in the sense that an honest verifier has a 50% chance of catching
a cheating prover. Finally, it is zero-knowledge — it allows the verifier to check the prover’s claim
without learning anything about the actual colors of the objects. Note that the soundness guarantee
can easily be improved by simply repeating the protocol — after n repetitions, the probability that the
verifier fails to catch the cheating prover is reduced to only 2% Of course, this is only a simplified,
illustrative example. Modern zero-knowledge proof systems are complex mathematical protocols
with clearly specified assumptions and protocol descriptions, and formal security guarantees. This
example nevertheless gives a good idea how a typical zero-knowledge proof can work: The verifier
asks the prover to perform a check which does not reveal any additional information except for, po-
tentially, “the prover’s statement is incorrect”’. This check can be repeated multiple times to increase
the probability of catching a cheating prover.

Finally, while the example above is an interactive protocol, the majority of modern zero-knowledge
protocols are in fact non-interactive and publicly verifiable, that is, the prover generates a one-shot
proof string 7 which can be later checked by any verifier without further interacting with the prover.
Such protocols require some form of one-time setup phase [Blum et al.| (1988)), which essentially
outputs public parameters available for prover and verifier to carry out the protocol. In practice,
a setup phase can be conducted by a trusted third party (e.g., government institute) or by some
distributed, multi-party computation protocol in order to remove reliance on the trusted third party
Kohlweiss et al.|(2021)).

15

Under review as a conference paper at ICLR 2026

Algorithm 1: Decision Tree Inference

Input: Decision tree 7, input a.
Output: Classification result.

cur < T .root
while cur is not a leaf do

if a[cur.attr] < cur.thr then
cur < cur.left

cur < cur.right
end if
: end while

1:
2:
3
4:
5: else
6.
7
8
9: return cur.class

B DECISION TREES BACKGROUND

Decision trees are among the most popular machine learning algorithms, particularly known for
their effectiveness in classification problems. Their strong performance, combined with high levels
of explainability, makes them a popular choice in practice, specifically for fraud detection and au-
tomated trading. For simplicity, in the following we focus on binary decision trees for classification
problems. The training of a decision tree typically involves recursively splitting the dataset into sub-
sets from the root to the leaves. Each split is determined by a splitting rule that aims to maximize
an objective function, such as information gain. The prediction is done by traversing the path from
the tree root to the leave, while checking the threshold of the intermediate node and following the
corresponding path based on the decision at each step (see Algorithm|TI]).

C RELATED WORK - CONTINUED

Numerous works use cryptographic techniques to certify fairness in machine learning algorithms.
For example, a recent work |Yadav et al.| (2024) focused on privacy-preserving proof of fairness for
neural networks. In contrast to our work, |Yadav et al.| (2024) considers individual fairness, rather
than group fairness. Waiwitlikhit et al.| (2024) and |Zhang et al.| (2025) propose a zk system for
checking fairness-related bounds for DNNGs. Instead of verifying fairness on specific data, [Zhang
et al.| (2025) focus solely on the properties of the models.

Another line of work focuses on proofs for explainability [Yadav et al.|(2025)) and correct training on
private data|Abbaszadeh et al.|(2024); Garg et al.| (2023)); 'Sun et al.| (2025)); Pappas & Papadopoulos
(2024).

A recent work by [Bourrée et al.| (2025) utilizes differentially-private techniques for fairness audits.
This work is focused on protecting privacy of the audit dataset, rather than the model.

D LIMITATION OF C-PROFITT AGAINST DISHONEST PROVERS

We briefly recap the design of C-PROFITT |[Shamsabadi et al.| (2023). The statement proven by C-
PROFITT is roughly: “With respect to some secret test dataset chosen by the prover, the model
satisfies certain fairness guarantees”. This dataset is assumed to be the training data and is thus
kept private. If the prover is honest and consistently uses the same data for training and the zero
knowledge proof of fairness, then C-PROFITT provides a strong security guarantee. However, it is
technically possible for a dishonest prover to use a maliciously crafted test dataset (without anyone
noticing). After doing so the prover can prove that any (however unfair) model satisfies the given
fairness constraints.

While “ZK Proof of Training (ZKPoT)” exists in the literature (i.e. given as a public instance com-
mitments cy; to the trained model and cx to the training dataset, the prover proves the knowl-
edge of private witness, M, X and randomness r,7,7x, such that c¢py = Commit(M;ryy),
cx = Commit(X;rx), and M = Train(X)), we show that C-PROFITT does not qualify as ZKPoT

16

Under review as a conference paper at ICLR 2026

due to the following attack allowing a dishonest prover to convince verifier using an arbitrary DT
model.

Dishonest Prover’s Strategy We describe concrete steps of cheating prover against Algorithm 2 for
“ZK proof of demographic parity fair tree training” in C-PROFITT:

1. As inputs, dishonest prover picks an arbitrary decision tree DT and a skewed dataset X
of which all the data points have the same sensitive attribute value, i.e., for all z € X,
x[a] = 0.

2. Since a committed sensitive attribute value [s] is always 0, the counter ¢; always remains 0
in Line 9.

3. If ¢; is a O-vector, the fairness metric verification check in Line 11 always passes as the
numerator is always 0.

Then the verifier always gets convinced by the above prover, as there is no mechanism to check that
the input DT has been actually obtained by executing the correct training algorithm on the input
dataset X. Analogously, the same strategy works against Algorithm 5 for ZKP for equalized odds-
aware tree training, because the counters c; and cs3 would remain 0 which make the conditions in
Line 16-17 trivially true.

Thus, ZKP of C-PROFITT clearly does not guarantee that the input DT equals the output of fairness-
aware training presented in their Algorithm 1. We observe that the attack stems from the two flaws
in the design of C-PROFITT: (1) the ideal functionality Fzx pr (Figure 6) realized by Algorithm
2 and 5 allows an arbitrary DT to pass the check, because it lets Prover pick a dataset X privately,
while the well-formedness of X is never checked, and (2) Algorithm 2 and 5 merely prove that the
information gain at each node is below a threshold when DT is evaluated on private X chosen by
a dishonest prover, while it is not proving in ZK that each committed split is the best among all
possible ones.

E DETAILS OF INSTANTIATED CRYPTOGRAPHIC PRIMITIVES

E.1 ADT: OpTIMIZED COMMITMENT FOR DECISION TREES

In Fig[3] we revisit the authenticated decision tree (ADT) structure proposed by Zhang et al.| (2020),
a variant of the Merkle hash tree designed specifically for decision trees.

To commit to a decision tree 7 with N nodes, one first computes the hashes of the identities and
class labels of the leaf nodes. Following |Group| (2024), we instantiate H with the SWIFFT hash
function Lyubashevsky et al.[(2008). For each non-leaf node i, its hash is computed using the hashes
of the left (Ic) and right (rc) children, along with its identity v;, threshold v;.thr, attribute v;.attr,
and the identities of its left (v;.left) and right (v;.right) children.

The final commitment is obtained by hashing the root hash together with a commitment randomness
p. This extra step is crucial to be able to later prove the zero-knowledge property of our scheme.

To validate a prediction for a single data point evaluated on 7T, the tree owner provides the prediction
path from the root to the corresponding leaf node. The proof also includes the hash of each sibling
of every node on the path. Given this information, the verifier simply computes the root hash and
compares it against the commitment. This approach optimizes prover time, as proving a prediction’s
validity requires computing only O(h) hashes, rather than O(N).

Completeness and hiding properties of the ADT commitment scheme are proved in (Zhang et al.,
2020, Theorem 3.2). Additionally, we prove the binding property.

Lemma 1. Assuming a hash function instantiating ADT is collision resistant, ADT is computation-
ally binding.

Proof. Suppose towards a contradiction there exists an adversary finding two openings 7 and 7'
for the same ADT commitment com. For two distinct decision tree models, it must be that 7 and T’
have distinct nodes v; # v] for some i € [N]. Denote the hashes of ith nodes by h; = H(...,v;,...)

and b, = H(...,v},...). If h; = h}, then one shows collision resistance of the hash function H.

17

Under review as a conference paper at ICLR 2026

‘ H(lc, rc, vg, vo-thr, vg.attr, vg.left, vg.right) ‘

‘ H(lc, rc, vy, vy .thr, vy .attr, vy left, vy .right) ‘ ‘ H(lc, rc, vg, vo.thr, vy.attr, vy.left, vo.right) ‘

‘ H(vn_1,vn_1.class) H(vn, vy .class)

Figure 3: Authenticated decision tree (ADT) commitment Zhang et al.| (2020).

If h; # hZ, then it must be that the upper level hashes are distinct for the same reason. Applying
this argument iteratively, we have that the root hashes are distinct, contradicting the fact that the
adversary has obtained two openings for the same commitment com as the root hash. O

Permutation check Obtain y; for each a;.
ef u}? ? Cdei Check fairness: ‘ Multiset check ‘ ‘ Commitment check ‘
of each ai and A || FM(D, . {3 et 8) < ¢

Figure 4: Overview of Zero-Knowledge Decision Tree Fairness adapted from ZKDT Accuracy
Zhang et al.| (2020). Dashed boxes represent publc inputs to the verifier V and solid boxes repre-
sent private internal values held by the prover P*.

E.2 GROTH16 ZERO KNOWLEDGE PROOF FOR DECISION TREE FAIRNESS

Groth16 |Groth| (2016) is one of the most popular non-interactive zero-knowledge proof systems
based on blinear pairings |Galbraith et al.[(2006), which has perfect completeness, computational and
adaptive knowledge soundness in the generic group model (Groth (2016) and in the algebraic group
model [Fuchsbauer et al.| (2018)), and perfect zero knowledge. It can generate a succinct proof in the
form of three group elements, and the verification requires only four pairing operations. Groth16
supports any NP relation in the form of the quadratic arithmetic program (QAP) (Gennaro et al.
(2013)), which is essentially a quadratic polynomial equation defined over a finite field IF, with
exponentially large prime p. In this work, we use the RICS (rank-1 constraint system) representation
of QAPs. Let A, B, C € F*™ be public matrices, where each row specifies quadratic constraints

over m variables. Given such matrices, a valid instance of R1CS is a pair (x,w) where x €]Fi, is a
public input and w €]F;,"’l is a private witness such that for z = (x, w),

Az oBz = Cz mod p 2)

Thus, proving the R, relation boils down to defining suitable R1CS matrices and vectors. InZhang
et al.[(2020) and the accompanying implementation |Group, (2024), the authors provided an efficient
approach to proving (1) opening 7 of ADT commitment (“Commitment check” in Fig. [, and (2)
batched decision tree prediction §; = 7 (a;) for ¢ = 1,...,n (“Permutation check” and ‘Multi-

set check” in Fig. E) Unlike Zhang et al.[(2020), we additionally prove FM(D, Y, JA), s) < tin

18

Under review as a conference paper at ICLR 2026

the form of an RICS relation. In the case of Demographic Parity, recall that the fairness metric
FM(D,),Y, s) is defined as:

> icry Ui B >ien, Ui

Nno ni

<t

where Iy = {i€[n]: a;[s]=0}, I} = {i€[n]: ajs]=1}, no = ||, n1 = |L1], and
9; € {0,1} are available as a subvector of z as a result of Step (2) above. We transform it into
the following equivalent condition:

UJo:E c-ni-Ys w1:E c-ng - i

i€lp i€l

lwog —wi| <e-t-ng-my

where c is a a suitable scaling constant such that c¢- ¢t € Z (which we need to express the constraint as
a equation in IF, since ¢ is typically a small rational number). The first two conditions are quadratic
equations which can be expressed as R1CS constraints (Note also that ng, n1, Iy, I; are public since
they can be derived from (D,)’)). The third equation can be transformed into R1CS by invoking the
comparison gadget available in|Group|(2024).

F SECURITY OF OUR CONSTRUCTION

In this part, we provide formal definitions and proof of security of our generic construction II.

F.1 FORMAL DEFINITION OF SECURITY PROPERTIES

We define the following security properties for our construction 1I:

Completeness requires that if both the Prover and Verifier honestly follow the protocol, and the
Prover owns a fair model M, then the Verifier is always convinced and they agree on the same
synthetic data.

Formally, let M be a model satisfying the following condition with overwhelming probability: for
r & {0,1}*, (D,Y) + DataGen(r), and Y = M (D), we have FM(D, Y,), s) < t. Il is complete
if the following game outputs 1 with overwhelming probability:

1: pp « Setup(1?*)

2: com <& Commit(M)

3: ((Dp, Vp), (Dy, v, b)) < (P(M, p),V)(pp, com)

4: Output (b = 1) A\ (Dp = Dv) A\ (yp = yv)

Binding requires that a commitment cannot be opened to different models. Formally, I is binding
against dishonest model providers if for any PPT adversary .A, the following game outputs 1 with
probability negligible in \:

L (com, M, p, M, p') = A(1*)

2: Output (M # M’) A (Open(com, M, p) = Open(com, M’ p’) = 1)

Dishonest Provider Robustness requires that if a potentially dishonest Prover convinces an honest
Verifier, then the Prover must know a model that satisfies the fairness criteria with respect to the
test dataset generated during the interactive protocol. Formally, II has dishonest provider robustness
against dishonest model providers if for any PPT adversary P* = (P}, P;), there exists a (non-
blackbox) polynomial time extractor £p« such that the following game outputs 1 with probability
negligible in A:

1: pp « Setup(1?*)
(com, st) <= Pg (pp)
: (*, (Dy, Yy, b)) < (Pi(st), V) (pp, com)
: (M, p) < Ep-(pp)
return (b = 1) A (Dy, W), M) ¢ Riair V Open(com, M, p) # 1)

BANP b

19

Under review as a conference paper at ICLR 2026

Model Privacy requires that a potentially dishonest Verifier learns nothing about the Prover’s model,
except that it satisfies the relation Ry.;j,. Formally, let M be a model satisfying the following condi-
tion with overwhelming probability: for r < {0, 1}¥, (D, Y) « DataGen(r), and Y = M (D), we
have FM(D,), 37, s) < t. For an arbitrary interactive PPT algorithm V*, let viewE* (M) be the dis-
tribution of the following information: pp < Setup(1*), com <> Commit(M) and all the incoming
messages that V* receives from P during an execution offered (P (M, p), V*)(pp, com).

IT has model privacy against dishonest verifiers if for any PPT V*, there exists a PPT simulator S
such that the output of S is indistinguishable from the distribution view?,. (M).

Test Data Transparency requires that neither party can bias the distribution of the test dataset
generated during the interactive protocol, provided the protocol does not abort. Formally, let data@

(resp. data}f) be the distribution of (Dy,) (resp. (Dp,Yp)) generated by V (resp. P) after
interacting with a potentially malicious prover P* (resp. verifier V*), conditioned on the protocol
not aborting. 11 has test data transparency if the following conditions hold:

1. for any PPT cheating P*, datal, is indistinguishable with (D,)) « DataGen(r) for
8 k
r < {0,1}".

2. for$ any PPT cheating V*, data%* is indistinguishable with (D,)) < DataGen(r) for
r+ {0,1}F.

F.2 PROOF OF SECURITY

We state a formal version of the security theorem of our construction II.
Theorem 1. We have the following security properties of Protocol I}

» If ZK and COM are complete, Protocol 1 is complete.
» [f COM is binding, Protocol 1 is binding against dishonest model owners.
o If ZK is knowledge sound, Protocol 1 has dishonest provider robustness.

» If ZK is zero knowledge, COM is hiding, H is modeled as a programmable random oracle,
and an adversary makes at most poly(\) queries to H, Protocol 1 has model privacy against
dishonest verifiers.

* [fthe same conditions as model privacy hold, Protocol 1 satisfies test data transparency.

Proof. Completeness follows by inspection. If P and V are honest, then they derive the same
(D,Y) + DataGen(r) with r = ry @ 72. Moreover, since r is uniformly random in {0, 1}¥,
((D,Y),M) € TR with overwhelming probability. Finally, since COM and ZK are com-
plete, P outputs a valid commitment com = ADT.Commit(M,p) and a valid proof 7 =
ZK.Prove(pp, (com, D,), (M, p)) such that ZK.V(pp, (com,D,Y),7) = 1

Binding immediately follows from the binding property of COM.

Dishonest Provider Robustness Given an adversary A against the dishonest provider robustness
game, we first construct a cheating prover P’ against the adaptive knowledge soundness game.
Consider the following P':

1. Upon receiving pp as input, forward pp to Pj

2. Upon receiving com from P§, conduct an interactive process (x,(Dy,Vy,b)) <
(P#(st), V)(pp, com) by emulating an honest verifier).

3. Upon receiving 7 from Py, set x = (com, Dy, Vy) and output (x, 7).

Clearly, if V halts by outputting b = 1, then ZK.Verify accepts (x,). As such, there exists a knowl-
edge extractor Ep: for ZK, which obtains a valid witness (M, p) such that (x, (M, p)) € Rcp by

20

Under review as a conference paper at ICLR 2026

running internally P’ causing ZK.V to accept. Clearly, (x, (M, p)) € Rep implies ((Dy, Yyv), M) €
Riair and Open(com, M, p) = 1, meaning that Ep: in combination with the procedures of P’ serves
as a valid extractor Ep~ in the dishonest provider robustness game.

Model Privacy We prove that the view of viewe* (M) can be simulated by a simulator S that does
not know M. The detailed hybrids are presented in Algorithm 2] Let A be an distinguisher. Below
we denote by p;(A) the probability that A outputs 1 given the view of the verifier V* in Hybrid-i.
We first consider Hybrid-0, a real execution of the protocol where P is honest and V* is a potentially
malicious verifier.

In Hybrid-1, we replace the zero knowledge proof 7 and public parameters pp with simulated ones.
Let ZK.(Simy, Simy) be a zero knowledge simulator for ZK. Since ZK is zero knowledge, the sim-
ulated view of V* in Hybrid-1 is indistinguishable from that of Hybrid-0, that is,

P1(A) = Po(N)] < ez

In Hybrid-2, we replace h; with a random string h, & {0,1}* and program the random oracle H
such that H(r1) = hq. Since the adversary makes at most poly(\) queries to H, programming here
fails with probability at most poly(\)/27%. Thus, we have that

Ip2(A) = p1(N)] < poly(A) /27,
Assuming k € Q()\), Hybrid-2 and Hybrid-1 are statistically indistinguishable.

In Hybrid-3 we sample r & {0, 1} first and set 71 := 7@y using received 5. Since the distribution
of r in Hybrid-2 is already determined to be uniform at Step 5, Hybrid-3 and Hybrid-2 are perfectly
indistinguishable, that is,

p3(A) = p2(A)

In Hybrid-4, we skip the check of the fairness condition. Since 7 is uniformly random at this stage
and a real model M passes the fairness check with overwhelming probability, skipping the fairness
check in Hybrid-4 does not affect the view of V*. Thus, we have that Hybrid-4 and Hybrid-3 are
statistically indistinguishable:

[pa(A) — p3(N)] < negl(N)

In Hybrid-5, we replace the simulated commitment to real M with a simulated commitment to a
dummy string 0. By the hiding property of the commitment scheme, the simulated commitment is
indistinguishable from a real one. Thus, Hybrid-5 and Hybrid-4 are indistinguishable.

‘p5(>\) - p4(>\)| < Ehiding

Since Hybrid-5 does not depend on the model M, we can conclude that the procedure of Hybrid-5
can be used as a simulator S for viewC* (M).

Test Data Transparency We first note that the dishonest verifier case (i.e., data}é* is indistinguish-
able with (D,)) « DataGen(r) for r < {0,1}¥) is already implied by the proof of model pri-
vacy. That is, in Hybrid-5, P locally outputs the test data Dp and labels Vp obtained by running
DataGen(r) on uniformly random 7.

The other case (i.e., datag* is indistinguishable with (D,)) « DataGen(r) for 7 < {0,1}*) can
be proved analogously without relying on ZK and hiding. For completeness, we present the hybrids
in Algorithm 3]

21

Under review as a conference paper at ICLR 2026

,_[Algorithm 2: Hybrids for Model Privacy of Theorem 1 }

Hybgy (V)
1: pp + Setup(1*) and com £
Commit(M)
2: V*(pp, com) sends ho
3: P sends hy = H(ry), where 71 < {0, 1}’c
4: V* sends ro
5: ‘P checks that ho = H(r2) and does:

@ r<ridnr
(b) (Dp,Yp) < DataGen(r)
(c) check FM(Dp,Yp, M (Dp),
@ =

ZK.Prove(pp, (com, Dp, Vp), (M
(e) send (m,r1) to V*
() locally output (Dp, Yp)

s) <t
<_
:P))

Hybrid-2

1: (pp,td) < ZK.Sim;(1*) and com <
Commit(M)
: V*(pp, com) sends ha
: P sends hy < {0,1}°
: V* sends ro
: P checks that ho = H(rz). P samples
r1 < {0,1}* and programs the random or-
acle such that hy = H(r1) (or aborts if it
fails to program). P does:
@ r<«ridr
(b) (Dp,Yp) < DataGen(r)
(c) check FM(Dp,Yp, M (Dp),s) < t
d) 7™+ ZK.Simg(td, (com,DP, yp))
(e) send (w,71) to V*
(f) locally output (Dp, Vp)

Hybrid-4
1: (pp,td) ¢ ZK.Sim;(1*) and com <
Commit(M)
2: V*(pp, com) sends ha
3: P sends hy < {0,1}*
4: V* sends ro
5: P checks that ho = H(r2). P samples 7 &
{0,1}%, sets 71 := 7 @ 7o and programs

the random oracle such that h; = H(r1) (or
aborts if it fails to program). P does:

@) T =rrETs
(b) (Dp,Yp) + DataGen(r)

© W
(d) 7 ZK.Simz(td, (com, Dp, Yp))
(e) send (m,r1) to V*

(f) locally output (Dp, Vp)

Hybrid-1
1: (pp,td) ¢« ZK.Sim:(1*) and com <

Commit(M)

: V*(pp, com) sends ha

: P sends h1 = H(r1), where r1 < {0,1}*

: V* sends 2

: P checks that ho = H(r2) and does:

@ r<ridr

(b) (Dp,Yp) + DataGen(r)

(c) check FM(Dp,Yp, M(Dp),s) <t
(d) 7+ ZK.Simz(td, (com, Dp, Vp))
(e) send (m,r1) to V*

(f) locally output (Dp, Yp)

S NEUI

Hybrid-3

1: (pp,td) « ZK.Sim;(1*) and com <
Commit(M)
: V*(pp, com) sends ha
: P sends hy + {0,1}*
: V* sends 2 ‘
. P checks that hy = H(rz). P samples r <
{0, 1}"', sets 71 7 & 72 and programs
the random oracle such that 1 = H(r1) (or
aborts if it fails to program). P does:
(@) r=rr@&T2
(b) (Dp,Yp) < DataGen(r)
(c) check FM(Dp,YVp, M(Dp),s) < t
(d) ™+ ZK.Simg(td, (com, Dp, y'p))
(e) send (m,7r1) to V*
(f) locally output (Dp, YVp)

S NEUI

Hybrid-5

1: (pp,td) <+ ZK.Sim;(1%) and com <
Commit(0)
: V*(pp, com) sends hs
: Psends hy + {0,1}*
: V* sends 72
: P checks that ho = H(r2). P samples r &
{0,1}%, sets 71 := 7 @ 2 and programs
the random oracle such that h; = H(r1) (or
aborts if it fails to program). P does:
(@) r=rrE&T2
(b) (Dp,Yp) + DataGen(r)

(¢) check FM(D = p),s) <t
K.Simz(td, (com, Dp, Vp))

(@
(e) send (m,r1) to V*
(f) locally output (Dp, Vp)

DB W N

22

Under review as a conference paper at ICLR 2026

Transition from Hybrid-0 to Hybrid-1 is similar to the transition from Hybrid-1 to Hybrid-2 in the
proof of model privacy.

In Hybrid-2, upon receiving hy from P*, V extracts its preimage r; by observing the queries made
by P* to the random oracle H. V then aborts if one of the following events happens: 1) it either fails
to extract] but P* later manages to open h; to some 7 such that H(ry) = hq; 2) it extracts 7} but
P* later manages to open hj to r} # 7.

Case 1) implies that one of the random oracle responses hits hq, which happens with probability at
most poly(\)/2¢ due to the uniformity of the random oracle responses and the assumption that P*
makes at most poly(\) queries.

Case 2) implies that P* manages to find a collision in one of the poly(\) random oracle responses,
which happens with probability at most poly () /2¢ by the birthday bound. Thus, the probability that
V aborts is at most poly(\)/2°.

Overall, Hybrid-2 and Hybrid-1 are statistically indistinguishable.
[p2(A) = p1(A)] < negl(N)

Transition from Hybrid-2 to Hybrid-3 is similar to the transition from Hybrid-2 to Hybrid-3 in the
proof of model privacy.

Clearly, in in Hybrid-2, V locally outputs the test data Dy and labels), obtained by running
DataGen(r) on uniformly random r, assuming that P* does not abort. O

Remark 2. Since P* opens hy after receiving ro from V, it might abort based on the value of
r =11 @ 1o if it does not like the corresponding test data D and labels Y. Thus, we obtain the so-
called security with abort (see e.g., |[Lindell| (2009)) for test data transparency against adversarial
model owners. In our setting, security with abort is sufficient by having the verifier V reject the
model whenever P* suspiciously causes the protocol to abort.

G DETAILS OF EXPERIMENTS AND ADDITIONAL EVALUATIONS

In this section, we present additional experiments that were not included in the main body of the pa-
per. These experiments further validate the performance and effectiveness of our proposed AudiFair
protocol for checking fairness in decision trees.

G.1 SOURCE CODE AND EXPERIMENTAL SETUP

We implemented the COM and ZK components of our AudiFair protocol in C++, utilizing the lib-
snark library [Lab| (2014) for zero-knowledge proofs and forking the code for proof of accuracy of
decision trees [Zhang et al.|(2020). The SHA3-256 hash function and the synthetic data generation
algorithm are implemented in Python, using the hashlib and SDV libraries |Developers| (2024), re-
spectively. Version information is available in environment.yml.

The experiments were conducted on an Amazon EC2 c7a.12xlarge instance with 96GB RAM, which
allowed us to parallelize the computation of FFT and elliptic curve operations during the Groth16
NIZK Setup and Prove phases.

G.2 DATA SETS

For our experiments, we first trained decision trees of height 1 = 10 using scikit-learn [Pedregosa
et al.[(2011) on the following datasets:

 Default Credit (d = 23) Repository| (2009): The ground truth label indicates whether a
person will default on an credit card payment, and 22% of the datapoints belong to the
default class. We use the gender (Male, Female) as a sensitive attribute, with 40% of the
datapoints being Males.

23

Under review as a conference paper at ICLR 2026

,.[Algorithm 3: Hybrids for Test Data Transparency of Theorem|I] }

@ r<ridre

Hybrid-0 Hybrid-1
1: pp < Setup(1*) 1: pp < Setup(1™)
2: P*(pp) sends com 2: P*(pp) sends com
3: Vsends ha = H(r2), where 2 < {0,1}* 3: V sends hy <& {0,1}*
4: P* sends hy 4: P* sends h;
5 V*sends T2 5: V samples 7, <~ {0, 1}* and programs the
6: P* sends (7, 71) random oracle such that ho = H(rz) (or
7: V checks that by = H(r1) and does: aborts if it fails to program). V sends 7
@) r<rdre 6: P* sends (m,r1)
(b) (Dy,v) + DataGen(r) 7: 'V checks that hy = H(r1) and does:
(c) run b — @ r+mnrmnor
ZK.Verify(pp, (com, Dy, Yv),) (b) (Dy,Yv) + DataGen(r)
(d) locally output (Dy, Vv, b) (c) run b «—
ZK Verify(pp, (com, Dy, Yv),)
(d) locally output (Dy, Yy, b)
Hybrid-2 Hybrid-3
1: pp « Setup(1?) 1: pp < Setup(1?)
2: P*(pp) sends com 2: P*(pp) sends com
3: Vsends hy < {0, 1} 3: Vsends hy < {0,1}
4: P* sends hy 4: P* sends hq
5: V extracts 7} such that hy = H(r}) by ob- 5: V extracts 7 such that hy = H(r}) by ob-
serving queries to the random oracle H if serving queries to the random oracle H if
it exists in the query history; else,)V sets it exists in the query history; else, V sets
i = L.V samples 72 < {0,1}* and Fpoi= L If) #£ 1,V samples r &
programs the random oracle such that he = {0, 1}"', and sets 72 := 7 & 7]; else V sam-
H(’I’Q) (or aborts if it fails to program). v p]es o (i {(]7 l}k_ W programs the random
sends rz oracle such that ho = H(r2) (or aborts if it
6: P* sends (m,71) fails to program); V sends 72
7: V checks that hy = H(rq). If the check 6: P* sends (7, 71)
passes and 7 7 ry,)V aborts. V does: 7: V checks that hy = H(r1). If the check

passes and '} # 71, V aborts. V does:

(b) (Dy,Yv) < DataGen(r) (@) r»rro&Ts
(¢) run b — (b) (Dy,Yv) + DataGen(r)
ZK.\Verify(pp, (com, Dy, Wv),) (c) run b «—

(d) locally output (Dy, Yy, b)

ZK Verify(pp, (com, Dy, J\,),)
(d) locally output (Dy, Vv, b)

* Adult (d = 14)|Repository|(1996): The ground truth label indicates whether an individual’s
income is > 50,000. Among the considered individuals, 75% have a salary below 50K. We
use the gender (Male, Female) as a sensitive attribute, with 67% of the datapoints being
Males.

¢ American Community Survey Income (d = 10) |Ding et al.[(2021): Same as in above, the
ground truth label indicates whether an an individual’s income is > 50,000. We use the
gender (Male, Female) as a sensitive attribute, with 52% of the datapoints being Males.

We chose Default Credit and Adult since they are the two largest datasets used by C-PROFITT. As
the Adult dataset is by now outdated, we also conducted the experiment using a replacement dataset
suggested in |Ding et al.| (2021).

G.3 ADDITIONAL PERFORMANCE AND EFFECTIVENESS EVALUATIONS

In Table 3] we present the performance of our AudiFair protocol for checking Demographic Pari-
ty/Equalized Odds/Mean Residual Difference on synthetically generated test data based on the three
datasets mentioned above. For these experiments, 70% of each dataset was used to train the tree
and the remaining 30% was used to train a CTGAN synthesizer. Then the synthesizer generated n
synthetic data points, which were used as the test dataset for checking Equalized Odds.

24

Under review as a conference paper at ICLR 2026

Table 3: Performance of our AudiFair protocol for checking Demographic Parity/Equalized Odd-
s/Mean Residual Difference. ‘SMP’ stands for Security against Malicious Prover. n is the size of the
test dataset, d is the number of features, and h is the height of the decision tree. ‘Data’ includes both
computation of 1, ho and an execution of DataGen. The running times are in seconds and based
on experiments conducted on an Amazon EC2 c7a.12xlarge instance with 96GB RAM. In these ex-
periments, we parallelized FFT and elliptic curve operations of the underlying Groth16 NIZK Setup
and Prove using 48 vCPUs.

(n,d,h) Setup(s) Data(s) Prove(s) Verify(s) Comm.(kB) SMP
ACSIncome (15000, 10, 10) 103 288 52 <1 0.6 v
Credit (9000, 23, 10) 73 239 46 <1 0.6 v
Adult (13500, 14, 10) 93 295 57 <1 0.6 v

credit EqOd_CTGAN: Epoch vs & acs EqOd_CTGAN: Epoch vs A adult EqOd_CTGAN: Epoch vs &

100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Epoch Epoch Epoch

Figure 5: Comparison of Equalized Odds and Mean Residual Difference scores A calculated using
the reference dataset and CTGAN-generated synthetic data with varying epochs (the number of
times each data point is used during synthesizer training), with the sensitive attribute set to gender.
Dashed lines represent A derived from the reference dataset. Both fair and biased models are trained
on 70% of each reference dataset, and the remaining 30% is used for calculating A for the reference
set. For the synthetic data, we use the same 30% of the reference dataset to generate synthetic data
with CTGAN.

The results include the setup time, commitment time, data generation time, proof generation time,
verification time, and communication bandwidth. The experiments were conducted on an Amazon
EC2 c7a.12xlarge instance with 96GB RAM, utilizing 48 vCPUs for parallelizing FFT and elliptic
curve operations during the Groth16 NIZK Setup and Prove phases. For all performance experi-
ments, we fixed the number of epochs for the CTGAN model to 300 steps, which is the default value
in the SDV library, and we conservatively set &k = 1024 to retain 128 bits of security, assuming that
the adversary’s query budget to the random oracle is 2128,

In Fig.[5] we compare the Equalized Odds and Mean Residual Difference scores A calculated using
the reference dataset and CTGAN-generated synthetic data with varying epochs, with the sensitive
attribute set to gender. To provide two baselines for each dataset, we trained a “fair” model without
using the sensitive attribute, and an artificially “biased” model on a manipulated dataset where the
ground truths are fixed to 1 if the sensitive attribute is 1. Moreover, in Fig.[6] we compare the De-
mographic Parity score A calculated with the reference dataset and with TVAE-generated synthetic
dataXu et al.|(2019) with varying epochs.

25

Under review as a conference paper at ICLR 2026

5 credit DP_TVAE: Epoch vs A 5 acs_DP_TVAE: Epoch vs & 5 adult DP_TVAE: Epoch vs &
—
08 08 e ————— 08
06 ~e— Afor synthetic (Bias) 06 ~e— Afor synthetic (Bias) 06 ~e— Afor synthetic (Bias)
B = Afor reference (Bias) o = Afor reference (Bias) B —— Afor reference (Bias)
=~ A for synthetic (Fair) =~ & for synthetic (Fair) =~ & for synthetic (Fair)
04 -~ Afor reference (Fair) 04 -~ b for reference (Fair) 04 -~ b for reference (Fair)
02 02 02
S S S
| B e e B S | p—— R
3 o o
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Epoch Epoch Epoch

Figure 6: Comparison of Demographic Parity score A calculated with reference dataset and with
TVAE-generated synthetic data with varying epochs. Both the fair and biased models are trained on
70% of each reference dataset. The remaining 30% is used for calculating A for the reference set.
For the synthetic data, we use the same 30% of the reference dataset to generate synthetic data with
TVAE.

26

	Introduction
	Related Work
	Preliminaries and Setting
	Abstract Fairness Auditing Framework
	Overview
	Definition of Privacy-Preserving Fairness Auditing
	Generic Construction and Security

	Concrete Instantiations and Evaluations
	AudiFair: Instantiating for Decision Trees/Random Forests
	Performance and Effectiveness of Fairness Test with Synthetic Data

	Conclusion, Limitations, and Future Work
	Extended Preliminaries
	Basic Notation and Definitions in Cryptography
	Random Oracle Model
	Security Properties of Cryptographic Commitments
	Security Properties of Zero Knowledge Proofs
	Intuition for Zero Knowledge Proofs

	Decision Trees Background
	Related Work - Continued
	Limitation of C-PROFITT against Dishonest Provers
	Details of Instantiated Cryptographic Primitives
	ADT: Optimized Commitment for Decision Trees
	Groth16 Zero Knowledge Proof for Decision Tree Fairness

	Security of Our Construction
	Formal Definition of Security Properties
	Proof of Security

	Details of Experiments and Additional Evaluations
	Source Code and Experimental Setup
	Data Sets
	Additional Performance and Effectiveness Evaluations

