
Proceedings of Machine Learning Research vol 140:1–18, 2022 1st Conference on Causal Learning and Reasoning

Learning Causal Overhypotheses through Exploration in Children
and Computational Models

Eliza Kosoy†* EKO@BERKELEY.EDU

Adrian Liu† ADRIANLIU99@BERKELEY.COM

Jasmine Collins JAZZIE@BERKELEY.EDU

David M Chan DAVIDCHAN@BERKELEY.EDU

Jessica B Hamrick JHAMRICK@DEEPMIND.COM

Nan Rosemary Ke ANKE@GOOGLE.COM

Sandy Han Huang SHHUANG@GOOGLE.COM

Bryanna Kaufmann BRYANNAKAUFMANN@BERKELEY.EDU

John Canny CANNY@BERKELEY.EDU

Alison Gopnik GOPNIK@BERKELEY.EDU

Editors: Bernhard Schölkopf, Caroline Uhler and Kun Zhang

Abstract
Despite recent progress in reinforcement learning (RL), RL algorithms for exploration still remain
an active area of research. Existing methods often focus on state-based metrics, which do not con-
sider the underlying causal structures of the environment, and while recent research has begun to
explore RL environments for causal learning, these environments primarily leverage causal infor-
mation through causal inference or induction rather than exploration. In contrast, human children—
some of the most proficient explorers—have been shown to use causal information to great benefit.
In this work, we introduce a novel RL environment designed with a controllable causal structure,
which allows us to evaluate exploration strategies used by both agents and children in a unified
environment. In addition, through experimentation on both computation models and children, we
demonstrate that there are significant differences between information-gain optimal RL exploration
in causal environments and the exploration of children in the same environments. We conclude with
a discussion of how these findings may inspire new directions of research into efficient exploration
and disambiguation of causal structures for RL algorithms.
Keywords: causal learning in children, causal reasoning, intervention, causal overhypotheses

1. Introduction

Exploration is a fundamental problem in reinforcement learning (RL). In order to act on the world
effectively, an agent needs to be able to efficiently and actively gather information about how the
environment works. Gathering causal information is particularly helpful for action planning and
generalization (de Haan et al., 2019; Rezende et al., 2020; Ke et al., 2021). For example, if the
agent’s task is to turn on a lamp, the corresponding causal relationship is that the lamp will turn on
only if all of the following are true: 1) the switch is flipped to the on position, 2) the lamp is plugged
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into a source of electricity, and 3) the light bulb is working. Understanding this causal relationship
enables the agent to systematically diagnose a problem—if, for instance, it is in a new room and
flips the switch to on but the lamp does not turn on—and systematically explore to find solutions.

Existing RL exploration methods typically do not focus on such causal exploration: they do
not form and test causal hypotheses, or plan active interventions to obtain causal data (Amin et al.,
2021). Instead, existing RL exploration methods primarily focus on expanding the set of experiences
of the agent, for instance by visiting novel or surprising areas of the state space. This may be
sufficient for the agent to solve the particular task it is trained for, but limits its ability to generalize
to new tasks and environments (Packer et al., 2018; Cobbe et al., 2019). Although there is growing
interest in causal learning in RL, this work has focused on extracting a particular underlying causal
graph from given data in a particular environment (Nair et al., 2019; Ke et al., 2021; Wang et al.,
2021). There is very limited amount work that attempts to utilize causal information for exploration
in RL, or to learn abstract causal structure through exploration.

How might we integrate causal learning and reasoning into exploration in RL agents? We pro-
pose to draw inspiration from cognitive science. In contrast to RL agents, even young children
learn and reason about causal relations and actively explore to collect causal data. Moreover, they
can learn and use causal overhypotheses—hypotheses about which classes of causal relationships
are more or less likely (Kemp et al., 2007; Lucas et al., 2014). Causal overhypotheses are a key
component that allows humans to learn causal models from a sparse amount of data (Griffiths and
Tenenbaum, 2009), because they can help narrow down the possible causal relationships that we
consider and test.

In the previous light example, suppose that we enter a new apartment, and want to turn on
the lights in the living room. If we lacked any causal overhypothesis about what causes a light
to turn on, then this would be an essentially hopeless task. We might try knocking on the wall,
shuffling on the carpet, rotating the lamp, and so forth—the way that an RL agent starts out acting
in an environment in which it has no prior experience. Instead, if our causal overhypothesis is that
flipping a light switch on the wall will turn on one or more lights, then that helps our hypothesis
testing. We might try flipping various combinations of light switches in the apartment, and quickly
identify the correct causal relationships.

In our experiments, we draw inspiration from the blicket detector experiment (Gopnik and So-
bel, 2000a), which is a classic setting for evaluating causal learning and reasoning in children.
Blocks are placed on a “blicket machine”. Some blocks are “blickets” and the blicket machine
lights up when blickets are placed on it, according to some rule. The participants must learn which
blocks are blickets, and use those blocks to activate the machine.

The blicket machine requires children to learn the structure of a novel causal system, and al-
lows researchers to present children with relatively complex patterns of statistical correlation and
intervention. It does so in a concrete, simple and intuitive way. As a result, a large body of studies
using this method have demonstrated a remarkable range of causal inference capacities in children
as young as 18 months (Gopnik et al., 2001; Cook et al., 2011; Gopnik, 2012; Gopnik et al., 2004;
Gopnik and Sobel, 2000b; Gopnik and Wellman, 2012; Kushnir and Gopnik, 2007; Lucas et al.,
2014; Meltzoff et al., 2012). In particular, studies have tested how well children learn more abstract
overhypotheses about the rules by which the machine works. For example, the causal relationship
can be either disjunctive or conjunctive (Lucas et al., 2014). In the disjunctive case, if at least one
blicket is placed on the machine, then it lights up. In the conjunctive case, at least two blickets must
be placed on the machine in order for it to light up. Participants must infer whether the machine is
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conjunctive or disjunctive. Interestingly, prior work has found not only that that children can learn
these overhypotheses from data, but also that they are more flexible than adults in these tasks. They
are better at learning unusual overhypotheses, like those involving conjunctive causal relationships
(Lucas et al., 2014; Gopnik et al., 2017)

However, in prior experiments investigating causal overhypotheses, children are given the rel-
evant data by the experimenter rather than generating the data themselves through causal explo-
ration. Could children also actively generate data that would allow them to learn the right causal
overhypotheses? And would causal overhypotheses shape their exploration? Developmental psy-
chology has found that children are active and curious learners, with strong intrinsic motivation to
systematically explore their environment (Schulz and Bonawitz, 2007; Schulz, 2012). Even young
children engage in hypothesis-testing behavior in settings with ambiguous (Cook et al., 2011) or
inconsistent (Legare, 2012) evidence. However, there is limited prior work on spontaneous causal
exploration in children and none on how causal overhypotheses affect children’s exploration.

In this work, we seek to understand how young children, between the ages of four and six,
explore and learn causal structure and how their exploration compares to that exhibited by typical
ideal observer or RL models. In particular, we investigate how children use exploration to learn
causal overhypotheses and how causal overhypotheses influence their exploration. We first show
them specific sequences of interactions with the blicket machine, which are consistent with either
a disjunctive, conjunctive, or ambiguous causal relationship. We then give them as much time as
they want to experiment with a new blicket machine, to “figure out how to make it go.” We find
that children exhibit rich and diverse exploratory behavior, and that their overhypotheses are indeed
influenced by their prior exposure to the environment. In contrast, we consider an ideal learner with
a particular causal overhypothesis and find that its exploratory behavior in this task is quite different
from that of children. We conclude by discussing how our findings can inform the development of
RL agents that are capable of causal exploration, learning and reasoning. Our findings cannot be
directly applied to existing RL algorithms, but rather may inspire entirely new directions of research.

To summarize, the main contributions of this paper are as follows. 1) We develop an online
environment based on the classical blicket machine (Gopnik and Sobel, 2000a) which can be used
with both children and agents. 2) We collect experimental data from children in this environment,
and demonstrate that they exhibit diverse structured exploration strategies, and that they learn from
this exploration. 3) We compare children’s exploration strategies with a set of simple ideal observer
models, and show that children’s actions do not directly reflect either simple overhypothesis infor-
mation gain or reward maximization. The results suggest that children rely on a broad set of causal
assumptions and exploration behaviors that may generalize to many environments. This paves the
way for future research which will enable artificial agents to exhibit richer, causally motivated,
exploration strategies.

2. Related Work
The relevant previous work includes studies of exploration in reinforcement learning (RL), multi-
task RL, causal learning in RL, and various versions of the blicket environment used in cognitive
science experiments.

Exploration in reinforcement learning Causal exploration is a relatively understudied area in
reinforcement learning. Most techniques do not consider explicit causal hypotheses, but instead
rely on adding an exploration bonus to the task reward. This exploration bonus may be given
for visiting novel states (Bellemare et al., 2016; Ostrovski et al., 2017; Martin et al., 2017; Tang
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et al., 2017; Machado et al., 2018a), surprising dynamics (Schmidhuber, 1991; Pathak et al., 2017),
uncertainty (Osband et al., 2016; Burda et al., 2018) or disagreement (Pathak et al., 2019). Please
refer to Amin et al. (2021) for a comprehensive survey of exploration in deep reinforcement learning.
Our proposed work using the blicket environment lays the groundwork for potential exploration
algorithms based on the empirical exploration patterns of children in causal environments.
Multi-task learning in reinforcement learning There are several benchmarks for multi-task
learning for robotics (Yu et al., 2019; James et al., 2020), for physical reasoning (Allen et al.,
2020; Bakhtin et al., 2019) and video games (Cobbe et al., 2018; Machado et al., 2018b; Nichol
et al., 2018; Chevalier-Boisvert et al., 2018). The relevant causal overhypotheses for these envi-
ronments are not clear, however, making it difficult to evaluate the influence of causal information
on agents’ exploration. In our work, we introduce a novel blicket environment, where the causal
overhypotheses are clearly defined.

Causal learning in reinforcement learning There are several standard reinforcement learning
benchmarks and environments for causal discovery, including Causal World (Ahmed et al., 2020),
Causal City (McDuff et al., 2021), Alchemy (Wang et al., 2021), ACRE (Zhang et al., 2021), and
the work of Ke et al. (2021). The causal hypotheses for many of these environments are not clear,
or do not allow control over overhypotheses. Furthermore, most environments are concerned with
causal induction or generalization, rather than focusing on exploration (though see Sontakke et al.,
2021). We instead focus on developing an environment with a controllable causal structure designed
to allow us to measure the agents’ ability to explore using causal overhypotheses. Moreover, none
of these environments have been used with children. We aim to put agents and children in exactly
the same environments, allowing us to use information about the real life causal exploration of these
very effective child causal learners to inform agents.

3. The Virtual “Blicket Detector” Environment

Figure 1: Screenshot of our virtual blicket detector.
Children can interact with the blicket detector through
a touch interface on an iPad, or through a point and
click interface on any web-enabled machine.

Although there is a large body of work on
causal learning in children, and some exper-
imental studies of active learning in the lab,
as noted above, there are no studies analyzing
children’s spontaneous actions as they freely
explore the blicket machine, and none looking
at how such exploration might lead to the learn-
ing of overhypotheses or how overhypotheses
might influence learning.

We introduce a virtual, internet-hosted, rep-
resentation of the standard blicket detector
(Gopnik and Sobel, 2000a; Lucas et al., 2014)
which is suitable not only for interaction with
children, but also enables an exact compari-
son between children and reinforcement learn-
ing agents through an inferface with OpenAI
Gym (Brockman et al., 2016). In particular, this
environment allows us to precisely record and analyze both children’s and agent’s actions. Unlike
previous experiments (Gopnik and Sobel, 2000a; Lucas et al., 2014) which were mainly conducted
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in person, the internet-based environment also allows for a more diverse set of participants. A visual-
ization of the online blicket detector is shown in Figure 1. We plan to open-source this environment
upon publication.

Environment details Observations are a 3D rendering (256 × 256 RGB pixels) of the detector
and a set of objects (Figure 1). In each episode, there are three objects, (which we refer to as A, B,
and C for the rest of the paper) and the blicket detector present in the environment. Each object in
the environment has a unique color and shape. The environment is Markovian, as all objects and
blicket detector states are visible at any given time. The children can put any combination of objects
on the detector in any order, and click the check mark to test to see if its works or not. It lights
up and makes a sound when the correct set of objects (i.e., blickets) are placed on top, and object
combinations are permutation invariant in our setup (though children do not necessarily have this
prior, see Section 4). The required combinations of blickets to trigger the detector vary per episode
and condition, according to a set of causal models. The action space consists of seven discrete
actions. There are six actions for moving the objects (on/off for each of the three objects) and an
additional action for pressing the check mark on the blicket detector, which checks if the existing
objects make the blicket detector light up. Note, that the blicket detector will light up as long as a
subset of the objects on the detector are blickets (e.g. putting three objects on the detector will also
light up the detector).

Causal overhypotheses Our environment setup consists of a hierarchical causal structure, where
the higher level structure is a causal hypotheses that determines the number of objects needed to
light-up the blicket detector, and the lower level describes which particular objects are blickets.
Similar to the setup in (Lucas et al., 2014), we consider two causal hypotheses in our environment:
CONJUNCTIVE and DISJUNCTIVE. In the CONJUNCTIVE condition, a pair of blickets must be on
the machine (together) to activate it. In this case, A and B turn on the machine, but only when
placed on the detector together so the only possible combinations that turn on the detector in the
CONJUNCTIVE condition are AB, or ABC. The combinations that wouldn’t work are: A,B,C,AC
and BC. In the other condition or DISJUNCTIVE, A and B are blickets which individually turn the
blicket machine on. Therefore, the following combinations tun on the detector in the DISJUNCTIVE

condition: A,AB,ABC,B,BC and AC.

4. Measuring Childrens’ Causal Exploration

We designed an experiment modeled on the blicket detector tasks (Gopnik and Sobel, 2000a) which
allowed us to measure and analyze children’s exploration behavior and use of overhypotheses in an
online environment that could also be given to an agent. We tested N = 85 children aged 4-5 years
(20-23 children per condition) at a local science museum following IRB protocols. the exact script
we used can be found in the appendix.

Conditions Our experimental setup consisted of a 2 × 2 design. Our first tier of conditions were
CONJUNCTIVE and DISJUNCTIVE, reflecting different ways the detector could work, as described
in Section 3. Children also received one of two forms of evidence about the blicket detector, ei-
ther suggesting (GIVEN HYPOTHESIS) or failing to suggest (NOT GIVEN HYPOTHESIS) a relevant
hypothesis space.
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(a) (b)

Figure 2: Visualization of the demonstration the children see for which objects make the blicket detector
light up, per condition, either Condition 1: GIVEN HYPOTHESIS or Condition 2: NOT GIVEN HYPOTHESIS.

Demonstration phase In both the DISJUNCTIVE and CONJUNCTIVE conditions, children first saw
a video of a live demonstration of two different blicket machines. The machines had either a polka
dot pattern or a stripe pattern and the objects varied in color and shape (sphere, pyramid and cube)
as well, counterbalanced across conditions. The demonstrations for each machine and for each of
the GIVEN HYPOTHESIS and NOT GIVEN HYPOTHESIS conditions are illustrated in Figure 2. First,
in the testing portion of the experiment, we specifically chose colors and shapes that were different
from those used in the demonstration phase, so that children could not directly apply attribute-based
overhypotheses from the demonstration phase to the exploration phase. In the GIVEN HYPOTHESIS

condition the children received evidence that the blicket detectors could work in either a conjunctive
or disjunctive way. In the NOT GIVEN HYPOTHESIS condition children only received ambiguous
evidence about how the blicket machine might work, consistent with many overhypotheses. To
avoid biasing the children, we did not give them any other evidence about how the machine works,
beyond the demonstration video.

Exploration and test phase After they watched the demonstrations, the children were shown a
new detector with a checkerboard pattern and ring, triangle and half dome objects (as in Figure 1).
They were told, “Look, I have a 3rd blicket detector. It could work like the polka dot one, or it
could work like the striped one. Can you figure out how it works and which blocks make it go, and
make the detector go yourself?” After making the machine light up the first time, the children were
then asked “Great, is there something else you want to try?”. Once the child responded no to that
question they were asked two final test questions. First, they were asked whether each object was
or was not a blicket, and then they were asked how the machine worked.

4.1. Results

A major aim of this study was as a proof of concept that young children would actively and intelli-
gently explore in this online environment and treat it as a causal system, as they do with the real-life
blicket machines. We see this study as itself exploratory, but broadly, we hypothesized that children
would exhibit systematic causal exploration rather than exploring randomly, and, as a result, make
correct causal inferences.

Theory-driven exploration Following previous work on exploration in children (Schulz and
Bonawitz, 2007; Schulz, 2012), we expected that children would not simply try to make the light
go on, but that they would explore more extensively. As shown in Table 1, children in all conditions
took less than 30 seconds to activate the detector for the first time but continued to explore for at
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Condition # Participants # Actions # Combinations Time (s) Time to Success (s)

NOT GIVEN HYPOTHESIS (CONJUNCTIVE) 20 12.2 (8.19) 3.85 (2.59) 208.88 (78.64) 22.21 (19.73)
GIVEN HYPOTHESIS (CONJUNCTIVE) 22 12.68 (7.44) 5.36 (1.63) 164.89 (62.96) 23.61 (16.21)
NOT GIVEN HYPOTHESIS (DISJUNCTIVE) 20 8.95 (5.66) 3.7 (2.07) 181.87 (83.75) 12.35 (10.13)
GIVEN HYPOTHESIS (DISJUNCTIVE) 23 15.4 (8.39) 5.43 (1.34) 191.81 (63.81) 11.91 (20.76)

Table 1: Statistics of children’s exploration. Shown are the average number of checks (i.e., presses of the
check mark) taken per condition, the average number of unique combinations tried per condition, the average
time played per condition in seconds, and the average time played before seeing the blicket detector go on
for the first time. Standard deviations are given in parenthesis.

least several minutes more. Moreover, children tried fewer unique combinations of objects than the
total number of checks (i.e., the number of times they pressed the check mark to test the effect of
the combination), indicating that children tested some combinations multiple times. Note that if a
child clicked the check mark multiple times without any action in between, only the first time was
counted and all subsequent checks were discarded. However, if the child performed any action,
including taking all objects off and placing them back on in the same order, the second check would
be included in our data. The number of combinations refers to how many different sets of objects
the child tried, even if children placed the objects on the machine in different orders, which they
frequently did. As we will discuss in Section 5.1, the observation that children tried the same com-
binations multiple times and that they varied the order of the objects might indicate that children are
considering additional hypotheses which were not part of our initial analysis.

Inferential success Prior work has shown that children can make correct causal inferences about
blicket machines given sufficiently informative data (Lucas et al., 2014). We similarly hypothesized
that children would successfully be able to distinguish blickets from non-blickets given the evidence
they generated during exploration. To test this, we compared how likely children were to report that
true blickets are blickets (true positive rate) to how likely they are to report that non-blickets are
blickets (false positive rate). The results are shown in Figure 3 (left). Across all conditions, children
were more likely to report that blickets were blickets than that non-blickets were blickets. While
children were not perfectly able to determine the correct causal structure from the evidence they
generated themselves, they showed some ability to do so across conditions. We did not ask the
children to identify if the detector was conjunctive or disjunctive because it is challenging to get a
meaningful answer on questions like this from children, especially in the NOT GIVEN HYPOTHESIS

condition where they are not introduced to the concepts of conjunctive and disjunctive.

Effect of conjunctive vs. disjunctive Lucas et al. (2014) showed that, given sufficient evidence,
children are equally good at making causal inferences about conjunctive and disjunctive structures.
Similarly, we expected that children would be equally good at making inferences in the DISJUNC-
TIVE condition as the CONJUNCTIVE condition, and that they would exhibit similar amounts of
exploration. To test this, we measured how long children explored (both in terms of time and num-
ber of actions taken) in the different conditions, as well as their success at discriminating between
blickets and non-blickets.

As reported in Table 1, Children took approximately the same amount of time in both the CON-
JUNCTIVE (185.84 seconds) and DISJUNCTIVE (187.19 seconds) conditions. The same is true for
the number of actions they performed (12.45 in CONJUNCTIVE and 12.39 in DISJUNCTIVE). In-
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(a) (b)

Figure 3: Left: Children’s verbal replies about objects’ blicket-ness. Blue bars indicate the true positive rate,
i.e. the proportion of times children said that an object was a blicket, given that it was a blicket. Yellow bars
indicate the false positive rate, i.e. the proportion of times children said that an object was a blicket, given
that it was not. The error bars indicate standard error. Random guesses would achieve 50% for both true
positive rate and false positive rate. The differences between all the conditions are statistically significant
with p < 0.02, except between the CONJUNCTIVE GIVEN HYPOTHESIS conditions. Right: The percentage
of children who generated enough data to make a valid conclusion about which objects are blickets (assuming
an optimal inference procedure).

terestingly, even though it is easier to illuminate the blicket detector in the DISJUNCTIVE condition
and children were faster at turning the blicket machine on for the first time in the DISJUNCTIVE

condition, their exploration of both conditions was similar.
We also looked at how well children could discriminate between blickets and non-blickets across

the different conditions. As illustrated in Figure 3 (left), there is little difference between the condi-
tions (with the exception of GIVEN HYPOTHESIS (DISJUNCTIVE), which we discuss further below).
Taken together, these results indicate that the true causal structure of the blicket detector does not
substantially influence how much children explore or how likely they are to come to a correct an-
swer, consistent with earlier results (Lucas et al., 2014).

Hypothesis space effects If an actor has evidence about the hypothesis space, the actor should
be more efficient in the exploration of that space, and causal inference should be an easier task.
Thus, we hypothesized that children in the GIVEN HYPOTHESIS conditions would explore less and
be more accurate in their inferences than in the NOT GIVEN HYPOTHESIS condition.

First, to measure the amount of exploration that children performed, we looked at the amount of
time they took and the number of actions they explored, as given in Table 1 and Figure S.1. When
collapsing across causal structures, the results did not entirely align with our hypotheses: on average
children tried more actions in a shorter time in the GIVEN HYPOTHESIS condition (178.65 seconds,
14.07 actions) than in the NOT GIVEN HYPOTHESIS condition (195.38 seconds, 10.58 actions).

Second, we examined if the data generated during exploration was sufficient to disambiguate
the hypothesis space. Figure 3 (right) indicates that children were substantially more likely to do
so in the GIVEN HYPOTHESIS conditions (71% of the time) than in the NOT GIVEN HYPOTHESIS

conditions (32% of the time, p = 0.002 using a standard 2-proportion Z test). Although children
only tried a few more combinations more in the GIVEN HYPOTHESIS conditions, this exploration
was more effective. This result is consistent with the hypothesis that without guidance, children may
explore unbounded sets of overhypotheses, which may not be useful for discriminating between
conjunctive and disjunctive structures.
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Third, we looked at tests that might naturally occur to children but should be ruled out in the
NOT GIVEN HYPOTHESIS condition. The first is to test whether the machine would turn on without
any objects on it. 17.7% and 17.5% of children performed this test in the GIVEN HYPOTHESIS and
NOT GIVEN HYPOTHESIS conditions, respectively. The second test is to try different orderings of
the same set of objects (our environment preserves the order in which the the objects are put on top
of the blicket detector). 66.7%8 and 65% of children tried different orderings of the same set of
objects in the GIVEN HYPOTHESIS and NOT GIVEN HYPOTHESIS conditions, respectively. Both of
the tests mentioned above are reasonable for children in the NOT GIVEN HYPOTHESIS condition;
however, the children in the GIVEN HYPOTHESIS condition could have reasoned that the blicket
detector would not turn on without any objects, and that the ordering of objects does not matter.
Thus it is surprising that children in both conditions performed similarly.

Finally, we looked at whether children’s inferences about blickets and non-blickets were af-
fected by being given the hypothesis space or not. As shown in Figure 3 (left), there were generally
no clear differences between conditions, again with the exception of the GIVEN HYPOTHESIS (DIS-
JUNCTIVE) condition in which children were substantially more likely to correctly identify blickets.
Although they were not more likely to generate sufficient data in this condition (Figure 3, right),
they did try substantially more actions (Table 1).

Summary Overall, our results suggest that children are able to effectively explore—particularly
when given the relevant hypothesis space—and that they are often able to correctly identify blickets.
However, children did not always generate sufficient evidence and could not perfectly discriminate
between blickets and non-blickets (Figure 3). One explanation for this finding could be that the chil-
dren were acting optimally (with noise); however, we favor another explanation: that children were
optimizing for a wider range of alternative hypotheses. To differentiate between these explanations,
in the next section we compare the results of children with several optimal models.

5. Modeling Causal Learning in the Blicket Environment

Given our experimental results, we aimed to characterize the optimal behavior for the blicket de-
tector task, and used this optimal behavior to interpret the children’s decisions. As a first pass at
understanding the motivations and priors of the children, we leveraged the relatively simple causal
structure of the blicket environment to build several policies, which we used as a baseline for the
children’s behavior. Our approach is similar to previous work (Oaksford and Chater, 1994; Nelson
et al., 2010; Coenen et al., 2019) which has taken a Bayesian approach to optimal data selection and
used such a model to describe adult behavior for various causal reasoning tasks. We used the unified
environment described in Section 3, and the same experimental setup. Here, one action corresponds
to putting any number of blickets on the detector and pressing the check button. For each action
there are two possible observations (blicket machine turns on or remains off).

Policy Design In the blicket game, there are eleven possible causal structures, seven of which are
disjunctive (A-dis, B-dis, C-dis, AB-dis, AC-dis, BC-dis, and ABC-dis, where “A-dis” refers to
a disjunctive structure where A is a blicket and B and C are not), and four of which are conjunctive
(AB-con, AC-con, BC-con, and ABC-con). We excluded degenerate causal structures such as
A-con and B-con where no observations can distinguish between them, since conjunctive detectors
require two blickets to light up. The goal of our models was to determine the causal model through
intervention in the environment. In this work, we investigated two policies through which we ex-
plored optimal behavior in the state space: a policy based on per-step information gain maximization
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(the PER-STEP model), and a policy which minimized the expected time to full disambiguation of
the hypothesis space (the MINIMUM-STEP model).

PER-STEP model The first policy optimizes for the expected per-action information gain, and
aims to optimally discriminate between a set of fixed hypotheses through its actions by taking ac-
tions which minimize the uncertainty in the conditional posterior. We measured uncertainty over
all hypotheses using KL-divergence between the hypothesis distribution over causal hypotheses and
some current prior distribution. More formally, let h ∈ H be the possible hypotheses considered
by this policy. The “usefulness” of a particular observation, o, resulting from an action a, is given
by the difference between the posterior and prior distribution: DKL(p(h|o) ∥ p(h)). The posterior
probability for each individual hypothesis h is given by Bayes’ rule: p(h|o) = p(o|h)p(h)/p(o).
Before the first action, the prior distribution p(o) is initialized using one of two possible choices (see
below). For modeling multiple actions in sequence, the prior is defined to be to the posterior of the
previous timestep, and actions are selected by maximizing the sum of the per-timestep divergences
over the sequence. The PER-STEP model returns action sequences that are optimal for all possible
ground-truth states of the blicket detector (i.e. A and B are blickets and the detector is conjunctive,
A and C are blickets and the detector is disjunctive, etc.).

MINIMUM-STEP model Instead of greedily optimizing for disambiguation as in the PER-STEP

model, the second policy that we explored (the MINIMUM-STEP model) optimizes for the minimum
number of steps required to fully disambiguate the hypothesis space. To determine this policy, we
modeled the possible hypothesis space as a tree search problem, where each vertex represents the
possible causal hypotheses, and each edge represents an action. The policy selects sequences of
actions which minimize the expected depth of the tree rooted at each vertex. Unlike the PER-STEP

model, this policy actively attempts to minimize the number of steps that are required for resolution.

Choice of prior We considered two possible prior beliefs for our models. The first prior, the
UNIFORM prior, posits that that all causal structures are equally likely. However, in the GIVEN

HYPOTHESIS condition, we implied equal likelihood between the CONJUNCTIVE and DISJUNC-
TIVE overhypotheses, and our experiments with children only contained causal structures with two
blickets. Therefore, children could reasonably be expected to follow a different prior with three
conjunctive structures and three disjunctive structures, are of which are equally likely. We encoded
this possibility in a prior (the EXPERIMENTAL prior) which placed equal weight on conjunctive and
disjunctive hypotheses.

5.1. Results, Analysis and Comparison to Children’s Exploration

The PER-STEP model and the MINIMUM-STEP models generated subtly different strategies for play-
ing the game. In all experiments, the causal structure (or type of causal structure) was not known
a priori and the policies had to determine both which causal structure (conjunctive vs. disjunc-
tive) was present, and which objects in the scene were blickets. Because of the relatively small
policy space, we could succinctly describe the policies, and Figure S.2, S.3, S.4, and S.5 in the
supplementary materials demonstrate the optimal strategies learned by each model. As expected,
the MINIMUM-STEP agent optimizing for the minimum number of steps obtained a policy which
is slightly better than PER-STEP, with MINIMUM-STEP achieving an expected time to full informa-
tion of 3.55 actions under the UNIFORM prior, and 3.50 actions under the EXPERIMENTAL prior,
while PER-STEP achieved 3.72 expected actions to full information under the UNIFORM prior, and
4.0 expected actions under the EXPERIMENTAL prior. It is interesting to note that the PER-STEP
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(a) (b)

Figure 4: Left: The average number of combinations the children tried before they indicated they finished
exploring, compared to the number of combinations the models needed to fully determine the ground truth.
Agents use the EXPERIMENTAL prior. We find that in the CONJUNCTIVE GIVEN HYPOTHESIS condition the
children’s average number of combinations is statistically significant compared to the MINIMUM-STEP model,
but the difference between the PER-STEP model is not significant. In the DISJUNCTIVE GIVEN HYPOTHESIS
condition the difference between the children and the MINIMUM-STEP and PER-STEP models is significant
with p < 0.0001. Right: The percentage of children who generated enough observations to completely
determine the ground truth in each condition. While conj. vs. disj. have no significant difference (p > 0.9),
when given the hypothesis space, children are more likely to disambiguate the causal space (p = 0.002). The
models always generate enough observations to disambiguate the causal space.

model performed worse when given incorrect information (the EXPERIMENTAL prior), while the
MINIMUM-STEP model is able to perform better in this scenario (the downside to the MINIMUM-
STEP being the fact that it is usually intractable to compute in practice).

Next, we contrasted the models’ behavior with that of the children. As shown in Figure 4 (left),
children always took more steps than the agents before they finished exploring the environment.
Surprisingly, children did not show any notable difference between GIVEN HYPOTHESIS (CON-
JUNCTIVE) and GIVEN HYPOTHESIS (DISJUNCTIVE), whereas the agents differed significantly,
with both optimal methods taking longer to explore for conjunctive spaces (note that the agents
have no variance in expected time to goal, as these numbers are analytic). This increase in required
actions for conjunctive causal structures demonstrates the bias towards disjunctive structures in the
environment, as there are more possible disjunctive than conjunctive structures (7 vs. 4).

Even though children are explicitly encouraged to determine how the machine functions, while
the agents always took enough actions in the space to fully disambiguate the causal structure, the
children often did not take enough actions, especially when they were not given any information
about the hypothesis space. Figure 4 (right) shows the percentage of children who took enough
actions to fully disambiguate the space. Unsurprisingly, when in GIVEN HYPOTHESIS, the children
were far more likely to fully disambiguate the environment, demonstrating the power of fully guided
exploration. There is little difference between the CONJUNCTIVE and DISJUNCTIVE conditions
when it comes to exploration, suggesting that the children explored equally in both conditions, and
did not favor disambiguation of conjunctive vs. disjunctive environments. This effect raises an
interesting question: unlike RL agents, we do not have any explicit understanding of the reward
function that children are optimizing during training time, and even though an effort was made to
encourage the children to optimize the reward function of maximum information gain, the children
may not optimized this reward alone. A key contribution of this work is to raise this question: can
we discover in future work what kinds of reward functions children optimize during overhypothesis
discovery, and can we leverage these functions to build more powerful machine learning models?
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Further analyses of children’s exploration As the previous results show, children’s exploration
behavior was not well-captured by the proposed optimal models. By qualitatively examining chil-
dren’s behavior in more detail, we observed that they appeared to be testing many different kinds
of overhypotheses beyond the ground-truth conjunctive and disjunctive structures. Figure 5 shows
some example sequences of the combinations the children tried, indicating the various hypotheses
they were testing. These qualitative examples suggest that children have a richer and larger hypoth-
esis space than the models. For example, Participant 1 seemed to only consider the possibility that
all three objects must trigger the detector, but attempted to determine if the order in which blickets
are placed on the detector is important, as well as if the detector might be stochastic. Participant
2’s behavior was consistent with trying disjunctive conditions first, and then conjunctive conditions
after that: a good example of systematic testing. Participant 3 only tested conjunctive behavior
(with some testing of order). Participant 4 is another example where the child quickly discovered
the causal structure, but then tested order and stochasticity.

In addition to causal structure, order, and stochasticity, childrens’ overhypotheses may also
take into account the attributes of objects, for example that blue objects are blickets or circular
objects are blickets. Taking into account attributes would exponentially increase the size of the
overhypothesis space, so we designed our experiment to try to minimize the likelihood that children
would consider attribute-based overhypotheses. First, we used distinctly different colors and shapes
in the exploration phase, compared to in the demonstration phase, so that children would not be able
to directly apply attribute-based overhypotheses from the demonstration phase to the exploration
phase. In addition, for each child we randomized which two of the three objects were blickets, in
both the demonstration and exploration phases.

Unlike children, the optimal policies do not consider that the blicket detector may be stochastic
or that there may be additional hypotheses outside of conjunctive and disjunctive. Determining a
set of hypotheses that more accurately represents what the children actually consider would lead to
a model which is more predictive of the children’s behavior.

6. Discussion & Conclusion

Exploration—and in particular, causal exploration—remains a challenge for modern RL agents.
In this paper, we investigated how human children engage in this type of exploration in order to
draw insights that can be applied to artificial agents as well. To do so, we both introduced a novel
“blicket” environment which enables testing exploration strategies of both humans and agents, and
collected data on young children to observe how they explore in this domain. We found that children
exhibited a diverse set of exploration strategies not well captured by naı̈ve models optimizing for a
small set of known overhypotheses. Notably, from our results it seems that children bring to bear
extensive prior knowledge regarding how objects and mechanisms behave, and use this knowledge
to generate a wide range of potential hypotheses.

These results have important implications for research aimed at developing RL agents. Most im-
portantly, they suggest that effective exploration requires rich prior knowledge structured via causal
overhypotheses. While in our experiments children’s behavior may technically be “suboptimal” in
the context of simply disambiguating conjunctive vs. disjunctive hypotheses, in more realistic envi-
ronments, children spend their time exploring an incredibly vast range of phenomena: block towers,
bugs in the forest, digital devices, pets, social dynamics, and so on. To effectively explore in such
a broad range of domains, children need to leverage rich prior knowledge; our experiments reflect
that they do this by default even in simple settings. If we want agents that can perform a similar
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Figure 5: Example sequences of what objects children placed and tested on the blicket detector. The 0
column gives the ground truth blicket objects. Each row represents the order the blickets are placed on the
detector, and the final row is green if the blicket detector is illuminated. The gray column represents when
the child has finished exploring and is asked which objects are blickets.

breadth of exploration, they similarly need to bring to bear rich causal knowledge about the world.
Moreover, it may not be sufficient to have a large “bag-of-hypotheses”: like children, agents may
need to organize their knowledge into hierarchical representations like overhypotheses in order to
swiftly narrow in on the relevant subset of causal structures.

Although we have only presented results here for simple optimal models, these results pose a
clear set of questions regarding RL, in particular: what is required for RL agents to exhibit ex-
ploration strategies similar to those children use? There are two challenges: what reward function
should be used to train such agents, and in what environments? A maximally “blank-slate” ap-
proach to our task might be: on each episode, sample whether the agent is in the CONJUNCTIVE or
DISJUNCTIVE condition, and then reward it for making the blicket detector turn on. Unfortunately,
this training regime would not result in exploratory behavior at all: the optimal solution here would
be to always just put all blocks on the detector. Alternatively, we could consider rewarding agents
for correctly identifying blickets, however this strategy would just demonstrate identical behavior to
our optimal models (Dasgupta et al., 2019; Mikulik et al., 2020). We might consider training agents
on a broader set of overhypotheses (for example, that order matters, that the detector is stochastic,
etc.), but it is unclear what this set should be, or how to avoid it being overly task-specific.

Such “blank-slate” and “constructed” approaches, do not appear consistent with how children
learn about the world or how humans have developed over the course of evolution. We believe that
developing environments and training regimes to tackle these questions is an essential aspect of
future work in building agents that can efficiently and effectively explore.
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Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

16



LEARNING CAUSAL OVERHYPOTHESES

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 16–17, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
arXiv preprint arXiv:1906.04161, 2019.

Danilo J Rezende, Ivo Danihelka, George Papamakarios, Nan Rosemary Ke, Ray Jiang, Theophane
Weber, Karol Gregor, Hamza Merzic, Fabio Viola, Jane Wang, et al. Causally correct partial
models for reinforcement learning. arXiv preprint arXiv:2002.02836, 2020.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint confer-
ence on neural networks, pages 1458–1463, 1991.

Laura E. Schulz. The origins of inquiry: inductive inference and exploration in early childhood.
Trends in Cognitive Sciences, 16(7):382–389, 2012.

Laura E. Schulz and Elizabeth Baraff Bonawitz. Serious fun: preschoolers engage in more ex-
ploratory play when evidence is confounded. Developmental Psychology, 43(4):1045–1050,
2007.

Sumedh A Sontakke, Arash Mehrjou, Laurent Itti, and Bernhard Schölkopf. Causal curiosity: Rl
agents discovering self-supervised experiments for causal representation learning. In Interna-
tional Conference on Machine Learning, pages 9848–9858. PMLR, 2021.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pages 2753–
2762, 2017.

Jane X. Wang, Michael King, Nicolas Porcel, Zeb Kurth-Nelson, Tina Zhu, Charlie Deck, Pe-
ter Choy, Mary Cassin, Malcolm Reynolds, Francis Song, Gavin Buttimore, David P. Re-
ichert, Neil Rabinowitz, Loic Matthey, Demis Hassabis, Alexander Lerchner, and Matthew
Botvinick. Alchemy: A structured task distribution for meta-reinforcement learning. arXiv
preprint arXiv:2102.02926, 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learn-
ing. arXiv preprint arXiv:1910.10897, 2019.

Chi Zhang, Baoxiong Jia, Mark Edmonds, Song-Chun Zhu, and Yixin Zhu. Acre: Abstract causal
reasoning beyond covariation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10643–10653, 2021.

17


	Introduction
	Related Work
	The Virtual ``Blicket Detector'' Environment
	Measuring Childrens' Causal Exploration
	Results

	Modeling Causal Learning in the Blicket Environment
	Results, Analysis and Comparison to Children's Exploration

	Discussion & Conclusion



