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Abstract

We propose a new training setup, called ScaLa, and a new pruning algorithm

based on it, called ScaLP.

The new training setup ScaLa is designed to make standard Stochastic Gradient

Descent resilient to layer width changes. It consists in adding a �xed well-chosen

scaling layer before each linear or convolutional layer. This results in an overall

learning behavior that is more independent of the layer widths, especially with

respect to optimal learning rates, which stay close to 1.
Beyond the usual choice of scaling each input by the factor 1/

√
#fan-in, we

also propose a family of asymmetric scaling factors: this promotes learning some

neurons faster than others. The pruning algorithm ScaLP is a combination of ScaLa

with asymmetrical scaling, and weight penalties. With ScaLP, the �nal pruned

architecture is roughly independent of the layer widths in the initial network.

1 Introduction

Neural network architectures are becoming bigger and bigger. From hand-tuned
(VGG [25], GoogLeNet [26], ResNets [13]) to automatically generated architectures
(NAS [29], hypernetworks [3]), they tend to become deeper, structurally more complex,
and wider. As a consequence, the number of weights increases dramatically, and so does
the training time.

The widths of the layers in a neural network are critical hyperparameters, impacting
�nal accuracy as well as computational cost both at training and test time. In practice,
grid search over the layer sizes is often required. It would be nice to have an algorithm
that works well just by initializing a network to a large width, in the hope that, if good
performance can be achieved by a small network, it can also be achieved by a larger
network that does not use its extra width. Such an algorithm would also be useful for
pruning, by shaving o� the extra neurons at the end or even during training.

Such a training algorithm has other hyperparameters such as the learning rate; one
could wish these hyperparameters to be resilient to width changes. Otherwise, a new
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hyperparameter search would be necessary (notably for the learning rate) each time a
new layer width is tested, whether while pruning neurons or for each new experiment in
a grid search.

In particular, we show that the standard Stochastic Gradient Descent (SGD) is not
resilient to a change of widths in a given neural network: the learning rate has to be
adapted accordingly. Consequently, in a network with layers of varied widths, the SGD
learning rate cannot be adapted to all layers simultaneously. To solve these problems, we
introduce the ScaLa (Scaling Layer) trick: every layer is preceded by a �xed diagonal
scaling layer. Instead of training a layer w ∈Mnin,nout , we train the tensor w̃ de�ned by:

w = Sw̃,

where S = Diag(σ1, · · · , σnin
). We show that training w̃ instead of w is more resilient to

layer width changes.
Such a rescaling with σk = 1/

√
nin is often used in theoretical analyses of neural net-

works [6]. We emphasize that such layers S can be chosen asymmetrical, i.e., each neuron
or channel in the network is scaled with a di�erent factor. This promotes learning various
neurons or channels at di�erent speeds. Based on this, we propose ScaLP (Scaling Layer
Pruning) to perform either neuron pruning in fully connected layers, or channel pruning
in convolutional layers. It consists in using ScaLa with a penalty and an asymmetrical
scaling layer; this is provably equivalent to enforcing an asymmetrical penalty over the
set of computing units (i.e., neurons or channels) in each layer. This way, the most useful
units are preserved while the least useful ones are pushed even more strongly towards 0.

For instance, possible setups for S are:

ScaLa : σk =
1
√
nin

, ScaLP : σk ∝
1√

k log k
.

In both cases, we show that �ne-tuning the learning rate becomes unnecessary when
changing layer widths. Moreover, ScaLP combined with a penalization leads to �nal
layer weight matrices in which some rows are close to zero; such layers are consequently
easy to prune.

We �rst provide (Section 3) a theoretical justi�cation for scaling layers, that is based
both on an analysis of variance similar to the standard 1√

nin
initialization [8], and on a

novel analysis of the stability of the SGD step (since we would like to obtain stability of
training, not only of initialization).

In Section 4 we de�ne ScaLP, a pruning algorithm based on scaling layers.
ScaLa and ScaLP are tested in Section 5. First, we test the learning rate stability

provided by ScaLa: it turns out that a learning rate of 1 performs well over a wide range
of network widths. Next, we compare ScaLP (with �xed learning rate 1) to other pruning
techniques. We compare the �nal accuracy and the �nal number of parameters. Finally,
we test whether various pruning techniques �nd the same pruned architecture size when
the initial width is changed. Ideally, either for pruning or for standard training, it should
be safe to start with a too-wide network.
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2 Related Work

Several approaches has been developed to reduce the computational cost of neural net-
work models at test time. Large neural networks can be compressed in many ways:
approximate large neural networks by small ones [2], decrease the rank of large matrices
in linear layers [5], share or quantize the weights inside matrices [4, 9]

Making the layers more sparse is one of the most common options. One way to achieve
sparsity is to prune connections or neurons during or after training. The �rst pruning
technique, Optimal Brain Damage, was based on the second-order derivative of the loss
with respect to the weights [16, 11]. This was shown to provide better results than simply
pruning the smallest weights. Despite this observation, pruning the weights according to
their magnitude is still used [10], and the resulting pruned networks keep roughly their
initial accuracy.

A second group of pruning methods focuses on pruning neurons, which is more di�cult
than pruning weights. The idea of most neuron pruning techniques is to use group Lasso-
like penalties, studied in [24]: group Lasso itself [24], sparse-group Lasso [1] or `∞,1-
norm [22]. It is also possible to prune entire channels in a Convolutional Neural Network
(CNN) by evaluating and ranking the L1-norm of the channels, without regularization
during training [18].

Another type of approach recently proposed [19] consists in introducing a multiplica-
tive scaling factor just after each channel or neuron, that is learned and penalized by
a L1-norm. This simple trick allows direct neuron pruning, and can be generalized to
remove groups of convolutions or entire layers [14]. Our work also makes use of scaling
factors after each neuron, although they play a di�erent role: in our setup, the scaling
layer is not learned. Both methods behave di�erently in our experiments.

Our treatment of width independence for network training is based on intuitions and
results for in�nitely wide neural networks (Section 3). Interest for the latter has recently
increased, continuing the seminal work of Neal [23], who pointed out a connection with
Gaussian processes. In [21], in�nitely wide deep neural networks are proven to behave
like Gaussian processes, while [17] and [15] study the dynamics of such networks, which
are called Neural Tangent Kernels (NTK). These works indicate that scaling the weights
is a necessary step in order to build a training algorithm resilient to any width change:
the weights of �nitely wide layers are supposed to be scaled by the same factor 1/

√
nin

(where nin is the number of inputs), in order to ensure convergence in the in�nitely-wide
limit. In Section 3, we prove that a whole family of scaling factors, beyond the standard
choice 1/

√
nin, can be used to achieve such resilience. In particular, our algorithm ScaLa

may use non-uniform scalings: this preserves individual neurons in the in�nite-width
limit, whereas the classical 1/

√
nin scaling produces neurons with in�nitesimal individual

in�uence in the limit.

3 ScaLa: Scaling the Weights for Width-Independent

Training

In this section, we introduce ScaLa, a technique designed to make SGD resilient to any
change of a layer width in the trained model. We will later use this technique for the
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pruning algorithm ScaLP (Section 4).
Indeed, one strategy to �nd the optimal size of a neural network layer consists in

starting from a intentionally too wide layer, and pruning it iteratively during training
according to some well-suited method. For this, we will ensure that the training technique
behaves correctly in a very-large-width setup; ideally, the training of the neural network
should be asymptotically independent of the network width for large widths. This leads
to considering the in�nite-width limit: How should we learn and prune an in�nitely wide
neural network?

3.1 Two Problems with In�nitely Wide Layers

In a neural network where the layers can be arbitrarily wide, one has to check at least
that the �rst forward pass and the �rst update do not lead to any divergence.

Problem 1: the forward pass. The forward pass should output activations with
bounded variance for arbitrary network sizes. With the Glorot initialization [8], weight
variance is set to 1/nin, with nin the number of inputs. This preserves the variances of
the activations from one layer to the next. Thanks to this, the layer's output does not
diverge if nin tends to in�nity.

We extend this classical analysis to non-uniform initializations.

Problem 2: the gradient step. Initialization is not the only problem: one has to
ensure that the training mechanism is stable as well with large network widths. The
output of one neuron should not diverge after a few updates when the number of inputs
tends to in�nity.

In fact, the number of inputs a�ects gradient computation: with a �xed learning rate,
if nin tends to in�nity, the outputs are likely to diverge after even one update. It follows
that a simple Glorot-like initialization is not su�cient to solve this problem (Remark 2
below).

We show that replacing a layer with weights w, with a layer with weights w̃ preceded
by a scaling layer S, is su�cient to deal simultaneously with the two problems above.

In the next sections, the weights w denote the original network parameters; while the
weights w̃ are called scaled weights and are those we learn via SGD.

3.2 Training a Layer with an In�nite Number of Inputs

To face the problem of learning arbitrarily wide neural networks, let us �rst understand
how a single neuron can deal with an arbitrarily large number N of inputs. We focus here
on the simple case where a neuron just computes its pre-activation y and its activation a
from its input vector x = (xk)1≤k≤N :

a = φ

(
N∑
k=1

wkxk + b

)
= φ

(
wTx + b

)
= φ(y),

where w = (wk)1≤k≤N ∈ RN is the vector of weights of the neuron, b ∈ R its bias and φ
its activation function.
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Instead of learning w directly, we apply the following variable change:

w = Sw̃, (1)

where S = S(N) = Diag(σ(N)1, · · · , σ(N)N) ∈ MN,N is a �xed scaling matrix whose
coe�cients depend only on N , and where w̃ = (w̃k)1≤k≤N . The criterion to be optimized
is not seen as a function of w anymore, but as a function of S and w̃. As S is �xed, we
perform SGD on w̃. This is the ScaLa algorithm.

We now provide a necessary and su�cient condition on the scaling S and on the
initialization variance of w̃, to ensure that the output of a layer stays bounded, both at
initialization and after one SGD step, in the limit of in�nitely many inputs to a layer.

Notation and Conditions:

• let (xk)1≤k≤N be the vector of inputs, whose coordinates are independent random
variables with mean 0, variance 1 and �nite order-4 momentum;

• we assume, as in [8], that ∂L
∂y

is a random variable of mean 0 and non-zero �nite

variance, independent of the (xk)k;

• the weights (w̃k)1≤k≤N are randomly initialized, i.i.d. of mean 0 and common vari-
ance τ 2(N) (it will typically set to 1 later);

• the bias b is drawn from a distribution of mean 0 and variance τ 2b , independently
from (w̃k)k.

Proposition 1. We denote by y(N) and y
′
(N) respectively the initial pre-activation of the

neuron and its pre-activation after one SGD step over w̃ ∈ RN . The learning rate η is
�xed and independent from N .

With the assumptions above, and assuming that
(∑N

k=1 σ
2
(N)k

)
N
is weakly monotonic

and does not admit a subsequence that converges to 0, the following equivalence holds:{
limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞

⇔


limN→∞

∑N
k=1 σ

2
(N)k <∞

limN→∞
∑N

k=1 σ
4
(N)k <∞

limN→∞ τ(N) <∞
. (2)

Thus, luckily, when the conditions of Proposition 1 are satis�ed, the neural network
is resilient to any width change, at �xed learning rate.

Remark 2 (The Glorot initialization leads to an in�nite �rst step). Importantly, the
standard setup of working with the original weights w does not have such properties: it
leads to in�nite variance after the �rst SGD step.
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Indeed, wk is usually initialized with Var(wk) = 1/N . This is equivalent to setting
τ 2(N) = 1/N and σ(N)k = 1 (namely, S = Id, no rescaling) in our setup. Since

lim
N→∞

N∑
k=1

σ2
(N)k =∞

lim
N→∞

Var(y(N)) <∞,

it follows from Proposition 1 that:

lim
N→∞

Var(y′(N) − y(N)) =∞.

Therefore, just initializing the weights for bounded activation variance does not implies
a bounded SGD update. Hence the interest of the scaling layer S.

In the following, we set τ 2(N) = 1.

Link with classical initialization strategies. Still, it is possible to reproduce Glorot
initialization with a �nite �rst step. We choose the uniform scaling σ(N)k = 1/

√
N (for

all k) and τ 2 = 1, which ful�lls the conditions (2):
limN→∞

∑N
k=1

(
1√
N

)2
= 1 <∞

limN→∞
∑N

k=1

(
1√
N

)4
= 1

N
<∞

limN→∞ 1 = 1 <∞

.

This choice corresponds to the well-known initialization: wk ∼ N (0, 1/N). Still, ScaLa
with uniform scaling σ(N)k = 1/

√
N di�ers from classical SGD: the reparameterization

leads to a change of the update rule. Indeed, the update rule for w̃ can be interpreted as
an update rule for w with scaled learning rates:{

w̃t+1 = w̃t − η ∂L∂y (Sx)T

S = Diag
(

1√
N
, · · · , 1√

N

) ⇒ Wt+1 = Wt −
η

N

∂L

∂y
xT .

Thus, in the case where the chosen scaling is uniform (σ(N)k = 1/
√
N), the variable

change can be simply seen as a scaling for the learning rate, inversely proportional to
N . Experimentally, this will result in learning rates and learning speeds that are roughly
independent of N (Figures. 3a, 3b).

In�nite number of inputs. In Proposition 1, we impose a condition over (σ(N)k)N,k,
in order to obtain a consistent behavior of y(N) and y

′
(N) as the number N of inputs grows.

In the classical treatment of in�nitely wide networks, the variances are 1/N : asymp-
totically, each individual neuron �disappears�.

Here, it is possible to choose values of σ(N)k that do not depend on N . This allows
a direct treatment of e�ectively in�nite networks, without vanishing neurons. It could
also be useful in situations when N changes during training, such as pruning (Section 4).
This can be expressed as follows.
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Corollary 3. Under the same conditions as in Proposition 1, and assuming that σ(N)k =
σk and τ(N) = τ , the outputs of a layer at initialization and after one ScaLa SGD step
stay bounded if and only if the sum of scaling factors converges:

∞∑
k=1

σ2
k <∞⇔

{
limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞ . (3)

This corollary imposes a constraint over the sequence of scaling factors (σk)k in a
given layer. Possibilities include

σk ∝
1

k
, σk ∝

1√
k log(k)

the latter being one of the slowest-decreasing sequences that still satis�es the �nite vari-
ance condition.

3.3 Neurons and Convolutional Filters with ScaLa

The initialization rule and the update rule have in common the decomposition of a stan-
dard neuron into an unlearned scaling layer and a normalized weight layer. So, from now,
we use this general model of a neuron, which is easily customizable to �t convolutional
�lters in CNNs.

Simple neuron. A simple neuron which computes a = φ(y) = φ(wTx + b) is trans-
formed into a = φ(y) = φ(w̃TSx+b), where S is a �xed diagonal matrix and w̃ the matrix
of learnable parameters. In the case where φ = ReLU, the matrix S should satisfy (see
Equation (10)):

N∑
k=1

σ2
k + τ 2b = 2. (4)

This model is represented in Figure 1, where S is the scaling layer.

Remark 4. If we substitute w for w̃, as proposed in equation (1), then one can write:

y = wTx + b = w̃T (Sx) + b.

Therefore, the substitution can be seen in two ways: either the weights are a scaled vector
of the original weights and the inputs are as they are (zero-mean and variance 1), or the
weights are as they are and the inputs are scaled when they enter the neuron.

Convolutional �lter. Let F ∈ RN×c×c be a convolutional �lter, whereN is the number
of masks and c× c is the size of each 2D-mask, and x ∈ RN×p×q be a tensor containing N
images of size p× q. The �lter computing A = φ(Fx) is transformed into A = φ(F̃Sx),
where S is an operator multiplying each subtensor Xi ∈ Rp×q by a factor σk, for k ∈
{1, · · · , N}. F̃ is the tensor of learnable parameters. In the case where φ = ReLU, we
should have:

c2 ·
N∑
k=1

σ2
k + τ 2b = 2. (5)

In this case, S is the scaling layer.
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x1

x2

x3

σ1x1

σ2x2

σ3x3

scaling
layer

∑N
k=1 w̃kσkxk

�neuron� w̃

w̃1

w̃2

w̃3

=
∑N

k=1wkxk

σ1

σ2

σ3

x Sx
S = Diag((σk)k) w̃ = (w̃k)k

w̃TSx = wTx

Figure 1: The new model for the simple neuron.

3.4 Normalizing the Activations

We recall that, according to Proposition 1, the inputs of a neuron are assumed to be of
mean zero and variance 1. This is easily achieved if the inputs are taken from the dataset:
it is su�cient to make an a�ne operation over the dataset.

In order to keep this assumption true for all neurons of a neural network, we propose
to add a batch-norm layer before of after each weight layer.

4 ScaLP: Pruning with Non-Uniform Weight Scaling

In this section, we introduce ScaLP, a pruning method combining ScaLa with a non-
uniform scaling and a penalty pushing the rescaled weights w̃ to 0. Thanks to the
non-uniform scaling, the penalty on the original weights w becomes non-uniform: some
neurons are more strongly pushed to 0 than others, making them easier to prune. The
network will more easily train neurons with weaker penalties, and thus consider more
penalized neurons only if necessary. This intuitively should lead to automatic adaptation
of the layer size, according to the complexity of the task.

4.1 The L2 Penalty for ScaLP

For the sake of simplicity, we �rst consider the L2-squared penalty. Instead of penalizing
the weights w directly, we penalize the underlying parameters w̃. This choice results from
a consideration about their magnitude: since the parameters w̃ are initially i.i.d., they
have initially the same order of magnitude. Then, they contribute equally to the loss
and can be learned with the same learning rate. Recalling that �w = σw̃�, this penalty
can equivalently be seen as a L2-squared penalization of w modulated by 1/σ. Thus, the
level of penalization of w can be tuned through σ.
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De�nition of the penalty. We denote by w the vector of all weights, by wl
k the k-th

neuron in the l-th layer, and by wlki its i-th input weight. We denote by w̃l
k and w̃

l
ki their

respective underlying parameters.

Proposition 5. Let L + 1 be the number of layers of the neural network, where the
layer at index 0 is the input of the network. For l ∈ {0, · · · , L}, let nl be the number of
computing units (neurons or convolutional �lters) in the layer l. We denote by wl

k the
k-th computing unit in the layer l and by σlk the k-th scaling factor in layer l. Thus the
entire penalty can be written:

pen(w) :=
L∑
l=1

nl∑
k=1

∑
i

(w̃lki)
2 =

L∑
l=1

nl∑
k=1

∑
i

(
wlki
σl,k

)2

=
L−1∑
l=0

nl∑
k=1

 1

σ2
l+1,k

∑
w∈wl

k→

w2

 ,
where wl

k→ is the set of �output weights� of wl
k. In other words, w belongs to wl

k→ if, and
only if, the output of wl

k is multiplied by the weight w in the next layer.

Since the meaning and the e�ect of this penalty are not easy to see, we illustrate the
rearrangement of the terms. For this purpose, we de�ne respectively the penalty term
associated to a neuron wlk and its norm, denoted by m:

pen(wl
k) =

∑
i

(
w̃lki
)2

and m(wl
k)

2 =
∑

w∈wl
k→

w2.

The norm m(wl
k)

2 can be interpreted as the utility of the neuron wl
k from the point of

view of the next layer. Then, we can reformulate Proposition 5:

pen(w) =
L∑
l=1

nl∑
k=1

pen(wl
k) =

L−1∑
l=0

nl∑
k=1

m(wl
k)

2

σ2
l+1,k

. (6)

The right-hand side of this equality can be interpreted as an asymmetrical penalization
of the usage of each neuron in a layer: for each neuronwl

k, we evaluate its �utility� through
m(wl

k)
2, then we scale it by 1/σ2

l+1,k to obtain the �nal penalty term.
In practice, the role of the σlk is clearer if we sort the sequence (σlk)k for each layer l

in descending order: the higher is the index k, the smaller σlk is, the more is penalized
the usage of the k-th neuron in the preceding layer. Brie�y, the higher is the index of a
neuron, the less it is likely to be used.

From now, the sequences (σlk)k are supposed to be non-increasing for all l.

Reordering the neurons. We recall that, in most neural networks, two neurons of a
layer can be swapped without changing the function computed by the neural network,
if the corresponding weights in the next layer are swapped too. We show not only how
to do this in neural networks with scaling layers, but also how it helps decreasing the
penalty in that case.

Proposition 6. Two neurons wl
i and wl

j can be swapped without changing the operation
made by the neural network through the following procedure:

wl
i ←→ wl

j and ∀k,

{
w̃l+1
ki ←− w̃l+1

kj
σl+1,j

σl+1,i

w̃l+1
kj ←− w̃l+1

ki
σl+1,i

σl+1,j

,

where σl+1,i and σl+1,j are respectively the i-th and the j-th scaling factor in layer l + 1.
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Remark 7. Swapping the neurons wl
i and wl

j causes a swapping of m(wl
i) and m(wl

j)
without change.

In neural networks with scaling layers, the penalty depends on the association between
the (wl

k)k and the (σl+1,k)k at �xed l (equation (6)). The following proposition indicates
how to permute the neurons to minimize the penalty.

Proposition 8. The order of the neurons (wl
i)i in a given layer l provides the minimal

loss if, and only if the sequence m(wl
i)i is non-increasing, that is:

∀i < j, m(wl
i) ≥ m(wl

j).

Since this reordering does not change the output of the network, its bene�t may not
appear clearly. A potential issue that might arise if no reordering is performed during
training is that, by chance, neurons of initially high index might become useful (i.e.
their norm may increase). Because of this high indices and thus heavy penalization, the
optimization might get stuck and prevent further learning. The proposed reordering gets
rid of this potential issue, thus we apply it periodically.

Other penalties. The results above can be extended to other penalties, such as the
L1 penalty or a modi�ed group-Lasso penalty:

• Lasso L1: choosing the L1 penalty changes only the de�nition of the norm:

∑
l,k

pen(wl
k) =

L−1∑
l=0

nl∑
k=1

m(wl
k)

σl+1,k

with: m(wl
k) =

∑
w∈wl

k→

|w|;

• group-Lasso `2,1: unlike the usual version of the group-Lasso penalty applied to
neural networks [24], the weights of a layer are put in the same group if they are
connected to the same neuron in the preceding layer:

∑
l,k

pen(wl
k) =

L−1∑
l=0

nl∑
k=1

m(wl
k)

σl+1,k

with: m(wl
k) =

√ ∑
w∈wl

k→

w2 .

This norm m is exactly the same as the one de�ned in equation (6). The result-
ing parsimony di�ers slightly from the usual Lasso: instead of pushing the input
weights of each neuron towards zero, this group-Lasso penalty pushes its output
weights towards zero. This choice is compatible with the pruning rule presented in
section 4.2.

4.2 ScaLP Pruning Rule

Pruning neurons from a trained network, that is, removing certain neurons from the
network, is expected to cause an accuracy drop, as this operation changes the function
computed by the network. Therefore, we divided the learning into two phases: A) training
and pruning phase; B) �ne-tuning phase. This trick is widely used in pruning literature
[18, 24, 19], in order to achieve better performance.
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We de�ne a pruning criterion based on the norm m of each neuron, that is, the norm
of its output weights. As neurons do not all have the same number of outputs, for a fair
treatment we choose to balance the norm m by it. We thus introduce the average norm
m̄ of a neuron wl

k:

m(wl
k)

2 =
∑

w∈wl
k→

w2 ⇒ m̄(wl
k)

2 =
1

#[wl
k→]

∑
w∈wl

k→

w2

m(wl
k) =

∑
w∈wl

k→

|w| ⇒ m̄(wl
k) =

1

#[wl
k→]

∑
w∈wl

k→

|w| ,

where #[wl
k→] denotes the number of outputs weights wl

k→.

Phase A: iterative training and pruning. A pruning threshold ε > 0 is �xed. The
neural network is trained using SGD to minimize the penalized loss. At the end of each
epoch, the following steps are sequentially performed on each layer l, from the output to
the input, as illustrated in Figure 2:

1. perform a reordering in layer l, as described in section 4.1;

2. establish the list of neurons to prune in layer l. We prune every neuron verifying:

m̄(wl
k) < ε ; (7)

3. recompute the (l + 1)-th scaling layer, in order to maintain the same theoretical
pre-activation variance s2 throughout pruning. For example, if the scaling factors
were initially chosen such that:

σl+1,k ∝
1

k
and

nl∑
k=1

σ2
l+1,k = s2,

then, after pruning K neurons in layer l, they are rede�ned such that:

σ′l+1,k ∝
1

k
and

nl−K∑
k=1

σ′2l+1,k = s2.

Meanwhile, following Proposition 6, the weights are also recomputed so that the
global output of the network remains the same:

wlk ← wlk
σlk
σ′lk

.

Selecting the neurons to prune is very easy to perform, since the neurons are regularly
reordered by descending order of norms. For k from nl to 1, i.e. from the lowest norm to
the highest, we prune each visited neuron until m̄(wl

k) reaches ε.

Phase B: �ne-tuning. The penalty is removed from the loss, and a �nal training is
performed (without pruning).
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Figure 2: Steps of the pruning phase for one layer: 1) the neurons are reordered by
descending order of norm; 2) the neurons with a norm lower than a �xed threshold (e.g.
m(w)2 ≤ ε = 0.2) are pruned; 3) in the next layer, the scaling layer is recomputed to �t
equation (8), and its weights are modi�ed so as not to alter its behavior.

Algorithm 1 Pseudo-code for phase A (training with penalty + pruning)

1: epoch← 1
2: while loss or number of neurons has decreased in the last T epochs do
3: w̃← w̃ − η

[
∂`
∂w̃

+ ∂penalty
∂w̃

]
. update rule

4: for all l from L to 1 do
5: sort the neurons (wl

k)k of l by decreasing norm (m(wl
k))k . step 1

6: k ← nl
7: while m̄(wl

k) < ε do . step 2
8: prune neuron k in layer l
9: k ← k − 1

10: recompute the scaling layer (σ(l+1)k)k of layer l + 1 . step 3

11: epoch← epoch + 1

12



4.3 Choice of (σk)k

As shown in equation (6), the choice of the sequence (σlk)k determines the penalty, thus
the behavior of the network during training. This hyperparameter is closely linked to the
expected �nal sparsity of the network.

Let us consider any layer and drop the index l for simplicity, hence denoting σlk by
σk. Supposing that the activation function is φ = ReLU, the sequence (σk)k should
verify equation (4) in the case of a fully connected layer, or equation (5) in the case of a
convolutional layer. In both cases, the condition can be written:

N∑
k=1

σ2
k = s2, (8)

where s is a constant depending only on the activation function [12].

Case l ≥ 1: hidden layer. We recall that we want to train and prune a neural
network, such that the width of the layers of the resulting network will be approximately
the same, however large they were at initialization. To handle arbitrarily large widths,
we pick a in�nite sequence (σk)k∈[1,∞[ such that

∑∞
k=1 σ

2
k is �nite, and, for a given layer

width N , we consider the normalized subsequence (σk)k∈[1,N ], i.e. consider (ασk)k∈[1,N ]

with α = s2/‖(σk)k∈[1,N ]‖2, to satisfy Equation (8). Note that such a choice of (σk)k
satis�es Corollary 3 and that we can pick for instance:

• σk ∝ 1√
k log(k)

. This sequence just ful�lls the preceding condition, introducing few

asymmetry between the neurons of the layer in the penalty;

• σk ∝ 1
k
. This sequence is sharper and the neuron penalization is more heteroge-

neous.

In general, the faster the sequence (σ2
k)k decreases, the more the �rst neurons are privi-

leged: they can reach higher values and they learn faster, thus the �rst neurons are more
likely to be useful.

Case l = 0: input layer. In the special case l = 0, m(w0
k) measures the norm of the

inputs of the network. If we do not have any prior knowledge about the usefulness of
these inputs, the most reasonable choice for the sequence (σ0k)k is the constant sequence:

σ2
0k =

s2

N
.

5 Experiments

In this section, we evaluate the pruning technique developed above. We consider an image
classi�cation task, with either fully connected or convolutional neural networks.

First, we verify that ScaLa addresses e�ciently the Problems 1 and 2 de�ned in
Section 3, that is, the training with SGD of a standard neural network should not diverge
when its width tends to in�nity. For this, we compare the performance of a simple neural
network with di�erent layer widths, with and without scaling layer.
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Second, we check the stability of ScaLP. On the one hand, the initial width of the
layers should not impact the structure of the resulting neural network, provided that they
are wide enough. On the other hand, when performing several runs of a same experiment
with same hyperparameters, such as the learning rate or the penalty factor, we would like
results to be stable, that is, the �nal accuracy and the �nal structure not to vary much.

Third, we compare ScaLP to other pruning algorithms. Moreover, we also test our
setup with other common penalties (Lasso, group-Lasso).

In all experiments, the datasets are split into a training set, a validation set and a
test set. The test set is only used to test the �nal version of the pruning technique.

5.1 In�uence of the Variable Change w→ w̃

In this section, we illustrate the di�erence between ScaLa and standard SGD, that is,
given the variable change w = Sw̃, we compare SGD over w̃ to SGD over w.

We �rst illustrate the training of a neural network with or without ScaLa in the
simplest possible setup: a fully connected linear neural network [1024, N, 10] on CIFAR-
10. We also test the same neural network [1024, N, 10] with ReLU activation functions
after the two �rst layers.

• with ScaLa: the learning rate η is chosen once and for all, in order to achieve the
best performance for N = 300. In practice, this yields η = 1. Once η is �xed, the
neural network is trained for each N with this same learning rate. We have tested
three di�erent types of scaling layers S = Diag(σ1, σ2, · · · , σN), de�ned by:

Uniform: σk = 1√
N

1√
k log(k)

: σk = C 1√
k+1 log(k+1)

with C s.t.
∑N

k=1 σ
2
k = 1

1
k
: σ2

k = C ′ 1
k

with C ′ s.t.
∑N

k=1 σ
2
k = 1

(9)

• without ScaLa: for each N , we trained the neural network with all learning rates η
in {10−5, 10−4, 10−3, 10−2, 10−1}.

Then, we measured the best performance achieved by each trained neural network (ac-
cording to the validation set), and the number of epochs needed to reach this performance.

Note that we made the setup harder for ScaLa: instead of exploring the most e�cient
learning rate η for each N , we �xed η after one grid search for N = 300. Thus, the
learning rate we used is independent from N . On the contrary, without ScaLa, we made
one grid search for every tested N .

Results. Figure 3 shows the performance and the number of training epochs according
to the hidden layer size N , without and with a scaling layer. Without scaling layer, most
learning rates (η ∈ [10−4, 10−1]) lead to unstable results when N changes: there exists
at least one N for which each learning rate performs poorly. In the linear case, the only
learning rate that works well for all N is 10−5, but its number of training epochs is much
larger than in the other cases, especially for small N . In the ReLU case, the only learning
rate which works well without scaling layer is η = 10−4, but, in terms of accuracy, this
setup is dominated by the ScaLa algorithm with uniform scaling.
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Figure 3: Results of the training of neural networks with one hidden layer of size N ∈
[3 · 102, 105] on CIFAR-10, with two setups of activations functions: identity (top) and
ReLU (bottom). Figures (3a) and (3c) show their best accuracies on the validation set.
Figures (3b) and (3d) show the number of epochs necessary to reach it, up to 1000
epochs. Continuous lines correspond to experiments with a scaling layer, and the dotted
lines correspond to experiments without it. Each point corresponds to an average over 3
runs and each run is early stopped if no improvement has been made during 50 epochs.
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Conversely, with a scaling layer and a �xed learning rate, the given results do not
depend on N : the accuracy and the number of training epochs remain the same for the
tested widths. Moreover, they are roughly the same for the three tested scaling layers:
there exists a learning rate η such that for all N , the resulting network performs well (in
our case η = 1). However, this stability is not always costless (see Figure 3a): in the
linear network setup, for all N , there also exists η such that the resulting network, trained
without scaling layer, performs slightly better (but �nding it requires a grid search).

Moreover, we recall that the chosen learning rate for ScaLa is 1. Thus, it appears that
the scaling layer leads not only to stable results, but also makes the optimal learning rate
close to 1, which would make the learning rate search easier. This result is con�rmed in
the next section: with ScaLP over VGG19, the chosen learning rate is also 1.

Overall, we have shown that, even in a simple setup (training a single-hidden layer
neural network), we observe a di�erence between ScaLa and standard SGD: using ScaLa
leads to very stable results according to the width of the hidden layer, with the same
learning rate η. However, standard SGD with learning rates �ne-tuned separately for
each width leads to slightly better results.

5.2 Pruning: Results and Comparison

In this section, we compare our algorithm with other pruning techniques. As pointed
out in [20], pruning techniques can be split into two categories. Some, as in [18], need a
prede�ned pruning rate (and consequently, prede�ned resulting architectures), while the
other ones discover automatically the �nal architecture, as in [19]. Since we do not need
any prior knowledge about the pruning rate, our method stands in the second category.
Thus we compare it to other penalty-based methods.

5.2.1 Existing Penalties

The pruning techniques studied here depend on a penalty: adding to the loss a well-chosen
penalty term is an e�cient way to push neurons towards zero, allowing their removal. In
this section, we recall some penalties commonly used in pruning. For convenience, we
denote by wl

k the vector of weights of the k-th neuron in layer l, where l ∈ [1, L] and
k ∈ [1, nl].

Lasso penalty. The loss with a Lasso penalty [27] can be written:

L(w) = `(w) + λ
L∑
l=1

nl∑
k=1

‖wl
k‖1,

where ` is the error term and λ > 0 is a given constant. The Lasso penalty is likely to
push towards 0 each weight with a constant force proportional to λ [27].

Group-Lasso penalty. The group-Lasso penalty [28] is designed to push groups of
parameters towards 0. The loss writes itself:

L(w) = `(w) +
L∑
l=1

nl∑
k=1

λl

√
dim(wl

k)‖w
l
k‖2,
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where the λl > 0 are given constants. The scaling factor
√

dim(wl
n) ensures that the

weights are uniformly penalized.

Sparse group-Lasso penalty. The sparse-group Lasso penalty [7] is a linear combi-
nation of the Lasso and the group-Lasso penalties. The aim of this penalty is to push
simultaneously each weight and each group of weights towards 0.

L(w) = `(w) +
L∑
l=1

nl∑
k=1

λl

[
α‖wl

k‖1 + (1− α)
√

dim(wl
k)‖w

l
k‖2
]
,

where the λl > 0 are given constants and α ∈ [0, 1]. The value of α is usually 0.5, as
in [24, 1].

In the case of large neural networks, the e�ciency of pruning techniques using the
group-Lasso penalty or the sparse group-Lasso penalty highly depends on the hyperpa-
rameters λl, which are usually di�erent from layer to layer [1].

BN-Lasso: Lasso penalty over scaling parameters of batch-norm layers. In
addition to these penalties, [19] proposes to introduce learned scaling parameters γ, pe-
nalized by their L1-norm. These parameters γ are used as follows: the output of each
neuron unit u is multiplied by γu. Thus, the size of γu indicates the usefulness of the
neuron u. Then, the loss can be written as:

L(w,γ) = `(w) + λ
∑

neurons u

|γu|,

where λ > 0 is a given constant. In practice, instead of introducing new parameters,
the authors propose to penalize the trained scaling parameter in each batch-norm layer.
We refer to this penalty by the name BN-Lasso. Unlike simple Lasso, group-Lasso and
sparse group-Lasso over the weights, BN-Lasso leads to stable results, with only one
hyperparameter, and without �xing the �nal sparsity.

As with our algorithm, BN-Lasso is based on scaling factors, but, in our case, these
factors are �xed, and we penalize the weights.

5.2.2 Pruning Experiments

Setup. We tested pruning with two neural networks: a small fully connected neural
network trained on MNIST (which is named sFC, with architecture [1000, 1000, 10], i.e.
two hidden layers of size 1000), and a VGG19 deep convolutional network (with only one
output fully connected layer) trained on CIFAR-10. For each experiment, we retain the
neural network at the epoch where it achieves the best validation accuracy: the reported
test accuracy, �nal number of parameters... refer to this speci�c state.

We tested ScaLP (Section 4.2) with di�erent scalings (9) and di�erent penalties. The
tested penalties are: L2, Lasso and group-Lasso (denoted by GLasso). We tested the
penalty proposed in [19], to which we refer as BN-Lasso, with our pruning setup. As
mentioned above, the learning rate was �xed once and for all to 1 for these methods
(which was the best across the board, as can be expected with scaling layers).
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We also tested standard pruning setup without scaling layers (with Lasso and Group-
Lasso); in that case, the learning rate has to be retuned by grid search for each penalty
factor λ.

Phase A (pruning) ends when the number of neurons and the best validation accuracy
have not improved for 50 epochs. During phase B (�ne tuning), the learning rate is
decreased by a factor 10 each time the validation accuracy has not improved for 50
epochs, up to 2 times. The third time, training is stopped.

The baseline is the accuracy obtained with the same neural network, learned with
SGD and weight decay, without pruning; its learning rate and weight decay constant are
optimized for accuracy on the validation set. To obtain a similar setup, the training is
also divided into two phases: in phase A, weight decay is applied, then removed in phase
B. Moreover, we apply the same learning rate schedule and early stopping rule as in the
other setups.

Results. In terms of performance, the non-pruned baseline performs very well. ScaLP
with group-Lasso penalty and uniform scaling matches this baseline performance while
dividing the number of parameters by 14.

To assess performance for various pruned network sizes, we look at the Pareto front,
namely, the set of points corresponding to the best performance for a given target on
pruned network size. Clearly (Fig. 4), no method sticks to the Pareto front for all target
network sizes. On VGG, both BN-Lasso and ScaLP with 1/(k1/2 log k) scaling are on
the Pareto front for small network sizes. For pruned network sizes above 106, the best
performance is with ScaLP with group-Lasso penalty and uniform scaling. On MNIST
with a fully-connected network, the Pareto front is entirely made of ScaLP variants, while
BN-Lasso is inferior (Fig. 5).

ScaLP with group-Lasso and uniform scaling provides the top performance in Figure 4,
but only for a well-tuned λ. On the contrary, ScaLP group-Lasso with non-uniform scaling
leads to more regular curves as λ varies. Indeed, in Figure 4, the brightest cyan line goes
out of the plot: ScaLP with group-Lasso and uniform scaling is not usable with high λ.
For small λ, on the other hand, it tends to over�t: with λ = 0 performance is below the
baseline. (The same holds for BN-Lasso.)

Pruning without scaling layers, either with Lasso or group-Lasso penalties, leads to
poor performance compared to ScaLP and BN-Lasso (Fig. 4 and Fig. 5). Moreover, the
learning rate for these methods had to be tuned di�erently for each penalty factor λ
(to compensate for the absence of scaling; otherwise their performance are substantially
worse). This is in line with the results for such methods in [1], where the authors had to
use one penalty factor λ per layer for good results.

Surprisingly, the L2 penalty combined with non-uniform scaling layers (dotted orange
lines) leads to pruned neural networks with reasonable performance, although it is rarely
used for pruning in standard setups. Still, the resulting networks are always below the
Pareto front.
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Figure 4: Comparison between ScaLP, BN-Lasso, and standard pruning setups without
scaling: Lasso penalty (red) and group-Lasso penalty (blue). Performance of a VGG19
network trained on CIFAR-10. Each setup (pruning method + penalty + scaling) is
represented by a line, and each point of a line corresponds to a di�erent penalty factor
λ. The bigger λ is, the more the resulting network appears on the left. Each point corre-
sponds to an average over 3 runs, and is surrounded by a vertical bar and an horizontal
bar, showing respectively the min/max �nal accuracy and the min/max �nal number of
parameters.
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Figure 5: Final accuracy according to �nal number of parameters for di�erent setups, for
a fully connected network trained on MNIST.

20



Table 1: Final accuracy and �nal number of parameters. For each pruning setup (i.e.
row), we selected the penalty factor λ that led to the best mean accuracy over 3 runs.
We reported here this mean accuracy and the mean number of parameters at the end
of training. Best results, either in terms of accuracy or �nal number of parameters have
been highlighted (even if they are very close to others).

Model VGG19 on CIFAR-10 sFC on MNIST

Acc(%) # Params Acc (%) # Params

Baseline 93.28 20M 98.77 1.8M

BN-Lasso 92.28± 0.21 783K± 14 98.10± 0.07 364K ± 48

pen. Lasso 93.29± 0.05 2.39M ± 0.05 98.72± 0.06 1.8M ± 0
pen. GLasso 92.83± 0.22 3.22M ± 0.10 98.71± 0.05 1.8M ± 0

ScaLP, pen. L2, sc. 1/(
√
k log k) 92.69± 0.09 2.95M ± 0.02 98.46± 0.05 238K ± 0.9

ScaLP, pen. L2, sc. 1/k 92.29± 0.12 1.38M ± 0.02 98.43± 0.14 134K± 1

ScaLP, pen. GLasso, sc. unif. 93.36± 0.11 1.44M ± 0.03 98.65± 0.10 571K ± 9

ScaLP, pen. GLasso, sc. 1/(
√
k log k) 92.11± 0.05 855K ± 29 98.56± 0.03 147K ± 3

ScaLP, pen. GLasso, sc. 1/k 91.37± 0.11 932K ± 4 - -
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Figure 6: Final number of neurons for di�erent pruning setups and di�erent widths of
the initial networks. Grey bars show the initial number of neurons (250, 500, 1000 or
2000). The dataset is MNIST.

5.3 Stability of the Final Architecture with Respect to Initial

Width

The main motivation for the presented pruning technique was that its behavior should be
independent of the initial network width, provided the initial network is wide enough. To
test this assumption, we ran the pruning methods with various initial numbers of neurons
per layer.

We tested the sFC architecture on MNIST with [N,N, 10] neurons, where N ∈
{250, 500, 1000, 2000}. We tested ScaLP with uniform scaling and 1/(k1/2 log k) scal-
ing, and BN-Lasso pruning. The results are given in Figure 6: each colored bar is the
average �nal number of neurons, computed over 3 runs.

ScaLP with 1/(k1/2 log k) scaling leads to the same network architecture, no matter
the initial width. On the contrary, the other two methods return di�erent architectures,
depending on the initial width N .

While Figure 6 reports the average over three runs of the �nal architecture width,
Figure 7 reports the individual values obtained for the three runs. We �nd that ScaLP
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leads roughly to the same �nal neural network, either with a uniform scaling or with
scaling 1/(k1/2 log k). On the other hand, pruning with BN-Lasso, results in quite di�erent
architectures from run to run.
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Figure 7: Variability of the �nal number of neurons. Each column corresponds to a
pruning setup. For each setup, four initial layer widths were tested (one per color), and
three experiments per initial layer width were run. In one plot, each colored bar shows
the number of neurons at the end of one run. Figures 7a and 7b: ScaLP with uniform
scaling and group-Lasso penalty. Figures 7c and 7d: ScaLP with scaling 1/(

√
k log k)

and group-Lasso penalty. Figures 7e and 7f: BN-Lasso.

5.4 Discussion

Choice of the scaling. With the use of ScaLa or ScaLP comes a new hyperparameter:
the scaling (σk)k. As shown in Table 2, the �nal neural network depends on the choice of
the scaling layer: at �xed penalty factor λ, the more the sequence (σk)k decreases sharply,
the more neurons are pruned. Therefore, the scaling (σk)k may be tuned by the user
according to their needs in terms of accuracy and sparsity. Still, a �universal� setting like
1/(k1/2 log k) provides a slow decrease while still satisfying the �niteness assumptions (3),
and we would expect it to work in general situations.

Limitation in the choice of the penalty. Some choices of penalties may not make
sense with ScaLP. The asymmetric scaling is more consistent with grouping output
weights. More precisely (Section 4.1, Proposition 5), ScaLP with an asymmetrical scaling
and a L2-squared penalty is equivalent to penalizing asymmetrically the neurons through
their output weights. The same holds for a Lasso penalty.
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Table 2: Final accuracy and �nal number of parameters. The model is VGG19 trained on
CIFAR-10, and pruned with ScaLP combined with the group Lasso penalty with di�erent
penalty factor λ and di�erent scalings.

penalty factor λ sc. unif. sc. 1/(
√
k log k) sc. 1/k

Acc(%) # Params Acc (%) # Params Acc(%) # Params

λ = 1.38 · 10−5 90.33± 0.21 404K ± 14 85.96± 0.12 38K ± 0.8 84.49± 0.74 28K ± 1.5
λ = 1.38 · 10−6 93.36± 0.11 1.44M ± 0.03 92.05± 0.07 389K ± 17 91.17± 0.17 237K ± 11
λ = 1.38 · 10−7 87.71± 0.05 20M ± 0 90.43± 0.11 20M ± 1K 91.37± 0.11 932K ± 4

On the other hand, a standard group Lasso penalty applied to the sets of input weights
of each neuron cannot be interpreted in such way. Group Lasso with an asymmetric
scaling would penalize all incoming weights of a given neuron in the same way. This is
why we used group Lasso on the sets of output weights.

Generic use of scaling layers. We have shown the pertinence of rescaling the inputs
of the layers for training a simple linear network (Section 5.1), as well as for training
and pruning more complex networks (Section 5.2 and 5.3). However, the uniform scaling
1/
√

#fan-in, which is already known and used into theoretical works, is not frequently
used to train practical neural networks. This is probably due to the slight loss of perfor-
mance we have observed with scaling layers (Fig. 3a), which we are not able to explain.
Therefore, further study has to be made in order to understand why such theoretically
assessed scaling does not lead to better results. This phenomenon may be due to a wors-
ening of over�t when we use scaling: by assigning a well-chosen learning rate to each
neuron, we remove noise during optimization, thus we regularize less.

6 Conclusion

The standard Glorot initialization provides �nite variance of activities at initialization,
independently of network width. However, the size of the resulting �rst SGD gradient
step depends heavily on the network width, and learning rates must be adapted accord-
ingly. We have identi�ed the scaling layer trick, ScaLa, as a possible solution, together
with theoretical conditions on the scaling factors. Experimentally, ScaLa works well and
provides a uni�ed learning rate, close to 1 whatever the widths of the layers in a net-
work are. This provides both theoretical understanding and practical hyperparameter
optimization advantage by reducing the size of the search space of learning rates.

Using ScaLa together with non-uniform scalings and penalties leads to the pruning
method ScaLP, which is competitive with respect to comparable pruning methods. Inter-
estingly, the �nal network size provided by ScaLP tends to be independent of the initial
size used (though it still depends on a regularization constant), and also to be regular
between runs. Neither is the case with other pruning methods.

Our methods are based on the principle that the behavior of network training should
be independent from network width: it should be safe to just start with a large enough
network, and also to change layer width during training (as happens for pruning). Our
approach is based on analogies with the theory of in�nitely wide networks (NTK). One
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di�erence is that our non-uniform weights retain the individuality of neurons in the
in�nite-width limit. In further work, we plan to study how the NTK framework can be
extended to our case.
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A Proof of Proposition 1

We recall Proposition 1:

Proposition. We assume that the (xk)k are independent random variables with zero-
mean, variance 1 and �nite order 4 momentum. Moreover, we suppose that ∂L

∂y
is a

random variable of mean 0 and non-zero �nite variance, independent from the (xk)k.
We initialize the weights (w̃k)k such that they are i.i.d. of mean 0 and variance τ 2(N)

(τ 2(N) = 1 if not speci�ed). The bias b is drawn from a distribution of mean 0 and variance

τ 2b , independently from (w̃k)k.
We denote by y(N) and y

′
(N) respectively the initial pre-activation of the neuron and

its pre-activation after one SGD step over w̃ ∈ RN . The learning rate η is �xed and
independent from N .

Assuming that
(∑N

k=1 σ
2
(N)k

)
N
is weakly monotonic and does not admit a subsequence

that converges to 0, the following equivalence holds:
limN→∞

∑N
k=1 σ

2
(N)k <∞

limN→∞
∑N

k=1 σ
4
(N)k <∞

limN→∞ τ(N) <∞

⇔
{

limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞ .

Proof. • We assume that: 
limN→∞

∑N
k=1 σ

2
(N)k <∞

limN→∞
∑N

k=1 σ
4
(N)k <∞

limN→∞ τ(N) <∞
.

Computation of Var(y(N)). We have:

y(N) =
N∑
k=1

wkσ(N),kxk + b.

Then:

Var(y(N)) = τ 2(N)

N∑
k=1

σ2
(N),k + τ 2b . (10)

Since the sequences
(
τ 2(N)

)
N
and

(∑N
k=1 σ

2
(N),k

)
N
converge, then

(
Var(y(N))

)
N
con-

verges.
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Computation of Var(y′(N) − y(N)). We denote by w′k and b′ the weight and the
bias after one update. We have:

w′k = wk − η
∂L

∂wk

= wk − η
∂L

∂y

∂y

∂wk

= wk − ησ(N),kxk
∂L

∂y
.

and:

b′ = b− η∂L
∂b

= b− η∂L
∂y

Then:

y′(N) − y(N) =
N∑
k=1

w′kσ(N),kxk + b′ −
N∑
k=1

wkσ(N),kxk − b

= −η∂L
∂y

[
N∑
k=1

σ2
(N),kx

2
k + 1

]
.

Therefore:

Var
(
y′(N) − y(N)

)
= η2Var

(
∂L

∂y

)[ N∑
k=1

σ4
(N),kE(x4k) +

∑
k 6=l

σ2
(N),kσ

2
l Var(xk)Var(xl) + 2

N∑
k=1

σ2
(N),kVar(xk) + 1

]

= η2Var

(
∂L

∂y

)[
3

N∑
k=1

σ4
(N),k +

N∑
k=1

σ2
(N),k

N∑
l=1,l 6=k

σ2
l + 2

N∑
k=1

σ2
(N),k + 1

]

= η2Var

(
∂L

∂y

)[
3

N∑
k=1

σ4
(N),k +

N∑
k=1

σ2
(N),k

(
N∑
l=1

σ2
l − σ2

(N),k

)
+ 2

N∑
k=1

σ2
(N),k + 1

]

= η2Var

(
∂L

∂y

)3
N∑
k=1

σ4
(N),k +

(
N∑
k=1

σ2
(N),k

)2

−
N∑
k=1

σ4
(N),k + 2

N∑
k=1

σ2
(N),k + 1


= η2Var

(
∂L

∂y

)2
N∑
k=1

σ4
(N),k +

(
N∑
k=1

σ2
(N),k

)2

+ 2
N∑
k=1

σ2
(N),k + 1

 . (11)

Using the assumptions,
(

Var(y′(N) − y(N))
)
N
converges.

• We assume that: {
limN→∞Var(y(N)) <∞
limN→∞Var(y′(N) − y(N)) <∞
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Convergence of
(∑N

k=1 σ
2
(N)k

)
N
and

(∑N
k=1 σ

4
(N)k

)
N
. We recall equation (11):

Var
(
y′(N) − y(N)

)
= η2Var

(
∂L

∂y

)2
N∑
k=1

σ4
(N)k +

(
N∑
k=1

σ2
(N)k

)2

+ 2
N∑
k=1

σ2
(N)k + 1

 .
Then

(
2
∑N

k=1 σ
4
(N)k +

(∑N
k=1 σ

2
(N)k

)2
+ 2

∑N
k=1 σ

2
(N)k

)
N

converges. Moreover, the

three terms are non-negative, thus
(∑N

k=1 σ
2
(N)k

)
N
is bounded. Recalling that it is

also weakly monotonic, this sequence converges, so the second term and the third

term. Thus, the �rst term
(∑N

k=1 σ
4
(N)k

)
N
converges as well.

Convergence of (τ 2(N))N . We recall equation (10):

Var
(
y(N)

)
= τ 2(N)

N∑
k=1

σ2
(N)k + τ 2b .

Since we have proven that the sequence
(∑N

k=1 σ
2
(N)k

)
N

converges, and we have

assumed that it does not admit a subsequence that tends to 0, (τ 2(N))N converges.
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