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ABSTRACT

The development of Large Speech-Language Models (LSLMs) has been lim-
ited by fragmented architectures and poor transparency, making reproducibil-
ity and fair comparison difficult. In contrast to the vision-language domain,
where open resources have driven rapid progress, LSLMs are often released
only as model weights without their training data or configurations, leaving the
field without common baselines. We present LLaSO, the first fully open, end-
to-end framework for large-scale speech—language modeling. LLaSO consists
of three key components: (1) LLaSO-Align, a 12M-instance speech—text align-
ment corpus; (2) LLaSO-Instruct, a 13.5M-instance multi-task instruction-tuning
dataset for speech—text understanding; and (3) LLaSO-Eval, a standardized, re-
producible benchmark for cross-modal evaluation. To demonstrate its utility, we
train LLaSO-Base, a 3.8B-parameter reference model built entirely on public
data. LLaSO-Base achieves a normalized score of (.72, outperforming compa-
rable models and providing a strong, reproducible baseline. Our analysis fur-
ther shows that while broader training coverage improves performance, signifi-
cant generalization gaps remain, especially in speech-only scenarios. By releasing
datasets, benchmarks, and models together, LLaSO establishes an open standard
for LSLMs, enabling unified research and faster community progress.

1 INTRODUCTION

The remarkable success of Large Language Models (LLMs) has established a powerful foundation
for multimodal AI OpenAl (2024); Yang et al.[ (2025). In the visual domain, this has led to the
rapid maturation of Large Vision-Language Models (LVLMs), where established paradigms, such as
leveraging CLIP-style encoders Radford et al.|(2021)), have enabled effective and scalable alignment
between vision and text|Awadalla et al.| (2023)); Wang et al.| (2024)); Bai et al.| (2025)); Cocchi et al.
(2025). In contrast, the development of Large Speech-Language Models (LSLMs) remains in a more
nascent and fragmented stage. The field currently lacks consensus on fundamental architectural
principles, with competing approaches that include external feature fusion Radford et al.| (2022);
Li et al| (2023b), dedicated cross-modal attention mechanisms Kong et al.| (2024b); |[Elizalde et al.
(2024), and implicit alignment strategies |Chu et al.| (2024).

This architectural divergence is compounded by a lack of transparency in existing research. While
several open-source LSLM initiatives have emerged [Chu et al.|(2023)); Défossez et al.[(2024)); Tang
et al.| (2024), many are only partially open. Model weights may be released, but the underlying
training data and crucial configurations are often withheld. This opacity makes it difficult to con-
duct fair comparisons, as performance differences can be attributed as much to proprietary data or
undisclosed training strategies as to architectural merit, hindering systematic progress.

To address these challenges of fragmentation and opacity, we introduce LLaSO: a fully open, end-
to-end framework designed to establish foundational standards for LSLM research. LLaSO consists
of three core, publicly available components:

1. LLaSO-Align: A 12M-instance speech-text alignment corpus aggregated from diverse
sources, including conversational speech|Chen et al.|(2021]), read narratives Panayotov et al.
(2015)), audio books|Ito & Johnson|(2017); Pratap et al.| (2020), and accented speech|Veaux
et al.|(2016).
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2. LLaSO-Instruct: A 13.5M-instance instruction-tuning dataset covering 20 tasks across
linguistic, semantic, and paralinguistic domains. It supports three distinct modality config-
urations: audio instructions with audio inputs, textual instructions with audio inputs, and
audio instructions with textual inputs.

3. LLaSO-Eval: A reproducible benchmark of 15,044 stratified samples designed for com-
prehensive evaluation of instruction-following capabilities of LSLMs.

To validate our framework and provide the community with a strong, reproducible baseline, we
developed LLaSO-Base, a 3.8B-parameter reference model that adapts the successful LLaVA ar-
chitecture to the speech domain. Trained exclusively on LLaSO-Align and LLaSO-Instruct, and
evaluated on LLaSO-Eval, our model achieves a normalized score of 0.72, outperforming the next
best comparable model (0.65). As illustrated in Figures |1| (Middle and Right), LLaSO-Base is de-
signed not for state-of-the-art performance, but to demonstrate the power of an open, extensible, and
reproducible workflow.

Our evaluation shows that while broader training improves overall performance, models still struggle
with generalization, leaving substantial gaps on unseen tasks and pure audio settings. Investigating
potential solutions for this weakness, we found that models equipped with interleaving and parallel
decoding mechanisms exhibit far greater robustness in these challenging scenarios.

In summary, LLaSO provides the first fully open, end-to-end stack for LSLM research, comprising
large-scale training datasets, a standardized benchmark, and a reference model. By releasing these
resources, we aim to lower the barrier to entry and foster a new wave of systematic, community-
driven progress in large-scale speech-language modeling.
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Figure 1: (Left) LLaSO Corpus Overview: 25.5M audio-text pairs over 20 tasks (18 paralinguistic), integrating
LLaSO-Align, LLaSO-Instruct, and LLaSO-Eval, with 73% real and 27% synthetic audio (further statistics are
detailed in Appendix [Q]and [R). (Middle) Overall model performance after min-max normalization for direct
comparison where higher bars indicate better overall performance. (Right) Normalized task-level results on
LLaSO-Eval: LLaSO-Base (orange) vs. leading baselines (blue) across 20 tasks, with scores scaled by setting
the best model to 1 (detailed results are provided in Appendix [§])

2 RELATED WORK

Vision-Language Modeling. Vision-language modeling has rapidly advanced through a standard-
ized two-stage paradigm: modality alignment followed by instruction tuning Brown et al.| (2020);
Bommasani et al.[(2021)); |Li et al.| (2023c). The rapid progress in this field has been facilitated by
two essential types of open resources. First, public training datasets and standardized evaluation
benchmarks Ma et al.| (2023); Hsieh et al.| (2023); Zeng et al| (2024b)); [Fu et al. (2024)); Huang
et al.[ (2025) have become widely adopted, enabling fair comparison and transparent reproducibil-
ity across models and tasks. Second, open-source implementations with modular codebases such
as LLaVA [Lin et al.| (2023) and OpenFlamingo |[Awadalla et al.| (2023)) have significantly lowered
the technical barriers to development and fostered rapid iteration across the community. Together,
these practices have fostered a shared research infrastructure where new models and tasks are often
built upon existing resources [Liu et al.|(2023)); |Yin et al.| (2024)). This has allowed vision-language
research to focus more on advancing scientific capabilities rather than reimplementing foundational
components.

Speech-Language Modeling. Compared to vision-language modeling, progress in speech-
language systems has been less cohesive Su et al| (2025); [Ma et al.| (2024). First, most leading
models such as Audio Flamingo |[Kong et al.| (2024a); |Ghosh et al.| (2025), Qwen-Audio [Chu et al.
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(2023; [2024), and Kimi-Audio KimiTeam et al.| (2025) rely on proprietary data, limiting repro-
ducibility Peng et al.|(2025); Pandey et al.|(2025). Second, most models support only narrow modal-
ity configurations (e.g., text-plus-audio), with few addressing more compositional tasks [Tang et al.
(2024); |Chu et al.| (2024)); |Chen et al.| (2024). Third, existing datasets largely focus on semantic
reasoning |[Fang et al.|(2025); [Wu et al.| (2024)); [Mei et al.| (2024), with limited coverage of prosody
and emotion. Lastly, few open-source stacks unify models, datasets, and benchmarks; most systems
(e.g., LauraGPT Du et al.| (2023)), Moshi Détossez et al.|(2024), Westlake-Omni Xinchen-ai| (2024))
lack full releases, hindering reproducibility and community development.

Alignment Alignment Task  Modality Audio Sample Duration

Name Data Tasks Coverage Coverage Type Num. (Hours)
AVQA X - 1 Collected ~57.3K -
COTA X - 5 Mixed ~1.2M -
OpenAQA v Multiple 4 Collected ~5.0M -
OpenASQA v Single 8 Collected ~9.6M -
SIFT-50M v Multiple 10 Collected ~55.6M -
SALMONN v Multiple 14 @ Collected ~2.3M  ~4.4K
LLaSO Corpus v Single 20 6 Mixed ~25.5M ~89.5K

Table 1: Comparison of public speech-language datasets and LLaSO Corpus. For “Modality Coverage,”

means only text instruction with audio input, @ adds pure audio formats, and ® indicates full support, in-
cluding audio instruction with text input. “Audio Type” denotes real (“Collected”), synthetic, or mixed data.
v//IX show whether alignment data are presented.

3 LLaSO CORPUS

To support the development of LSLMs, we introduce the LLaSO Corpus, a comprehensive, modular
benchmark suite.

3.1 CORPUS OVERVIEW

Inspired by practices in LVLMs, LLaSO comprises three tightly integrated components:

* LLaSO-Align: A large-scale corpus for aligning speech with semantic space through ASR-
based supervision.

* LLaSO-Instruct: A multi-task instruction-tuning dataset spanning linguistic, semantic, and
paralinguistic tasks.

* LLaSO-Eval: A stratified benchmark designed for consistent evaluation across tasks.

These components together support the full training pipeline of LSLMs, modality alignment, in-
struction tuning, and evaluation (see Figure (Left)).

To advance LSLMs beyond vision-language paradigms, we anchor our benchmark design in two
core properties of speech:

e Inherent Paralinguistics: Speech conveys rich, essential information beyond words such as
speaker identity, accent, emotion, and prosody. These paralinguistic cues are omnipresent
and crucial for natural human communication.

* Flexible Modality Roles: In LSLMs, both audio and text can serve as inputs or instructions,
enabling diverse interaction patterns e.g., audio-instruction with text input, text-instruction
with audio input, or audio-instruction with audio input.

To better reflect the needs of real-world systems, we adopt a balanced task weighting approach that
corrects for limitations in existing corpora:

» Semantic Tasks (8%): Intentionally underweighted, as their success often reflects language
modeling capacity rather than speech understanding Rouditchenko et al.| (2025), and they
are already well-represented |Gong et al.[(2023b); Fang et al.| (2025).

* Paralinguistic Tasks (40%): Prioritized to address their underrepresentation in current re-
sources Jiang et al| (2025); [yu Huang et al.|(2024). We ensure diversity by combining
real-world metadata with synthetically generated variations.
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* Linguistic Tasks (52%): Dominated by ASR, which remains foundational to grounding
speech in linguistic structure and is critical for general performance.

The final LLaSO Corpus includes 71% real-world audio and 29% synthetic speech, and covers a
broad range of modality configurations where both audio and text flexibly act as inputs and in-
structions presented in Table [T} This design ensures robust coverage of the full speech landscape,
supporting the development of unified and adaptable LSLM:s.

3.2 LLASO-ALIGN

To establish a robust semantic foundation for speech-language modeling, we adopt ASR as the
core alignment task in LLaSO Corpus’s first stage. Following vision-language best practices,
this approach grounds speech representations directly in textual semantic space through explicit
instruction-response pairing. LLaSO-Align contains 12M instruction-formatted ASR samples, each
including an audio input, a natural language instruction, and a reference transcript. Unlike tradi-
tional ASR datasets offering only raw audio-text pairs, we introduce 18 hand-crafted instruction
templates that frame the task with varying specificity and constraints, e.g., “Transcribe the audio
precisely; return text only”, encouraging instruction adherence and realistic use. To ensure diver-
sity in content and speaker profiles in LLaSO-Align, we aggregate wide-range public ASR corpora
spanning conversational speech|Chen et al|(2021)), single-speaker narration [Panayotov et al.| (2015)),
audio books [[to & Johnson| (2017); Pratap et al.| (2020), and accented English [Veaux et al.|(2016),
capturing a broad range of acoustic environments, accents, ages, and speech styles. All samples
undergo a construction pipeline to ensure consistency and quality presented as Figure 2] where its
standardization details in Appendix [Q} By reframing ASR as an instruction-following alignment
task and curating a diverse, high-quality dataset, LLaSO-Align lays the groundwork for downstream
speech-language understanding across modalities.

Collected Data Standardization
Text Question Answering Data Diverse Text Question Diverse Audio
Q Answering Data Recognition Data
What are the three primary colors? TTS & Tone Cloning
A:
The three primary colors are red,
blue, and yellow. ASR AC PR A 2 Myshell Gender  Accent  Content
Speed
Audio Recognition Data @ 0 o sec i MeloTTS  seeed  Tone  Prosody
<Audio>
Emil:g""\"ser @ @ ey A lMySheII. ) -\ Generate Audio Instructions/
: st : H
Utterance: What's going on? OpenV0|c G @ ;] Inputs/Both Concatenated
Accent: American PSSV AC e Tstant voce olon,” Y gl
Age: 32
Text Instructions
Stage Data 12.0M ‘ SFT Stage Data 13.5M l
Automatic Speech User. Diverse Audio Diverse Audio Diverse Audio
Recognition Please transcribe the following audio Recognition Classification Question Answering

clip into text and re o €
transcript, without any additional
comments.<audio>

User: User
Even if the emotion is

subtle, classify the intensity

into one of these three

categories: positive, neutral,

or negative. Only return the

label.<audio>

Assistant:

Neutral

User:
User: d
Please transcribe the
audio. <audio>

e pitch in the
given audio sample and
return its MIDI number.

Summarize the following audio
Assistant: in 10 words or less. <audio>

And this principle is so important to us
from an evolutionary point of view that it
really produces tightening and it's
something that people have used for
centuries to win elections to gain
popularity.

Assistant:

Technology is rapidly
developing and changing our
lives

Assistant:

And this principle is so
important to us from an
evolutionary point of view

between 0 and 127.<audio>
Assistant:

that it really produces...

Figure 2: LLaSO Corpus construction pipeline. We first aggregate heterogeneous sources, including text-
based QA corpora and speech datasets covering acoustic, paralinguistic, and semantic tasks, then normalize
format, sample rate, and instruction style, etc. We construct LLaSO-Align (12.0 M) for aligning speech and
text modality via ASR, while LLaSO-Instruct (13.5 M) for multi-task instruction tuning including classification,
recognition, and AQA. When synthesize audio, we use advanced audio synthesis as described in Appendix [H]
for richer speaker variation, enabling pure-audio, text plus audio, and audio plus text formatted samples with
diverse gender, accent, speed, and tone.

3.3 LLASO-INSTRUCT

Building on the aligned speech-text representations from LLaSO-Align, we present LLaSO-Instruct,
a multi-task instruction tuning dataset designed to advance speech-language modeling with greater
task diversity and richer modality configurations. Unlike previous instruction datasets focused pri-
marily on semantic tasks with limited input modalities, LLaSO-Instruct fully embraces the inher-
ently multimodal and paralinguistic nature of speech, systematically expanding both task coverage
and modality pairings, offering a comprehensive framework to instruction tuning LSLMs.
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Task Coverage. LLaSO-Instruct spans 20 tasks across linguistic, semantic, and paralinguistic
categories. While linguistic tasks (e.g., ASR) and semantic tasks (e.g., audio-based QA) cover foun-
dational capabilities, the majority of tasks are paralinguistic, including speaker-centric tasks and
content-centric tasks, designed to capture speaker traits and contextual acoustic crucial for socially-
aware interaction, with all included tasks presented in Appendix [Q] To construct this wide range
of tasks, firstly, we collect task-specific datasets with rich metadata, enabling reuse of the same
audio sample across multiple tasks, with its associated labels such as accent and gender. When la-
bel distributions are imbalanced, we implement targeted sampling strategies.[ﬂ Secondly, for each
task, we manually construct 20 text instructions across four prompt styles including standardized,
contextualized, stylistic, and fine-grained (examples in Appendix [[J). For ASR and AQA tasks, in-
structions are open-ended inviting free-form responses from the model, while paralinguistic tasks
predominantly employ closed-ended instructions, requiring the model to select an answer from pre-
defined options without additional analysis. To address diverse task requirements, we construct
training samples at multiple levels of granularity, so that some paralinguistic tasks also include open-
ended variants.|"| We display task prototypes in Figure and the open/closed-ended mapping in Ap-
pendix [Q] As to linguistic and semantic task categories, we will discuss in the following paragraph.
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mantic QA tasks are derived from high-quality
text datasets (e.g., OpenOrca and Alpaca) and
converted into multimodal samples using audio

Figure 3: Task prototypes. (a) closed-set classifi-
cation; (b) multi-granularity/open-set recognition; (c)
open-ended AQA.

,/Instruction Instruction Instruction

synthesis (see Appendix [H), thus each instance
1 1 1 _with- Pl listen to the audi Who are Coldplay.<audio audio>H: discolor, |
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. .« . . . . \ Australia. /
abling training in pure audio scenarios better ~ -
. . . . (a) Pure Audio (b) < Textual Instruction, (c) < Audio Instruction,
simulating human-human interaction. Audio Input > Textual Input >

Figure 4: Interaction formats in LLaSO Corpus.
3.4 LLASO-EVAL

To complete our data trio, we introduce LLaSO-Eval, a held-out, training-disjoint evaluation suite
designed to accompany the LLaSO training set. Derived from the same underlying corpus but sep-
arate from the training split, LLaSO-Eval covers 15,044 samples across 20 tasks, categorized into
linguistic, semantic, and paralinguistic categories and supports all three modality configurations to
test both within- and cross-modal generalization. The suite includes open-ended prompts for free-
form comprehension/reasoning and closed-ended prompts enabling quantify instruction following
capability via abstention rate. A task-level breakdown is provided in Appendix [Q]and [R]

"For example, in the Meld accent dataset, we address the long-tail by removing rare accents and trimming
dominant ones. Similarly, we repurpose VCTK’s gender metadata for speaker classification, balancing the
dataset by downsampling the female subset to 1:1 ratio.

2For example, in age classification, we use three levels: coarse-grained (e.g., “twenties”, “fifties”), medium-
grained (e.g., ”15-19”, 720-24”), and fine-grained where the model is required to predict the exact age as an
integer between 18 and 8§0.

3When instruction and input segments are suitable for audio synthesis (English-only, properly normalized,
and error-free), each textual QA instance yields both text-with-audio and audio-with-text variants.
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4 MODEL

To validate the effectiveness of our LLaSO Corpus, we introduce LLaSO-Base, a reference model
in the speech-language domain that strictly aligns with the end-to-end instruction tuning paradigm
established in vision-language research Zhu et al.| (2023)); |[Cocchi et al| (2025); [Li et al.| (2023a).
Rather than pursuing new SOTA results, our objective is to offer the community a robust and exten-
sible baseline for systematic cross-modal instruction following.

4.1 MODEL ARCHITECTURE

LoSSyim Lossum

Our model follows a simple yet proven three-
component design as illustrated in Figure [j]
that uniformly supports text with audio, audio- i H
only, and audio plus text inputs via em-
bedding concatenation. For audio features,
we use the Whisper-large-v3 encoder Radford .
et al] (2022); [Zhang et al. (2024); [Gong et al. Text Response X er
(2023a), retaining only the encoder (~640M) to
leverage its strong representations while leav-
ing generation to the LLM. Audio is processed

Large Language Model Large Language Model "
Projector Projector

Speech Encoder Speech Encoder

Stage I ion Tuning Stage

Large Language Model E’
m

by Whisper’s front end (16 kHz log-mel, stride- R g X
2 ~40 ms/frame) with SpecAugment Park et al. ' |
(2019) during training. Final-layer features oo B, — I dudio Nt B rexcmpue X,

Z% = F,o(X*) (where X* may denote au-

dio instructions, content, or both) are projected Figure 5: Overview of LLaSO-Base: model architec-
into the LLM embedding space by a two-layer ture and input flow (Bottom}, _three in_put layogts (Top
multi-layer perceptron (MLP) with Gaussian Left?, and t.he two-stage training recipe of alignment
Error Linear Unit (GELU) activation, H* = and instruction tuning (Top Right).

Fir0i(Z%), chosen for its simplicity and effectiveness over heavier alignment modules [Tang et al.
(2024); Kong et al.| (2024b); [Lin et al.| (2024). The projected H* is concatenated with text embed-
dings H! Jinput from the tokenizer, yielding a unified multimodal sequence with preserving order.
The sequence is subsequently processed by Llama-3.2-3B-Instruct |Grattafiori et al.[(2024)), a main-
stream instructed backbone. With ~3.8B total parameters, LLaSO-Base balances computational
efficiency and representational capacity.

4.2 TRAINING

We train the model in a single-turn dialogue setting, where each instance consists of audio X ¢, its
paired text X, and the target response X!, ... ... To support different modality configurations, we
unify the query format as in Eq.

X(Efjgzy = [Xitnstruct7 Xﬁnput]’ thzggy = [qunstrucﬂ X;nput]’ (gz)ery = [X;lnstruct—i-input] (1)
Training optimizes parameters 6 via next-token autoregressive prediction, maximizing the condi-
tional likelihood of the response given the query, as defined in Eq.[2] We adopt a proven two-stage
instruction-tuning paradigm, alignment followed by instruction tuning, with the set of trainable pa-
rameters € varying by stage.

L
p(Xénswer | XéZLry) = Hp9 (mi ‘ Xq(zzery,<i’Xctmswer,<i) ’ (2)
i=1

where X! . = denotes the assistant’s text response, X, éz)wy the input query under any modality
configuration in Eq.[1} and L the response length. Beginning with Alignment Stage, we use ASR as
the alignment objective on LLaSO-Align, where each example contains a text instruction X} .,
an audio input X, and its transcript X7 wer» Optimized with the objective in Eq. During
this stage we freeze the speech encoder and the LLM, updating only the projector Fp,; so that
H® = Fp0j(Z%) aligns with the pre-trained LLM word embedding space, thereby establishing
cross-modal semantic consistency for the next stage. In Instruction Tuning Stage, we then train
on LLaSO-Instruct to endow the model with compositional instruction-following across linguistic,
semantic, and paralinguistic tasks. The encoder remains frozen while we optimize F},;o; and Fiiy,
under Eq. |2 using the unified query formats in Eq. |I|and always producing textual responses. We
provide training details in Appendix [K]
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Linguistic Task Category Semantic Task Category

Modality Format: < Textual Instruction. < Pure Audio > < Textual Instruction. < Audio Instruction,
Audio Input > Audio Input > Textual Input >

Tasks ASR AQA
Qwen2-Audio 0.22 0.12 241 242 273 278 2.59 2.56 3.49 2.13 3.14 3.13 2.20 2.82 3.47 3.62 3.29 1.29 3.14 252 2.89
Typhoon-Audio 0.11 0.06 1.76 1.77 2.16 2.22 1.98 1.87 3.14 1.61 2.83 3.04 236 2.60 2.69 291 2.47 1.68 3.04 191 245
Salmonn 0.86 0.69 147 141 141 1.72 1.50 2.05 3.13 1.42 2.96 3.12 2.37 2.60 2.04 3.03 2.42 1.83 3.19 1.58 2.35
Glm-4-Voice 0.93 0.79 222 2.34 3.29 293 2.70 249 321 2.51 3.11 2.82 1.97 PN 3.09 4.06 1.68 1.03 3.10 1.98 2.49
Mini-Omni 0.95 0.81 1.42 147 1.75 145 1.52 1.63 1.54 122 2.34 1.33 141 1.57 1.42 1.32 1.17 1.21 1.27 1.20 1.27
Mini-Omni2 0.95 0.80 1.57 1.53 2.05 1.51 1.67 1.66 1.64 1.26 2.52 1.42 143 1.65 1.68 1.50 1.41 1.29 1.31 1.28 1.41
Llama-Omni 0.88 0.73 1.97 2.02 2.99 2.48 237 2.38 2.95 1.88 3.16 2.72 2.20 2.58 2.73 3.78 2.29 1.11 3.08 2.09 2.51
Audio-Reasoner 0.28 0.12 244 224 251 2.86 2.51 222 342 2.12 3.07 291 2.14 273 2.84 395 2.88 1.54 3.13 2.09 2.74
Kimi-Audio 0.14 0.05 294 270 3.22 345 3.08 3.28 3.77 3.35 3.53 3.38 2.71 335 3.69 4.01 338 1.16 3.16 2.77 3.03
Qwen2.5-Omni 0.40 0.26 2.94 3.09 3.22 2.63 297 2.99 3.80 3.20 2.96 3.19 2.12 3.05 3.46 3.88 3.58 1.19 3.15 242 295
LLaSO-Base (Ours) 0.08 0.03 2.06 1.80 2.39 1.46 1.93 2.57 2.48 1.71 2.74 3.05 2.90 2.58 2.72 2.62 2.28 2.23 3.74 2.60 270
Metrics |WER|| CER| | GPT-dot | Avg.GPT-4o1 | GPT-do | Avg.GPT-4o1 | GPT-do | Avg.GPT-dot

Table 2: Comparison of 11 LSLMs on LLaSO-Eval linguistic (ASR) and semantic (AQA) tasks across three
modality configurations. ASR is evaluated by WER/CER (lower | is better); AQA is scored by GPT-40 (higher
71 is better). Cell shading , , and no shading denotes each model’s relative ranking in a given modality
(best — worst) by average GPT-4o score.

Paralinguistic Task Category Paralinguistic Task Category
Speaker-centric Content-centric

Modality Format: < Textual Instruction, Audio Input > Modality Format: < Textual Instruction, Audio Input >
Tasks SGC AC AR EIE ER  SSD SV PSWL PSSL PR SCR IP EE VSC IC ISC PP VC
Qwen2-Audio  1.00 0.95 0.67 0.99 0.16 [0.127005] 023 0.52 1869 0.54 031024 030 043 025 186 195 0.07 119 260 240 3.04 252 273 085 0.60 0.60 19.02 [J012
Typhoon-Audio 0.85 0.77 0.59 0.67 021 0.14 0.11 0.10 0.12 2047 040 024 028 0.12 046 020 204 171 033 308 098 085 313 1.86 2.85 049 0.16 0.16 36.83 0.17
Salmonn 059 044 0.13 0.18 0.22 032 0.10 026 006 11.24 0.31 024 0.30 021 0.50 019 132 138 013 182 109 075 407 1.88 329 0.61 0.16 0.6 4192 022
Glm-4-Voice 0111 0:12 J010410:07' 0:07 009 10:03701021 0:01| 15.35 [0:13 0.08' 0:14 00270/01 004 162 1.84 024 090 1.00 098 1.85 1.78 234 032 [0.000003] 40.20 | 0.8
Mini-Omni | 0.14 0.00 006 2134 [004 004 0.04 007 0.11 003 124 146 000 092 1.00 098 139 1.26 142 [01021 0.01 006 61.49
Mini-Omni2 011 0.02 003 18.46 [0.03 006 000 001 0.12 003 1.16 154 000 097 100 097 189 126 160 001 003| 59.32
Llama-Omni  0.36 0.26 026 007 0.14 0.07 0.16 0.17 Reject 031 008 0.16 0.04 026 008 128 138 0.3 146 2019 2111 158 1.80 234 [0.03 0.12| Reject | 007
Audio-Reasoner 0.38 0.32 038 037 0.14 0.18 002 023 0.12 1357 052 029 032 028 035 0.16 261 203 0.09 108 240 1.84 4.10 229 378 059 020 0.17 3268 0.15
Kimi-Audio  0.98 0.97 0.66 0.81 038 031 020 0.17 0.12 1207 0.65 034 052 032 063 022 330 276 020 158 100 031 456 2.05 3.57 084 026 0.38 3164 0.19

Qwen2.5-Omni 0.53 0.41 0.40 0.35[0.06 0.19 0.02 0.11 0.08 10.31 052 027 029 0.33 042 0.15 125 212 027 128 353 352 391 200 278 0.92 051 044 1837  0.12
LLaSO-Base 0.96 0.99 0.76 0.91 0.52 0.83 0.73 0.70 0.50 10.32 048 0.48 0.17 0.26 0.99 0.32 290 2.80 039 0.03 0.04 0.02 486 3.93 3.57 0.78 0.50 0.60 8.02 0.18

GPT-4of |ACCT|PER||WER||CER|| GPT-4of | ACCt  |MAE]|ACCt

Metrics | ACCH |MAE] | ACCH

Yoabstention i
Table 3: Performance of 11 LSLMs on LLaSO-Eval paralinguistic tasks, split by speaker-centric and content-
centric groups. Cells are colored by abstention rate, as indicated by the color bar. Abstention rates were
computed across all closed-ended tasks. Results are for the text instruction with audio input modality, reflecting
the modality used for paralinguistic task training; our released datasets also include pure audio modality format
samples for these tasks. Reject denotes 95% or more abstentions in a given task after manual inspection in
open-ended settings/tasks.

5 EXPERIMENTS

5.1 SETUP

All experiments are conducted on LLaSO-Eval using the splits and task configurations defined
in Section [3:4] and Appendix Rl We benchmark LLaSO-Base against representative speech-
language models, including Qwen2-Audio|Chu et al.|(2024), Typhoon-AudioManakul et al.|(2024),
Salmonn [Tang et al.| (2024)), GLM-4-Voice [Zeng et al.| (2024a), Mini-Omni Xie & Wul (2024b),
Mini-Omni2 Xie & Wul(2024a)), Llama-Omni|Fang et al.| (2025)), Audio-Reasoner Xie et al.[(2025)),
Kimi-Audio [KimiTeam et al.| (2025)), and Qwen2.5-Omni Xu et al. (2025)), running official check-
points. Detailed versions and access methods for all baselines are provided in Appendix|[I]

5.2 METRICS

LLaSO-Eval spans a wide range of tasks, which we categorize into open-ended and closed-ended
formats, defined as in Table [T} To support this diversity, we employ 7 evaluation metrics, with
task-metric assignments summarized in Table[I2] By default, metric scores are computed directly
from the raw model outputs. For tasks where models generate free-form responses, we apply an
answer-extraction step prior to evaluation. For open-ended tasks evalution, we primarily use the
GPT-40 Score, ranges from integer 1 to 5, providing a holistic assessment of response quality. In
some cases, traditional metrics are also used to supplement GPT-4o. It is worth noting that cer-
tain tasks with well-established evaluation standards or clearly defined targets are better served by
traditional metrics like PER or MAE. For closed-ended tasks, we use Accuracy and additionally
track Abstention Rate for invalid or noncompliant answers. Complete metric details are provided in

Appendix[C]
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5.3 RESULTS AND ANALYSIS

(a) Task Count vs. Overall Performance
° [
0.6
o

For cross-metric comparability, we report nor-
malized overall and per-task performance in
Figure [1| (Middle and Right), with full per-task
scores and closed-ended abstention rates de-
tailed in Table2land Bl LLaSO-Base attains the
highest normalized overall score (0.72 vs. 0.65
for the next best model) and performs better on
most individual tasks. The results establish the
LLaSO Corpus as a reliable source for building
reference models. LLaSO-Base, while not de-
signed for state-of-the-art performance, exem-
plifies the power of an open, extensible, and re-
producible workflow.
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(b) Task Count vs. Closed-Ended Performance
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Broader training coverage improves overall
quality. For deeper analysis we visualize Fig-
ure [6] comparing the performance and absten- e

tion rates of 11 evaluated models as a function 14567 14
of task coverage defined as the number of train- (c) Task Count vs. Closed-Ended Abstention Rate
ing tasks; for models with private, incomplete, [)

or ambiguously reported training data, we use
the number of evaluation tasks as a proxy. As
can be seen, models trained on broader task
sets consistently outperform task-focused sys-
tems in both overall and closed-ended perfor-

mance, while also exhibiting fewer abstentions. o

This pattern highlights persistent difficulties on Sr dsed Bt count 2
unseen tasks and underscores the importance of e oqwen2-Audic  ® Mini-Omni Kimi-Audio
diversifying task coverage to improve perfor- Typhoon-Audio Mini-Omni2 Qwen2.5-Omni
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LSLMs may prefer content related tasks. To
further analyze model performance within par- Figure 6: Task coverage vs. model performance and
alinguistic tasks, we present a dumbbell plot abstention. Each scatter plot shows 11 models by Task

in Figure contrasting content-centric and Count. (a) Overall performance (.minfmax r.lormalized
speaker-centric results for each model. We ob- ©Ver all LLaSO-Eval tasks, cf. Figure [ Middle). (b)

serve that most models achieve higher perfor- Averag§ Closed-ended task performance. (c) Average
. abstention rate on closed-ended tasks. Closed-ended
mance and lower abstention rates on content-

. . . scores and abstention rates are calculate donly on tasks
centric tasks than on speaker-centric ones. This  p,¢ require categorical selection. Higher scores indi-

disparity likely arises because content-centric cate better performance; lower abstention rates indicate
tasks are more tightly linked to the semantic stronger instruction following performance.

content, which LLM-based decoders are natu-

rally equipped to process. In contrast, speaker-centric tasks demand more nuanced inference of
latent speaker attributes, posing a greater challenge for current LSLMs and highlighting an impor-
tant area for future improvement.

Generalization remains fragile, especially on unseen modalities. Extending the observation from
task coverage to modality, we find that most models underperform when evaluated across the three
modality settings in Table [2| This weakness is unsurprising given that many baselines, as detailed
in Appendix [ were trained to support only one or two input-output formats rather than the full
spectrum. In particular, the <audio instruction, text input> configuration consistently lags behind
the more common <text instruction, audio input>, even though the former should in principle be
no harder for humans, as speech instructions are typically brief and the main content remains di-
rectly readable as text. A notable exception is Qwen2-Audio and its variant Audio-Reasoner, which
achieve comparable results across the two formats.

Pure audio remains the most challenging modality. To better visualize the tendency, we present
Figure [§ (Bottom). Even more striking, we observe that most models perform substantially worse
on <pure audio> inputs than on <text instruction, audio input>, even for systems explicitly trained
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Content-centric vs. Speaker-centric
Task Performance
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Figure 7: Comparison of LSLM performance on
content-centric versus speaker-centric paralinguistic
tasks. Top: For each model, min-max normalized per-
formance scores are shown on content-centric (blue)
and speaker-centric (red) tasks, with dumbbell lines
indicating the magnitude and direction of intra-model
performance differences. Bottom: Average abstention
rates (lower is better) for closed-ended tasks in the
same two centrics within the paralinguistic category.
All evaluations are conducted under the text instruc-
tion paired with audio input configuration.

Figure 8: Stability and modality-wise performance
of LSLMs. Top: Cross-modality stability, measured
as the sum of absolute differences between a model’s
GPT-40 score on text + audio (TA) and the other two
formats, pure audio (PA) and audio + text (AT); lower
values indicate greater robustness. Botfom: Average
GPT-4o0 scores across the three configurations. Colors
are consistent across plots.

on speech-to-speech or spoken-query QA, with drops sometimes exceeding those on unseen config-
urations. Interestingly, a few models such as Qwen2.5-Omni, GLM-4-Voice, and the Mini-Omni
family achieve comparable performance across modalities. To quantify this, we measure cross-
modality stability as the sum of absolute performance differences between the common text with
audio setting and the other two formats, i.e., [TA — PA| 4+ |TA — AT, and report models in as-
cending order of stability in Figure [§](Top). We find that interleaving and parallel decoding sub-
stantially reduce modality gaps, where the top 8 among 11 systems, excluding Qwen2-Audio and its
variant, adopt these strategies and exhibit notably smaller disparities. Although the outliers likely
reflect factors beyond modality combination design, These results highlight interleaving and parallel
decoding as promising directions for improving cross-modal generalization. Further modality- and
task-level analyses, case studies across different task and modality, and model-specific discussions
are provided in Appendix [D] [ and [G|

6 CONCLUSION

Despite recent advances, progress in LSLMs has been constrained by fragmented resources, limited
task diversity, and a lack of standardized evaluation. To address these challenges, we present LLaSO:
the first fully open, end-to-end framework for LSLM development. It comprises 25.5M samples for
alignment and instruction tuning (LLaSO-Align and LLaSO-Instruct), a stratified benchmark of 15K
samples (LLaSO-Eval), and a reproducible 3.8B-parameter reference model (LLaSO-Base) success-
fully verified proven vision-language architecture to speech domain. Our evaluation further reveals
that, although broader task coverage improves overall performance, current LSLMs still face notable
generalization gaps on unseen tasks and pure-audio settings. Encouragingly, models employing in-
terleaving or parallel decoding demonstrate improved robustness in these challenging scenarios,
highlighting promising directions for future research. By releasing all data, benchmarks, and mod-
els, LLaSO lowers the barrier to entry and provides a foundation for systematic, community-driven
progress in large-scale speech-language modeling. See Supplementary Material for reproducibility.
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A  LIMITATION

While our work establishes a unified, open-source foundation for compositional speech-language
instruction tuning, several limitations remain. First, LLaSO Corpus is currently limited to English,
which constrains its direct applicability to non-English and low-resource languages. Extending the
dataset and benchmark to multilingual scenarios is an important direction for achieving broader im-
pact and inclusivity. Second, despite surpassing prior datasets in task diversity and modality cover-
age, the granularity and availability of source materials inherently influence our corpus composition,
particularly in the underrepresented paralinguistic categories and rare interaction scenarios. Third,
our reference model, LLaSO-Base, intentionally prioritizes reproducibility and extensibility over
achieving SOTA performance. Consequently, its architecture and model size (3.8 billion parameters)
are modest compared to larger models, and our evaluations have primarily included similarly sized
or smaller baselines. Assessing and benchmarking significantly larger LSLMs would provide further
insights into scaling behaviors and capabilities. Fourth, certain challenging multimodal interactions
such as open-ended dialogues involving overlapping speech, or zero-shot generalization to entirely
new domains are only partially addressed within our current benchmark and model architecture. We
encourage the research community to build upon our foundation to tackle these limitations, further
refining instruction-tuned speech-language models for diverse languages, scenarios, and real-world
applications.

B ETHICAL STATEMENT

B.1 DATA PRIVACY AND CONSENT

All training and evaluation data are sourced solely from publicly available datasets, with no use of
private or personally identifiable information. Synthetic, TTS, and sound effect samples contain no
human-identifiable content. No re-identification or de-anonymization was performed at any stage.
All data handling complies with ethical standards and legal requirements.

B.2 LICENSING AND RESPONSIBLE USE

All data, code, and model weights are released under permissive open-source licenses, with explicit
terms governing use and redistribution. The resources are intended for academic, non-commercial
research, and must be used in accordance with ethical standards and applicable copyright laws.

B.3 DIVERSITY AND REPRESENTATIVENESS

We strive for diversity in gender, age, accent, language, and emotion across both collected and
synthetic data, employing balanced sampling where possible. Nonetheless, certain groups and lan-
guages remain underrepresented, and we acknowledge the risk of bias. We encourage the community
to further augment and improve coverage. All datasets and models are released without representing
the views or interests of any particular group or institution.

B.4 FAIRNESS AND MISUSE PREVENTION

Our models and datasets may exhibit uneven performance across different tasks, languages, or de-
mographic groups, and should not be considered universally fair or unbiased. We explicitly prohibit
the use of our work for surveillance, discrimination, harassment, or any activities that may harm
individuals or communities. We encourage responsible research and deployment that respects the
rights and dignity of all users.
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C METRIC DETAILS

Given the diversity of tasks and modalities in LLaSO-Eval, we define 7 metrics to ensure com-
prehensive evaluation. During evaluation, by default metric scores are computed directly from the
complete model outputs. However, certain tasks require an intermediate step of extracting struc-
tured answers from the model outputs prior to evaluation; such cases are explicitly noted in their
respective metric descriptions below. Task-specific metric assignments are detailed in Table[12]

WER and CER. Word Error Rate (WER) and Character Error Rate (CER) Morris et al.| (2004);
huggingtace| (2023)); (Chen et al.| (1998) quantify transcription accuracy derived from Levenshtein
distance Navarro| (2001) between the model prediction and the ground-truth transcript. WER op-
erates at the word level, while CER operates at the character level. Both metrics are employed for
ASR and SCR tasks. Lower values indicate better accuracy. Typically, WER and CER scores range
from O (perfect match) to 1, although values exceeding 1 can occur due to excessive insertions or
substitutions.

PER. Phoneme Error Rate (PER) is analogous to WER and CER but specifically measures the
Levenshtein distance between the predicted and ground-truth phoneme sequences with brianlan
(2017), providing a phoneme-level accuracy assessment. Similar to WER and CER, lower PER
values indicate superior performance, typically ranging from 0 upwards, with O representing a per-
fect phoneme prediction. We apply this metric exclusively to the PR task.

Accuracy. Accuracy is defined as the proportion of exact matches between the model’s prediction
and the ground-truth label. This metric is applied to all closed-ended tasks, as specified in Table[TT]
which also indicates which tasks are open- versus closed-ended. For closed-ended tasks, the model
must select a single answer from a predefined label set, and a response is marked correct only if it
precisely matches the reference label; predictions containing multiple candidate labels or irrelevant
content are treated as incorrect. Accuracy ranges from O to 1, with higher values indicating bet-
ter performance. Additionally, the metric is also computed for the open-ended PSSL task, where
models rate sentence-level pronunciation across three dimensions, accuracy, prosodic, and fluency.
Given that model outputs are typically free-form, we use regular expressions to extract numeric
scores from responses, accommodating variations such as “accuracy is 8”, “fluency: 77, or 79 for
prosodic”. Responses providing valid numeric scores for all three dimensions are retained; others
are excluded. For each sample, we compute the average of the exact-match accuracies across these
three dimensions, then report the overall accuracy averaged across all evaluated samples. Further, we
complement this rule-based measure with an additional GPT-40 evaluation to ensure comprehensive
assessment.

MAE. Mean Absolute Error (MAE) is adopted for tasks requiring numerical predictions, such
as AR and PR. In these tasks, the model is explicitly instructed to generate a single numeric value.
However, many LSLMs produce free-form textual outputs rather than direct numeric predictions Ad-
lakha et al.[(2024])), necessitating an answer extraction procedure prior to metric calculation. For the
AR task, the predicted numeric value represents age and thus must be extracted reliably from the
model output. Employing a regular expression, our script initially attempts a direct integer con-
version; if unsuccessful, it searches for numeric patterns, and if a numeric range like“40-45” is
detected, it computes the rounded average of the two endpoints. For outputs containing descrip-
tive keywords*“adult” without numeric information, we substitute a canonical age value 22. The PR
task requires evaluation of the model’s ability to predict MIDI note values ranging from 0 to 127.
Specifically, our extraction function sequentially attempts integer conversion, rounded float conver-
sion, and finally, averaging numeric ranges. Strings containing pitch-related keywords (e.g., "midi”,
”pitch”, ’hz”) but lacking numeric values are marked as invalid predictions. Only predictions within
the MIDI range of 0 to 127 are considered valid for metric computation. In all cases, if a valid nu-
meric value cannot be extracted from either the model’s prediction, that instance is omitted from the
calculation. The final MAE is computed as the mean absolute difference between extracted predic-
tions and ground-truth numeric values across all valid instances. Lower MAE values indicate better
numerical prediction performance.
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GPT-40 Score. For AQA and other open-ended generative tasks, where model responses are un-
constrained and may vary widely in form and content, thus we employ GPT-40 (OpenAl, gpt-4o-
mini, Version 2024-07-18) as an automatic evaluator. Following a standardized evaluation template,
GPT-40 assigns an integer score from 1 to 5, reflecting both the relevance and accuracy of the
model’s response relative to the reference answer. Further details of the evaluation prompt are pro-
vided in Appendix [O] and task-specific metric assignments are summarized in Table[T2]

Abstention Rate. Some LSLMs may abstain from answering tasks involving unfamiliar modal-
ity formats or instructions, fail to follow instructions, or explicitly state their inability to process
audio. To quantify such behavior, we report the abstention rate for closed-ended tasks, defined as
the proportion of responses in which the model either refuses to answer, returns irrelevant content,
or fails to select a valid label from the predefined set. Higher scores indicate better performance;
lower abstention rates indicate stronger instruction following. An abstention is counted whenever
the model’s output does not comply with the task requirement to select a label. Abstention rate
is not reported for open-ended tasks, as their free-form nature precludes a rule-based criterion for
abstention.
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D DETAILED ANALYSIS

We find that LSLMs perform poorly on unseen tasks and unfamiliar modality formats, with espe-
cially weak instruction-following in unseen tasks.

Broader task coverage leads to better performance and lower abstention rates. We present the
overall performance, closed-ended task performance, and closed-ended task abstention rates for 11
models, alongside the number of tasks each model was trained on, in Figure @ For models with
private, incomplete, or ambiguously reported training data, we use the number of evaluation tasks as
a proxy for task coverage. The results show that models exposed to a wider range of tasks achieve
higher performance in both overall and closed-ended tasks, and fewer abstentions. This finding
suggests that, in creating LSLMs for speech understanding, one should diversify the tasks as much
as possible, to improve the model performance and reduce the abstention rate.

LSLMs perform worse on unseen modality configuration. Most existing LSLMs only support one or
two modality configurations. We evaluate their generalization across three different input formats.
Specifically, we select representative models and calculate their average performance on AQA task
across all major input modality configurations with results summarized in Table[2] We observe that
model performance in the audio instruction with text input setting drops consistently compared to the
familiar text instruction with audio input configuration. At the same time we find that Qwen2-Audio
is an outlier, showing that it and its variant Audio-Reasoner obtain similar results in both formats.
Notably, from a human perspective, audio instruction with text input should be no more difficult
and is arguably even simpler, since only the (typically brief) instruction needs to be heard, while
the main input remains directly readable as text, as illustrated in Figure E] (b, ¢). Nonetheless, our
findings demonstrate that LSLMs still struggle with modality configurations outside their explicit
training coverage.

Pure audio modality configuration may still challenging. We illustrate the performance of 11 models
three major modality formats in Figure[§|(Bottom). In most cases, models demonstrate substantially
lower performance on pure audio formats than on the more common text instruction with audio input
setting, even when they are explicitly trained to handle pure audio via speech-to-speech or spoken-
query-based QA (SQQA) tasks. Notably, for some of these models, the performance drop from text
with audio to pure audio is even greater than the decline observed on modality formats they have
never seen during training, such as audio instruction with text input. Interestingly, only a handful
of models such as Qwen2.5-Omni, GLM-4-Voice, and the Mini-Omni family achieve comparable
performance across pure audio and text + audio modalities. Nonetheless, for most current LSLMs,
the pure audio configuration remains a notably challenging setting.

Interleaving and parallel decoding strategies help bridge performance gaps across modality config-
urations. As shown in Table[2]and Figure [§|(Bottom), nearly all models achieve their best results on
the common text instruction with audio input setting. To assess model robustness to modality shifts,
we compute the sum of absolute performance differences between this common configuration and
the other two input formats. We present the results in ascending order of stability in Figure [§](Top).
Among the eleven models evaluated, the top eight with the exception of Qwen2-Audio and its vari-
ant employ interleaving or parallel decoding strategies (see Appendix |I| for benchmarking model
details), and exhibit notably reduced modality gaps. These outliers may reflect factors outside of
modality combination design. Overall, our results provide empirical evidence that interleaving and
parallel decoding can bridge the performance gap between text and audio modalities.

LSLMs may prefer content related tasks. To further analyze model performance on paralinguistic
tasks, we present a dumbbell plot in Figure[7] contrasting content-centric and speaker-centric results
for each model. We observe that most models achieve higher performance and lower abstention
rates on content-centric tasks than on speaker-centric ones. This disparity likely arises because
content-centric tasks are more tightly linked to the semantic content, which LLM-based decoders are
naturally equipped to process. In contrast, speaker-centric tasks demand more nuanced inference of
latent speaker attributes, posing a greater challenge for current LSLMs and highlighting an important
area for future improvement.
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E ABLATION

We conduct ablation experiments on different training strategies in LLaSO Corpus, as shown in Ta-
ble[d and 5] (i) Alignment Robustness. We evaluate ASR performance both immediately after the
alignment stage and following the subsequent instruction-tuning phase. After alignment, the model
achieves strong results (WER = 0.05, CER = 0.01). After multi-task instruction tuning, ASR per-
formance declines slightly (WER = 0.08, CER = 0.03), yet remains competitive, due to we include
ASR samples within the LLaSO-Instruct dataset for mitigating catastrophic forgetting. (ii) Encoder
Fine-tuning. We ablate the effect of unfreezing the audio encoder during the instruction-following
stage, comparing the results of freezing versus jointly training the encoder, projector, and LLM on
LLaSO-Instruct. When the encoder is unfrozen, ASR performance drops more substantially (WER
= 0.14, CER = 0.07), relative to the frozen configuration. In contrast, AQA (semantic) tasks see
modest improvements (see Table 3], while paralinguistic tasks exhibit a slight decline (see Table ).
This suggests that while joint fine-tuning may benefit certain high-level reasoning tasks, it may
compromise low-level speech recognition and nuanced paralinguistic abilities.

Paralinguistic Task Category
Speaker-Centric Content-Centric
< Text, Audio >

LLaSO- LLaSO-Base LLaSO- LLaSO-Base

Tasks Base (Unfrozen) A (U-F) Metrics Tasks Base (Unfrozen) A (U-F) Metrics
0.96 0.88 -0.08+ PR 0.03 0.03 0.00= PER|
0.99 0.99 0.00= ACCH 0.04 0.05 0.01*  WER|
SGC 0.76 0.61 -0.15+ SCR 0.02 0.04 0.02+ CER|
0.91 0.97 0.06" 4.86 4.80 -0.06*
0.91 0.86 -0.05+ Avg. ACCT IP 3.93 3.90 -0.03* GPT-dot
0.52 0.40 -0.12¢ EE 3.57 3.44 -0.13¢
AC 0.83 0.86 0.03" ACCYT VSC 0.78 0.82 0.04"
0.73 0.78 0.05" IC 0.50 0.55 0.05" ACCT
0.69 0.68 -0.01+ Avg. ACCT 1ISC 0.60 0.77 0.17"
0.70 0.68 -0.02+ ACCt PP 8.02 10.55 253 MAE]
AR 0.50 0.38 -0.12+ vC 0.18 0.20 0.02" ACCYT
0.60 0.53 -0.070  Avg.ACCt Linguistic Task Category
1032 8.78 -1.547  MAE] < Text, Audio >
0.48 0.45 -0.03+ LLaSO- LLaSO-Base .
EIE 0.48 037 011t ACCtT  Tasks Base (Unfrozen) A (U-F) Metrics
0.48 0.41 -0.070  Avg.ACCt ASR 0.08 0.14 0.06'  WER]
0.17 0.16 -0.01+ ACCH 0.03 0.07 0.04* CER|
ER 0.26 0.30 0.047 Tasks LaSO-Base  LLaSO- (F-A) Metrics
0.22 0.23 0.01T  Avg.ACC?t (Aligned) Base
SSD 0.99 0.99 0.00= ACC? 0.05 0.08 0.03' WER]
SV 0.32 0.16 016"  ACCt 0.01 0.03 0.02¢  CERJ
PSWL 2.90 2.68 -0.22¢  GPT-407
pss 0% 0.24 0154 ACCt
2.80 2.66 -0.14¢  GPT-407

Table 4: Ablation results for LLaSO-Base on paralinguistic (speaker-centric and content-centric) and linguistic
tasks, all evaluated under the text instruction with audio input modality. Frozen (F) and unfrozen (U) refer to
whether the audio encoder is fixed or updated during instruction tuning, respectively. A (U-F) reports the
performance change between unfrozen and frozen encoder variants during finetuning, while A (F-A) compares
results after finetuning with frozen encoder (F) and after the alignment stage (A) for ASR. 1/ | denote gains or
drops; metrics follow previous tables.
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Semantic Task Category
< Pure Audio >
LLaSO- LLaSO-Base

Tasks Base  (Unfrozen) A (U-F)  Metrics
2.06 227 021"
1.80 227 047"
AQA 239 2.23 0160 GFToT
1.46 1.98 052"
1.93 2.19 026" Ave.GPT-4ot
< Text, Audio >
257 254 20.03*
2.48 2.42 -0.06"
171 1.96 0.25"
AQA 274 2.80 0060  CGFT-doT
3.05 3.09 0.04"
2.90 2.87 -0.03*
2.58 261 0.03"  Avg.GPT-4ot
< Audio, Text >
272 3.22 0.50"
2.62 2.84 022
228 2.47 0.191
AQA 223 2.43 0200  GFT-ol
374 3.68 20.06*
2.60 3.26 0.66"
2.70 2.98 028"  Avg.GPT-401

Table 5: Ablation results for LLaSO-Base, comparing frozen (F) and unfrozen (U) audio encoder variants
during instruction tuning. The table reports A (U-F) performance changes on AQA tasks across three major
modality configurations; 1/ | denote relative gains or drops. Metrics follow earlier tables.

F CASE STUDY

We provide qualitative evidence of the compositional flexibility and unified modeling offered by our
framework. Figure[d|demonstrates that LLaSO-Base seamlessly accommodates all three instruction-
input modality pairings. In particular, the pure audio example highlights the system’s ability to
disentangle instructions from content solely within the audio stream. For the other formats, LLaSO-
Base reliably grounds reasoning and response generation in the correct modality, adapting to in-
structions and content presented in any combination. We present some task prototypes unified by
our system in Figure[3]and present more cases across different instruction-input structures and tasks
in Appendix [J] These examples show that, unlike models limited rigid instruction-input structures,
LLaSO-Base generalizes across both categorical and compositional tasks without requiring task-
specific modules or post-processing.

To better understand the challenges across modality configurations and tasks, we further present
cases under the same benchmark. As shown in Figure [9] (I), we sample three representative cases
for Salmonn across the primary modality configurations. In case (I)(b) with textual instruction and
audio input, the model’s familiar modality configuration, Salmonn correctly follows the user instruc-
tion. The textual instruction asks the model to determine whether the first sentence in the speech
content can be used to define the term in the second sentence, and to answer “yes” or “no”. The
audio provides a definition of “database” in the first sentence and describes “MySQL” in the second.
The model correctly interprets both the instruction and the speech, and returns the correct answer
“yes”. In contrast, when the modality configuration shifts outside the model’s primary training dis-
tribution, distinct failures emerge. Under the pure audio setting (I)(a) the model receives both the
instruction and content as audio, yet responds with a counter-question: “What is the answer to the
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Figure 9: Case studies from LLaSO-Eval. (Left) Model behaviors under different modality configurations
(Salmonn and Llama-Omni), highlighting the importance of supporting multiple modality formats for reliable
instruction following. (Right) Model behaviors across tasks with different coverage (Typhoon-Audio and GLM-
4-Voice), underscoring the necessity of broad task coverage for generalization.

question?” This indicates that while the model has some prior exposure to SQQA tasks, it fails to
correctly interpret or respond to this particular modality configuration where both instruction and
content are delivered as audio. In Figure[9](I)(c), where an audio instruction is followed by a textual
input, the spoken instruction assigns a generic task, prompting the model to generate an answer,
while the accompanying text presents a tweet and asks for its sentiment, providing two answer op-
tions. The relevant information for reasoning is contained within the text input, and the instruction
directs the model to perform a classification. However, the model does not follow the instruction;
instead, it merely repeats the sentiment options, “l. negative 2. positive”, without making a deci-
sion. We observe similar results in Llama-Omni across modality formats, illustrated in Figure[9](ID).
This model is primarily trained on pure audio modality, and this is directly reflected in the sampled
cases. In (II)(a) where both the instruction and input are delivered as audio, the model answers
successfully classifying the object as non-living, demonstrating effective handling of its core modal-
ity. Nonetheless, when presented with configurations outside this primary distribution, the model
fails to execute the intended tasks. In the text plus audio modality format (II)(b), it is unable to
infer the speaker’s aim from the speech and instead requests further contextual details. Under (IT)(c)
the modality configuration of audio instruction paired with textual input, the model follows speech
instruction but overlooks the explicit negation in the text input and incorrectly judges the two sen-
tences as equivalent. Taken together, this observation highlights the importance of comprehensive
modality coverage for multimodal instruction following.

To provide an intuitive comparison of model performance on covered versus uncovered tasks, we
sample more cases for representative baselines in Figure [0] Figure O] (II) illustrates this contrast
for Typhoon-Audio model. In (Ill)(a) we present a sample from the entity extraction task, which
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is not included in the model’s training. Here, the query requests identification of entities from the
speech, but the model misinterprets the task as speaker gender classification, responding with “The
speaker is female.” We present a pronunciation scoring sentence-level (PSSL) task sample in (II)(b),
where the model is instructed to evaluate the speech for accuracy, prosody, and fluency. However,
it only provides a plain transcription and omits the required scoring. In contrast, when evaluated
on a task present in its training, the model demonstrates accurate performance. For the ASR task
presented at (II)(c) the model successfully transcribes the speech to text as instructed without addi-
tional information. Similar results are evident with GLM-4-Voice in Figure@] (IV). In (IV)(a) tasked
with synthetic speech detection, the model avoids providing a categorical decision and instead pro-
duces an off-topic statement. When we prompt the model for emotion recognition, it generates a
generic conversational reply, neglecting to engage with the specified sentiment classification task as
in (IV)(b). Nevertheless, we can observe that the model successfully completes an audio question
answering task in (IV)(c), owing to the presence of this task in its training. These findings underscore
the essential role of comprehensive task coverage in building models across diverse speech-language
tasks.

G DISCUSSION

In addition to our quantitative analysis, a closer manual inspection of model outputs reveals several
distinct patterns and recurring issues that warrant discussion. For example, Qwen2-Audio occasion-
ally misinterprets the SV task as SGC. On other tasks, Although this model achieves relatively strong
quantitative scores on the open-ended PP task, qualitative check reveals that a large proportion of
its outputs are empty strings (41 cases) or single periods (30 cases) among 112 samples in the text
instruction plus audio input configuration. For the VC task, the abstention rate is especially high. In
our manual review, 82 out of 100 samples in the same modality setting resulted in a single period
(““) as the response. As to Typhoon-Audio, it occasionally responds in Thai to English prompts,
which is likely attributable to the inclusion of Thai data during fine-tuning. Salmonn, when presented
with pure audio or audio plus text modality input, often refuses to answer, asks clarifying questions,
or claims the audio contains no content; this may stem from its limited exposure to pure audio in-
struction data (approximately 20K SQQA task samples from WikiQA |Yang et al.|(2015)) and to the
modality configuration of audio instruction with text input, restricting its ability to generalize. Addi-
tionally, in the ASR task, Salmonn’s outputs for most samples consist entirely of uppercase English
letters, which explains its poor quantitative performance on this task. GLM-4-Voice frequently gen-
erates responses in Chinese and at times misinterprets the audio input as part of the conversational
context, rather than as content to be analyzed. A similar pattern is observed in the Mini-Omni family,
which occasionally interprets the audio input, such as a speaker’s utterance to be classified, as either
an instruction or as primary content. For example, in ASR task with the text plus audio input config-
uration, approximately 43% of Mini-Omni and 53% of Mini-Omni2 responses begin with phrases
like “It sounds like...”, reflecting a tendency to treat the input as dialogue. Meanwhile Llama-Omni
exhibits a high rate of refusals in tasks beyond AQA, suggesting limited coverage of tasks. Manual
inspection of its ASR task outputs further reveals that over 10% of samples are explicit abstains,
likely because the model was not trained on ASR data. These phenomena further illustrate the ne-
cessity for broad and balanced coverage across both tasks and modality configurations in model
development. Audio-Reasoner presents a different set of challenges, often exhibiting hallucinated
completions such as appending “the answer is A” or fabricating multiple-choice options like “E,”
“F,” or “S.” Since it is trained on Qwen2-Audio-Instruct with chain-of-thought data, this tendency
may stem from exposure to reasoning-style supervision. Kimi-Audio, when performing the PR task,
sometimes treats the input as an ASR query or outputs a sequence of isolated phonemes, which
leads to lower evaluation scores. Qwen2.5-Omni occasionally shows similar confusion between PR
and ASR, and routinely appends conversational phrases like “feel free to ask me more.” While such
additions might be intended to improve user interaction, they can undermine instruction following
if overfitting, as some tasks in our benchmark explicitly requires models to return only the answer.
Taken together, these observations offer practical insights into persistent issues in instruction fol-
lowing, task differentiation, and output format consistency. We hope these manual inspections are
helpful for the community and can inform future model development and evaluation.
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H VocCAL MIXING STRATEGY

To generate multimodal variants from text-based semantic QA data, we employ advanced audio
synthesis tools such as MeloTTS (Zhao et al.} 2023), ChatTTS (2noise, [2024), and OpenVoice (Qin
et al., 2023). These systems support controllable attributes (e.g., gender, speed, tone, accent), en-
abling the creation of audio segments with varied vocal styles. The synthesized audio is then com-
bined with either text or additional audio segments to form the three modality configurations de-
scribed in the main paper.

For example, in a pure-audio sample shown as Figure [T0} one speaker may voice the instruction in
a cheerful American accent, while another renders the task content in a neutral British tone, simu-
lating realistic multi-speaker interaction. Similarly, in <Text Instruction, Audio Input> or <Audio
Instruction, Text Input> formats, synthesized speech segments are paired with textual components
to enrich acoustic diversity. Using distinct voices for instructions and content helps clearly separate
roles within the dialogue and better approximates real-world speech-language interactions.

Text

User:
Tell me the answer of this question.
What's 10 plus 10?

Assistant:
10 plus 10 equals 20.

| l

TTS i i
/ Tone Cloning A TTS / Tone Cloning a
Gender: Male il (Gender: Female il
Speed: 0.8 Speed: 1.2
Tone: Happy Tone: Neutral
Content: Content:
Tell me the answer of this What's 10 plus 10?
question. Accent: British

Accent: American

| |

Text & audio / pure audio

( : Male + Female
Speed: 0.8 +1.2
: Happy + Neutral

Audio Content: Tell me the answer of this question. What's

10 plus 10?

Accent: American + British \

Content: !

User: ¥
ue

Please listen this audio clip and respond accordingly,'l|l-l|l-‘|
Assistant:
10 plus 10 equals 20. J

Figure 10: Illustration of vocal style mixing. Utterances are synthesized with varied speaker traits and
applied across all three modality configurations, expanding acoustic diversity and simulating realistic multi-
speaker scenarios.

I BENCHMARKING CANDIDATES

Qwen2-Audio. A LSLM from Qwen Team designed for both audio analysis and voice chat. It
integrates a Whisper-large-v3 audio encoder with a Qwen-7B language model, enabling processing
of audio and text inputs for instruction following and conversational tasks. The model supports both
audio + text and pure audio modality configurations, automatically distinguishing between analysis
and dialogue modes without explicit prompts It achieves state-of-the-art results such as AIR-Bench
and CoVoST2, with open-source demos, weights, and inference code.

Typhoon-Audio. A LSLM from SCB 10X and the University of Cambridge supporting both En-
glish and Thai. It integrates Whisper-large-v3 (fine-tuned for Thai) and BEATSs audio encoders, a Q-
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Former adapter, and a Typhoon-1.5-8B-Instruct LLM. The model supports both text-audio and pure
audio (namely speech instruction following in this paper) configurations. Demo, model weights, and
inference code are open-source.

Salmonn. Salmonn is an unified LSLM with a dual-encoder architecture, Whisper and BEATS,
linked via a window-level Query Transformer to a Vicuna-based LLM. The model is trained in three
task levels using a two-stage alignment and instruction-tuning scheme, and further enhanced through
activation tuning to unlock emergent capabilities. Salmonn supports audio-plus-text and pure audio
(through SQQA) modality configurations and diverse task types. Demos, model checkpoints, train-
ing/inference code, and training data are all publicly available.

Glm-4-Voice. An end-to-end spoken chatbot supporting both Chinese and English from Zhipu.Al
and Tsinghua University. The model combines Glm-4-9B-Base with a supervised speech tokenizer
and a flow-matching speech decoder, pre-trained on 1T tokens of speech-text and speech-only data.
Fine-tuned with a streaming-thoughts template, it alternates between text and speech tokens for
seamless, low-latency conversational output. GLM-4-Voice accepts speech or text inputs and pro-
duces simultaneous speech and text responses. Model weights, demo, and inference code are open-
source.

Mini-Omni. Developed by Inspirai and Tsinghua University, Mini-Omni is a streaming speech-
to-speech conversational LLM integrating a Whisper-small encoder, modality adapters, a Qwen2-
0.5B transformer language model, and a TTS adapter. The system employs parallel decoding for
efficient, real-time, end-to-end speech input and streaming audio output. Model weights, inference
code, demo, and the VoiceAssistant-400K dataset are open-source.

Mini-Omni2. An omni-interactive multimodal model, developed by Inspirai and Tsinghua Uni-
versity as an upgraded version of Mini-Omni, combining CLIP (ViT-B/32) for vision, Whisper-small
for audio, and Qwen2-0.5B for language. It enables real-time, end-to-end voice conversations with
users, supporting image, audio, and text inputs and text, audio outputs. The model, inference and
demo code are open-source.

Llama-Omni. Developed by ICTNLPLab at CAS, this model integrates a frozen Whisper-large-
v3 encoder, a trainable speech adaptor, a Llama-3.1-8B-Instruct language model, and a streaming
speech decoder. Its key innovation is simultaneous generation of both text and speech responses
from spoken instructions, enabling low-latency, end-to-end speech-to-text and speech-to-speech in-
teraction. The model, along with its training data, weights, demo, and inference code, is open-
source.

Audio-Reasoner. A reasoning-oriented LSLM developed by fine-tuning Qwen2-Audio with struc-
tured chain-of-thought (CoT) supervision on its 1.2M-sample CoTA dataset. Emphasizing complex
audio reasoning, it demonstrates the benefits of CoT-style instruction tuning, achieving competi-
tive results including MMAU-mini and AIR-Bench-Chat. It is open-source along with its model
checkpoint, demo, inference code, and dataset.

Kimi-Audio. An audio foundation model developed by the Kimi Team featuring a hybrid archi-
tecture with an audio tokenizer, audio encoder, core audio LLM, parallel heads for both text and
audio generation, and an audio detokenizer, using continuous acoustic vectors and discrete semantic
tokens. Pre-trained on 13 million hours of diverse open and in-house audio, the model is fine-tuned
for multimodal comprehension and generation tasks involving speech, music, and sound effects,
including audio understanding, speech conversation, and audio-to-text chat. It demonstrates strong
performance on benchmarks such as VoiceBench, VocalSound, and MELD. The project is open-
source, providing demo data, fine-tuning and inference code, released model weights, and an audio
evaluation toolkit.

Qwen2.5-Omni. A unified end-to-end real-time multimodal model developed by the Qwen team,
supporting text, audio, image, and video inputs, with both streaming text and speech outputs. Built
on the Thinker-Talker architecture, it enables flexible cross-modal interactions and streaming, facil-
itated by TMROPE and block-wise encoding for efficient temporal alignment. The model achieves
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strong performance on diverse multimodal benchmarks like VoiceBench and MMAU and open-

source with released weights, APIs, and inference code.

Model Name in this Paper Official Model Name URL #Params Supported Modalities Interleaving or Parallel Decoding
Qwen2-Audio Qwen/Qwen2-Audio-7B-Instruct [Model Card] 7B (T, A), (PA) -
Typhoon-Audio scb10x/1lama-3-typhoon-v1.5-8b-audio-preview [Model Card] 8B (T, A), (PA) -

Salmonn tsinghua-ee/SALMONN-7B [Model Card] 7B (T, A), (PA) -
Glm-4-Voice THUDM/glm-4-voice-9b [Model Card] 9B (T, A), (PA) Interleaving
Mini-Omni gpt-omni/mini-omni [Model Card]|  0.5B (T, A), (PA) Parallel
Mini-Omni2 gpt-omni/mini-omni2 [Model Card]|  0.5B (T, A), (PA) Parallel
Llama-Omni ICTNLP/Llama-3.1-8B-Omni [Model Card] 8B (PA) Parallel
Audio-Reasoner zhifeixie/Audio-Reasoner [Model Card] 7B (T, A), (PA) -
Kimi-Audio moonshotai/Kimi- Audio-7B-Instruct [Model Card] 7B (T, A), (PA) Interleaving and Parallel
Qwen2.5-Omni Qwen/Qwen2.5-Omni-7B [Model Card] 7B (T, A), (PA) Interleaving and Parallel

Table 6: Details of Benchmarking Candidates in this work. Each row lists a tested model’s official
HuggingFace repository (“Model Card” link), parameter size, supported modalities (“(T, A)” =
Textual Instruction + Audio Input; “(PA)” = Pure Audio), and whether Interleaving or Parallel

multi-modal decoding is applied.
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J CASES

“

Listen to this audio carefully and share your
answer.<audio> (i

Yes, the sentence is syntactically and semantically
acceptable.

0

— _Jed

Please listen to the audio and answer the
question.<audio> | j«]i

i The sentiment of this review is positive.

Please listen to the audio and answer the A
question.<audio> I ¥

e/

Context: A company has noticed a decrease in sales over
the past few months and wants to investigate the cause.
Hypothesis: The decrease in sales is due to a recent
increase in competition in the market.

L0

Determine the instrument featured in this sound
clip. Reply with only the appropriate label from the
given list. List - bass, brass, flute, guitar, keyboard,
mallet, organ, reed, string, synth lead,
vocal.<audio>

00

L0

Listen to the provided speech sample and classify l

it as either real human speech or a synthetic voice.
Output only real or fake.<audio> i

.

“

Determine the gender of the speaker in this clip and
respond with either female or male. Only provide
the gender.<audio> i

Female.
G

-

1o

L0

<audio> /(| Edmund Selous started as a conventional
naturalist, but developed a hatred of the killing of
animals for scientific study and was a pioneer of bird-
watching as a method of scientific study. He was a
strong proponent of non-destructive bird-study as
opposed to the collection of skins and eggs.

1o

Edmund Selous started as a conventional naturalist, but
developed a hatred of the killing of animals for scientific
study and was a pioneer of bird-watching as a method of
scientific study.

L0

<audio> | Context: Austin regulated meetings
between the two warring nations in an attempt to
promote peace. Question: What will Others want to
do next?

Which one of these answers best answers the
question according to the context?

A: sell arms to the nations

B: want peace

.

After listening to the following audio, provide your A

response.<audio> ||{Jfii ¥

L

[ Explain the differences between<audios. il

C.S. Lewis and William Shakespeare are two very
different authors from different time periods and
cultural backgrounds.

C.S. Lewis was a British author who lived from 1898 to
1963 and was a member of the Inklings literary group.
He is best known for his works of fiction, including The
Chronicles of Narnia and The Space Trilogy, as well s his
non-fiction books such as Mere Christianity and The
Problem of Pain. Lewis was a devout Christian and his
writing often explored themes of faith, morality, and

If less water becomes a gas due to the perturbation, it
may affect the efficiency of the salt removal process.
The direct effect will be that a smaller amount of water
will be available to condense into the second container,
resulting in a lesser quantity of fresh water produced.
Indirectly, this could also lead to a higher concentration

pir Y.

William Shakespeare, on the other hand, was an English
playwright and poet who lived from 1564 to 1616. He is
widely regarded as one of the greatest writers in the
English language and is known for his plays, including
Romeo and Juliet, Hamlet, Macbeth, and Othello.
works often explored themes of love,

of salt in the first container as less water has
However, this does not necessarily mean that more salt
will be removed overall. Since the salt particles are not
affected by the rate of evaporation, their amount
remains the same. The end result is that the second
container will still contain fresh water, but in a smaller
quantity, and the first container will carry a higher
concentration of salt in the remaining water.

power, and human nature, and his writing is known for
its complex characters, poetic language, and dramatic
plot twists.

In summary, while both C.S. Lewis and William
Shakespeare were accomplished writers, they lived in

writing styles and themes reflect these differences.

different time periods and cultural contexts, and their

C: stand behind Austin in support

Answer:
<audio> I Vehicle insurance (also known as car
insurance, motor insurance, or auto insurance) is
insurance for cars, trucks, motorcycles, and other road
protection against physical damage or bodily injury
resulting from traffic collisions and against liability that
insurance may additionally offer financial protection
against theft of the vehicle, and against damage to the

-

vehicles. Its primary use is to provide financial
could also arise from incidents in a vehicle. Vehicle
vehicle sustained from events other than traffic

collisions, such as keying, weather or natural disasters,
and damage sustained by colliding with stationary
objects. The specific terms of vehicle insurance vary
with legal regulations in each region.

(Y

insurance, or auto insurance) is insurance for cars, trucks,

Vehicle insurance (also known as car insurance, motor
motorcycles, and other road vehicles.

L0

they got my order wrong. | would not recommend it to

<audio> |||« This place has terrible customer service andL
anyone. ¥

Figure 11: Representative case examples from LLaSO-Base demonstrating the three modality con-
figurations in LLaSO-Eval: pure audio (left), text instruction with audio input (middle), and audio
instruction with text input (right). Each column presents distinct tasks under its respective format.
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K TRAINING DETAILS

K.1 SYSTEM PROMPT

A chat between a curious user and an artificial intelligence assistant. The assistant is able to un-
derstand the audio content that the user provides, and assist the user with a variety of tasks using
natural language. The audio content will be provided with the following format: <Audio>audio
content</Audio>.

Box 12: Our system prompt for training and evaluation. <Audio>and </Audio>are added into the tokenizer
vocabulary as special tokens.

K.2 PROMPT TEMPLATE

<|beginof_text|><|start_header_id|>system<|end_-header_id|>

t : . q
Xsystem_m.mnpt <|leot_id|><|start_header_id|>user<|end_-header_id|>

Xquery <leot_id|><|start_header.-id|>assistant<|end-header-id|>
t .
Xanswer <leot_id|>

Box 13: Tllustration of the chat template used to construct every training example. We follow the official
Llama-3.2 chat template for token ordering and special tokens, while inserting a custom system prompt (full
text in Appendix . The user request is encoded as X g,¢., (see Eq. for the three modality variants), and
the model must generate the assistant reply X7, .., followed by the end-of-turn token < | eot _id | >. During
training, the loss is applied only to the assistant’s tokens (the last line in this box), teaching the network both
the content of the response and where to terminate.
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K.3 TRAINING CONFIGURATION

Parameter Stage 1: Modality Alignment Stage 2: Instruction Tuning
Device 4 x NVIDIA A800 4 x NVIDIA A800
Model Backbone Llama-3.2-3B-Instruct Llama-3.2-3B-Instruct
Audio Encoder Whisper-large-v3 Whisper-large-v3

Audio Projector MLP (2-layer, GELU) MLP (2-layer, GELU)
Pretrain Audio Aligner — Aligner Checkpoint (from Stage 1)
Tune Audio Encoder False True/False (optional, see ablation)
Tune Audio Projector True True

Tune LLM False True

Epochs 1 1

Global Batch Size 256 128

Learning Rate 1x1073 3x107°

Weight Decay 0.0 0.0

Warmup Ratio 0.01 0.01

LR Scheduler Cosine Cosine

Max Grad Norm 1.0 1.0

BF16 True True

Model Max Length 2048 2048

Table 7: Training hyperparameters for LLaSO-Base. Stage 1 performs cross-modality alignment,
while Stage 2 instruction-tunes the unified model.

K.4 TRAINING LOSS

Figure 14: Training loss visualization with Raw Loss and Smoothed Loss. From left to right: (1)
alignment stage; (2) instruction tuning stage with frozen encoder; (3) instruction tuning stage with
unfrozen encoder.
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L FOUR STYLES INSTRUCTIONAL PROMPTS

Prompt Style

Closed-ended Instruction Examples

Standardized

Classify the instrument in this audio clip. Choose only from: bass, brass, flute,
guitar, keyboard, mallet, organ, reed, string, synth lead, vocal. Output only the
label. <audio>

Contextualized

For a music classification project, identify the primary instrument in this audio.
Return only one of the following: bass, brass, flute, guitar, keyboard, mallet,
organ, reed, string, synth lead, vocal. <audio>

Stylistic Variation

What is the primary instrument in this audio clip? Respond only with one of:
bass, brass, flute, guitar, keyboard, mallet, organ, reed, string, synth lead, or
vocal.<audio>

Fine-grained Task

Focus only on the instrumental characteristics and determine the correct classi-
fication. Output just one label from bass, brass, flute, guitar, keyboard, mallet,
organ, reed, string, synth lead, vocal.<audio>

Prompt Style Open-ended Instruction Examples

Standardized Convert the speech in this audio file into an IPA phonemic sequence. Return
phonemes only.<audio>

Contextualized A linguist is analyzing speech samples. Your task is to transcribe the provided

audio into an IPA phonemic sequence. Return phonemes only.<audio>

Stylistic Variation

Help build a pronunciation guide by converting this audio into IPA phonemes.
Return only the phonemes.<audio>

Fine-grained Task

Phonetic decoding task: transcribe the provided speech into IPA phonemes and
return them without any additional output.<audio>

Table 8: Representative prompts illustrating the four instruction styles used in our corpus. The
closed-ended examples (top) are drawn from the Instrument Classification (IC) task, while the open-
ended examples (bottom) are from the Phoneme Recognition (PR) task. Each style, Standardized
(direct instructions), Contextualized (scenario-driven), Stylistic Variation (diverse linguistic formu-
lations), and Fine-grained Task (specific sub-aspect focus), is designed to promote compositional

generalization across tasks and formats.
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M MULTI-GRANULARITY SETTING DETAILS

Coarse-grained (10-year spans) | Medium-grained (5-year spans) |

Fine-grained (exact age)

Categories:  eighties, fifties,
forties, nineties, seventies, Six-
ties, teens, thirties, twenties

Categories: 15-19, 20-24, 25-
29, 30+

Range: integer between 18 and
80

Analyze the speaker’s voice
and determine their age cat-
egory. Respond only with
one of the following: eighties,
fifties, fourties, nineties, sev-
enties, sixties, teens, thirties,
or twenties. <audio>

Based on the audio, identify
the speaker’s age group. Se-
lect one of the following age
groups only return: 15-19, 20-
24, 25-29, 30+.<audio>

Estimate the age of the speaker
from the human vocal sounds
in this audio clip. Respond
with the age only, between 18
and 80.<audio>

A speech-based recommenda-
tion system needs to identify
user age. Analyze the voice
and classify it into the cor-
rect age group from eighties,
fifties, fourties, nineties, sev-
enties, sixties, teens, thirties,
or twenties. <audio>

Can you guess the age group of
the speaker in this clip? Please
select from the following age
groups only return: 15-19, 20-
24, 25-29, 30+.<audio>

Using this audio, which con-
tains human vocalizations, es-
timate the speaker’s age. Re-
spond with the age as an inte-
ger between 18 and 80, no ex-
tra information. <audio>

If the speaker’s age appears
ambiguous,  classify them
into the closest matching age
group. Select only one label
- eighties, fifties, fourties,
nineties, seventies, sixties,
teens, thirties, or twen-
ties.<audio>

Based on the audio, what age
group is being used? Pick only
return from: 15-19, 20-24, 25-
29, 30+.<audio>

Listen to this sound sample of
human vocalizations and pre-
dict the speaker’s age as a
number between 18 and 80.
Provide the age only.<audio>

Analyze the energy levels,
speech rate, and vocal strain in
the voice to determine the most
accurate age category. Provide
only the label from eighties,
fifties, fourties, nineties, sev-
enties, sixties, teens, thirties,
or twenties.

From the following audio, can
you determine the speaker’s
age group? Options only re-
turn:  15-19, 20-24, 25-29,
30+.<audio>

Determine the speaker’s age
based on this recording of hu-
man vocalizations. Respond
with the age between 18 and
80, without any other explana-
tion.

Table 9: Some of tasks in our data have granularity. We use Age Classification (AC) task as an ex-
amples at three different granularity levels. Coarse-grained prompts elicit classification into decade-
based age groups, medium-grained prompts target 5-year age spans, and fine-grained prompts re-
quest exact age prediction within a specified range.
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N PROMPTS FOR PURE AUDIO MODALITY FORMAT

Prompt Style

Closed-ended Instruction Examples

Standardized

Analyze the provided audio and complete the task mentioned in it. <audio>
Based on the instruction in the audio, provide your response.<audio>

Listen to the audio and respond accordingly. <audio>

Carefully listen to the audio clip and perform the requested action.<audio>
Follow the instruction given in the audio and provide an accurate re-
sponse.<audio>

Contextualized

A voice assistant is asking you to do something. Carefully listen and re-
spond.<audio>

For a comprehension test, listen to the audio and answer the question presented
in it.<audio>

In this conversation, the speaker is giving you a directive. Listen and respond
appropriately. <audio>

In this experiment, you need to complete the task given in the audio. Provide
your response accordingly.<audio>

This is an interactive task. Listen to the speaker and follow their instruc-
tion.<audio>

Stylistic Variation

Can you understand and complete the request made in this audio?<audio>

If the audio contains a question, answer it accurately. If it contains a command,
follow it.<audio>

What action is required in the audio? Complete it and provide your re-
sponse.<audio>

Make sure to interpret the speaker’s request correctly and reply accord-
ingly.<audio>

The speaker in this audio needs a response. Listen and provide a relevant re-
ply.<audio>

Fine-grained Task

After hearing the audio, provide your answer to the given task.<audio>

Listen carefully and act according to the instruction in the recording. <audio>
Pay attention to the details in the audio and respond exactly as in-
structed. <audio>

Understand the content of the audio and give an appropriate response. <audio>
Your task is to carefully analyze the instruction in the audio and execute it prop-
erly.<audio>

Table 10: Examples of text prompts used in the pure-audio modality format, where both the instruc-
tion and content are embedded within a single audio stream. The textual cues only instruct the model
to listen and respond, without specifying task details. All four prompt styles are included as Table

- Standardized, Contextualized, Stylistic Variation, and Fine-grained Task.
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O EVALATION TEMPLATE

Instructions: You are evaluating the performance of an Al assistant in an audio question answering
task.

Given a Reference Answer and a Predicted Answer, assign a score from 1 to 5 based on Rele-
vance and Accuracy.

Output Format (exactly, no other text):

* Score: <integer 1--5>

* Explanation: <concise justification focusing on both
relevance and accuracy>

Reference Answer:
’ {reference} ‘

Predicted Answer:
’ {predicted} ‘

Please produce the evaluation.

Figure 15: Evaluation template used for GPT-40-based scoring of LSLMs’ responses. The model
assigns an integer score (1-5) according to relevance and accuracy, accompanied by a concise ex-
planation. All results were scored with OpenAl GPT-40 (gpt-4o0-mini, Version 2024-07-18).
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P TASK CATEGORY DEFINITIONS

To facilitate comprehensive and interpretable evaluation, both our training and evaluation datasets
are systematically organized into three principal categories: linguistic, semantic, and paralinguistic.
This categorization is designed to capture the spectrum of speech-language understanding, from core
speech processing and factual reasoning to the nuanced interpretation of speaker traits and acoustic
context. Next I will describe the definitions of each categories.

P.1 LINGUISTIC CATEGORY

Linguistic tasks are aimed at assessing models’ basic speech processing ability, primarily through
ASR. This foundational category evaluates how accurately a model can transcribe spoken language
into text, serving as the backbone for subsequent semantic or paralinguistic inference.

P.2 SEMANTIC CATEGORY

The semantic category tests a model’s ability to extract explicit meaning and perform higher-level
reasoning over audio input. In our benchmark, this is represented by the AQA task, which requires
models to interpret audio content, combine it with contextual cues, and deliver factual or reasoning-
based responses. Although limited to AQA, this category is critical for evaluating the transition from
basic perception to comprehension and inference.

P.3 PARALINGUISTIC CATEGORY

Paralinguistic tasks are structured to probe models’ sensitivity to information that lies beyond the
literal linguistic content. We further distinguish between speaker-centric and content-centric paralin-
guistic tasks. Speaker-centric tasks focus on characteristics inherent to the speaker such as gender,
age, accent, emotion, and identity capturing traits that are independent of the message being de-
livered. In contrast, content-centric tasks emphasize cues embedded in the audio signal that reflect
content or context, such as phoneme recognition, intent prediction, or entity extraction, irrespective
of speaker identity.
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Q DETAILS FOR LLASO-ALIGN AND LLASO-INSTRUCT

We have a standardization step in the data construction process as presented in Figure[2] Corrupted
or unreadable files are removed, and valid audios are resampled to 16 kHz and stored as WAV/FLAC.
Transcripts are filtered to retain only English content with standard characters, then normalized to
follow conventional grammar and formatting (e.g., proper capitalization, spacing). Each cleaned
sample is paired with a randomly selected instruction template, and the final dataset is packaged in

a unified JSON format.

Applying the constructing procedure as Figure 2] yields the finalized training corpora. We provide
Table [TT] summarizing the resulting task-level composition of LLaSO-Align and LLaSO-Instruct,
covering the three categories, linguistic, semantic, and paralinguistic, their 20 sub-tasks, represen-
tative data sources, supported input formats, and sample statistics. For the held-out evaluation split,

see the stratified breakdown in Table

Tasks Descriptions Data Sources Modality Formats Sample Num. Hours Instr. Settings
Linguistic Task Category
GigaSpeech <Textual Instruction,
LibriSpeech Audio Input> 12M (LLaSO-Align)&- 47K &-
ASR Automatic Speech Recognition LJ Speech and Open-ended
VCTK <Audio Instruction, IM&0.2M 4K&1K
MLS Audio Input>
Semantic Task Category
Open Orca IM-GPT4 0.4M 1.8K
Open Orca 3.5M-GPT3.5  <Audio Instruction, 0.8M 3.6K
Stanford Alpaca Audio Input> 48K <IK
Code Alpaca 9K <IK
. : S AlpacaDan . 46K&46K <IK&<1K g
AQA Audio Question Answering Dolly <Te/:u:ﬁ1 1Ingu-u‘t>uon, <1K&3K CIK&<1K Open-ended
OpenOrcaNo e TK&10K <IK&<IK
Tigerbot_Alpaca . . 20K&20K <IK&<IK
Tigerbot_Multichat <l.}zf:z allnf;g:ﬁt;o"‘ 6K&33K <IK&<IK
Unnatural 0.2M&0.2M <IK&<IK
Paralinguistic Task Category
Speaker-centric
VoxCelebl 35K&35K <IK&<IK
. . . . VCTK TIK&71K <1K&<IK
SGC Speaker Gender Classification (Biologically) VocalSound 20K&20K Z1K&<1K Closed-ended
Common Voice 0.7M&0.7M 2.3K&1.2K
VCTK TIK&71K <1K&<I1K
AC Accent Classification AccentDB 16K& 16K <IK&<IK Closed-ended
Common Voice <Audio Instruction, 0.3M&0.3M 2.4K&<1K and
. L. VCTK Audio Input> 7TIK&T1K <1K&<IK Open-ended
AR Age Recognition (Three Granularities) VocalSound and 20K&20K <IK&<IK
C(’ml\‘d“é’:gmcc <Textual Instruction, 1 ﬁ%i} 12KM 5~‘]‘E§] ?E
i i imati Audio Input < <
EIE Emotion Intensity Estimation CREMA-D put> IK&IK CIK&<1K
ER Emotion Recognition MELD IK&IK <IK&<IK
CREMA-D TK&TK <1K&<1K Closed-ended
SSD Synthetic Speech Detection FoR 64K&64K <1K&<IK
Sv Speaker Verification MELD 11K&11K <IK&<IK
PSWL Pronunciation Scoring Word Level . hocean762 4K&4K <IK&<IK Open-ended
PSSL Pronunciation Scoring Sentence Level speechoceal 4K &4K <IK&<1K pen-ence
Content-centric
PR Phoneme Recognition Phonemizer Generated IM&IM 5K&4K
SCR Speech Command Recognition Speech Commands 68K&68K <1K&<IK
1P Intent Prediction <Audio Instruction, TIK&TIK <IK&<IK
EE Entity Extraction SLURP Audio Input> 45K&45K CIK&<IK  Open-ended
vsC Vocal Sound Classification VocalSound and 20K&20K <IK&<IK
1c Instrument Classification <Textual Instruction, 0.2M&0.2M LLIK&<1K Closed-ended
1SC Instrument Source Classification NSynth Audio Input> 0.3M&0.3M <1K&<I1K :
PP Pitch Prediction . 0.3M&0.3M <1K&<1K  Open-ended
vC Velocity Classification 0.3M&0.3M 1.1IK&<1K  Closed-ended
Total - - - ~25.5M ~89.5K -

Table 11: Overview of task-level composition in LLaSO-Align and LLaSO-Instruct, spanning three
core categories, linguistic, semantic, and paralinguistic, across 20 sub-tasks. Each entry summarizes
representative data sources, supported input formats, and sample-level statistics. LLaSO-Eval is

constructed as a stratified evaluation set presented in Table @
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R DETAILS FOR LLASO-EvAL

To complete our data trio, we introduce LLaSO-Eval, a held-out evaluation suite designed to ac-
company the LLaSO training set. Derived from the same underlying corpus but separate from the
training split, LLaSO-Eval covers 15,044 samples across 20 tasks, categorized into linguistic, se-
mantic, and paralinguistic categories. Moreover, it supports all three major modality configurations
and tests both within- and cross-modal generalization. We provide task breakdown in Table[I2]

From a task perspective, LLaSO-Eval enables comprehensive evaluation of model capabilities across
three major categories: linguistic, semantic, and paralinguistic tasks. Within the paralinguistic cate-
gory, tasks are further distinguished into into speaker-centric (e.g., gender, age, accent) and content-
centric (e.g., intent prediction, phoneme recognition). This distinction enables fine-grained analysis
of how models handle both speaker identity and acoustic-semantic information. From a modality
perspective, by supporting three major configurations, LLaSO-Eval not only evaluates model perfor-
mance on seen modalities configures but also tresses cross-modal generalization, testing robustness
to novel input combinations. Additionally, to evaluate instruction-following capabilities, LLaSO-
Eval includes both open-ended tasks for free-form comprehension and reasoning, and closed-ended
tasks requiring predefined label selection. This allows for quantitative measurement of instruction
adherence through metrics such as abstention rate.

Tasks Descriptions Data Sources Modality Formats  Sample Num. Metrics
Linguistic Task Category
GigaSpeech
LibriSpeech ; . .
ASR Automatic Speech Recognition LJ Speech <Tiﬁufil Instruction, 4566 WER&CER
udio Input >
VCTK
MLS
Semantic Task Category
Open Orca IM-GPT4Mukherjee et al.|(2023) 100
Open Orca 3.5M-GPT3.5 . 100
Stanford Alpaca[Taori et al.|(20231 <Pure Audio > 100
Code Alpaca|Chaudhary|(2023] 100
. ot — AlpacaDan|Jordan|(2023) . 100&100
AQA Audi stion Ans PT-4
Q udio Question Answering Dolly|Conover et al. (2023} <TZ":3?(1) II:S‘E‘I’C;“’“' 100&100 GPT-4o
OpenOrcaNo|RuterNorway (2023} andp 100&100
Tigerbot_Alpaca Research (2023} . . 100& 100
Tigerbot Multichat[Chen et al.[(2023] <?§i‘&j'}i‘;ﬂf‘f ™ 100&100
Unnatural[Honovich et al. [(2022} 100&100
Paralinguistic Task Category
Speaker-centric
VoxCeleb1 |Nagrani et al.|(2017} 100& 100
SGC Speaker Gender Classification (Biologically) 100&100 ACC
o VocalSound|Gong et al.|(2022) 200&200
Common Voice|Ardila et al.|(2019} 100& 100
VCTK 100&100
AC Accent Classification AccentDB|Ahamad et al. (2020} 100&100 ACC
Common Voice 100&100
VCTK <Pure Audio > 100& 100
AR Age Recognition (Three Granularities) VocalSound and 2008200 ACC/MAE
Common Voice <Textual Instruction, 100&100
. e MELD |Poria et al.|(2018) Audio Input > 100&100
EIE Emotion Intensity Estimation CREMA-DCao et al.[2014] 100&100 ACC
. o MELD 100&100
ER Emotion Recognition CREMA-D 100&100 ACC
SSD Synthetic Speech Detection FoR|Reimao & Tzerpos|(2019) 100&100 ACC
NY% Speaker Verification MELD 100&100 ACC
PSWL Pronunciation Scoring Word Level speechocean62[Zhang et aL 0211 200&200 GPT-40
PSSL Pronunciation Scoring Sentence Level P e - 1 200&200 ACC&GPT-40
Content-centric
PR Phoneme Recognition Phonemizer Generated |Bernard & Titeux |(2021] 100&100 PER
SCR Speech Command Recognition Speech Commands|Warden (1804} 100&100 WER&CER&GPT-40
P Intent Prediction m— — 9 858&858 GPT-40
EE Entity Extraction SLURP[Bastianelli et al |{2020] <Pure Audio > 569&569 GPT-40
vsC Vocal Sound Classification VocalSound and 200&200 ACC
IC Instrument Classification <Textual Instruction, 100&100 ACC
1SC Instrument Source Classification - Audio Input > 100&100 ACC
PP Pitch Prediction NSynth[Engel et al. [2017) 12&112 MAE
vC Velocity Classification 100& 100 ACC
Total - - - 15044 -

Table 12: Overview of LLaSO-Eval composition. This stratified evaluation set, sampled from LLaSO-Instruct,
includes 20 tasks across linguistic, semantic, and paralinguistic categories (sub-divided into speaker-centric
and content-centric). For each task, we provide data sources, modality formats, sample counts, and evaluation
metrics. Automatic metrics are used where applicable, with GPT-40-based judgment for open-ended tasks.
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S BASELINE PERFORMANCE DETAILS

Qwen2- Typhoon- Glm-4- Mini- Mini- Llama- Audio- Kimi-  Qwen2.5- o .. LLaSO-Base .
Task Audio Audio Salmonn Voice Omni Omni2 Omni  Reasoner  Audio Omni LLaSO-Base (Unfrozen) Metrics
ASR 0.22 0.11 0.86 0.93 0.95 0.95 0.88 0.28 0.14 0.40 0.08 0.14 WER|
0.12 0.06 0.69 0.79 0.81 0.80 0.73 0.12 0.05 0.26 0.03 0.07 CER]
241 1.76 1.47 222 1.42 1.57 1.97 2.44 2.94 2.94 2.06 227
242 1.77 141 234 1.47 1.53 2.02 2.24 270 3.09 1.80 227
273 2.16 1.41 329 1.75 2.05 2.99 251 322 322 2.39 223
278 222 1.72 293 1.45 1.51 248 2.86 345 2.63 1.46 1.98
AQA 2501347 1871260 205204 249300 163|142 1.66[1.68 238273 222284 3.283.69 2991346 257272 254322 or "
3.49(3.62 3.14[291 3.13]3.03 3.21|4.06 1.54|1.32 1.64|1.50 2.95[3.78 3.42[3.95 3.77]4.01 3.80|3.88 2.48|2.62 2.42|2.84 o
2.13[329 1.61[2.47 142|242 251|1.68 1.22|1.17 1.26|1.41 1.88[2.29 2.12|2.88 3.35[3.38 3.20/3.58 1.71]2.28 1.96(2.47
3.14[129 2.83|1.68 2.96|1.83 3.11/1.03 2.34[1.21 2.52|1.29 3.16|1.11 3.07|1.54 3.53|1.16 2.96[1.19  2.74|2.23 2.80| 2.43
3.13[3.14 3.04[3.04 3.12)3.19 2.82(3.10 1.33|1.27 1.42|1.31 2.72[3.08 291[3.13 3.38[3.16 3.19[3.15 3.05] 3.74 3.09/3.68
220[2.52 2.36[1.91 2.37|1.58 1.97(1.98 1.41]1.20 1.43[1.28 2.20[2.09 2.14[2.09 2.71[2.77 2.12]2.42  2.90 [2.60 2.87| 3.26
1.00 0.85 0.59 0.11 0.14 0.11 0.36 0.38 0.98 0.53 0.96 0.88
SGC 0.95 0.77 0.44 0.12 0.00 0.00 0.26 0.32 0.97 0.41 0.99 0.99 ACCt
h 0.67 0.59 0.13 0.04 0.00 0.02 0.03 0.38 0.66 0.40 0.76 0.61
0.99 0.67 0.18 0.07 0.00 0.00 0.26 0.37 0.81 0.35 091 0.97
0.16 0.21 0.22 0.07 0.00 0.00 0.07 0.14 0.38 0.06 0.52 0.40
AC 0.12 0.14 0.32 0.09 0.06 0.03 0.14 0.18 0.31 0.19 0.83 0.86 ACCT
0.05 0.11 0.10 0.03 0.00 0.00 0.07 0.02 0.20 0.02 0.73 0.78
0.23 0.10 0.26 0.02 0.00 0.00 0.16 0.23 0.17 0.11 0.70 0.68 ACCt
AR 0.52 0.12 0.06 0.01 0.00 0.00 0.17 0.12 0.12 0.08 0.50 0.38
18.69 20.47 11.24 15.35 21.34 18.46 Reject 13.57 12.07 10.31 10.32 8.78 MAE]
EIE 0.54 0.40 031 0.13 0.04 0.03 031 0.52 0.65 0.52 0.48 0.45 ACCt
031 0.24 0.24 0.08 0.04 0.06 0.08 0.29 0.34 0.27 0.48 0.37
ER 0.24 0.28 0.30 0.14 0.04 0.00 0.16 0.32 0.52 0.29 0.17 0.16 ACCH
0.30 0.12 0.21 0.02 0.07 0.01 0.04 0.28 0.32 0.33 0.26 0.30
SSD 0.43 0.46 0.50 0.10 0.11 0.12 0.26 0.35 0.63 0.42 0.99 0.99 ACCT
N 0.25 0.20 0.19 0.04 0.03 0.03 0.08 0.16 0.22 0.15 0.32 0.16 ACCT
PR 1.19 3.08 1.82 0.90 0.92 0.97 1.46 1.08 1.58 1.28 0.03 0.03 PER|
2.60 0.98 1.09 1.00 1.00 1.00 20.19 240 1.00 3.53 0.04 0.05 WER|
SCR 240 0.85 0.75 0.98 0.98 0.97 21.11 1.84 031 3.52 0.02 0.04 CER]
3.04 3.13 4.07 1.85 1.39 1.89 1.58 4.10 4.56 391 4.86 4.80 GPT-4o0t
P 2.52 1.86 1.88 1.78 1.26 1.26 1.80 229 2.05 2.00 3.93 3.90 GPT-401
EE 2.73 2.85 3.29 2.34 1.42 1.60 2.34 3.78 3.57 2.78 3.57 3.44 GPT-4o01
PSWL 1.86 2.04 1.32 1.62 124 1.16 1.28 2.61 3.30 1.25 2.90 2.68 GPT-401
PSSL 0.17 0.33 0.13 0.24 0.00 0.00 0.13 0.09 0.20 0.27 0.39 0.24 ACCt
h 1.95 1.71 1.38 1.84 1.46 1.54 1.38 2.03 276 2.12 2.80 2.66 GPT-401
VvsC 0.85 0.49 0.61 0.32 0.02 0.03 0.03 0.59 0.84 0.92 0.78 0.82 ACCT
(e 0.60 0.16 0.16 0.00 0.01 0.01 0.00 0.20 0.26 0.51 0.50 0.55 ACCt
ISC 0.60 0.16 0.16 0.03 0.06 0.03 0.12 0.17 0.38 0.44 0.60 0.77 ACCT
PP 19.02 36.83 41.92 40.20 61.49 59.32 Reject 32.68 31.64 18.37 8.02 10.55 MAE/|
vC 0.02 0.17 0.22 0.08 0.00 0.00 0.07 0.15 0.19 0.12 0.18 0.20 ACCT

Table 13: Comprehensive evaluation across multiple LSLMs in LLaSO-Eval. Blue highlights denote
best performance per task. Reject indicates that, during manual inspection, for 95% or more of the
responses in the corresponding open-ended setting/task, the model explicitly expresses inability to
assist or process the task, states it is a text-only model unable to recognize audio, or behaves as a
pure text model by asking the user to describe the audio, its content, or information therein. From
SGC to VC we only tested the <Textual Instruction, Audio Input>format, because for these tasks
we also used only the <Textual Instruction, Audio Input>format data of those tasks during training.
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T DISCLOSURE OF LLM ASSISTANCE

We used LLM-based assistants only to aid and polish writing. Assistance was limited to grammar
and style edits such as tightening wording, improving flow and transitions, shortening captions,
harmonizing terminology, and light LaTeX phrasing. All technical content, claims, experimental
design, data processing, modeling, analysis, figures/tables, and conclusions were conceived and
produced by the authors; LLMs did not contribute novel ideas, code, datasets, evaluations, or result
interpretations and are not contributing authors.
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