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Abstract

Adversarial Training (AT ) has been demonstrated to improve the robustness of deep neural
networks (DNNs) to adversarial attacks. AT is a min-max optimization procedure wherein
adversarial examples are generated to train a robust DNN. The inner maximization step of
AT maximizes the losses of inputs w.r.t their actual classes. The outer minimization involves
minimizing the losses on the adversarial examples obtained from the inner maximization.
This work proposes a standard-deviation-inspired (SDI ) regularization term for improving
adversarial robustness and generalization. We argue that the inner maximization is akin to
minimizing a modified standard deviation of a model’s output probabilities. Moreover, we
argue that maximizing the modified standard deviation measure may complement the outer
minimization of the AT framework. To corroborate our argument, we experimentally show
that the SDI measure may be utilized to craft adversarial examples. Furthermore, we show
that combining the proposed SDI regularization term with existing AT variants improves
the robustness of DNNs to stronger attacks (e.g., CW and Auto-attack) and improves robust
generalization.

1 INTRODUCTION

The vulnerability of deep neural networks (DNNs) to adversarial perturbations is well documented in machine
learning literature (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Papernot et al., 2016; Szegedy
et al., 2013), prompting concerns about the deployment of DNNs into safety-critical domains. Hence, for
the safe deployment of DNNs, improving their robustness to adversarial perturbations is imperative.

Adversarial Training (AT) Goodfellow et al. (2014); Madry et al. (2018) has been demonstrated to be effective
in improving the robustness of DNNs to adversarial attacks. AT is a min-max optimization procedure, where
the inner maximization step corresponds to finding adversarial examples in the direction of worst-case loss.
The outer minimization minimizes the loss on the crafted adversarial examples. The success of AT in
improving the robustness of DNNs to adversarial perturbations has inspired a myriad of variants that have
yielded better robustness or computational efficiency (Zhang et al., 2019; Wang et al., 2019; Li et al., 2019;
Andriushchenko & Flammarion, 2020; Wong et al., 2020; Shafahi et al., 2019b). Furthermore, recent works
have employed methods such as adversarial weight perturbation Wu et al. (2020), integration of hypersphere
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embedding into AT (Pang et al., 2020; Fakorede et al., 2023a), and loss re-weighting Zhang et al. (2020);
Liu et al. (2021); Fakorede et al. (2023b); Zhang et al. (2023) to improve the performance of existing AT
variants.

In this work, we delve into a standard-deviation-inspired (SDI ) measure proposed in a recent study in
(Fakorede et al., 2024) for estimating the vulnerability of an input example. Drawing inspiration from
the concept of standard deviation, which quantifies the dispersion of data points around the mean of a
distribution, the SDI measure aims to capture the dispersion of logits associated with incorrect classes in
relation to the logits corresponding to the true class.

We draw a parallel between the inner maximization step of the AT process and minimizing the SDI loss
function. Moreover, we argue that the outer minimization step of the AT process, which seeks model param-
eters minimizing the loss on adversarial examples, is conceptually similar to maximizing the SDI measure.
Both endeavors aim to enhance the likelihood of correctly classifying individual adversarial examples.

Unlike prevalent information-theoretic losses utilized in min-max AT optimization, the SDI measure operates
independently from concepts like cross-entropy, entropy, or Kullback–Leibler divergence. Consequently,
integrating the SDI measure into existing AT variants could complement information-theory-inspired losses
and potentially enhance the performance of these variants. Therefore, we propose adding the SDI loss as a
regularization term to prominent AT variants such as the standard AT (Madry et al., 2018) and TRADES
(Zhang et al., 2019). The proposed regularization term is applied to outer minimization of the respective
AT variants to maximize the SDI measure.

Our contributions are summarized as follows:

1. We propose utilizing the SDI measure as a regularization term to existing AT variants. Our exten-
sive experiments show that our proposed approach further improves the robustness of existing AT
variants on strong attacks Auto attacks and CW attack and strong query-based black-box attack
SPSA.

2. We experimentally show that the proposed SDI regularization on existing AT variants improves the
generalization to other attacks not seen during adversarial training.

3. In addition, we establish a connection between minimizing the SDI measure and the inner maximiza-
tion of the min-max AT procedure. Specifically, we experimentally show that adversarial examples
may be obtained from adversarial perturbations that minimize the SDI metric. Furthermore, we
compare the success rates of adversarial examples obtained using the SDI metric with those obtained
using cross-entropy loss and KL divergence on adversarial trained models.

2 BACKGROUND AND RELATED WORK

2.1 NOTATION

We use bold letters to represent vectors. We denote D = {xi, yi}n
i=1 a data set of input feature vectors

xi ∈ X ⊆ Rd and labels yi ∈ Y, where X and Y represent a feature space and a label set, respectively.

Let fθ : X → RC denote a deep neural network (DNN) classifier with parameters θ, and |C| represents the
number of output classes. For any x ∈ X , let the class label predicted by fθ be Fθ(x) = arg maxk fθ(x)k,
where fθ(x)k denotes the k-th component of fθ(x). fθ(x)y is the probability of x having label y.

We denote ∥ · ∥p as the lp- norm over Rd, that is, for a vector x ∈ Rd, ∥x∥p = (
∑d

i=1 |xi|p)
1
p . An ϵ-

neighborhood for x is defined as Bϵ(x) : {x′ ∈ X : ∥x′ − x∥p ≤ ϵ}. An adversarial example corresponding
to a natural input x is denoted as x′. We often refer to the loss resulting from the adversarial attack (inner
maximization) as adversarial loss.
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2.2 ADVERSARIAL ROBUSTNESS

Adversarial robustness is a machine learning model’s capability to resist adversarial attacks. Over the past
years, many methods (Guo et al., 2018; Buckman et al., 2018; Dhillon et al., 2018; Madry et al., 2018;
Goodfellow et al., 2014; Zhang et al., 2019) have been proposed to improve adversarial robustness of neural
networks. However, some of these defenses have been shown to provide a false sense of defense because they
intentionally or inadvertently used obfuscated gradients in their defenses (Athalye et al., 2018).

In a seminal work, Madry et al. (2018) proposed Adversarial training (AT), which involves training the model
with adversarial examples obtained under worst-case loss to improve robustness. Formally, AT involves
solving a min-max optimization as follows:

min
θ
E(x,y)∼D

[
max

x′∈Bϵ(x)
L(fθ(x′), y)

]
(1)

where L() represents the loss function, y is the true label of input feature x, and θ are the model parameters.
The inner maximization in Eq. (1) aims to obtain a worst-case adversarial version of the input x that increases
the loss. The outer minimization then tries to find model parameters that would minimize this worst-case
adversarial loss. The efficacy of AT has spurred the development of numerous variants (Zhang et al., 2019;
Wang et al., 2019; Wu et al., 2020; Pang et al., 2020).

A prominent variant TRADES Zhang et al. (2019) proposed a principled regularization term that trades off
adversarial robustness against natural accuracy. Wang et al. (2019) proposed MART, an AT variant that
differentiates between naturally misclassified examples that are used in the inner maximization of the AT
process, using this information to improve adversarial robustness. Wu et al. (2020) proposed adversarial
weight perturbation, a double perturbation mechanism that employs the perturbation of inputs and weights
to improve adversarial robustness. More recent AT methods improve existing AT variants by employing
reweighting (Zhang et al., 2021; Liu et al., 2021; Fakorede et al., 2023b) or incorporating hypersphere
embedding (Pang et al., 2020; Fakorede et al., 2023a).

The adversarial examples obtained in the inner maximization step of adversarial training methods are typi-
cally crafted using the projected gradient descent (PGD), maximizing the probability estimates of incorrect
classes at the expense of the ground truth. Training on these specific adversarial types often leads to
models performing well on the PGD adversarial attacks, on which the models are trained but generalizing
relatively poorly to others. To address this, we propose a standard-deviation-inspired regularization term
that explicitly maximizes the probability gap between incorrect classes and the ground truth while boosting
the ground-truth probability. This proposed regularization operates directly on the model output logits,
categorizing it as a form of logit regularization.

Most existing logit regularization variants (Mosbach et al., 2018; Kannan et al., 2018; Shafahi et al., 2019b;
Summers & Dinneen, 2019; Kanai et al., 2021) involve utilizing techniques such as label smoothing and logit
squeezing for improving adversarial robustness. These methods typically encourage smaller logit norms before
softmax, which studies such as Shafahi et al. (2019b;a) associate with reduced overconfidence in predictions
and improved adversarial robustness. However, the robustness achieved through these logit regularization
methods has been criticized as potentially attributed to gradient obfuscation (Athalye et al., 2018; Engstrom
et al., 2018; Lee et al., 2020; Raina et al., 2024). In contrast, our method operates on the post-softmax logits.
It explicitly maximizes the probability gap between actual classes and the probability of incorrect classes,
maximizing the confidence in the true classes of individual training samples. Our extensive experiments show
the broad effectiveness of our approach in improving adversarial robustness to various adversarial attacks.

2.3 STANDARD DEVIATION AS A RISK MEASURE

The standard deviation measures the spread of a distribution around the mean of that distribution. The
standard deviation of a distribution is given as:

SD =

√∑N
i=1(xi − µ)2

N − 1 (2)
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where xi is a data-point, µ is the population mean, and N is the number of data-points in the distribution.
A smaller SD value suggests that data points are more clustered, whereas a larger SD value indicates that
data points are farther from the mean. The properties of standard deviation have made it a useful measure
of risks in various domains. For example, the standard deviation is used as a risk measure in finance to
measure market volatility and risk of assets and portfolios by indicating how much the returns of an asset
deviate from the mean return (Artzner et al., 1999; Hull, 2012; Ross et al., 2019).

Drawing inspiration from the widely used standard deviation statistic, a recent work by Fakorede et al.
(2024) proposes a modified standard deviation measure for scoring and characterizing the vulnerability of
individual natural examples. Inspired by this work, our paper further argues a standard-deviation-inspired
measure to be utilized to capture the risk of misclassification of training samples.

3 PROPOSED METHOD

Here, we justify the introduction of a Standard-Deviation-Inspired (SDI ) measure as a regularization term
into existing adversarial training approaches.

The SDI measure was originally proposed in Fakorede et al. (2024) for the purpose of estimating the vul-
nerability of natural examples. In this paper, we connect the SDI measure to the min-max optimization
concept in adversarial training and use it as a regularization term.

3.1 THE SDI MEASURE

The SDI measure adopts an idea similar to standard deviation to characterize the spread of output prob-
ability vectors of DNN models for individual training examples. Specifically, the approach measures the
variation of a model’s estimated probabilities for incorrect classes around the model’s estimated probability
for the true label of individual input examples x. Formally, given an input-label pair (xi, yi) and the output
probabilities of a DNN model on input sample xi denoted as fθ(xi), the SDI measure is given as:

MSDI(xi, yi, θ) =

√∑|C|
k=1(fθ(xi)k − fθ(xi)yi

)2

|C| − 1 (3)

where |C| is the number of output classes, fθ(xi)k is the model’s estimated probability corresponding to
class k, fθ(xi)yi

is the model’s estimated probability of the true class, and θ denote the model parameters.

Under the condition where fθ(xi)yi ≥ maxk,k ̸=yi fθ(xi)k, the MSDI(xi, yi, θ) measure serves to capture the
vulnerability and risk of misclassification of individual examples xi. A smaller value of MSDI(xi, yi, θ)
suggests that the output probabilities returned for sample xi are more evenly distributed among classes,
indicating a higher likelihood of misclassification as the model may misclassify it into any of the k − 1
incorrect classes.

3.2 AN SDI-ORIENTED PERSPECTIVE TO ADVERSARIAL TRAINING

In this section, we provide an explaination of the MSDI measure from the perspective of the min-max
optimization framework of adversarial training.

AT methods are typically formulated as min-max optimization procedures. The inner maximization step
of the AT approach involves generating adversarial examples x′

i from natural examples xi by iteratively
adjusting the input data in directions that maximize the loss, using projected gradient descent (PGD)
algorithm as follows:

x′t+1
i ← Πx′

i
∈Bϵ(xi)(x′t

i + α · sign(∇x′t
i

L(x′t
i , yi))). (4)

where Π is the projection operator and L is a loss function.

Essentially, the adversarial examples produced during the inner maximization process are tailored to reduce
the model’s confidence in correctly classifying them into their true classes. Moreover, the resulting adver-
sarial examples are untargeted, i.e., the inner maximization misclassifies the adversarial examples without
prioritizing any particular incorrect class.
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The MSDI(xi, yi, θ) measure estimates the vulnerability of individual inputs into a DNN model, using the
spread of the model’s estimated probabilities w.r.t. the model’s estimated probability of the actual class
of each input. Smaller values of MSDI(xi, yi, θ) for the output probability vector of a model indicate that
the predicted probabilities are more concentrated or similar, reflecting lower confidence in the true class of
the input. Therefore, the magnitude of MSDI(xi, yi, θ) value for an input-label pair (xi, yi) is indicative of
the degree of risk in misclassifying xi. In contrast, a large value of MSDI(xi, yi, θ) indicates that the model
assigns a high probability to class yi for xi, suggesting strong confidence in the prediction and a low risk of
misclassification.

This observation suggests that adversarial examples may be generated simply by finding adversarial pertur-
bation along the gradient direction that minimizes the MSDI metric. We might use MSDI for generating
adversarial examples as follows:

x′t+1
i ← Πx′

i
∈Bϵ(xi)(x′t

i − α · sign(∇x′t
i

MSDI(x′t
i , yi, θ))). (5)

The above adversarial example generation is achieved using the widely adopted PGD algorithm (Madry
et al., 2018), with the notable difference that the sign of the gradient is inverted to move in the opposite
direction. For most AT variants, adversarial examples in the inner maximization step are obtained by
finding perturbations that maximize a cross-entropy loss function or a Kullback-Leibler divergence. The SDI
measure does not rely on information-theoretic measures. Therefore, it offers a complementary approach for
finding adversarial examples. We provide experimental evidence for our claim in Sec. 4.5.

The outer minimization seeks model parameters that minimize the loss on the adversarial examples generated
during the inner maximization step. Essentially, the outer minimization process aims to maximize the
likelihood of correctly classifying individual adversarial training examples. Invariably, the outer minimization
minimizes the likelihood of incorrect classification by increasing the probability gap between the example
belonging to the label and belonging to incorrect classes. This conceptually aligns with the goal of maximizing
the SDI measure. Maximizing the SDI metric encourages the model to correctly classify the input to its true
class by widening the probability gap between the estimated probability for the true class and the estimated
probabilities for other incorrect classes. Moreover, when fθ(xi)y ≥ maxk,k ̸=y fθ(xi)k, maximizing the MSDI

measure maximizes fθ(xi)y.

3.3 SDI REGULARIZATION

Here, we propose the SDI regularization term for improving adversarial training.

Typically, adversarial training techniques involve training models using adversarial examples generated by
various forms of PGD attacks. However, this approach may lead to overly specialized models defending
against PGD attacks, potentially causing poor generalization to different attack types. As discussed earlier,
the MSDI metric introduced in the previous section has beneficial characteristics, particularly its ability to
maximize the probability gap between the true class and the other classes. This property aligns well with the
objectives of adversarial training, enhancing its effectiveness. Hence, to improve the robust generalization
and performance of existing AT methods, we propose adding a regularization term that maximizes the MSDI

measure on each training example.

Maximizing the MSDI metric as a regularization term encourages the model to maximize the output prob-
ability of a training example belonging to its actual class, thus improving training. Moreover, since existing
AT variants depend on information-theoretic measures for both the inner maximization step and the outer
minimization step, applying the MSDI metric as a regularization term offers a complementary addition to
AT methods that does not depend on the information-theoretic measures that these AT methods are based.
Lastly, maximizing the MSDI metric facilitates the widening of the probability gaps between the probability
of the actual class of individual adversarial examples and the probabilities corresponding to incorrect classes,
thus improving the discriminability of the model.

Note that maximizing the MSDI measure to improve fθ(xi)y is only valid when fθ(xi)y ≥ maxk,k ̸=y fθ(xi)k.
When fθ(xi)y < maxk,k ̸=y fθ(xi)k, maximizing MSDI may further minimize fθ(xi)y, since the probability
gap between each fθ(xi)k,k ̸=y and fθ(xi)y is further increased to maximize the MSDI measure. Therefore,
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we propose a regularization term LSDI that selectively maximizes the MSDI measure on samples whose
output probabilities satisfies fθ(xi)y ≥ maxk,k ̸=y fθ(xi)k.

We utilize the multi-class margin from (Koltchinskii & Panchenko, 2002) to determine input samples satisfy-
ing the desired conditions. For a DNN denoted by fθ and the input-label pair (xi, yi), the margin dm(xi, yi; θ)
is given as follows:

dm(xi, yi; θ) = fθ(xi)yi
− max

k,k ̸=yi

fθ(xi)k (6)

where fθ(xi)yi is the model’s predicted probability of the correct label yi, and maxk,k ̸=yi fθ(xi)k is the
maximum prediction of the remaining classes.

The proposed SDI regularization term is formally described as follows:

LSDI(xi, yi; θ) =
{

MSDI(xi, yi; θ), if dm(xi, yi; θ) ≥ 0
0, otherwise

(7)

In this paper, we apply the LSDI(xi, yi; θ) regularization term to two prominent adversarial training methods:
standard AT (Madry et al., 2018) and TRADES (Zhang et al., 2019). We refer to the SDI -regularized
standard AT and TRADES as AT-SDI and TRADES-SDI respectively. The regularized training objectives
are stated as follows:
AT-SDI : ∑

i

LCE(fθ(x′
i), yi)− β · LSDI(x′

i, yi, θ) (8)

TRADES-SDI : ∑
i

LCE(fθ(xi), y) + 1
λ
·KL(fθ(xi)∥fθ(x′

i))− β · LSDI(x′
i, yi, θ) (9)

where β in Eq. (8) or (9) represents the regularization hyperparameter for controlling the weight of the SDI
regularization term, and KL in Eq. (9) represents Kullback–Leibler divergence. In the proposed AT-SDI and
TRADES-SDI, the LSDI regularization term is selectively applied. The regularization term is only applied
to adversarial training instances satisfying:fθ(x′

i)y ≥ maxk,k ̸=y fθ(x′
i)k. If fθ(x′

i)y < maxk,k ̸=y fθ(x′
i)k on a

sample x′
i, the normal AT orTRADES adversarial training is applied on x′

i.

As an example, the proposed AT-SDI algorithm for adversarial training is presented in the following.

4 EXPERIMENTS

In this section, we conduct an extensive evaluation of the proposed method. To assess its versatility, we test
it on various datasets, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011), and Tiny ImageNet Deng et al. (2009). We apply simple data augmentations,
such as 4-pixel padding with 32 × 32 random crop and random horizontal flip, to each of the datasets.
Additionally, we employ ResNet-18 (He et al., 2016) and WideResNet-34-10 (He et al., 2016) as the backbone
models.

4.1 EXPERIMENTAL SETUP

4.1.1 Training Parameters.

We train the backbone networks using mini-batch gradient descent for 110 epochs, with a momentum of
0.9 and a batch size of 128. For training CIFAR-10, we used a weight decay of 5e-4, and for CIFAR-100,
SVHN, and TinyImageNet, we used a weight decay of 3.5e-3. The initial learning rate was set to 0.1 (0.01
for CIFAR-100, SVHN, and TinyImageNet), and it was divided by 10 at the 75th epoch and then again at
the 90th epoch.
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Algorithm 1 AT-SDI Algorithm.
Input: a neural network model with the parameters θ, step size κ, T PGD steps, a training dataset D

of size n, |C| is the number of classes, and hyperparameter β.
Output: a robust model with parameters θ∗

1: for epoch = 1 to num_epochs do
2: for batch = 1 to num_batchs do
3: sample a mini-batch {(xi, yi)}M

i=1 from D; ▷ mini-batch of size M .
4: for i = 1 to M do
5: x

′
i ← xi + 0.001 · N (0, 1); ▷ N (0, I) is a Gaussian distribution with zero mean and identity variance.

6: for t = 1 to T do
7: x′

i ← ΠBϵi
(xi)(xi + κ · sign(∇x′

i
LCE(fθ(x′

i), yi))
8: end for
9: end for

10: MSDI(x′
i, yi; θ) = {

∑|C|
k=1

(fθ(x′
i)k−fθ(x′

i)yi
)2)

|C|−1 }0.5

11: dm(x′
i, yi; θ) = fθ(x′

i)yi −maxk,k ̸=yi
fθ(x′

i)k

12: if dm(x′
i, yi; θ) ≥ 0 then

13: LSDI(x′
i, yi; θ)←MSDI(x′

i, yi; θ)
14: else
15: LSDI(x′

i, yi; θ)← 0
16: end if
17: θ ← θ − η∇θ

1
|M| (

∑M

i=1 LCE(fθ(x′
i), yi)− β · LSDI(x′

i, yi; θ))
18: end for
19: end for

4.1.2 Hyperparameters.

We set the value of β to 3.0 for training AT-SDI and TRADES-SDI on CIFAR-10, SVHN, and TinyImagenet.
For CIFAR-100 using AT-SDI and TRADES-SDI, we set β to 3.0. When incorporating AWP (Wu et al.,
2020) into AT-SDI and TRADES-SDI, we respectively set β to 3.0 and 1.0. The hyperparameters are tuned
using a validation set. We provide the sensitivity analysis of β hyperparameter on AT-SDI and TRADES-SDI
for CIFAR-10 using Wideresnet-34-10 in Tables 9 and 10.

4.2 BASELINES

We use prominent methods Standard AT (Madry et al., 2018) and TRADES (Zhang et al., 2019) as our
baselines. In addition, we compare our results to other popular works MART (Wang et al., 2019), AWP
(Wu et al., 2020), MAIL (Liu et al., 2021), and ST-AT (Li et al., 2023). All hyperparameters of the baseline
methods remain consistent with those in their original papers. Nevertheless, we maintain consistency by
using the same learning rate, batch size, and weight decay values as those utilized during the training of our
proposed method.

4.3 THREAT MODELS

We evaluate the performance of the proposed method against strong attacks under white-box and black-box
settings, as well as the Auto attack.

White-box attacks. These attacks have access to model parameters. To assess robustness on CIFAR-10
using Resnet-18 and Wideresnet-34-10, we employ the PGD attack with ϵ = 8/255, step size κ = 1/255, and
K = 20 iterations (PGD-20). Additionally, we utilize the CW attack (CW loss (Carlini & Wagner, 2017)
optimized by PGD-20 ) with ϵ = 8/255 and step size 1/255. On SVHN and TinyImageNet, we use the PGD
attack with ϵ = 8/255, step size κ = 1/255, and K = 20 iterations.

Black-box attacks. In black-box settings, the adversarial attack method does not have access to the model
parameters. We evaluate robust models trained on CIFAR-10 against strong black-box attack, SPSA (Uesato
et al., 2018), with 100 iterations. These attacks use a perturbation size of 0.001 for gradient estimation, a
learning rate of 0.01, and 256 samples for each gradient estimation. All black-box evaluations are conducted
on trained Wideresnet-34-10.
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Auto attacks (AA). Lastly, we assess the robustly trained models using Autoattack (l∞ and l2) (Croce &
Hein, 2020b), which is a powerful ensemble of attacks consisting of APGD-CE (Croce & Hein, 2020b), APGD-
T (Croce & Hein, 2020b), FAB-T (Croce & Hein, 2020a), and Square (a black-box attack) (Andriushchenko
et al., 2020).

4.4 PERFORMANCE EVALUATION

We present our experimental results and comparisons on various datasets using ResNet-18 and WideResNet-
34-10 architectures. Specifically, results for CIFAR-10 on ResNet-18 and WideResNet-34-10 are summarized
in Tables 1 and 2, respectively, while results for CIFAR-100, SVHN, and Tiny ImageNet using ResNet-18
are presented in Tables 3, 4, and 5, respectively. To further explore the versatility of the proposed method,
we evaluate it using a lightweight backbone, VGG-16 architecture (Simonyan & Zisserman, 2014), on the
CIFAR-10 dataset. The results are presented in Table 6.

Additionally, comparisons with other prominent baselines are provided in Table 7. Finally, we compare
the perfomance of adversarial examples generated using the SDI metric approach described in Eq. (5) to
adversarial examples crafted using cross-entropy and KL-divergence losses.

The experiments were carried out three times using different random seeds. The mean and standard deviation
were then calculated, with the results presented as mean ± std.

4.4.1 Comparing AT and TRADES with their SDI-regularized variants.

In this comparison, we evaluate the performance of AT and TRADES against their respective variants
with the SDI regularization term, AT-SDI and TRADES-SDI. Experimental findings indicate that the
proposed regularization term enhances robustness against various adversarial attacks, including Autoattacks
and CW. Specifically, when applied to ResNet-18 and WideResNet-34-10 architectures on CIFAR-10, AT-
SDI demonstrates improvements over AT across all evaluated attacks (see Tables 1 and 2). For example,
on WideResNet-34-10, AT-SDI outperforms AT in robustness against PGD-20 (+0.45 %), CW (+2.54 %),
and Autoattacks (+1.65 %). The improvement in robustness are achieved without a significant reduction in
the natural accuracy.

Similarly, TRADES-SDI exhibits superior performance compared to TRADES on PGD-20 (+1.19 %), CW
(+2.06 %), and Autoattacks (+1.14%). Training with TRADES-SDI also exhibit a noticeable improvement
of 0.67 % on the natural accuracy. Overall, AT-SDI achieves greater improvement in robustness against CW
attacks compared to TRADES-SDI, while TRADES-SDI demonstrates better enhancement against PGD-20
attacks compared to AT across ResNet-18 and WideResNet-34-10 architectures.

The proposed SDI regularization term also enhances robustness on CIFAR-100 when applied to ResNet-18
across all evaluated adversarial attacks (see Table (3)). The margin of improvement in robustness against
adversarial attacks on CIFAR-100 appears to be larger than that observed on CIFAR-10 for both AT-SDI
and TRADES-SDI. Similar improvements in robustness are observed when AT-SDI and TRADES-SDI are
utilized to train Resnet-18 on SVHN dataset. Results in Table (4) show that AT-SDI outperforms AT on
CW (+5.23%), Autoattack (+ 1.20%), and PGD-20 (+2.43%).

Table 5 also clearly shows that the proposed training objective improves the robustness of Resnet-18 against
all the evaluated attacks on Tiny Imagenet. The consistent improvement of performance across all the
datasets tested validates the efficacy of the proposed SDI regularization term.

Finally, Table 6 demonstrates the effectiveness of the proposed training objectives on VGG-16 using the
CIFAR-10 dataset. Incorporating the proposed LSDI regularization term into AT results in a marginal
improvement in robustness to PGD-20, with a significant gain of 3.14% against CW and a 2.7% improvement
against Autoattack. Similarly, TRADES-SDI surpasses TRADES with a 1.3% increase in robustness against
PGD-20, a 1.71% gain against CW, and a 2.55% improvement against Autoattack.
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Table 1: White-box attack robust accuracy for ResNet-18 on CIFAR-10.
Defense Natural PGD-20 CW AA
Standard-AT 84.10 ± 0.09 52.78 ± 0.10 51.80 ± 0.14 47.95 ± 0.12

AT - SDI (Ours) 83.88 ± 0.10 53.43 ± 0.06 53.71 ± 0.09 49.56 ± 0.07

TRADES 82.65 ± 0.15 52.82 ± 0.13 51.82 ± 0.08 48.96 ± 0.11

TRADES - SDI (Ours) 82.04 ± 0.11 53.87 ± 0.07 52.61 ± 0.09 50.80 ± 0.09

Table 2: White-box attack robust accuracy for Wideresnet-34-10 on CIFAR-10.
Defense NATURAL PGD-20 CW AA
Standard AT 86.23 ± 0.12 56.32 ± 0.10 54.95 ± 0.12 51.92 ± 0.09

AT-SDI (Ours) 86.11 ± 0.04 56.78 ± 0.07 57.49 ± 0.08 53.57 ± 0.08

TRADES 84.70 ± 0.19 56.30 ± 0.16 54.51 ± 0.11 53.07 ± 0.13

TRADES-SDI (Ours) 85.37 ± 0.11 57.49 ± 0.16 56.57 ± 0.11 54.21 ± 0.07

Table 3: White-box attack robust accuracy for ResNet-18 on CIFAR-100.

Defense Natural P GD − 20 CW AA
Standard-AT 56.59 ± 0.22 28.18 ± 0.19 25.64 ± 0.18 24.07 ± 0.15

AT - SDI (Ours) 57.96 ± 0.14 30.78 ± 0.12 29.37 ± 0.15 26.38 ± 0.10

TRADES 56.96 ± 0.16 29.21 ± 0.12 25.57 ± 0.08 24.65 ± 0.06

TRADES - SDI (Ours) 60.68 ± 0.11 31.21 ± 0.04 28.73 ± 0.04 26.45 ± 0.04

Table 4: White-box attack robustness accuracy for ResNet-18 on SVHN.

Defense Natural P GD − 20 CW AA
Standard-AT 92.57 ± 0.31 55.67 ± 0.14 52.92 ± 0.16 45.95 ± 0.12

AT-SDI (Ours) 92.10 ± 0.20 58.10 ± 0.09 58.15 ± 0.06 47.15 ± 0.05

TRADES 90.83 ± 0.14 57.27 ± 0.08 53.59 ± 0.05 46.45 ± 0.07

TRADES-SDI (Ours) 90.54 ± 0.07 59.21 ± 0.10 56.39 ± 0.10 49.21 ± 0.03

Table 5: White-box attack robustness accuracy for ResNet-18 on Tiny Imagenet.
Defense Natural P GD − 20 CW AA
Standard-AT 48.83 ± 0.10 23.96 ± 0.05 21.85 ± 0.08 17.91 ± 0.09

AT-SDI (Ours) 49.73 ± 0.04 24.79 ± 0.03 23.16 ± 0.06 20.01 ± 0.08

TRADES 49.11 ± 0.18 22.82 ± 0.14 17.79 ± 0.16 16.82 ± 0.09

TRADES-SDI (Ours) 51.77 ± 0.11 25.11 ± 0.16 21.42 ± 0.08 19.71 ± 0.10

Table 6: White-box attack robust accuracy for VGG-16 on CIFAR-10.
Defense Natural P GD − 20 CW AA
Standard-AT 78.76 ± 0.09 49.56 ± 0.04 46.98 ± 0.03 43.23 ± 0.05

AT - SDI (Ours) 78.69 ± 0.07 49.67 ± 0.03 50.12 ± 0.03 45.95 ± 0.05

TRADES 80.42 ± 0.10 48.78 ± 0.07 46.48 ± 0.09 43.96 ± 0.06

TRADES - SDI (Ours) 80.21 ± 0.11 50.08 ± 0.09 48.19 ± 0.06 46.51 ± 0.08

4.4.2 Comparison with other prominent baselines.

Here, we compare our approach with other prominent and state-of-the-art methods from existing works,
including MART (Wang et al., 2019), adversarial weight perturbation (AWP) (Wu et al., 2020), ST-AT
(Li et al., 2023), LAS AT (Jia et al., 2022), LOAT (Yin & Ruan, 2024) and Randomize-AT (Jin et al.,
2023). Additionally, for a fair comparison with AWP, we combine AT-SDI and TRADES-SDI with AWP
and denote them as AT-SDI + AWP and TRADES-SDI + AWP, respectively. In both AT-SDI + AWP
and TRADES-SDI + AWP, the SDI regularization term is employed for perturbing the network weights.
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Experimental results displayed in Table 7 show that AT-SDI outperforms all existing baselines in robustness
against CW attacks. Additionally, AT-SDI outperforms TRADES and MART against Autoattacks. How-
ever, AT-SDI slightly underperforms compared to MART against PGD-20. Furthermore, AT + AWP also
marginally outperforms AT-SDI against Autoattacks. On the other hand, TRADES-SDI achieves better
performance than all baselines on CW and Autoattacks.

When compared to recent state-of-the-art methods, AT-SDI and TRADES-SDI demonstrate superior per-
formance on CW and SPSA attacks. TRADES-SDI outperforms LAS AT on CW (+0.82%), Auto-attacks
(+0.66%), and SPSA (+ 1.1%). Although LOAT moderately performs better than AT-SDI and TRADES-
SDI on PGD-20, both methods show significantly better than LOAT against CW, AA, and SPSA. While
Randomize AT and CAT slightly surpass AT-SDI and TRADES-SDI on PGD-20, AT-SDI and TRADES-
SDI perform better on CW and SPSA attacks. Moreover, Randomize AT and CAT take roughly twice as
long to train, making AT-SDI and TRADES-SDI significantly more efficient.

Combining our approach with AWP further improves robustness against the evaluated attacks. Specifically,
AT-SDI + AWP and TRADES-SDI + AWP outperform AWP + AT and TRADES + AWP against every
adversarial attack. AT-SDI + AWP and TRADES-SDI + AWP demonstrate improved performance across
all attacks. AT-SDI + AWP enhances robustness to PGD-20, CW attacks, and Autoattacks over AWP
by 2.11%, 4.38%, and 2.79%, respectively. AT-SDI+AWP also considerably outperforms AWP robustness
against SPSA, a strong query-based blackbox attack, by 2.99%. Additionally, AT-SDI + AWP achieves
superior performance on natural samples. TRADES-SDI + AWP improves performance over AWP on all
the attacks but dips by 0.15% in performance on natural examples.

Table 7: Comparison with other state-of-the-art baselines under white-box and black-box attacks on CIFAR-
10 for Wideresnet-34-10.

Defense NATURAL PGD-20 CW AA SPSA
Standard AT 86.23 ± 0.12 56.32 ± 0.10 54.95 ± 0.12 51.92 ± 0.09 61.05 ± 0.05

TRADES 84.70 ± 0.19 56.30 ± 0.16 54.51 ± 0.11 53.07 ± 0.13 61.15 ± 0.08

MART 84.17 ± 0.05 58.10 ± 0.15 54.51 ± 0.09 51.11 ± 0.04 58.91 ± 0.06

MAIL ((Liu et al., 2021)) 86.81 ± 0.11 60.49 ± 0.13 51.45 ± 0.11 47.11 ± 0.13 59.25 ± 0.07

ST-AT ((Li et al., 2023)) 84.91 ± 0.09 57.52 ± 0.07 55.11 ± 0.08 53.54 ± 0.08 61.34 ± 0.07

LAS-AT ((Jia et al., 2022)) 86.23 ± 0.13 56.50 ± 0.11 55.75 ± 0.13 53.55 ± 0.09 61.21 ± 0.10

Randomize-AT Jin et al. (2023)∗ 85.99 ± 0.12 58.41 ± 0.16 56.14 ± 0.14 54.15 ± 0.11 61.59 ± 0.07

CAT Liu et al. (2023)∗ 86.24 ± 0.17 57.51 ± 0.14 55.93 ± 0.13 54.13 ± 0.16 61.37 ± 0.10

LOAT ((Yin & Ruan, 2024)) 84.17 ± 0.19 58.67 ± 0.12 55.70 ± 0.09 52.35 ± 0.08 60.27 ± 0.10

AT-SDI (OURS) 86.11 ± 0.04 56.78 ± 0.07 57.49 ± 0.08 53.57 ± 0.08 62.46 ± 0.05

TRADES-SDI (OURS) 85.37 ± 0.11 57.49 ± 0.16 56.57 ± 0.11 54.21 ± 0.07 62.31 ± 0.06

AT-SDI + AWP (OURS) 88.21 ± 0.06 60.15 ± 0.05 60.30 ± 0.05 56.71 ± 0.06 65.56 ± 0.04

TRADES-SDI + AWP (OURS) 85.21 ± 0.12 60.72 ± 0.08 58.15 ± 0.07 56.82 ± 0.05 63.41 ± 0.05

Table 8: Comparison with other baselines under white-box and black-box attacks on Tiny Imagenet for
ResNet-18.

Defense NATURAL PGD-20 CW AA SPSA
Standard AT 48.83 ± 0.14 23.96 ± 0.11 21.85 ± 0.11 17.91 ± 0.12 26.93 ± 0.10

TRADES 49.11 ± 0.21 22.82 ± 0.18 17.79 ± 0.23 16.82 ± 0.20 27.41 ± 0.15

MART 46.01 ± 0.07 26.03 ± 0.11 22.08 ± 0.17 19.18 ± 0.09 28.15 ± 0.08

MAIL ((Liu et al., 2021)) 49.72 ± 0.31 24.09 ± 0.29 21.21 ± 0.23 17.42 ± 0.19 26.68 ± 0.15

ST-AT ((Li et al., 2023)) 48.61 ± 0.08 23.85 ± 0.11 18.43 ± 0.10 17.29 ± 0.08 27.91 ± 0.08

AWP ((Wu et al., 2020)) 48.89 ± 0.09 24.97 ± 0.13 22.39 ± 0.11 18.68 ± 0.17 28.23 ± 0.10

AT-SDI (OURS) 49.73 ± 0.10 24.79 ± 0.08 23.16 ± 0.14 20.01 ± 0.06 28.95 ± 0.09

TRADES-SDI (OURS) 51.77 ± 0.24 25.11 ± 0.17 21.42 ± 0.14 19.71 ± 0.12 28.36 ± 0.10

AT-SDI + AWP (OURS) 50.12 ± 0.27 26.14 ± 0.16 24.27 ± 0.13 20.47 ± 0.11 29.07 ± 0.12

TRADES-SDI + AWP (OURS) 52.87 ± 0.28 25.56 ± 0.17 23.59 ± 0.14 19.83 ± 0.15 28.41 ± 0.11

∗It takes approximately twice as much time to train compared to our methods.
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4.4.3 SDI-regularization Improves Generalization of Adversarial Training.

Most AT methods involve training with a specific type of adversarial examples crafted by maximizing either
the cross-entropy or KL-divergence measure using PGD. Therefore, the adversarial examples utilized for
adversarial training do not entirely reflect the universe of all possible adversarial attacks that a robust model
may encounter. This limitation can lead to poor generalization of adversarially trained models to other types
of adversarial examples (Song et al., 2018).

Typically, adversarial training methods exhibit significantly higher performance on PGD attacks, as evident
from the experimental results tables. However, when subjected to other types of attacks, the performance of
robust models tends to diminish. For example, it can be observed from the tables that the robust accuracy
on CW and AA attacks are notably lower compared to PGD-20.

The introduction of the LSDI regularization term to the standard AT and TRADES improves their per-
formances against other attacks. Unlike other AT methods, AT-SDI considerably improves the robustness
against CW and AA on all the datasets evaluated. In fact, training a model using the proposed AT-SDI
consistently improves the performance of the resulting robust model to CW attack and achieve better per-
formance over PGD-20 on CIFAR-10 dataset, as may be observed in Tables 1, 2, and 7. Note that CW
adversarial examples are not used for training, yet better robust accuracies are recorded compared to PGD
adversarial examples, which are typically used for adversarial training. Significant improvement in robustness
against CW and AA can also be observed on other datasets, CIFAR-100, SVHN, and Tiny Imagenet. The
SDI regularization term also improves the performance of TRADES on CW and AA attacks. Experiments
in Tables 1 - 5 show that the SDI regularization reduces the performance gap between PGD-20 and the other
attacks.

Combining AWP (Wu et al., 2020) with AT-SDI achieves a high robustness of 60.30% on CW, improving
AWP by 4.38% on CIFAR-10. Further, the robustness performance on CW is better than the robustness
performance on PGD-20. Also in Table 7, the improvement in performance is noticeable against AA and
SPSA attacks. Similarly, the improvements in robustness to CW AA can be observed in Table 7, when the
LSDI regularization is applied to TRADES + AWP .

Overall, the proposed LSDI regularization term consistently minimizes the performance gaps between robust-
ness to PGD-20 adversarial examples and other types of adversarial examples. This supports our argument
that the LSDI regularization improves the generalization of adversarial training. An intuitive explanation
for this observation is that the LSDI regularization is not dependent on the specific algorithmic nuances of
individual adversarial attacks and defenses. Instead, it explicitly maximizes the probability gaps between
the probability of the true class of each adversarial example and the probabilities corresponding to incorrect
classes.

4.4.4 Sensistivity Analysis of the hyper-parameter β

Here, we study the influence of the regularization hyper-parameter β on AT - SDI and TRADES-SDI
performance.

We trained WideResNet-34-10 using AT-SDI with β values of 1.0, 2.0, 3.0, 4.0, and 5.0, and TRADES-
SDI with β values of 1.0, 2.0, 2.5, 3.0, 4.0, and 5.0. We present the results in Tables 9 and 10, which
shows that increasing the value of β leads to moderate reduction in the natural accuracy of AT-SDI and
TRADES-SDI. The robust accuracy of PGD-20 remains relatively stable for various values of β on AT-SDI
and TRADES-SDI. Nevertheless, AT-SDI exhibits noticeable improvement in robustness against CW attack
as β increases. The performance of AT-SDI against Autoattack also improves with increasing β value but
diminishes as β gets too large. We selected β = 3.0 since it maintains a good balance between the natural
and robust accuracy.

Like AT-SDI, TRADES-SDI is also sensitive to β. The variations in natural accuracy are moderate when β
is varied. The robustness to PGD-20 remains relatively stable as β varies. It can be observed from 10 that
the robust performance on CW attack and AA increases as β increases, but both decrease slightly when β
is set to 5.0.
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Table 9: Sensitivity analysis on β on AT-SDI for Wideresnet-34-10 on CIFAR-10.
β NATURAL PGD-20 CW AA
1.0 86.75±0.05 56.77±0.07 57.07±0.10 53.16±0.06

2.0 86.52±0.07 56.84±0.07 57.19±0.09 53.44±0.09

3.0 86.11±0.04 56.78±0.07 57.49±0.08 53.57±0.08

4.0 85.78±0.11 56.69±0.10 57.49±0.06 53.39±0.09

5.0 85.59±0.10 56.37±0.09 57.81±0.08 52.73±0.11

Table 10: Sensitivity analysis on β on TRADES-SDI for Wideresnet-34-10 on CIFAR-10.
β NATURAL PGD-20 CW AA
1.0 85.51±0.15 57.27±0.18 55.66±0.09 53.43±0.10

2.0 85.43±0.10 57.29±0.14 56.01±0.08 53.61±0.7

2.5 85.39±0.12 57.36±0.13 56.28±0.11 53.88±0.09

3.0 85.37±0.11 57.49±0.16 56.57±0.11 54.21±0.07

4.0 85.24±0.13 57.33±0.15 56.66±0.13 54.11±0.09

5.0 85.21±0.11 57.31±0.14 56.59±0.12 54.05±0.11

4.4.5 Computational Cost

We conducted all experiments using a single core of an AMD EPYC 7513 processor, an Nvidia A100 SXM4
80 GB GPU, and 128 GB of RAM. When the proposed LSDI regularization term is added to AT, it increases
the training time per epoch by no more than 4 seconds for ResNet-18. For context, popular regularization
losses like KL-divergence and mean square error add up to 8 seconds and 10 seconds per epoch, respectively,
under similar conditions and computational resources. Therefore, the LSDI regularization is lightweight and
introduces minimal overhead compared to KL divergence and mean square error losses.

Algorithm 2 SDI-PGD Algorithm.
Input: a neural network model with the parameters θ, step size κ, natural examples xi in a labelled

dataset D of size n and |C| is the number of classes.
Output: Adversarial examples x′

i

1: Sample (xi, yi) from D;
2: x

′
i ← xi + 0.001 · N (0, 1); ▷ N (0, I) is a Gaussian distribution with zero mean and identity variance.

3: for t = 1 to T do ▷ T is the number of PGD iteration steps.
4: MSDI(x′

i, yi; θ) = {
∑|C|

k=1
(fθ(x′

i)k−fθ(x′
i)yi

)2)
|C|−1 }0.5

5: x′
i ← ΠBϵ(xi)(xi − κ · sign(∇x′

i
MSDI(x′

i, yi; θ)) ▷ Π denotes the projection operator.
6: end for
7: return x′

i ▷ Return adversarial example.

4.5 ADVERSARIAL ATTACK USING THE SDI METRIC

In Section 3, we argue that the proposed SDI metric in Eq. (3) can be utilized for crafting adversarial
examples.

Here, we compare PGD-based adversarial examples optimized using the SDI metric with existing popular
PGD-based adversarial examples crafted using information-theoretic measures such as cross-entropy (Madry
et al., 2018) and KL-divergence (Zhang et al., 2019). The MSDI -measure-optimized adversarial examples are
crafted using the approach described in Eq. (5). We compare the performances of each approach under AT
and TRADES. In each case, the attack is obtained using the conventional attack settings: 20 PGD iterations,
perturbation bound ϵ 0.031, and step size 0.003. The algorithm for obtaining adversarial examples using the
MSDI measure is provided in Algorithm 2.
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Figure 1: Comparison of natural CIFAR-10 images with the adversarial perturbations and adversarial ex-
amples obtained by SDI-PGD attack defined in Eq. (5). Images in the first row represent natural CIFAR-10
images and their correct labels. The second and third rows represent the corresponding l∞ adversarial per-
turbations, with ϵ = 8/255 and 0.2 respectively. The fourth row represents the corresponding adversarial
examples and their incorrect labels for each image in row one.

We display some adversarial examples obtained using the proposed MSDI -measure-optimized approach and
their corresponding misclassified labels in the last row of Figure 1. Additionally, we display the corresponding
adversarial perturbations of the original images in rows two and three.

We compare the robustness of two prominent adversarial training variants, AT and TRADES, against PGD-
based adversarial examples generated using cross-entropy loss, KL-divergence, and the SDI measure. The
experimental results are presented in Table 11. It is evident from the table that adversarial examples crafted
using the SDI metric exhibit significantly greater strength compared to those crafted using KL-divergence.
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Nevertheless, adversarial examples generated with the cross-entropy loss demonstrate a marginally greater
strength than those obtained using the proposed SDI metric.

The results show that the SDI metric produces ‘useful gradients’ for generating adversarial examples, a
desirable quality as discussed in prior studies (Athalye et al., 2018; Papernot et al., 2017). This suggests
that optimizing the SDI metric for improving adversarial robustness would not lead to gradient obfuscation
(Athalye et al., 2018).

Table 11: Comparison of successes of PGD attacks crafted using cross-entropy, KL-divergence, and SDI
measure on defences AT (Madry et al., 2018) and TRADES (Zhang et al., 2019) on CIFAR-10 for Resnet-
18.

PGD Attack Measure AT TRADES
Cross-entropy 52.78 ± 0.10 52.82 ± 0.12

KL-divergence 68.03 ± 0.15 68.87 ± 0.14

SDI 53.95 ± 0.14 54.32 ± 0.19

5 CONCLUSION

We introduce a novel regularization term based on a standard deviation-inspired (SDI ) measure to improve
adversarial robustness. The SDI measure captures the spread of a model’s estimated probabilities with
respect to the true class of each input. We establish a connection between optimizing the SDI measure
and the min-max optimization procedure in adversarial training. Specifically, we illustrate that the SDI
measure may be optimized for generating adversarial examples by seeking perturbations that minimize the
SDI measure.

We demonstrate with experimental study that maximizing the SDI measure on adversarial training examples
contributes to improving the robustness of existing adversarial training methods. Empirical results indicate
that the proposed regularization significantly improves existing adversarial training variants’ robustness and
generalization capabilities.
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