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ABSTRACT

Binary decompilation is a powerful technique for analyzing and understanding
software, when source code is unavailable. It is a critical problem in the com-
puter security domain. With the success of neural machine translation (NMT),
recent efforts on neural-based decompiler show promising results compared to
traditional approaches. However, several key challenges remain: (i) Prior neural-
based decompilers focus on simplified programs without considering sophisti-
cated yet widely-used data types such as pointers; furthermore, many high-level
expressions map to the same low-level code (expression collision), which incurs
critical decompiling performance degradation; (ii) State-of-the-art NMT models
(e.g., transformer and its variants) mainly deal with sequential data; this is inef-
ficient for decompilation, where the input and output data are highly structured.
In this paper, we propose N-Bref 1, a new framework for neural decompilers that
addresses the two aforementioned challenges with two key design principles: (i)
N-Bref designs a structural transformer with three key design components for bet-
ter comprehension of structural data – an assembly encoder, an abstract syntax
tree encoder, and a tree decoder, extending transformer models in the context of
decompilation. (ii) N-Bref introduces a program generation tool that can control
the complexity of code generation and removes expression collisions. Extensive
experiments demonstrate that N-Bref outperforms previous neural-based decom-
pilers by a margin of 6.1%/8.8% accuracy in datatype recovery and source code
generation. In particular, N-Bref decompiled human-written Leetcode programs
with complex library calls and data types in high accuracy.

1 INTRODUCTION

Decompilation, which is a process of recovering source code from binary, is useful in many situa-
tions where it is necessary to analyze or understand software for which source code is not available.
For example, decompilation is highly valuable in many security and forensics applications (Lin et al.
(2010); Lee et al. (2011); Brumley et al. (2011)). Given a binary executable, an ideal decompiler
generates the high-level program that preserves both the semantics and the functionality of the source
code. However, this process is difficult as the data structure and semantics are largely destroyed or
obfuscated during the compilation. Inspired by remarkable performance in neural machine transla-
tion (NMT) tasks (Liu et al. (2019); Vaswani et al. (2017); Dai et al. (2019); Devlin et al. (2018);
Dong & Lapata (2016)), recent works (Fu et al. (2019); Katz et al. (2019)) leverage NMT model for
neural-based decompilation and achieve promising performance on small code snippets.

To make neural-based decompilation useful in practice, many challenges remain: (C1) Current state-
of-the-art neural architectures for machine translation – transformer (Vaswani et al. (2017)) or its
variants (Dai et al. (2019); Devlin et al. (2018); Liu et al. (2019)) – focused on sequential data
(e.g., language), while neural decompilers deal with data with intrinsic structures (e.g., tree/graph)
and long-range dependencies. (C2) The main decompilation task consists of many sub-tasks (e.g.,
datatype recovery, control/dataflow recovery). Training one neural network cannot solve them all.
(C3) Practical data types (e.g., pointers) are not modeled and compiling configurations need to be
known beforehand (Fu et al. (2019)). (C4) Due to a lack of unification in terms of library usage,
variable type, and/or control-flow complexity, a simple crawling from public repositories does not

1 N-Bref is the abbreviation for “neural-based binary reverse engineering framework”
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work well. Source code of different styles can be compiled into identical binary code (i.e., “expres-
sion collision” or EC) and yield issues when evaluating decomplied code against original source
code. To our best knowledge, no code generation toolkit with configurable code complexity exists.

In this paper, we present N-Bref, an end-to-end neural-based decompiler framework that learns to
decompile the source code to assembly. For (C1), we design a back-bone structural transformer by
incorporating inductive Graph Neural Networks (GNNs) (Hamilton et al. (2017)) to represent the
low-level code (LLC) as control/dataflow dependency graphs and source code as Abstract Syntax
Tree (AST). To better model long-range correlations in the structural representations, we add a graph
neural network after each of the self-attention layers in the transformer. The AST decoder expands
the AST of the source code in a tree fashion to better capture the dependency of each predicted node.
Also, we adopt memory augmentation (Cornia et al. (2019)) and new tokenizing methods to improve
the scalability of our neural networks with the growing size of programs. The backbone network is
learned to iteratively generate AST for source code from structured representation of assembly.

For (C2) and (C3), we decouple decompilation into two sub-tasks: data type solver (DT-Solver)
and source code generator (SC-Gen), both use the same backbone structural transformer with dif-
ferent parameters. The output of the data type solver is used as the decoder input of the source
code generation. For (C4), we design a dataset generator to generate training data, test and analyze
the performance of different design principles across configurable code complexity. Different from
conventional dataset generators (Yang et al. (2011); IntelC++compiler (2017)) used in programming
language studies, our generator produces similar code styles as those written by human program-
mers, has unified source code representation that avoids EC, has configurable complexity and data
types to facilitate factor analysis, and is specifically designed for learning-based methodologies.

Extensive experiments show that on our new metrics, N-Bref outperforms transformer baseline/pre-
vious neural-based decompiler (Fu et al. (2019)) by 3.5%/6.1% and 5.5%/8.8% in data type re-
covery and source code generation tasks, respectively. Furthermore, on 5 human-written Leetcode
solutions, N-Bref shows 4.1%/6.0% and 6.0%/9.7% margins over transformer/previous neural de-
compiler in data type recovery and source code generation, respectively. We also perform a compre-
hensive study of the design component in neural-based decompiler across different dataset configu-
rations. In summary, this paper makes the following contributions:

We construct an end-to-end decompilation system by integrating a LLC Encoder, an AST encoder,
an AST decoder, and a set of novel embedding methods in a holistic manner. Our new architectures
bridge the gap between low-level code and high-level code by transforming both of them into a
graph space.

We perform a comprehensive analysis of the influence of each neural-based decompiler design
component to the overall program recovery accuracy across different dataset configurations. We
corroborate the design performance on various generated benchmarks and Leetcode tasks.

We boost decompilation performance by decomposing the decompilation process into separate
tasks, data type recovery and AST generation. In addition, we present corresponding new metrics to
evaluate data type recovery and source code generation.

We develop the first dataset generation tool for neural-based decompiler development and testing.
It randomly generates programs with configurable complexity and data types; it also unifies source
code representation to prevent ”expression collision”.

2 PRELIMINARIES OF DECOMPILERS
Decompilation takes an executable file as input and attempts to create high-level source code that are
more semantically meaningful and can be compiled back. Figure 1 shows a low-level code snippet
disassembled from a stripped binary and the corresponding high-level program.

A commonly used low-level code (LLC) is assembly (ASM). An assembly program is a sequence
of instructions that can be executed on a particular processor architecture (e.g. MIPS, x86-64). The
first token for each instruction is called an ”opcode”, which specifies the operation to be performed
by the instruction. Many instructions in a program operate on processor registers (a small amount
of fast storage in the processor) or instant values to perform arithmetic operations, such as shift-
ing (e.g.shl , shr ), floating-point multiplications (e.g. mulss), etc. Other instructions include (1)

2 Complete assembly code and graph are shown in Appendix H & I.
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Figure 1: An example of (a) source code to AST conversion. Note that the pseudo ‘statement’ or ‘stmt’ nodes
are added by the compiler during AST conversion. (b) assembly (x86-64) to graph2.

memory instructions that load (Figure 1(b) Line 1) or store (Line 9) data from memory/register to
register/memory; (2) branch instructions that conditionally (Line 6) or unconditionally (Line 10)
redirect program execution to a different sequence.

Each instruction has a certain internal structure, depending on the opcode. For example, in Line 8 of
Figure 1(b), the first operand is a floating-point value in the memory and multss multiplies the value
with the destination register (xmm0 ) and stores the value back to xmm0 . Besides, connections also
exist between instructions: (i) branch instructions (e.g., je , jmp) reveal the ‘control flow’ of the
high-level program; (ii) the register which stores the new value of multss (Line 8) is consumed later
as a source register (Line 9). These data movements reveal the ’data flow’ of the program. In this
paper, we formulate the low-level instructions as a graph using the instruction structure, control-flow
and data-flow between each nodes as shown in Figure 1(b).

High-level programming languages can be represented in its equivalent abstract syntax tree
(AST) (Baxter et al. (1998)) during code generation (Figure 1(a)). This representation has many
advantages over its sequential representations: (i) adjacent nodes are logically closer in AST com-
pared with sequential representations, (ii) error propagation in sequential expansion can be alleviated
in a tree decoder, and (iii) AST grammar helps prevent error predictions.

3 N-BREF OVERVIEW

In this section, we provide an overview of our design components with an illustrative example.
Figure 2 shows an example of the prediction procedures.

The Backbone Structural Transformer. Our structural transformer has three components: (1)
LLC encoder, (2) AST encoder, and (3) AST decoder (Detailed in Sec. 4). The LLC encoder takes
the low-level instructions converted from binaries using disassembler as input. AST encoder takes
the input of a previous (partial) AST, and the predictions of AST decoder are AST nodes, which
can be equivalently converted to the high-level program. As mentioned earlier, we formulate input
low-level code into graphs and high-level code into tree structures.

As the AST of the data declaration is very distinct from the rest of the code (Figure 1(a)) in high-
level program, we decompose decompilation into two tasks: data type solver (DT-Solver) and
source code generator (SC-Gen). Both have the backbone structural transformer.

Figure 2: An example of prediction procedures in N-Bref pipeline. AST is expanded in a breadth-first manner.

Prediction Procedure. Figure 1 shows an example of the code recovery process of N-Bref. The
assembly graph and high-level AST is the input of LLC encoder and AST encoder. The input of the
AST decoder is the tree path from the root node to the expansion node. Initially, a single root-node
is fed into the AST encoder/decoder. Once a new node is generated from decoder in each step, we
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Table 1: Hyper-parameters in data generation

Hyper-parameters Description
Block depth (bdepth) maximal level of nested control dependencies (‘loop’ or ‘branches’).

Block size (bsize) maximal number of children for a component statement (See Figure 1(a)) for each code block.

Block number (bnum) maximal number of times to generate the control blocks with depth of bdepth

Expression complexity (Ec) maximal depth of each line of code

update the AST and use it as the AST encoder input in the next prediction step. We expand the AST
in a breadth-first (BFS) fashion.

AST contains explicit terminal nodes, which are tokens with no child, such as registers, numerics,
variable references and variable types. Non-terminal nodes (e.g. binary operator ‘=’) must have
children, otherwise there is a syntax error. The branch stop expansion when its leaf nodes are all
terminal nodes. Note that during training, we apply ‘teacher forcing’ by attaching the correct node
label into the AST encoder at each step. (See Appendix E for formal algorithm)

Cascading DT-Solver and SC-Gen. As shown in Figure 1, we divide the AST into two parts: (i)
AST of data type and (ii) AST of main code body. Each part is generated using DT-Solver and
SC-Gen respectively. This method allows the network to focus on each task individually and
resolves more complicated data types. During testing, DT-Solver first generates the left part of
the AST in Figure 1, then the SC-Gen will continue the expansion from this intermediate results.
During training, the initial data type input to the SC-Gen is the program golden.

4 METHODOLOGY: DATA GENERATOR
In this section, we detail the data generator designed in N-Bref. We design data generator so that it
has no expression collision (EC). For example, ‘unary’ operators are converted to ‘binary’ operators
(i++ and i=i+1) and all the ‘while’ loops are transferred into ‘for’ loops. Experimentally, we observe
that our data generator is free of EC and performance improves. EC hurts the performance because
(1) the same input assembly can be mapped to multiple equivalent outputs; (2) extra high-level
semantics result in extra token dimensions; (3) the training under EC is both difficult and slow due
to label adjustment at runtime.

The generator is configurable with multiple hyper-parameters (Table 1), which makes it easy for
N-Bref to accommodate with different decompiliation tasks. It also allows us to analyze which
components in the pipeline improve the scalability and performance (See Sec. 6).

For each data point in the dataset, we sample bsdepth, bssize and bsnum with a uniform distribution
between 1 and a user-specific maximal value (Table 1). The number of sampled variables (varsnum)
of a program is related to bsnum and bsdepth following a Poisson Distribution (Equations in Appendix
D). The generator also takes the libraries libin that are pre-defined by the user as potential generated
components. If a function call is sampled, the data generator will filter out the variables that do not
match with its input / output types (line 4 Figure 1(a)).

In summary, bdepth and Ec control the difficulty of control/data flow, while bsize and bnum con-
trol the length of the code. For example, the code snippet in Figure 1(a) has a configuration of
[Ec, bdepth, bsize, bnum] = [2, 1, 1, 1]. Note that in N-Bref, the program is compiled using gcc with
no optimizations. Previous works (Brumley et al. (2013); Lee et al. (2011); Lin et al. (2010)) also
disabled optimizations, because many optimizations change variable types and rewrite source code
(e.g. loop-invariant optimization) which will result in unfair accuracy evaluations.

Figure 3: The backbone neural architecture design for DT-Solver and SC-Gen. N1,N2,N3 indicates the
number of times to repeat the block in the architectures.
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5 METHODOLOGY: PIPELINE

Here, we present the details of the backbone structural transformer in N-Bref.

LLC Encoder. As shown in Figure 1(b), we first formulate the assembly code as graphs by adding
the following edges between nodes: (i) between the ‘opcode’ node of branch instructions and all
their possible next instructions (control flow). (ii) between instructions ‘opcode’ and its ‘operands’
(i.e., registers / instant values). (iii) between the same register node of different instructions (register
read-after-write) which indicates the data-dependency. Different from (Shi et al. (2019)), we do
not add redundant pseudo nodes to indicates node positions, because this method is not scalable
for long programs due to the exponential size of input using pseudo nodes. Instead, we directly
concatenate all one-hot meta-features of a node together, namely the register / instruction type (vart
/ inst), position in the instruction (npos), node id (nid) and numerical field (nnum) during tokenizing
process. If the token is a number, we represent it in a binary format to help the transformer generalize
to unseen numerical values (e.g., 12 is represented as nnum=[0,0,0,0,1,1,0,0], a 16-by-1
vector). This representation method can greatly reduce the length of the transformer input and make
the decompiler more robust for long programs.

The tokenized vector for each node (h0 = [vart; inst;npos;nblock;nid;nnum;nzeros]
T , h0 ∈

Rd×1) are fed into an embedding graph neural network (GNN) – GraphSAGE (Hamilton et al.
(2017)), an inductive framework that can generalize representations for unseen graphs. We pad
nzeros to the input vector h0 to match the GNN output feature size d. Note that to better represent
the data flow in assembly code, we leverage a character embedding for registers (vart = [c1; c2; c3]).
For instance, if the register is $rax, we would break it into ‘r’,‘a’,‘x’. That is because the naming
policy of x86-64 (also MIPS) hardware registers indicates their underlying connections – $eax is
the first 32-bit of register $rax and $ax/$ah is the first 16-/8-bit of register $eax.

After getting the assembly graph V and each node’s representation h0, each node v (where v ∈ V )
aggregates the feature representations of its sampled neighbors:

hlN(v) = max(σ(W lhlu + bl)) ,∀u ∈ N(v) (1)

Here, the hlu represents the hidden state of a node’s neighbours and N(v) represents the set of
neighbours of the node v. W l is a trainable matrix (d-by-d) and bl is a bias vector, σ represents the
sigmoid activation function. We choose to use an element-wise max-pooling (max) as an aggregator
to collect the states from neighbours. The aggregation vector is concatenated with the current state
of the node hlu as the input to a fully-connected layer to get the new state:

hl+1
v =W l+1([hlv, h

l
N(v)]) (2)

Here, W l+1 ∈ Rd×2d is the trainable embedding matrix and hl+1
v (a d-by-1 vector) is the output of

the current layer of GNN. [·, ·] is the concatenation operation.

AST Encoder. The AST encoder encodes the AST tree from the AST decoder to guide future
tree expansions. In this work, we treat the AST tree as a graph (V ) and embed it using GNN in the
same way as LLC encoder following Eq. (2)(1). The input of the GNN includes meta-features of the
tokenized AST node feature (nfeat) and a boolean indicating whether the node is expanded in this
step (nexpand). The input vector hv = [nexpand;nfeat] (v ∈ V ) is fed into a GNN and the output
(h′v) is added with the positional encoding result:

h′′v = h′v +W1h
depth
v +W2h

idx
v (3)

Here hdepthv and hidxv are the one-hot vector of the node’s (v) depth in the tree and node’s position
among the parent’s children. W1 and W2 are trainable matrices for embedding. The output hidden
states is fed into our designed self-attention module (Sec. 5.1). At the end of the AST encoder, we
integrate the AST encoder output (Hast) and LLC encoder output (Hllc) using an additional multi-
head attention layer with Hllc as input K and V , and Hast as Q (Figure 3). The result (H ′ast) will
be used for networks downstream.

AST Decoder. The AST decoder takes the encoding result from the previous stage as input. The
querying node of the AST decoder is represented as a path from the root to itself using the same
methods proposed in (Zhu et al. (2019); Chen et al. (2018a)). This method reduces the length of the
input into the decoder. The results from the low-level code encoder Hllc and the AST encoder H ′ast
are integrated into the decoder using two attention layers following Eq. (4) as shown in Figure 3. The
output of the AST decoder is mapped into its output space with dimension do×1 using another fully-
connected layer. do is the number of possible tokens of high-level code. After the new prediction is
generated, we update the AST tree for the next time step (Figure. 2).
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5.1 MEMORY AND GRAPH AUGMENTED SELF-ATTENTION MODULE

Decompilation is hardly a word-by-word translation like natural language. Each individual token
in low-level code or AST tree must be interpreted in the context of its surrounding semantics. To
capture the prior knowledge on programming structures and emphasize the node connections after
embedding, we leverage two additional modules (i) memory-augmentation (ii) graph-augmentation
in transformer attention. The formal descriptions are shown below.

Memory augmentation. We propose a memory-augmented attention layer similar to the method
in (Cornia et al. (2019)). The input prior information is trained and does not depend on the input
data. Traditional transformer’s building block is self-attention layer which takes three sets of vectors
(queries Q, keys K and values V ) as input. The layer first computes the similarity distribution
between Q and K and use the resulted probability to do a weighted sum on V . (equations in
Vaswani et al. (2017)) In N-Bref, we add two trainable matrices for each head as an extra input to
the transformer for memory augmentation. And the computation is adjusted to:

H =MultiHead(Q,K, V ) = Concat(head1, ..., headt)Ẇ
O (4)

headi = Attention(Q′,K ′, V ′) = softmax(
Q′K ′T√

d
)V ′ (5)

where Q = QWqi, V
′ = [VWvi,Mvi],K = [KWki,Mki] (6)

Here, t is the number of parallel attention heads. (Wqi,Wki,Wvi) are trainable matrices with a
dimension of d × d

t . WO has the dimension of d × d. Mvi, Mki ∈ Rdm×d and dm controls
the number of slots of the memory. Note that we remove the positional embedding in the original
transformer for LLC encoder as the position information is integrated into GNN embedding.

Graph augmentation. We propose to emphasize the connections of assembly nodes after at-
tention layer. The output of the multi-head attention layer s can be viewed as a matrix Ht =
[hs,0, hs,1, ..., hs,N ], H ∈ Rd×N , where N is the number of nodes in the assembly graph. We first
convert Ht back to a graph structure using the edge information of assembly code. The new graph
with connected hidden states is the input to an additional GNN layer using Eq. (1)(2) after each
self-attention layer.

6 EVALUATION
6.1 EXPERIMENTAL SETUP

We assess the performance of N-Bref on various benchmarks generated by our dataset generator
with various difficulty levels and Leetcode solutions (Problems (2017); details in Appendix B) as
shown in Table 2. This binary is disassembled using the GNU binary utilities to obtain the assembly
code. To generate the AST for C code, we implement the parser using clang compiler for python.
Our dataset generator is built on csmith (Yang et al. (2011)), which is a code generation tool for
compiler debugging. The original tool is not suitable in our cases and thus N-Bref modifies most of
the implementation for decompilation tasks. For the neural network setting discussed in Figure 3,
we choose [N1, N2, N3, t] = [3, 2, 2, 8] (t is the number of heads used in N-Bref), an embedding
dimensionality d = 256, and memory slots dm = 128. The training/evaluation is implemented using
Pytorch 1.4 and DGL library (Wang et al. (2019)). Details about the training hyper-parameters and
settings are included in Appendix A.

Complexity arguments and benchmarks. This section describes the tasks in our evaluation.
We randomly generate 25,000 pairs of high-level programs and the corresponding assembly code
in each task for network training (60%), validation (20%) and evaluation (20%). We mainly focus
on tuning bdepth and bnum (see Table. 1). We set Ec = 3, bsize = 3, bias = 2 and test libin with
different complexities: (i)<math.h> and (ii)<string.h>. Function recursion is allowed for code
generation. Other than function calls, normal expressions ( ”+,−, ∗, \, ‖,�,&,==,∧” etc.) are
also possible operators during code generation. (Code examples in Appendix C.)

Metrics. We evaluate the performance of N-Bref using token accuracy. For evaluation of SC-Gen,
we expand the decompiled AST from the root to match the structure of the golden AST (ASTG).
The token accuracy is calculated as:

acc =
num(AST = ASTG)

num(ASTG)
(7)

We also show the evaluation result using graph edit distance (Sanfeliu & Fu (1983)) without enforc-
ing the match between the decompiled AST and ASTG on the graph generation in Appendix G.
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The metric is fair to evaluate decompilation tasks as we remove all the EC. Eq. 7 is able to evaluate
sequence output by treating the sequence as a tree.

For DT-Solver, we have two metrics: (i) macro accuracy (Accmac) and (ii) micro accuracy
(Accmic). The Accmac treats unsigned and signed variables as the same. This is because
unsigned and signed variables have no difference in assembly code except through hints from
type-revealing functions (for example, the return value of strlen() must be an unsigned
integer). Note that we do not recover numerical values that are directly assigned to a vari-
able and we replace them with a token ‘num’. These values exist in the stack memory or assembly
instructions which can be resolved after the AST is correctly recovered using additional analysis
methods. One of our future works can leverage the pointer network (See et al., 2017) to directly
copy numerical values to the output.

6.2 RESULTS

Performance impact of each design component. To study the effectiveness of potential design
principles, we perform a thorough sensitivity study as shown in Figure 4.

In SC-Gen, we observe that with the growth of code length and complexity, each component in N-
Bref preserves more performance compared to the baseline transformer. The transformer with LLC
encoder shows the least performance degradation when complexity and length increase (as shown
by the slope). This is because the GNN in N-Bref connects instructions that are distant from each
other to alleviate the performance drop. By expanding the source code into a tree structure (AST
encoder+decoder), the result shows that it also prevents the accuracy of degradation.

For DT-Solver, increasing bsize improves the performance, because short programs do not have
enough semantics to identify variable types. Also, the performance declines when increasing the
program complexity (bdepth), and we assume that is because wiring control-flow complicates the
analysis of data-flow. Traditional decompiler REWARD shows a large performance drop along the
axis of bdepth. That is because the dynamic analysis in REWARD is for a single control path. As
such, it has limited performance among complex control-flow. We also tested many other design
options but they cannot achieve better scalability and performance empirically compared to N-Bref.

Figure 4: Sensitivity analysis of each design component over dataset complexity for <math.h>. Each sample
is trained for 10 epochs for simplicity. ‘Trans’ Refers to the baseline transformer.

Comparison to previous works. N-Bref yields the highest token accuracy across all benchmarks
(91.1% on average) as shown in Table 2 in both data type recovery and AST generation. N-Bref en-
genders 5.5% and 8.8% margin over transformer-baseline and Ins2AST, which is a previous neural-
based program decompiler (Fu et al. (2019)). The encoder in Ins2AST leverages N-ary Tree LSTM,
which cannot collect information for instructions far apart but logically adjacent. Our LLC encoder,
on the other hand, leverages GNN embedding and graph augmentation to emphasize node connec-
tions. We do not show the results of traditional decompilers (RetDec (2017); Hex-Rays (2017)) as
they do not preserve any semantics and achieves very low token accuracy using Eq. 7. (Examples of
traditional decompilation results are shown in Fu et al. (2019)).

For type recovery, N-Bref also achieves 3.55% / 6.1% / 30.3% average margin over transformer,
Ins2AST, and REWARD respectively. Traditional decompiler REWARD leverages type-revealing
instructions and does not consider other low-level representations. Also, REWARD focuses on a
single path in the program executed using dynamic analysis. As such, they cannot handle control
flow properly. N-Bref uses static analysis and considers all paths during execution.
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For baseline transformer and N-Bref, we also present the Accmic in parentheses of Table 2. The
gap between Accmac and Accmic is reduced when the program gets longer (reduced from 28.5% to
20.2% for <math.h> using N-Bref). That is because longer program have more type-revealing in-
structions/functions which can help the network to identify data types (‘unsigned/signed’) correctly.
Also, N-Bref shows higher tolerance to the complexity and length growth compared to other works.
For libin =<string.h>, the token accuracy drops by 6.1% from the easiest to the hardest settings
compared to 9.5% / 8.2% accuracy drop for baseline transformer and Ins2AST, respectively. That
is because GNN can gather information from adjacent nodes for large assembly graphs. Also, AST
decoders can effectively prevent error propagation through tree expansion when the source code
grow larger, unlike sequence generation where early prediction errors affect the later nodes.

We also select 5 Leetcode Problems (2017) solutions in C as an auxiliary test dataset and train a
new model with the complexity of (bdepth = 2, bsize = 4) using <string.h> library. The result
shows N-Bref is able to recover real benchmarks and achieves 6% / 9.7% margin over transformer
and previous neural-based decompiler. This means N-Bref is able to generalize to human-writing
code. The complexity of datasets we generate can cover real-world applications.

Table 2: Accuracy (%) comparison between N-Bref and alternative methods in (a) type recovery, and (b)
AST generation. Ins2AST is a previous neural-based program decompiler (only code sketch generation stage).
REWARD (Lin et al. (2010)) is a traditional framework for type recovery. Lang2logic (Dong & Lapata (2016))
is a sequence-to-tree translator. The baseline is the transformer.

(lib, bsize, bdepth) (a) Data Type Recovery Accmac(Accmic) (b) AST Generation (token accuracy)
REWARD baseline lang2logic Ins2AST+att N-Bref baseline lang2logic Ins2AST+att N-Bref

(math,1,1) 85.1 96.6 (70.2) 92.1 94.1 99.6 (71.1) 90.3 84.3 88.6 94.5
(math,2,2) 66.2 94.1 (71.4) 88.6 91.3 97.3 (72.5) 87.3 81.5 85.6 92.2
(math,3,3) 53.1 91.9 (73.4) 86.4 88.3 95.3 (75.1) 84.0 77.8 82.4 89.5

(str,1,1) 82.4 95.3 (71.6) 91.1 92.9 98.3 (73.3) 88.6 80.8 85.1 92.9
(str,2,2) 63.1 93.1 (72.5) 88.3 90.8 97.0 (74.9) 84.3 75.6 81.5 90.6
(str,3,3) 50.9 91.5 (73.6) 84.8 88.6 95.3 (75.4) 79.1 70.3 76.9 86.8
leetcode 73.3 91.9 (73.8) 85.4 89.1 96.0 (75.9) 82.3 73.1 78.6 88.3

Table 3: Ablation study of N-Bref on AST generation. ‘-ensemble’ refers to disable the separation of data
type recovery and AST generation.

(lib, bsize, bdepth) -GNN
after attention

-node
representation

-positional
encoding

-memory
augmentation -ensemble N-Bref

math,2,2 91.0 90.5 92.0 91.1 90.3 92.2
math,3,3 88.4 87.6 89.0 87.9 87.3 89.5

str,2,2 89.7 88.7 90.0 88.9 88.3 90.6
str,3,3 85.8 85.2 86.0 84.5 83.2 86.8

Ablation Study. Table 3 shows the ablation studies of techniques in N-Bref. Graph augmentation
in LLC and AST encoder (1st column) helps increase the accuracy by 1.1%. Depth and child index
positional encoding improve the performance by 0.53%. When replacing our method with Ahmad
et al. (2020) for positional encoding, accuracy has a 0.23% drop. The ‘node representation’ refers
to character embedding for assembly registers, concatenation of meta-features (Details in Sec. 5).
Removing these techniques leads to a 1.8% accuracy drop on average. Memory augmentation helps
to capture the prior knowledge of the code structure and removes it shows a 1.7% performance drop.
Also, splitting the decompilation task into two-part shows a 2.5% improvement in accuracy.

7 RELATED WORK

Data Type Recovery and Program Decompilation. There has been a long line of research on re-
verse engineering of binary code (Cifuentes (1994); Emmerik & Waddington (2004); Brumley et al.
(2011); Bao et al. (2014); Rosenblum et al. (2008); Yakdan et al. (2016)). Commercialized decom-
pilers ( Hex-Rays (2017); RetDec (2017)) do not care about semantics of the code which means their
recovered code is very distinct from source code (see examples in Fu et al. (2019)). For type recov-
ery, traditional methods (Lee et al. (2011); Lin et al. (2010)) leveraged the type-revealing operations
or functions calls as a hint to inference variable types. These methods incur accuracy drop when
there is not enough type-revealing semantics. N-Bref proposes a learning method which can collect
more fine-grained information and achieve better accuracy in type inference. For control/data-flow
recovery, Fu et al. (2019); Katz et al. (2019) propose neural network methods for decompilation.
However, both works are based on a sequence-to-sequence neural network and tested on simple
programs. N-Bref leverages a structural transformer-based model that achieves better results.

8
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Neural Networks for Code Generation. Neural networks have been used for code generation in
prior works (Ling et al. (2016); Yin & Neubig (2017); Rabinovich et al. (2017); Yin & Neubig
(2018)). These prior efforts are different from a decompilation task as the input is input-output
pairs (Chen et al. (2019; 2017)), description of the code usage (Zhu et al. (2019)), or other domain-
specific languages (Nguyen et al. (2013)). The abstract syntax tree (AST) was used in these re-
cent works (Chen et al. (2018b); Yin & Neubig (2018)). Yet, most of the works leverage the Tree
LSTM (Tai et al. (2015); Dong & Lapata (2018)) or Convolutional Neural networks (Chen et al.
(2018a)). N-Bref demonstrates the effectiveness of transformer in the decompilation framework.
Neural Networks for Binary Analysis. There is a significant body of work on binary analysis using
neural networks, such as predicting execution throughput (Mendis et al. (2018)), guiding the branch
predictions (Shi et al. (2019)), program analysis (Ben-Nun et al. (2018)) and verification Li et al.
(2015). Most of the works using RNN to encode binary or assembly code (Mendis et al. (2018);
Ben-Nun et al. (2018)). (Shin et al. (2015)) proposes to use RNN to identify function entry point
in binary. GNNs were used in some of these works to encode memory heap information (Li et al.
(2015)) or assembly code (Shi et al. (2019)), but the original representation methods are not scalable
as they added many pseudo nodes and the node representation is not suitable for the transformer. He
et al. (2018); Lacomis et al. (2019) use naive NMT model to predict debug information and to assign
meaningful names to variables from binaries, yet they did not leverage the structural programming
information. Many designs in N-Bref are easy to integrate with various neural-based binary analysis
tasks where the input is also low-level code.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we present N-Bref, an end-to-end framework that customizes the design of a neural-
based decompiler. N-Bref designs a dataset generator that removes expression collision and gener-
ates random programs with any complexity configurations. N-Bref disentangles decompilation into
two parts – data type recovery and AST generation, and incorporates a new architecture to facilitate
structural translation tasks by integrating structural encoder/decoder into the transformer. New em-
bedding/representation techniques help to further improve accuracy. Experiments show that N-Bref
outperform previous decompilers and the state-of-the-art transformer.

Meanwhile, we observe that many other challenges remain, for example: (i) reverse engineering
binary that has been optimized or obfuscated is still challenging; (ii) directly recovering numerical
values from assembly code requires more efforts. We leave these more challenging problem setups
as future work.
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A TRAINING SETUP AND HYPER-PARAMETERS

We ran our experiments on Amazon EC2 using p3.16xlarge instance which contains Nvidia Tesla
V100 GPUs with 16GB main memory. Hyper-parameters for Lang2logic and Ins2AST are selected
using cross-validation with grid search. We present the hyper-parameters used by different neural
networks in Table 4. The number of GNN layer in N-Bref is set to 3. We use an Adam optimizer
with β1 = 0.9, β1 = 0.98 which is the setting in the original Transformer Vaswani et al. (2017).
We add label smoothing and a dropout rate 0.3. Weights of attentive layers are initialized from the
uniform distribution, while weights of feed-forward layers are initialized using techniques the same
as Vaswani et al. (2017). Other scheduling methods (e.g. learning rate, warm-up steps) are the same
as Cornia et al. (2019) for training N-Bref and transformer baseline.

Table 4: Hyper-parameters chosen for each neural network model

Lang2logic Ins2AST Baseline
Transformer N-Bref

Batch Size 50 50 16 16
Number of encoder layer 2 2 3 N1=3
Number of decoder layer 2 2 3 N2=2, N3=2

Number of head (d) - - 8 8

Encoder Type LSTM N-ary LSTM Multi-head
Attention

Multi-head
Attention +GNN

Decoder Type Tree LSTM Tree LSTM Multi-head
Attention

Multi-head
Attention+GNN

Hidden States Size 256
Embedding size 256

Gradient clip threshold 1.0
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B LEETCODE SOLUTIONS EXAMPLES

We present the examples of the tested Leetcode solutions in Figure 1 and 2. The tasks that are tested
includes ”Isomorphic Strings”, ”Multiply Strings”, ”Longest Palindromic Substring”, ”Implement
strStr()”, ”ZigZag Conversion”. Many easy problems are too short (e.g. ”Length of the last word”)
to justify the performance of N-Bref and some of them use their own-defined functions which is
beyond the scope of N-Bref.

Figure 1: Isomorphic Strings Figure 2: Multiply Strings
/ * / *
I n p u t : s = ” egg ” , t = ” add ” I n p u t : num1 = ” 2 ” , num2 = ”3”
Outpu t : t r u e Outpu t : ”6”

I n p u t : s = ” foo ” , t = ” b a r ” I n p u t : num1 = ”123” , num2 = ”456”
Outpu t : f a l s e Outpu t : ”56088”

* /
I n p u t : s = ” p a p e r ” , t = ” t i t l e ”
Outpu t : t r u e c h a r * m u l t i p l y ( c h a r * num1 , c h a r * num2 ) {
* / i n t l e n 1 = 0 ;

i n t l e n 2 = 0 ;
boo l i s I s o m o r p h i c ( c h a r * s , c h a r * t ) { i n t * prod [ 1 0 0 ] = {0} ;

/ * same l e n g t h * / c h a r ans [ 1 0 0 ] = {0} ;
i n t l e n = s t r l e n ( s ) ; i n t i ;

/ * f o r a s c i i code * / i n t j ;
c h a r h a s h s [ 1 2 8 ] = {0} ; i n t k ;
c h a r h a s h t [ 1 2 8 ] = {0} ; i n t c ;
i n t i ;
i n t x ; l e n 1 = s t r l e n ( num1 ) ;
i n t y ; l e n 2 = s t r l e n ( num2 ) ;

f o r ( i = l e n 1 − 1 ; i >= 0 ; i−−) {
f o r ( i = 0 ; i < l e n ; i ++) { k = l e n 1 − 1 − i ;

x = s [ i ] ; f o r ( j = l e n 2 − 1 ; j >= 0 ; j−−) {
i f ( h a s h s [ x ] == 0) { prod [ k ++] += ( num1 [ i ] − ’ 0 ’ ) \\

h a s h s [ x ] = t [ i ] ; * ( num2 [ j ] − ’ 0 ’ ) ;
} }
e l s e { }

i f ( h a s h s [ x ] != t [ i ] ) { k=k +1; / * t h e l a s t c a r r y d i g i t * /
r e t u r n f a l s e ; / * c a r r y a l l * /

} f o r ( i = 0 ; i < k − 1 ; i = i −1) {
} c = prod [ i ] / 1 0 ;

prod [ i ] = prod [ i ] % 1 0 ;
y = t [ i ] ; p rod [ i + 1 ] += c ;
i f ( h a s h t [ y ] == 0) { }

h a s h t [ y ] = s [ i ] ; / * remove l e a d z e r o s * /
} f o r ( ; k > 1 && prod [ k − 1] == 0 ; ){
e l s e { k=k−1;

i f ( h a s h t [ y ] != s [ i ] ) { }
r e t u r n f a l s e ; / * r e v e r s e * /

} f o r ( i = 0 ; i < k ; i ++) {
} ans [ i ] = prod [ k − 1 − i ] + ’ 0 ’ ;

} }
ans [ k ] = ’\0 ’ ;

r e t u r n t r u e ; r e t u r n ans ;
} }
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C EXAMPLES OF N-BREF GENERATED PROGRAMS

We present the dataset examples in Figure 3 and 4. We define char, short, int, long as ‘int8 t’,
‘int16 t’, ‘int32 t’ and ‘int64 t’ to simplify tokenizing process (64-bit machine). ‘uint’ refers to
‘unsigned’ type.

Figure 3: <math.h> random generated exam-
ple with bsnum ← 1 bsdepth ← 4 bssize ← 2.

Figure 4: <String.h> with bsnum ←
4 bsdepth ← 2 bssize ← 1.

# i n c l u d e <math . h> # i n c l u d e < s t r i n g . h>
i n t 3 2 t * foo ( vo id )
{ i n t 3 2 t foo ( i n t 8 t * l 0 ){

i n t 3 2 t l 0 = 0x3BL ; i n t 8 t * l 1 = &l 0 [ 1 ] ;
i n t 3 2 t l 1 = 13L ; i n t 3 2 t l 2 [ 5 ] ;
f l o a t l 2 = 0x2p +9; u i n t 1 6 t l 3 = 0x47L ;
u i n t 8 t l 3 = 13UL; i n t 3 2 t l 4 = 0L ;
i n t 3 2 t * l 4 = &l 1 ; i n t l 5 ;
i n t 3 2 t l 5 = 0x9BL ; i n t 1 6 t l 6 = 0x15L ;
i n t 3 2 t l 6 = 0xA9L ; i n t 3 2 t * l 7 = &l 2 [ 3 ] ;
i n t 3 2 t l 7 = 0L ; i n t 3 2 t * l 8 [ 2 ] ;
u i n t 3 2 t l 8 = 0x45L ; u i n t 3 2 t l 9 = 0x11L ;
f l o a t l 9 = 0x1p +1; i n t 1 6 t l 1 0 = 1L ;
f l o a t l 1 0 = 0xE . 3 p +15; i n t 3 2 t l 1 1 = 0xD1L ;
f o r ( l 0 = 1 0 ; ( l 0 ! = 5 ) ; l 0 = l 0 −5)
{ f o r ( l 5 = 0 ; l 5 < 4 ; l 5 ++)

f o r ( l 6 = 1 7 ; l 0 [ l 5 ] = 13L ;
( l 6 == ( −9 ) ) ; l 6 = l 6 −1){ f o r ( l 5 = 0 ; l 5 < 5 ; l 5 ++)

i f ( ( l 5 >= ( l 3 * l 6 ) ) ) { l 2 [ l 5 ] = 0xBDL ;
l 1 &= 0xFBL ; i f ( s t rncmp ( s t r c a t ( l 1 ,
l 7 ˆ= ( ( l 5 | | s t r c a t (& l 0 [ 3 ] , &l 0 [ 1 ] ) ) ,
(0 xD1L >> 1 8 ) ) & l 1 ) ; &l 0 [ 2 ] , l 2 [ 3 ] ) ) {
l 1 = (0L && l 3 = l 3 − 6 ;

( ( l 0 <= l 5 ) | l 1 ) ) ; l 7 = l 7 ;
} }
e l s e { e l s e {

l 8 = l 8 + 1 ; f o r ( l 5 = 0 ; l 5 < 2 ; l 5 ++)
i f ( l 6 > 0) l 8 [ l 5 ] = &l 2 [ 1 ] ;

l 9 = f r e x p ( l 2 ,& l 5 ) ; l 8 [ 1 ] = l 8 [ 1 ] ;
c o n t i n u e ; l 4 ˆ= ( ( + ( l 2 [ 3 ] * l 2 [ 2 ] ) )

} < ( l 2 [ 4 ] * 13L ) ) ;
i f ( ( l 1 & ( l 7 >> }

( ( l 7 + l 6 ) << l 7 ) ) ) ) { i f ( ( l 2 [ 4 ] / ( l 2 [ 3 ] * (0 x7EL / l 2 [ 4 ] ) ) ) )
l 4 = &l 5 ; {

} f o r ( l 4 = 0 ; ( l 4 <= 3 ) ; l 4 += 1)
e l s e {
{ l 2 [ 3 ] ˆ= l 9 ;

l 3 = l 3 + 1 ; }
l 2 = f l o o r ( pow ( l 9 , l 1 0 ) ) ; }

} e l s e
} {

}
r e t u r n l 4 ; l 1 0 = (0 x67L < l 2 [ 4 ] ) ;

} l 1 1 = l 2 [ 3 ] ;
}
l 2 [ 3 ] = s t r c mp (& l 0 [ 1 ] , &l 0 [ 2 ] ) ;
r e t u r n l 1 1 ;

}
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D EQUATIONS OF POSSION DISTRIBUTIONS FOR VARIABLE NUMBERS

For variable number (varnum or v) generated for a program, it follows Poisson distribution (Eq. 8)
where λ = bsnum + bsdepth + bias as discussed in Section Evaluation.

P (v) =
λve−λ

v!
v = 0, 1, 2, 3, . . . . (8)

E FORMAL ALGORITHM FOR PREDICTIONS

Algorithm 1 Algorithm for N-Bref prediction.

INPUT: Assembly Graph Gasm; Root Node γ; Terminal Node Types (T ); LLC encoder, AST
encoder, AST decoder (LLCen, ASTen, ASTde) ; N-Bref model (Model)

OUTPUT: Complete AST Gast.
1: Q← [γ]
2: Gast.update(γ)
3: while Q is not empty do
4: node← Q.pop()
5: child← model(LLCen = Gasm, ASTen = Gast, ASTde = Tree path(node))
6: if child is not ’eos’ then
7: Gast.update(child)
8: if child /∈ T then
9: Q.append(child)

10: Return: Gast

F PERFORMANCE IN GRAPH EDIT DISTANCE

We test the performance of N-Bref using graph edit distance (GED) which is calculated as Eq. 9.
The distance is calculated as the minimum number of operations (i.e., node substitution and node
insertion) to change our output AST (AST ) into the golden AST (ASTG).

GED(AST,ASTG) = min
e1,...,ek

k∑
i=1

Cost(ei) , (9)

Here, ei denotes the ith operations to change AST to ASTG. In our testing, we set Cost(e) = 1.
The maximum possible GED between aAST andASTG is the number of nodes inASTG. Note that
when ei substitutes a node from non-terminal to terminal type, the branch of the original terminal
node is automatically deleted.

The tree expansion algorithm to generate AST is shown above in Appendix E. Table 5, shows the
GED of N-Bref and transformer baseline. N-Bref shows 40.4% reduction on average in graph edit
distance compared to traditional transformer.

Table 5: Comparison between N-Bref and baseline transformer using graph edit distance across
datasets.

(lib, bsize, bdepth) AST Generation (edit distance) Average number of
tree nodesbaseline transformer N-Bref (-% over baseline)

math, 1, 1 9.13 4.70 (-48.5%) 78.8
math, 2, 2 22.22 13.38 (-39.8%) 155.2
math, 3, 3 46.37 29.64 (-36.1%) 239.6

str, 1, 1 12.31 6.45 (-47.6%) 82.0
str, 2, 2 30.51 17.43 (-42.9%) 170.4
str, 3, 3 59.62 36.31 (-39.1%) 251.1

Leetcode 44.33 31.46 (-29.0%) 214.9
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Table 6: Performance on code vulnerability detection.

Metrics Bi-LSTM+att*, source code
(25872 data points)

Bi-LSTM+att*, source code
(10302 data points) Transformer on binary N-Bref (binary)

Accuracy 61.2 54.5 56.4 59.3
F1 score 65.0 57.1 59.6 63.3

* result from our implementation of VulDeePecker Li et al. (2018) and test on devign dataset.

G PERFORMANCE OF N-BREF IN OTHER BINARY ANALYSIS TASKS

N-Bref’s structural transformer architecture / low-level code encoding and representations are easy
to integrate with various neural-based binary analysis tasks as their input is also low-level code, al-
lowing advances in such tasks, i.e., vulnerability detection, crypto algorithm classification, malware
detection, etc.

We tried out two tasks using N-Bref’s encoder and low-level representation methods to analyze
binary code:

(i) Identify binary code vulnerabilities (Table 6). We test the performance of N-Bref on vulner-
abilities detections using Devign dataset which includes 25872 data points collected from commit
difference of FFmpeg and QEMU repository. Using the commit id given from Devign dataset (Zhou
et al. (2019)), we clone the old repository, compile it and extract the binary of the function from the
compiled project. We successfully generate 10302 binaries (25872 total data given) as many project
commits in the dataset are not able to compile.

(ii) Measure binary code similarity (Table 7). We test N-Bref on POJ-104 tasks (Mou et al. (2014))
by compiling them into binary codes and use the same metrics as MISIM (Ye et al. (2020)) to
evaluate the performance of N-Bref.

In vulnerability detection task, the performance of N-Bref is 3.0% margin over transformer baseline
on binaries and 4.08% margin over BiLSTM-based vulnerability detector (Li et al. (2018)) on high-
level source code using the same amount of dataset. For code similarity measures, N-Bref achieves
3.85% MAP@R performance increase compared to transformer baseline and shows 5.0%/20.16%
better MAP@R than Aroma( Luan et al. (2019)) and NCC (Neural code comprehension Ben-Nun
et al. (2018)) that are code searching frameworks that operates on high-level code. Note that binaries
are more abstract and are difficult to analyze compared to high-level code.

Table 7: Performance of code similarity accuracy.

Metrics MISIM-RNN*
(source code)

NCC*
(source code)

Aroma*
(source code)

Transformer
(binary)

N-Bref
(binary)

MAP @R(%) 74.01 39.95 55.12 56.26 60.11
AP (%) 81.64 50.42 55.40 62.46 67.20

AUPRG (%) 99.84 98.86 99.07 99.13 99.64
* result from MISIM( Ye et al. (2020))
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H COMPLETE ASSEMBLY CODE FOR FIGURE 1.

# i n c l u d e < s t r i n g . h> foo :
c h a r * foo ( f l o a t l 0 , i n t * l 1 .L1 :
) { pushq %rbp

c h a r l 2 [ 4 ] ; movq %rsp , %rbp
s h o r t l 3 = 2 ; subq $48 , %r s p
f l o a t l 4 = 0x9p +1; movss %xmm0, −36(%rbp )
i f ( s t r c h r ( l 2 , l 1 [ 0 ] ) ) { movq %r d i , −48(%rbp )

l 0 = l 4 * l 0 ; movq %f s : 4 0 , %r a x
} movq %rax , −8(%rbp )
e l s e { x o r l %eax , %eax

l 2 [ l 3 ] = 7 ; movw $2 , −18(%rbp )
} movss .LC0(% r i p ) , %xmm0
r e t u r n l 2 ; movss %xmm0, −16(%rbp )

} movq −48(%rbp ) , %r a x
movl (% r a x ) , %edx
l e a q −12(%rbp ) , %r a x
movl %edx , %e s i
movq %rax , %r d i
c a l l strchr@PLT
t e s t q %rax , %r a x
j e .L2
movss −36(%rbp ) , %xmm0
mulss −16(%rbp ) , %xmm0
movss %xmm0, −36(%rbp )
jmp .L3

.L2 :
movswl −18(%rbp ) , %eax
movb $7 , −12(%rbp ,% r a x )

.L3 :
movl $0 , %eax
movq −8(%rbp ) , %r c x
xorq %f s : 4 0 , %r c x
j e .L5

.L5 :
l e a v e

I COMPLETE ASSEMBLY CODE GRAPH FOR FIGURE 1
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