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ABSTRACT

The use of large language models (LLMs) as evaluators has garnered significant
attention due to their potential to rival human-level evaluations in long-form re-
sponse assessments. However, current LLM evaluators rely heavily on static,
human-defined criteria, limiting their ability to generalize across diverse gener-
ative tasks and incorporate context-specific knowledge. In this paper, we pro-
pose a novel Self-Assessing LLM framework that integrates Context-Aware Cri-
teria (SALC) with dynamic knowledge tailored to each evaluation instance. This
instance-level knowledge enhances the LLM evaluator’s performance by provid-
ing relevant, context-aware insights that pinpoint the important criteria specific to
the current instance. Additionally, the proposed framework adapts seamlessly to
various tasks without relying on predefined human criteria, offering a more flex-
ible evaluation approach. Empirical evaluations demonstrate that our approach
significantly outperforms existing baseline evaluation frameworks, yielding im-
provements ranging from 5% across a wide variety of datasets. Furthermore,
by leveraging knowledge distillation techniques, we fine-tuned smaller language
models for criteria generation and evaluation, achieving comparable or superior
performance to larger models with much lower cost. Our method also exhibits a
5% improvement on the Alpaca leaderboard when employed for preference data
generation in Direct Preference Optimization (DPO), underscoring its efficacy as
a robust and scalable evaluation framework.

1 INTRODUCTION

Evaluating the quality of machine-generated text has long been a significant challenge in Natural
Language Processing (NLP), particularly with the advent of Large Language Models (LLMs), where
a comprehensive understanding of their capabilities and functions is crucial. Traditional metrics
such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) for lexical analysis, and BERTScore
(Zhang et al., 2019) and BARTScore (Yuan et al., 2021) for semantic evaluation, often fall short
of capturing the full depth and nuance of human judgment. Recently, LLM-based evaluator have
gained significant attention due to its alignment with human judgements for evaluation, utilizing
zero-shot or few-shot instructions (Chiang et al., 2023; Dubois et al., 2024; Liu et al., 2023).

Despite advancements in LLM evaluators, which can effectively follow human-prepared criteria to
assess generative tasks aligned with human preferences, they often rely heavily on static, pre-defined
criteria that are applied uniformly across all evaluation instances. This approach struggles to gener-
alize across diverse tasks (Liang et al., 2022; Lee et al., 2022; Krishna et al., 2023; Min et al., 2023)
and fails to provide the context-aware knowledge crucial for specific evaluation instances. However,
we observe that context-aware criteria are essential for providing effective guidance across diverse
evaluation instances. For instance in the example defined in figure 1, while the initial response men-
tions climate change and melting ice, it lacks detail about how these factors specifically affect polar
bear populations. Pre-defined criteria might only check for surface-level accuracy, missing out on
the need for a deeper explanation of hunting challenges, energy expenditure, and survival rates, as
seen in the reference.

In response to this challenge, we propose Self-Assessing LLMs with Autonomous Criteria Gen-
eration (SALC), a framework designed to allow LLMs to autonomously generate the criteria for
evaluating the responses for the given instruction. SALC shifts the paradigm from human-centric
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Instruction: Summarize the impact of climate change on polar bear populations in a few
sentences

Self-Assessing Criteria

1.) Relevance to Instruction - Does the response focus on the specific instruction of
summarizing the impact of climate change on polar bear populations? Does it provide
relevant information about the effects of climate change?

2.) Completeness - Does the response sufficiently cover key aspects of the topic? Are any
critical details or consequences of climate change on polar bears (e.g., loss of habitat,
challenges in hunting) missing?

3.) Clarity and Coherence - Is the response easy to understand? Is it presented in a clear
and logical manner that flows naturally and provides a coherent explanation of the topic?

4.) Conciseness and Brevity - Given the instruction to summarize in "a few sentences,"
does the response maintain brevity without sacrificing important information? Is the length
appropriate for the instruction?

5.) Accuracy - Is the information in the response factually accurate based on the
reference? Does it correctly describe the impact of climate change on polar bears, such as
their dependence on ice habitats and food scarcity?

Response:
Climate change is affecting polar
bears. Their ice habitats are
melting, making it harder for
them to find food. This could
lead to a decline in their
population.

Reference:
Climate change is leading to the rapid melting of sea
ice, which polar bears rely on for hunting seals, their
primary food source. The loss of this critical habitat is
causing polar bears to travel longer distances and
expend more energy, leading to decreased survival
rates and reproductive success.

Figure 1: Illustrative Example of SALC’s Criteria Generation Process

evaluation to a model-driven approach, leveraging the language understanding and reasoning abili-
ties of advanced LLMs, such as GPT-4. By generating task and context specific evaluation criteria in
real time, SALC enables more accurate and contextually appropriate assessments of LLM outputs.
SALC operates in two distinct settings: the absolute setting – where the model generates criteria
based on an instruction, a reference answer, and a response; and the relative setting – where the
model compares multiple responses to the same instruction. This dual configuration allows SALC
to evaluate a broader range of tasks and responses, adapting its criteria based on the complexity and
nature of the specific instruction. This flexibility overcomes the limitations of traditional evaluation
methods, which rely on manually defined static criteria that may not align with the nuances of each
task.

In the given example in figure 1, dynamic criteria would provide a more comprehensive and accu-
rate evaluation by adjusting to the specific context and depth required for a high-quality response.
(1) Surface-Level Accuracy : The initial response is correct but lacks detail. It mentions ”climate
change” and ”melting ice” but doesn’t elaborate on their consequences. Static criteria might only
check for these basic concepts, missing out on the need for further explanation. (2) Depth and Speci-
ficity: The reference response offers more depth, explaining how melting ice forces polar bears to
travel longer distances, affecting their survival and reproduction. Dynamic criteria would recognize
this added value, rewarding responses that offer specific, contextually relevant details. (3) Context
Awareness: Dynamic criteria can adjust to the complexity of the subject. In this case, a more nuanced
explanation of the ecological impacts, like habitat loss reducing hunting efficiency and increasing
energy expenditure, would be rewarded, whereas static criteria might not account for these subtleties.
(4) Clarity and Comprehensiveness: Beyond factual accuracy, dynamic criteria would evaluate how
well the response communicates the issue. The reference response clearly connects habitat loss to
biological impacts, providing a more complete picture. Dynamic criteria ensure responses are eval-
uated not just for correctness but also for their clarity and thoroughness. (5) Flexibility : Dynamic
criteria are adaptable to different levels of detail based on the audience. A concise, simpler response
might be appropriate for a general audience, while an in-depth explanation is better suited for expert
evaluations. This flexibility allows for fair assessments based on context, ensuring that the criteria
align with the purpose of the evaluation.

Thus, dynamic criteria ensure that responses are evaluated not just for surface-level accuracy but for
how well they explain, contextualize, and convey complex issues, leading to a more thorough and
fair evaluation process.
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Furthermore, we introduce SALC-Tune, which fine-tunes smaller models for both criteria genera-
tion and evaluation, addressing the challenges posed by the proprietary nature of LLMs. Both the
evaluation criteria and feedback are autonomously generated using the SALC framework on the
Feedback Collection Dataset (Kim et al., 2023), with GPT-4 serving as the underlying model. The
dataset generated by SALC is then used to fine-tune two models: FT-Criteria for criteria generation
and FT-Judge for evaluation. By distilling knowledge from GPT-4, these smaller models capture
the quality of the criteria and feedback generated by the larger model, delivering competitive per-
formance while being more efficient in size. This underscores the effectiveness of our SALC-based
fine-tuning approach for both evaluation and feedback generation.

Additionally, SALC demonstrates its effectiveness when applied as a reward model for preference-
data generation in Direct Preference Optimization (DPO). By autonomously generating evaluation
criteria and providing more accurate, instruction-relevant assessments of responses, SALC boosts
performance in DPO by at least 5% over existing baselines, showcasing its potential not only in
standard LLM evaluations but also in enhancing preference-based learning tasks.

To that end, our Key Contributions are as follows:

• Adaptive Evaluation Criteria Generation: SALC introduces a framework where LLMs
autonomously generate instruction-specific evaluation criteria, enabling more adaptive and
accurate assessments compared to static, predefined human-generated standards.

• Efficient Evaluation with Cost-effective Fine-tuned Models: By fine-tuning smaller
models with GPT-4-generated criteria, feedback and score generated based on the gen-
erated criteria, SALC demonstrates that even compact models can outperform larger ones,
offering an open source, efficient and scalable evaluation solution.

• Improved DPO Performance: SALC enhances preference-data-generation in DPO tasks,
delivering significant improvements over traditional methods and setting new baselines for
preference optimization using autonomous evaluation criteria.

These contributions establish SALC as a robust, flexible, and efficient framework for LLM evalua-
tion, reducing reliance on human biases and enabling more accurate and task-aware assessments.

2 RELATED WORKS

The evaluation of Large Language Models (LLMs) has evolved from traditional metrics like BLEU
Papineni et al. (2002) and ROUGE Lin (2004), which primarily focus on surface-level lexical sim-
ilarity, to more sophisticated semantic-based approaches. These newer methods, such as BLEURT
Sellam et al. (2020), BERTScore Zhang et al. (2019), and BARTScore Yuan et al. (2021), evaluate
outputs at a deeper level, capturing more meaningful aspects of text. However, these model-based
metrics, while significant improvements, remain static and limited by their dependence on fixed
reference criteria, which makes them less adaptable to diverse, task-specific requirements.

Recent efforts have explored LLMs themselves as evaluators, particularly in preference-based sce-
narios. Models like Alpaca-Farm Du et al. (2023) take this further by allowing the model to choose
better responses through its own judgments, marking a shift toward model-driven evaluations. Ad-
ditionally, open-source LLMs like PROMETHEUS Kim et al. (2023; 2024) have emerged to of-
fer customizable, fine-grained evaluation capabilities on par with proprietary models like GPT-4.
PROMETHEUS leverages its own dataset of score rubrics, instructions, and responses, achieving
strong performance in correlation with human judgments and surpassing models like ChatGPT in
specific tasks. This development offers a scalable and cost-effective solution for practitioners need-
ing custom evaluation criteria, particularly when dealing with large-scale evaluation tasks.

Further advancements in fine-grained evaluation are exemplified by FLASK Ye et al. (2023b), which
decomposes coarse-level scoring into more granular skill-based evaluations. This protocol improves
interpretability by focusing on instance-specific skill requirements in instructions, enhancing both
model- and human-based evaluations. Research shows that fine-grained evaluation, as provided by
FLASK, offers a more comprehensive view of model performance and increases the reliability of
evaluations across multiple tasks and datasets.
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Our proposed framework, SALC, advances LLM evaluation by autonomously generating task-
specific criteria, unlike static, human-defined rubrics. SALC dynamically adapts to both absolute
and relative evaluation contexts, mitigating bias and improving correlation with human judgments.
Existing approaches like LLM as Judge (Zheng et al., 2023) use fixed evaluation criteria, which fail
to capture nuances across tasks. In contrast, Flask defines 12 skill sets with static, human-curated
rubrics, limiting adaptability. Flask selects top skills for evaluation but relies on predefined prompts,
making it less flexible. Similarly, Prometheus also requires human input for every new evaluation
scenario. SALC overcomes these limitations by enabling criteria generation specific to any task or
context without relying on predefined, rigid rubrics.

3 METHODOLOGY

The SALC (Self-Assessing LLMs with Autonomous Criteria Generation) framework operates
through several key stages, designed to enhance the evaluation of LLM outputs by autonomously
generating task-specific criteria. The pipeline described in figure 2 is structured as follows: (i) Crite-
ria Generation Stage : SALC begins with the autonomous generation of evaluation criteria tailored
to the specific instruction. Unlike traditional methods that rely on predefined rubrics, SALC, dynam-
ically generates criteria based on the instruction context. This allows the framework to capture the
nuances of different responses across diverse domains. (ii) Evaluation Stage: Once the criteria are
generated, SALC evaluates model outputs in two settings: Absolute Evaluation and Relative Evalu-
ation. For absolute evaluation, each response is evaluated independently against the generated crite-
ria, scoring it based on task-specific metrics. For relative evaluation, SALC compares responses to
each other, ranking them according to their alignment with the generated criteria. This relative scor-
ing reduces the noise that often arises from absolute scoring alone. (iii) Fine-Tuning Open-Source
Models: SALC incorporates fine-tuning of smaller, open-source models for both criteria generation
and evaluation. FT-Criteria handles criteria generation, while FT-Judge is fine-tuned to evaluate re-
sponses. This fine-tuning is conducted using knowledge distillation from GPT-4 into models like
llama-7b and llama-13b, enabling efficient yet effective performance. (iv) Preference Data Gen-
eration: In addition to direct evaluation, SALC is applied to generate preference data for Direct
Preference Optimization (DPO). The use of dynamic context-aware generated criteria improves the
quality of preference data, leading to enhanced fine-tuning outcomes in LLM performance.

Instruction

Response Reference
LLM

FT-Criteria

Criteria Generation Stage
Factor1

Factor2

...

FactorN

LLM

FT-Judge

Evaluation Stage

Feedback

Score

OR OR

Instruction Response A Response B Feedback AScore A Feedback BScore B

Rejected BAccepted A

Instruction
CompareA>B

Rejected AAccepted B

Instruction
B>A Absolute

Setting

Relative
SettingPreference Data Generation 

ResponseA ResponseB

OR

Figure 2: Overview of the SALC Pipeline

3.1 CRITERIA GENERATION

The first step in our methodology involves using an LLM, denoted as M , to autonomously generate
evaluation criteria in a zero-shot setting. Given a prompt p, which consists of three core elements
– (1) a user instruction α, (2) a reference answer r (in the absolute setting), and (3) the response to
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be evaluated o (or multiple responses ra and rb in the relative setting) – the LLM generates a set of
factors which are used as the evaluation criteria C. This process occurs without predefined human
input or additional training, allowing the LLM to create a criteria framework based solely on its
understanding of the context. In absolute grading, we use the following inputs:

• User Instruction: The user instruction given to the model, denoted by α ∈ I where I represents
set of Instructions (e.g., ”Summarize the following text”).

• Reference Answer: The expected or ideal response to the instruction, denoted by r ∈ R where R
represents set of references (e.g., a human-written summary).

• Response to be Evaluated: The actual output produced by the LLM for evaluation, denoted by
o ∈ O where O represents set of responses.

Whereas, in relative grading setting, we leverage the following as inputs:

• User Instruction: The task prompt given to the model, denoted by α ∈ I (e.g., ”Summarize the
following text”).

• Response A: First response provided for comparative evaluation, denoted by oa ∈ O where O
represents set of responses..

• Response B: Second Response provided for comparative evaluation, denoted by ob ∈ O where O
represents set of responses..

The model M generates a set of evaluation criteria C = {c1, c2, . . . , cn}, where cj represents a
factor (such as fluency, relevance, coherence, etc.) based on which the response o is evaluated.
The criteria C are thus generated based on the instruction α, the reference answer r, and the model
response o (or multiple responses ra and rb in the relative setting) , without any predefined human
standards, which can be formalized as:

C = fM (α, r, o) or C = fM (α, oa, ob) (1)

Here, f represents the internal reasoning and language understanding function of the LLM. Key
reasons why LLM-generated criteria are effective:

• Contextual Adaptation: The LLM dynamically adjusts its criteria based on the task, ensuring
relevance, much like a human would adapt depending on context.

• Multi-Dimensional Judgment: f evaluates factors such as correctness, style, and logical flow si-
multaneously, offering holistic assessments similar to human evaluators.

• RLHF Alignment: Fine-tuning with RLHF equips the model with a deeper understanding of hu-
man preferences, allowing it to generate nuanced criteria.

By using f , SALC reduces the reliance on predefined metrics, offering flexible, adaptive evaluation
on par with human judgment.

3.2 ASSESSING RESPONSES

After generating the evaluation criteria C, the LLM M uses these factor cj to assess the quality
of the response o given the instruction α and reference answer r. The evaluation is performed in
a multi-step process, where each factor Cj is applied to the response o. The LLM M provides
feedback fj on each criterion cj , assigning a final score S ∈ [1, 5] to the response based on how
well it satisfies criteria C.

Overall process can be explained as this: For Absolute Setting let sj(α, cj , r, o) represents the score
for response o under the criterion cj , where sj ∈ [1, 5] represents integer score.The overall score S
for the response o is the aggregate score across all the criteria:

S(α,C, r, o) =

n∑
j=1

βjsj(α, cj , r, o) (2)
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where βj are weights associated with each criterion, and
n∑

j=1

βj = 1. These weights are based on

the importance of the criteria for the given task given by the LLM internally.

For Relative Setting let saj(α, cj , ra) represents the score for response oa under the criterion cj
and sbj(α, cj , rb) represents the score for response ob under the criterion cj , where saj ∈ [1, 5]
and sbj ∈ [1, 5] represents integer score.The overall score Sa and Sb for the responses oa and ob
respectively is the aggregate score across all the criteria:

Sa(α,C, oa) =

n∑
j=1

βajsaj(α, cj , oa) (3)

Sb(α,C, ob) =

n∑
j=1

βbjsbj(α, cj , ob) (4)

where βaj and βbj are weights associated with each criterion for responses oa and ob respectively,

and
n∑

j=1

βaj = 1 as well as
n∑

j=1

βbj = 1. These weights are based on the importance of the criteria

for the given task given by the LLM internally.

Above process is adaptive and context-aware, allowing the model to provide a more nuanced and
meaningful assessment of LLM-generated content.

3.3 FINE-TUNING USING THE FEEDBACK COLLECTION DATASET

For the fine-tuning process, we utilized the Feedback Collection Dataset D, which was originally
used in training the Prometheus Model Kim et al. (2023). However, we removed the score rubric,
score and feedback provided in this dataset and instead generated our own evaluation criteria using
GPT-4 using our method SALC. These newly generated factors were then employed to evaluate the
quality of responses and provide corresponding feedback.

3.3.1 CRITERIA AND FEEDBACK GENERATION

Using L , we generated a criteria C for each instruction α, reference r, and response o within the
dataset D. These factors were then used to assess the quality of the responses and generate detailed
feedback F , including final scores S based on the factors generated.

L(α, r, o) → C (5)
L(α,C, r, o) → F, S (6)

3.3.2 FINE-TUNING MODELS ON GENERATED FACTORS AND FEEDBACK

We utilized the criteria C generated by GPT-4 to fine-tune small language model, enabling it to
autonomously generate evaluation factors similar to those produced by GPT-4. Additionally, we
fine-tuned another small language model on the feedback generated by GPT-4, allowing it to pro-
duce feedback F and scores S that closely align with GPT-4’s assessments. This fine-tuning process
enhances the model’s ability to evaluate responses and generate feedback with a level of quality sim-
ilar to GPT-4, enabling autonomous and high-quality evaluation of LLM outputs. This approach also
facilitates open-sourcing the models, as we are no longer reliant on GPT-4’s closed nature. More-
over, despite a negligible drop in performance compared to GPT-4, our fine-tuned models—using
only 13B parameters—outperform many state-of-the-art (SOTA) open-source models, which typi-
cally operate with much larger architectures (e.g., 175B parameters). This efficiency gain makes our
solution highly competitive in terms of both performance and scalability.

4 EXPERIMENTAL RESULTS

We evaluated SALC’s performance against other evaluation strategies across various tasks, including
absolute and relative grading setting and its use as a reward model for RLFH. Our experiments
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utilized datasets such as Vicuna Bench (Chiang et al., 2023) , MT-Bench (Zheng et al., 2023) ,
Flask Eval (Ye et al., 2023b) , Alpaca Eval (Dubois et al., 2024) , HHH Alignment (Askell et al.,
2021) , and Feedback Collection (Ye et al., 2023b) . We compared SALC with baseline methods
including LLM as a judge (Zheng et al., 2023), Prometheus (Kim et al., 2024), and various pre-
trained LLMs and SLMs. Evaluation metrics included accuracy (for ranking scenarios), correlation
(for absolute grading), similarity (for criteria generation), and alignment (for HHH dataset). We
used metrics such as Accuracy, F1-score, Pearson, Kendall-Tau, and Spearman correlations, as well
as Rouge, Bleu, and BERT for textual similarity. The experiments aimed to comprehensively assess
SALC’s effectiveness in generating adaptive criteria and improving evaluation capabilities of pre-
trained language models. Additional details on dataset, evaluation strategy and experimental setup
is mentioned in Appendix B.

4.1 SALC PERFORMANCE ON PRETRAINED LLMS

We compared the performance of SALC against LLM as judge Ye et al. (2023a) and Prometheus
methods using 3 widely used LLM models (GPT-3.5, GPT-4 and GPT-4o). To demonstrate the
generalizability of SALC, we conduct experiments on three benchmark evaluation datasets: HHH
Alignment, Alpaca Eval and MT Bench. In in Table 1, we demonstrate the Accuracy and F1-score
between the ground truth on preferred responses and the respective evaluator’s preference. SALC
consistently outperformed the baseline methods across all the settings demonstrating its potential to
enhance the reliability and safety of LLM evaluation. With GPT-3.5 acts as a downstreaming model,
SALC improves the F1-score and Accuracy by at least 5% and 2.5% over both the LLM as judge and
Prometheus baselines on HHH Alignment dataset. These significant gains highlight SALC’s effec-
tiveness in improving model alignment, particularly in sensitive domains requiring safety, honesty
and helpfulness guarantees. With GPT-4, SALC consistently improvements the performance across
all the benchmark datasets. On the HHH Alignment task, SALC improves the F1-score and Accu-
racy by at least 1.8% and 1.5%, respectively. Given the superior performance of pre-trained GPT-4
in reasoning capability, these improvements are significant enhancement in the model’s ability to
align with human values and expectations. With GPT-4o being larger and more powerful pre-trained
model, we observe the most substantial benefits for SALC. On the HHH Alignment benchmark,
SALC demonstrated a remarkable 5.4% improvement in both F1-score and accuracy compared to
the LLM as judge, and a 2.9% improvement in F1-score over Prometheus. For the Alpaca Eval and
MT Bench benchmarks, SALC provides consistent 2-3% increases in both F1-score and accuracy
over baseline methods. These significant performance gains underscore SALC’s ability to leverage
the increased capacity of larger models. Additional experimental results on the superior performance
of SALC on absolute grading scenario are mentioned in Appendix C.1.

Evaluator LM HHH Alignment Alpaca Eval MT Bench
F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy

GPT-35 (LLM as judge) 0.777 0.776 0.462 0.543 0.4494 0.5504
GPT-35 (Prometheus) 0.784 0.792 0.509 0.511 0.465 0.534
GPT-35 (SALC) 0.821 0.811 0.521 0.538 0.5215 0.5564
GPT-4 (LLM as judge) 0.890 0.884 0.5697 0.5635 0.526 0.633
GPT-4 (Prometheus) 0.883 0.887 0.545 0.535 0.521 0.621
GPT-4 (SALC) 0.906 0.899 0.5752 0.5701 0.543 0.633
GPT-4o (LLM as judge) 0.890 0.885 0.557 0.562 0.510 0.632
GPT-4o (Prometheus) 0.912 0.914 0.550 0.552 0.534 0.627
GPT-4o (SALC) 0.938 0.933 0.584 0.577 0.5643 0.6463

Table 1: Agreement of Evaluator Language Models with different baselines across different bench-
marks

4.2 SALC-TUNE ON FEEDBACK COLLECTION TEST SET

To understand the performance of SALC on cost-effective small LMs, we have fine-tuned open-
sourced models and demonstrate their performance on Feedback collection test dataset for two tasks:
(a) automated criteria generation, and (b) automated response evaluation.

Criteria Generation Results For understanding the quality of automatically generated criteria
against the reference criteria generated by GPT-4, we used standard textual similarity metrics such as

7
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Rouge (R1, R2, RL), Bleu, and Bert Score. As shown in Table 2, our finetuned models, FT-Criteria-
7b and FT-Criteria-13b, significantly outperform pretrained baseline models (including llama-7b-
chat, llama-13b-chat, and GPT-3.5-turbo) across both in-domain and out-of-domain test sets.

Criteria LM
In-Domain Test Out-of-Domain Test

Rouge Bleu Bert Rouge Bleu BertR1 R2 RL R1 R2 RL
LLaMA2-7b-chat 0.445 0.178 0.259 0.111 0.859 0.455 0.186 0.257 0.116 0.861
LLaMA2-13b-chat 0.426 0.175 0.243 0.118 0.865 0.431 0.179 0.246 0.121 0.868
LLaMA2-70b-chat 0.426 0.175 0.243 0.118 0.865 0.431 0.179 0.246 0.121 0.868
FT-Criteria-7b 0.603 0.384 0.406 0.313 0.915 0.604 0.384 0.408 0.313 0.915
FT-Criteria-13b 0.624 0.405 0.429 0.337 0.921 0.627 0.405 0.43 0.340 0.922
GPT-35-turbo 0.534 0.238 0.304 0.270 0.896 0.536 0.261 0.322 0.273 0.900
GPT-4-turbo 0.582 0.277 0.326 0.321 0.906 0.589 0.282 0.328 0.326 0.907
GPT-4o 0.590 0.286 0.332 0.330 0.908 0.596 0.291 0.335 0.336 0.909

Table 2: Comparison of Criteria Generation Models on Feedback Collection Test Set

Evaluation Results For evaluating generated feedback, we compute the standard correlation met-
rics (e.g., Pearson, Kendall-Tau, and Spearman) between our models’ evaluation score and the ref-
erence GPT-4 score. As illustrated in Table 3, our finetuned evaluators, FT-Judge-7b and FT-Judge-
13b, show remarkable correlation with GPT-4 as the reference for both in-domain and out-of-domain
test sets, while outperforming even large models such as GPT-4o and GPT-4-Turbo.

Feedback Collection Test set

Evaluator LM In-Domain Test Out-of-Domain-Test
Pearson Kendall-Tau Spearman Pearson Kendall-Tau Spearman

LLaMA2-7b-chat 0.582 0.506 0.574 0.556 0.482 0.558
LLaMA2-13b-chat 0.529 0.464 0.542 0.540 0.455 0.517
LLaMA2-70b-chat 0.686 0.589 0.677 0.670 0.572 0.659
FT-Judge-7b 0.8581 0.7494 0.8146 0.8339 0.7191 0.7872
FT-Judge-13B 0.9237 0.807 0.871 0.9297 0.826 0.885
GPT-35-Turbo 0.8507 0.699 0.7844 0.8376 0.6791 0.7643
GPT-4-Turbo 0.9095 0.7913 0.8564 0.9058 0.7914 0.8574
GPT-4o-mini 0.896 0.795 0.8633 0.8817 0.7683 0.8438
GPT-4o 0.896 0.7892 0.8583 0.8979 0.7879 0.8573

Table 3: Performance of finetuned SALC on Feedback Collection Test Set.

Furthermore, as shown in Table 4, in HHH Alignment dataset, our FT-Judge-7b and FT-Judge-
13b demonstrates clear advantages over LLaMA, Prometheus, and GPT-35-turbo models due to its
superior alignment and evaluation capabilities, particularly in key metrics like Harmlessness and
Honesty. Unlike LLaMA models, which struggle with consistency across Honesty and Helpfulness
scores, our FT-Judge models deliver a balanced and robust performance. FT-Judge-13b achieves the
highest overall average score, outperforming Llama models and Prometheus by at least 11.4% and
4.5%, respectively while excelling in categories where other models falter, such as Harmlessness.

Evaluator LM HHH Alignment
Help. Harm. Hon. Other Total Avg.

LLaMA2-7b-chat 66.10 81.03 70.49 74.42 72.85
LLaMA2-13b-chat 74.58 87.93 55.74 79.07 73.76
LLaMA2-70b-chat 66.10 89.66 67.21 74.42 74.21
GPT-35-turbo 82.76 85.10 67.23 76.92 78.01
Prometheus 7B 69.49 84.48 78.69 90.70 80.09
Prometheus 13B 81.36 82.76 75.41 76.74 79.19
FT-Judge 7b 82.24 94.18 64.21 83.78 81.10
FT-Judge 13b 82.97 93.87 76.63 81.48 83.75
GPT-4 89.83 93.61 80.01 92.68 89.03

Table 4: HHH Alignment Scores for Various Evaluator Language Models
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4.3 COMPARATIVE ANALYSIS: SALC VS. BASELINE MODELS THROUGH HUMAN
ASSESSMENT

To evaluate the effectiveness of our SALC model compared to baseline approaches, we conducted
a comprehensive human evaluation study using two distinct test sets: Flask Eval and Vicuna Eval.
For each test set, we collected 25 diverse instances, encompassing a range of instructions, model
responses, and reference answers. These instances were presented to a panel of 5 human annotators,
who provided scores for each response. To ensure robustness in our evaluation, we used the mode
of all human responses for each instance as the final human judgment score. We then calculated
the correlation between these aggregated human judgments and the model outputs using Pearson,
Kendall-Tau, and Spearman correlation metrics. As demonstrated in Figure 3, SALC consistently
outperforms Prometheus and LLM as Judge methods across all correlation metrics in both test sets.
On the Flask Eval set, SALC performance improvements over LLM as Judge ranges from 2.19% to
18.78%, while in comparison to Prometheus, SALC provides at least 9.83% gain. The improvements
were even more pronounced on the Vicuna Eval set, where SALC provides at least 15.3% and 14.4%
improvement over LLM as Judge and Prometheus, respectively. These findings strongly reinforce
SALC’s capability to align more closely with consensus human judgments.
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Figure 3: Correlation Analysis: GPT-4 (Across Baselines) with Human Scores

We obtained similar performance gain with our finetuned SALC model while comparing against
the human judgement. As shown in Figure 4, our FT-Judge-13b demonstrates superior performance
against the Prometheus-13b and GPT-3.5-Turbo model, despite being based on a smaller 13B pa-
rameter model. On the Flask Eval Test Set, FT-Judge-13b surpasses Prometheus-13b by at least
23.67% across different correlation measures. More interestingly, FT-Judge-13b outperforms GPT-
35-turbo by a impressive margins of at least 97.79%. On the Vicuna Eval Test Set, a consistent
trend is observed where FT-Judge-13b outperforms Prometheus-13b and GPT-3.5-Turbo models by
at least 34.50% and 43.62%, respectively.
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Figure 4: Correlation Analysis: GPT-35, Prometheus 13B, and Our 13B Model with Human Scores
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4.4 PERFORMANCE OF SALC AS A REWARD MODEL

In this section, we explore the effectiveness of the SALC framework as a reward model for gener-
ating preference data in Direct Preference Optimization (DPO) fine-tuning. SALC autonomously
generates high-quality, preference-labeled data, which directly influences the optimization process
of LLMs for instruction-following tasks. We evaluated the fine-tuning performance of phi2-instruct,
phi3-mini-instruct, and mistral-7b-instruct on the AlpacaEval leaderboard. We applied our SALC
approach for preference data generation to the UltraFeedback dataset. This allowed us to compare
three different methods of generating preference data: (a) SALC-generated preference data, (b) Ul-
traFeedback default preference data (Cui et al., 2024), and (c) LLM as a Judge preference data
(Zheng et al., 2023)

As illustrated in Table 5, SALC generated preference data provides consistent improvements in
Length-Controlled Win Rate (LC-WR) and Overall Win Rate (WR) across all models. For the phi-
2-instruct model, there is a notable 9.69% improvement in LC-WR when comparing Default to
SALC, and a 14.51% improvement over LLM as Judge. In terms of WR, SALC shows a 5.85% gain
over Default and a 2.41% gain over LLM as Judge. Similarly, for phi-3-mini-instruct model, we
observe 3.41% and 8.1% improvement in LC-WR over Default and LLM as Judge, respectively. For
the mistral-7b-instruct model, LC-WR improves by 12.58% and 12.03% from Default and LLM as
Judge, respectively, while WR improves by 1.93% and 1.09%. These findings indicate that SALC
consistently enhances performance across models, particularly in more complex architectures like
phi-3-mini-instruct, where significant LC-WR gains are observed. Moreover, SALC appears adept
at controlling response length while optimizing for win rates.Overall, SALC demonstrates a higher
potential for generalization, consistently outperforming Default and LLM as Judge across all the
scenarios, indicating a more nuanced understanding of preference data.

Evaluator LM AlpacaEval2 AlpacaEval1
LC-WR WR Length LC-WR WR Length

phi-2-instruct 7.55% 4.81% 1049 49.58% 69.68% 1049
phi-2-instruct (Baseline) 8.55% 6.69% 1325 52.15% 77.51% 1325
phi-2-instruct (LLM as Judge) 7.32% 6.11% 1376 57.65% 78.23% 1376
phi-2-instruct (SALC) 8.38% 7.08% 1411 55.48% 80.12% 1411
phi-3-mini-instruct 17.64% 11.40% 1199 68.61% 84.57% 1199
phi-3-mini-instruct (Baseline) 17.86% 12.71% 1352 69.50% 86.69% 1352
phi-3-mini-instruct (LLM as Judge) 17.08% 12.99% 1458 68.71% 87.67% 1458
phi-3-mini-instruct (SALC) 18.47% 13.80% 1429 71.33% 88.75% 1429
mistral-7b-instruct 11.39% 6.41% 980 56.40% 74.93% 980
mistral-7b-instruct (Default) 11.84% 7.88% 1173 62.90% 84.07% 1173
mistral-7b-instruct (LLM as Judge) 11.90% 8.46% 1283 62.70% 84.76% 1283
mistral-7b-instruct (SALC) 13.33% 9.24% 1260 66.87% 85.69% 1260

Table 5: Analysis of Length-Controlled Win Rate and Overall Win Rate on Alpaca Eval Dataset for
Various Models Fine-tuned with DPO Using Preference Data Generated by Different Baselines.

5 CONCLUSION

In this paper, we introduce SALC, a novel approach for LLM evaluation by enabling context-aware
dynamic criteria generation and self-assessment. By allowing models to generate their own evalu-
ation criteria, SALC overcomes the limitations of conventional human-defined metrics, providing a
more scalable and consistent solution for evaluating LLM outputs. Our extensive empirical analysis
demonstrates that SALC significantly improves correlation with human expert evaluations, enhances
inter-model agreement, and yields significant performance gains in tasks like preference data gener-
ation for DPO fine-tuning. These results highlight the effectiveness and versatility of SALC, offering
a robust alternative for improving LLM evaluation and preference data generation. SALC’s ability
to generate high-quality criteria and evaluations without human intervention positions it as a scalable
solution for future advancements in LLM evaluation methods.
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A ILLUSTRATION OF OVERALL EVALUATION PROCESS

The diagram illustrates the overall evaluation process in the context of the SALC framework. In
SALC, the LLM is provided with a task description and an instruction, which in this case involves
summarizing the impact of climate change on polar bear populations. The LLM generates a re-
sponse based on the instruction, which is then evaluated through autonomously generated criteria
rather than relying on predefined human-designed metrics. The diagram shows an example of this
evaluation process, where the LLM generates criteria like Relevance to Instruction (whether the re-
sponse addresses the instruction of summarizing the impact on polar bears), Completeness(whether
critical details like habitat loss and hunting challenges are covered), and Alignment with Reference
(whether the response reflects the key points from a given reference). This reference contains factual
details, such as the reliance of polar bears on seals for food and the consequences of habitat loss.
The criteria generation process is a core component of SALC, allowing the LLM to autonomously
determine the relevant factors for evaluation based on the task and reference. Once the criteria are
generated, the LLM proceeds to the evaluation stage, where it assesses its own output by compar-
ing it against the generated criteria. Feedback is provided based on this comparison, pointing out
strengths and areas for improvement, such as missing explanations regarding hunting practices and
energy expenditure. The LLM then assigns a score to its response—in this case, 3.2 out of 5—based
on how well it aligns with the criteria it generated. This process highlights the autonomy of SALC,
where the LLM not only generates criteria but also provides a detailed evaluation and score based on
its self-assessment. This approach leads to more consistent and contextually relevant evaluations,
as the criteria are tailored to the task at hand. The ability of the LLM to autonomously generate
evaluation metrics improves the alignment of model-generated outputs with human expectations,
addressing task-specific nuances more effectively than conventional methods. In SALC, the entire
process—from criteria generation to evaluation and scoring—is conducted without human interven-
tion, enhancing the robustness and reliability of LLM self-assessments.
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 Task Description
- Your job is to identify
important factors, along with
detailed descriptions....
.......
- The descriptions of the
factors .... chain-of-thought
questions.
 - The factors should be
objective, .... the response
or reference.

Instruction
Summarize the impact of climate
change on polar bear
populations in a few sentences

Response to Evaluate
Climate change is affecting
polar bears. Their ice
habitats are melting, making
it harder for them to find
food. This could lead to a
decline in their population.

Reference
Climate change is leading to
the rapid melting of sea ice,
which polar bears rely on for
hunting seals, their primary
food source. The loss of this
critical habitat is causing
polar bears to travel longer
distances and expend more
energy, leading to decreased
survival rates and
reproductive success.

Feedback
The response addresses the general impact of climate change on polar bears, mentioning
the melting ice habitats and the difficulty of finding food. While it notes habitat
loss, it does not explain how this specifically impacts polar bears' hunting practices
or their energy expenditure. Furthermore, the consequences like decreased survival and
reproductive success, which are essential to understanding the full impact, are
missing. 
...... 

Criteria

1.) Relevance to Instruction - Does the
response focus on the specific instruction
of summarizing the impact of climate
change on polar bear populations? Does it
provide relevant information about the
effects of climate change?
2.) Completeness - Does the response
sufficiently cover key aspects of the
topic? Are any critical details or
consequences of climate change on polar
bears (e.g., loss of habitat, challenges
in hunting) missing?
........
4.) Alignment with Reference - Does the
response align with the reference answer
in terms of core ideas? Are the major
points from the reference, such as habitat
loss and difficulties finding food,
reflected in the response?
.....

Task Description:

- Please act as an impartial judge and
evaluate the quality of the response....
- Your evaluation should consider the
following factors: {Criteria}
.......
- Provide detailed feedback based on
factors...... reference answer.
- After writing the feedback, assign a
score that is an integer number between 1
and 5.

LLM

LLM

SCORE - 3.2
C
r
i
t
e
r
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a
 
G
e
n
e
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a
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S
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e

Evaluation Stage

Figure 5: Overall Evaluation Process

B EXPERIMENTAL DETAILS

In this section, we summarize the details of datasets, baseline evaluation strategies, evaluation met-
rics and experimental setup.

B.1 DATASETS

We used the following datasets to evaluate the efficiency of SALC.

• Vicuna Bench (Chiang et al., 2023): It contains 80 test prompt set with hand-crafted customized
score rubrics. The reference answers are generated by prompting GPT-4 model with instructions
and respective score rubric.

• MT-Bench (Zheng et al., 2023): It is a multi-turn instruction dataset for which a reference answer
is generated using GPT-4 for each test prompt and the last turn response is used for evaluation.

• Flask Eval (Ye et al., 2023b): It is a fine-grained evaluation dataset that includes multiple conven-
tional NLP datasets and instruction datasets.
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Figure 6: Human Agreement accuracy among ranking datasets

• Alpaca Eval (Dubois et al., 2024): The Alpaca dataset is a fine-tuning dataset derived from Ope-
nAI’s GPT models, designed to enhance instruction-following capabilities in language models.
Originally based on the Stanford Alpaca project, which built upon the success of the Alpaca-7B
model, this dataset consists of high-quality question-answer pairs generated from GPT-3.5-turbo.
It is widely used for benchmarking and fine-tuning smaller models for instruction-following tasks.

• HHH Alignment (Askell et al., 2021): This is a widely adopted dataset for reward-model test-beds
that measure the preference accuracy between two responses in terms of Helpfulness, Harmless-
ness, Honesty, and General (Other) category.

• Feedback Collection (Kim et al., 2024): This dataset contains responses with 1K manually crafted
and automated score rubric.

B.2 BASELINE METHODS

Our SALC method adaptively generates criteria to improve evaluation and reasoning capabilities of
pre-trained LMs. In addition, we proposed two fine-tuned small LMs: FT-Crieria that focused on
autonomous criteria generation, and FT-Judge which is designed for evaluation purposes. We bench-
mark the performance of our framework against the following state-of-the-art evaluation frame-
works:

• LLM as a judge [Zheng et al. (2023)]: In this approach, a strong LLM is used to judge the
responses while mitigating the position, verbosity and self-enhancement biases with intelligent
prompt enhancement mechanisms.

• Prometheus [Kim et al. (2024)]: It is a open-source fine-tuned model for response evaluation that
leverages 1K human labelled and automatic score rubrics to improve the reasoning capability.

• LLMs: We leverage several pre-trained LLMs such as GPT-3.5-turbo, GPT-4, GPT-4o [Achiam
et al. (2023)] and Llama3-70b-instruct [Dubey et al. (2024)] as the evaluator model to benchmark
against SALC.

• SLMs: To benchmark against SALC-Tune, we choose a diverse set of small open-sourced pre-
trained models including llama-7b-chat, llama-13b-chat, llama3-8b-instruct [Dubey et al. (2024)],
mixtral-8x7b-instruct, and mistral-7b-instruct [Jiang et al. (2023)].

B.3 EVALUATION METRICS

To comprehensively analyze the efficacy of SALC, we leverage the following evaluation metrics:

• Accuracy: In ranking grading scenario, as we have the ground truth for chosen and rejected
response, we used Accuracy, F1-score metric to compute the agreement between LLM evaluator
and the ground truth.
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• Correlation: In absolute grading scenario, we used Pearson (Cohen et al., 2009), Kendall-
Tau(Kendall, 1938), Spearman(Spearman, 1961) correlation metrics to compare between LLM
evaluator scores and human judged scores.

• Similarity: To understand the textual similarity between criteria generated from fine-tuned SLM
with their respective references, we used lexical similarity metrics such as Rouge (Lin, 2004),
Bleu (Papineni et al., 2002) and BERT (Zhang et al., 2019).

• Alignment: We compute the Helpfulness, Harmfulness and Honesty metrics to quantify the qual-
ity of different evaluator models on HHH alignment dataset (Askell et al., 2021).

B.4 EXPERIMENTAL SETUP

Our experiments were conducted using a high-performance compute cluster equipped with 8
NVIDIA A100 GPUs, each with 80 GB of memory. This setup provided the necessary compu-
tational power for training and fine-tuning large language models.

Hardware and Distributed Training: To efficiently utilize our multi-GPU setup, we employed
Fully Sharded Data Parallel (FSDP) techniques for fine-tuning the larger 7B and 13B parameter
models. FSDP allowed us to distribute the model parameters across multiple GPUs, enabling the
training of these large-scale models while optimizing memory usage and computational efficiency.

Model Variants and Fine-tuning Approaches: Broadly, we conducted two sets of experiments:
(1) Standard Fine-tuning (SFT) on the Llama-2 7B and 13B Chat models, which involved further
training these pre-trained models on our specific dataset to adapt them to our target domain; and (2)
Direct Preference Optimization (DPO) fine-tuning applied to three models: Phi-2, Phi-3-mini-4k-
instruct, and Mistral 7B instruct, on the preference data created by our method and other baselines.
The SFT training was done for 3 epochs on both of the model while for DPO we fine-tuned the
already instruction fine-tuned models for 2 epochs.

Hyperparameters and Training Details: For our fine-tuning experiments, we experimented with
various hyperparameters: For Standard Fine-tuning, we have repoted the scores using a learning rate
of 1× 10−5, while for DPO Fine-tuning, a lower learning rate of 1× 10−6 was employed to ensure
stable training. For both of these experiments, we used a batch-size of 64. We implemented a cosine
annealing learning rate scheduler for both SFT and DPO fine-tuning.

Inference: During the inference phase, we employed a greedy decoding strategy to generate outputs
from our fine-tuned models. This approach selects the most probable token at each step of the
generation process, resulting in deterministic outputs.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 PERFORMANCE OF SALC ON ABSOLUTE GRADE SETTING

Evaluator LM Vicuna Bench MT Bench FLASK Eval

Pearson Kendall-Tau Spearman Pearson Kendall-Tau Spearman Pearson Kendall-Tau Spearman

LLaMA2-7b-chat 0.175 0.143 0.176 0.132 0.113 0.143 0.271 0.180 0.235
LLaMA2-13b-chat 0.211 0.203 0.253 -0.020 -0.029 -0.038 0.265 0.182 0.235
LLaMA2-70b-chat 0.376 0.318 0.391 0.226 0.175 0.224 0.336 0.267 0.346

Prometheus 7b 0.316 0.244 0.313 0.235 0.168 0.234 0.320 0.224 0.309
Prometheus 13b 0.385 0.302 0.387 0.448 0.300 0.416 0.416 0.302 0.416
SALC-Tune 7b 0.458 0.319 0.384 0.375 0.267 0.362 0.582 0.420 0.543
SALC-Tune 13b 0.510 0.363 0.463 0.466 0.349 0.462 0.611 0.457 0.591
GPT-35-turbo 0.420 0.304 0.359 0.522 0.417 0.512 0.525 0.360 0.474

GPT-4-Turbo 0.770 0.593 0.673 0.736 0.600 0.718 0.770 0.593 0.673
GPT-4o-mini 0.706 0.552 0.633 0.770 0.597 0.729 0.759 0.576 0.726
GPT-4o 0.748 0.530 0.614 0.731 0.599 0.713 0.812 0.667 0.814

Table 6: Comparison of Evaluator Language Models across different benchmarks
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Evaluator LM HHH Alignment MT Bench
Harm. Help. Hon. Other Overall F1 Score Accuracy

llama3-8b-chat (LLM as judge) 0.911 0.813 0.733 0.780 0.799 0.450 0.590
llama3-8b-chat (SALC) 0.939 0.793 0.759 0.780 0.805 0.454 0.584
llama3-70b-chat (LLM as judge) 0.952 0.912 0.845 0.881 0.894 0.490 0.622
llama3-70b-chat (SALC) 0.925 0.909 0.873 0.947 0.910 0.498 0.627
mixtral 8x7b-instruct (LLM as judge) 0.842 0.810 0.717 0.833 0.797 0.468 0.574
mixtral 8x7b-instruct (SALC) 0.956 0.842 0.782 0.892 0.862 0.507 0.593

Table 7: Human Agreement Accuracy and Performance Comparison on HHH Alignment and MT
Bench Datasets

C.2 PERFORMANCE OF SALC AS REWARD MODEL

Using different reward models on Ultra-Feedback dataset, we created our own preference datasets
that were used to fine-tune the different models, as shown in Table 5. For all the experiments we
only picked samples that had absolute score difference of at least 5 between the chosen and rejected
samples. This led to a mismatch in number of training examples for the three different DPO settings:
Baseline, LLM as Judge and SALC. For the baseline setting, about ∼6k samples were obtained on
filtering for scores greater than equal to 5. For LLM as judge, the subset size was comparable
to that generated using SALC as the reward model, ∼12k and ∼13k respectively. To account for
fair training and comparison, we also trained a Phi-3-mini-4k-instruct model on the same number of
examples as present in the subset created using the original UltraFeedback dataset. We still managed
to outperform the baseline using less number of examples, but with a smaller margin. The model
trained on SALC data achieved a win rate of 86.89% and a LC win rate of 69.95% as compared to
the baseline score of 86.5% win rate and 69.5% LC win rate on Alpaca Eval 1. On Alpaca Eval 2,
we achieved a win rate of 13.26& and a LC win rate of 18.36% as compared to the 12.71% win rate
and 17.86% win rate of the baseline.
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