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ABSTRACT

Optimal transport (OT) barycenters are a mathematically grounded way of averag-
ing probability distributions while capturing their geometric properties. In short,
the barycenter task is to take the average of a collection of probability distributions
w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the
continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our ap-
proach is built upon the dual reformulation of the EOT problem based on weak
OT, which has recently gained the attention of the ML community. Beyond its
novelty, our method enjoys several advantageous properties: (i) we establish qual-
ity bounds for the recovered solution; (ii) this approach seemlessly interconnects
with the Energy-Based Models (EBMs) learning procedure enabling the use of
well-tuned algorithms for the problem of interest; (iii) it provides an intuitive opti-
mization scheme avoiding min-max, reinforce and other intricate technical tricks.
For validation, we consider several low-dimensional scenarios and image-space
setups, including non-Euclidean cost functions. Furthermore, we investigate the
practical task of learning the barycenter on an image manifold generated by a pre-
trained generative model, opening up new directions for real-world applications.

1 INTRODUCTION

Averaging is a fundamental concept in mathematics and plays a central role in numerous applica-
tions. While it is a straightforward operation when applied to scalars or vectors in a linear space, the
situation complicates when working in the space of probability distributions. Here, simple convex
combinations can be inadequate or even compromise essential geometric features, which necessi-
tates a different way of taking averages. To address this issue, one may carefully select a measure
of distance that properly captures similarity in the space of probabilities. Then, the task is to find a
procedure which identifies a ‘center’ that, on average, is closest to the reference distributions.

One good choice for comparing and averaging probability distributions is provided by the family
of Optimal Transport (OT) discrepancies (Villani et al.,[2009). They have clear geometrical mean-
ing and practical interpretation (Santambrogio, [2015; Solomon, [2018). The corresponding problem
of averaging probability distributions using OT discrepancies is known as the OT barycenter prob-
lem (Agueh & Carlier, 2011). OT-based barycenters find application in various practical domains:
domain adaptation (Montesuma & Mboulal |2021bjal), shape interpolation (Solomon et al.| [2015),
Bayesian inference (Srivastava et al., 2015;2018)), text scoring (Colombo et al., 2021), style transfer
(Mroueh, 2020)), reinforcement learning (Metelli et al., 2019).

Over the past decade, the substantial demand from practitioners sparked the development of various
methods tackling the barycenter problem. The research community’s initial efforts were focused on
the discrete OT barycenter setting, see Appendix [B.1]for more details. The continuous setting turns
out to be even more challenging, with only a handful of recent works devoted to this setup (Li et al.,
2020; /Cohen et al., 2020; [Korotin et al.,[2021c;[2022a; [Fan et al.,2021;Noble et al., 2023;|Chi et al.,
2023)). Most of these works are devoted to specific OT cost functions, e.g., deal with é% barycenters
(Korotin et al.l|2021c;[2022a; [Fan et al.| | 20215 Noble et al.,|2023)); while others require non-trivial a
priori selections (Li et al.,|2020) and have limiting expressivity and generative ability (Cohen et al.,
2020; |Chi et al.l [2023), see §E]f0r a detailed discussion.

Contribution. We propose a novel approach for solving Entropy-regularized OT (EOT) barycenter
problems, which alleviates the aforementioned limitations of existing continuous OT solvers.
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* We reveal an elegant reformulation of the EOT barycenter problem by combining weak dual
form of EOT with the congruence condition (§4.1)); we derive a simple optimization procedure
which closely relates to the standard training algorithm of Energy-Based models (EBMs) (§4.2).

* We establish the generalization bounds as well as the universal approximation guarantees for our
recovered EOT plans which push the reference distributions to the barycenter (§4.3).

* We validate the applicability of our approach on various toy and large-scale setups including the
RGB image domain (§5). In contrast to previous works, we also pay attention to non-Euclidean
OT costs. Specifically, we conduct a series of experiments looking for a barycenter on an image
manifold of a pretrained GAN. In principle, the image manifold support may contribute to the
interpretability and plausibility of the resulting barycenter distribution in downstream tasks.

Notations. We write K = {1,2, ..., K'}. Throughout the paper ¥ C R, ¢ R” and X}, c RP*
(k € K) are compact subsets of Euclidean spaces. Continuous functions on X’ are denoted as C(X).
Probability distributions on X are P(X’). Absolutely continuous probability distributions on X are
denoted by P, (X) C P(X). Given P € P(X),Q € P(Y), we use II(P, Q) to designate the set of
transport plans, i.e., probability distributions on X’ x ) with the first and second marginals given by

P and Q, respectively. The density of P € P, (') w.r.t. the Lebesgue measure is denoted by dP(w) .

2 BACKGROUND

First, we recall the formulations of EOT (§2.1) and the barycenter problem (§2.2). Subsequently,
we clarify the computational setup of the considered EOT barycenter problem (§2.3).

2.1 ENTROPIC OPTIMAL TRANSPORT

Consider distributions P € P,.(X), Q € P,()), a continuous cost function ¢ : X x Y — R and a
regularization parameter € > 0. The entropic optimal transportation (EOT) problem between P and
Q (Cuturi, 2013; Peyré et al.| [2019} |Genevayl 2019) consists of finding a minimizer of

EOT?) (P, Q) & nin / c(z,y)dn(z,y) — eH(n), (1)
’ m€l(P.Q) Jxxy

where H(7) is the differential entropy of plan . The case ¢ = 0 corresponds to classical OT,
also known as the Kantorovich problem (Kantorovich 1942), and falls of the scope of this paper.

Since by the chain rule of entropy we have H(w) = [, H(n(:|x))dP(x) + H(P), where (-|x) are
conditional distributions on ), equation (T) permlts the followmg equivalent reformulation:
EOT. . (P,Q) & min / ez, y)dn(z,y) — g/H (|z)) dP(z), )
mell(P,Q) Jxyxy S~——
=dn(z)

A minimizer 7* € II(P, Q) of (Z) is called the EOT plan. Thanks to the equivalence of (I)) and (@),
its existence and uniqueness are guaranteed, see, e.g., (Clason et al., 2021, Th. 3.3). In practice,
we usually do not require the EOT plan 7* but its conditional distributions 7*(-|z) € P()) as they
prescribe how points x € X are stochastically mapped to ) (Gushchin et al.,[2023b| §2). We refer
to 7*(+|z) as the conditional plans (for x € X).

Weak OT dual formulation of the EOT problem. The EOT problem permits several dual formu-
lations. In our paper, we use the one derived from the weak OT theory, see (Gozlan et al., 2017,
Theorem 9.5) or (Backhoff-Veraguas et al., 2019, Theorem 1.3):

EOT,.(F,Q) = sup {/fc AP (z /f dQ(y } )
fec)

where f¢ : X — R is the so-called weak entropic c-transform (Backhoff-Veraguas et al., 2019, Eq.
1.2) of the function (potential) f. The transform is defined by

fc(:v)dgug;jg}){ /y ez, y)dpu(y) — <H (1 / Fly)duly } @)

We use the capital C'in f€ to distinguish the weak transform from the classic c-transform (Santam-
brogiol [2015] §1.6) or (¢, €)-transform (Marino & Gerolin, 2020, §2). In particular, formulation (3]
is not to be confused with the conventional dual, see (Mokrov et al., 2023 Appendix A).
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For each z € X, the minimizer u/ € P()) of the weak c-transform (@) exists and is unique. Its
density is of the form (Mokrov et al., 2023} Theorem 1): Set Z.(f, x) déffy exp (M)dy,
dpp() er 1 (W) —clzy))
dy Ze(f,x) 2

By substituting () into ,@ and carrying out straightforward mathematical manipulations, we arrive
at an explicit formula f(x) = —elog Z.(f, x), see (Mokrov et al., 2023, Equation (14)).

(&)

Not only does maximizing the dual objective in (3) allow us to estimate the actual value of the
primal objective EOT, . (IP, Q), but it also provides an approximation of the EOT plan 7*. Consider
the distribution d7/ (2, y) = duf (y)dP(z). According to (Mokrov et al., 2023, Thm. 2), we have

EOT..(P,Q) — </ £9 (2)dP(x /f )dQ(y )ZEKL(W*Hﬂ’f). (6)

This means that the smaller the error in solving the dual problem with f € C(}), the closer the
distribution 7/ to 7*. This useful property appears only when e > 0, which is one of many reasons
why EOT (e > 0) is often favoured over the unregularized problem (e = 0).

2.2 ENTROPIC OT BARYCENTER

Consider distributions P, € P,.(X%) and continuous cost functions ¢k (+,-) : Xx x Y — R for
k € K. Given positive weights \;, > 0 with 25:1 Ar = 1, the EOT Barycenter problem (Cuturi &
Doucet, [2014; [Cuturi & Peyrél 2018 [Dvurechenskii et al., 2018} |del Barrio & Loubes), [2020), (Le
et al.l 2021 2022) is:

f MEOT?) (P 7
Qelgyz k bkf( k‘a@) ()

The case where £ = 0 corresponds to the classical OT barycenter problem (Agueh & Carlier, [2011))
and falls of the scope of this paper. By substituting EOT?)_, with EOT,, . we derive

CE’

5% it BQY  inf AEOT,, . (Py, 8
Qelg(y) (@ = Qel%y)z vEOTc, < (Pk, Q) (8)

which differs from (/) only by the additive constant Z w1 H (IP;) and has the same minimizers.
It is worth noting that the functional Q — B(Q) is strictly convex and lower semicontinuous (W.r.t.
the weak topology) as each component Q — EOT,, (P, Q) is strictly convex and l.s.c. (lower
semi-continuous) itself. The latter follows from (Backhoff-Veraguas et al.,[2019, Th. 2.9) by noting
that on P(Y) the map p+— fy ek (x,y)dp(y)—H (p) is Ls.c, bounded from below and strictly convex
thanks to the entropy term. Since P()) is weakly compact (as ) is compact due to Prokhorov’s
theorem, see, e.g., (Santambrogiol [2015] Box 1.4)), it holds that B(Q) admits at least one minimizer
due to the Weierstrass theorem (Santambrogio, 2015, Box 1.1), i.e., a barycenter Q* exists. In the
paper, we work under the reasonable assumption that there exists at least one Q for which B(Q)<oc.
In this case, the barycenter Q* is unique as consequence of the strict convexity of 5.

2.3 COMPUTATIONAL ASPECTS OF THE EOT BARYCENTER PROBLEM

Barycenter problems, such as or (), are known to be challenging in practice (Altschuler &
Boix-Adseral [2022). To our knowledge, even when Py, ..., Py are Gaussian distributions, there is
no direct analytical solution neither for our entropic case (¢ > 0), see the additional discussion in
Appendix nor for the unregularized case (Alvarez-Esteban et all[2016, ¢ = 0). Furthermore,
in real-world scenarios, the distributions P, (k € K) are typically not available explicitly but only
through empirical samples (datasets). This aspect leads to the following learning setup.

We assume that each Py, is accessible only by a limited number of i.i.d. empirical samples
Xy = {a}, Iz’, . ka"} ~ PPj.. Our aim is to approximate the optimal conditional plans 7y (-|xk)
between the entire source distributions Py, and the entire (unknown) barycenter Q* solving (8). The
recovered plans should provide the out-of-sample estimation, i.e., allow generating samples from

5 (+|2}e"), where 3" is a new sample from P, which is not necessarily present in the train sample.

This setup corresponds to continuous OT (Li et al., [2020; Korotin et al., 2021c)). It differs from

the discrete OT setup (Cuturi, 2013} |Cuturi & Doucet, 2014)) which aims to solve the barycenter
problem for empirical distributions, e.g., @k &t 1\};4 EN’“ 057 . Discrete methods are not well-suited
for the out-of-sample estimation required in the continuous OT setup.

3
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3 RELATED WORKS

The taxonomy of OT solvers is large. Due to space constraints, we discuss here only methods within
the continuous OT learning setup that solve the EOT problem or (E-)OT barycenter problem. These
methods try to approximate OT maps or plans between the distributions P, and the barycenter
Q™ rather than just their empirical counterparts that are available from the training samples. A
broader discussion of general-purpose discrete and continuous OT solvers is left to Appendix [B.T]

Continuous EOT solvers aim to recover the optimal EOT plan 7* in (2), (I) between unknown
distributions P and Q which are only accessible through a limited number of samples. One group
of methods (Genevay et al., 2016; Seguy et al.| |2018; Daniels et al.l [2021) is based on the dual
formulation of OT problem regularized with KL divergences (Genevay et al.,|2016} Eq. (P.)) which
is equivalent to (2). Another group of methods (Vargas et al.,[2021}; |De Bortoli et al. 2021}, [Chen
et al., 2021} |Gushchin et al., 2023a; |Tong et al. [2023; [Shi et al. [2023) takes advantage of the
dynamic reformulation of (1) via Schrodinger bridges (Léonard, 2013; Marino & Gerolinl [2020).

In (Mokrov et al.| 2023)), the authors propose an approach to tackle (2) by means of Energy-Based
models (LeCun et al.,|2006; [Song & Kingma, 2021, EBM). They develop an optimization procedure
resembling standard EBM training which retrieves the optimal dual potential f* appearing in (3). As
a byproduct, they recover the optimal conditional plans p/ = 7*(-|z). Our approach for solving
the EOT barycenter (§) is primarily inspired by this work. In fact, we manage to overcome the
theoretical and practical difficulties that arise when moving from the EOT problem guided with
EBMs to the EOT barycenter problem (multiple marginals, optimization with respect to an unfixed
marginal distribution Q), see §d]for details of our method.

Continuous OT barycenter

Admissible Learns Max considered -
Method Regul
solvers are based on the un- e OT costs OT plans  data dim egularization
regularized or regularized OT (Lietal|[2020)  general yes 8D, no images Em‘,‘;}f}?/Q;‘adFa‘iC
. : W1 xeda prior
bary.center problem Wlthll’l the (Cohen et al.|[2020) general no Entropic (Sinkhorn)
continuous OT learning setup. (Korotin et al.,[2021c) only I3 yes requires fixed prior
The works (Korotin et al. (Fan et al.} 2021) onlylg yes 1o
L L (Korotin et al.}[2022a) only I35 yes 3x64x64 (CelebA, etc.) no
2021¢; [Fan et al,, 20215 Noble Noble stal 2033 only 13 yes Entropic
et aL’ 2023; Korotin et al., (Chietal}|2023)  general yes 256D, Gaussians only Entropic/Quadratic
20224) are designed exclusively Ours general yes  3x64x64 (CelebA) Entropic

for the quadratic Euclidean cost

2(z,y) € Lz — |3 The OT
problem with this particular cost exhibits several advantageous theoretical properties (Ambrosio &
Gigli, 2013] §2) which are exploited by the aforementioned articles to build efficient procedures
for barycenter estimation algorithms. In particular, (Korotin et al.| [2021c}; [Fan et al., [2021)) utilize
ICNNs (Amos et al., [2017) which parameterize convex functions, and (Noble et al., [2023) relies
on a specific tree-based Schrodinger Bridge reformulation. In contrast, our proposed approach is
designed to handle the EOT problem with arbitrary cost functions ¢y, ..., cx. In (Li et al.,|2020),
they also consider regularized OT with non-Euclidean costs. Similar to our method, they take
advantage of the dual formulation and exploit the so-called congruence condition (§4). However,
their optimization procedure substantially differs. It necessitates selecting a fixed prior for the
barycenter, which can be non-trivial. The work (Chi et al., [2023)) takes a step further by directly
optimizing the barycenter distribution in a variational manner, eliminating the need for a fixed prior.
This modification increases the complexity of optimization and requires specific parametrization of
the variational barycenter. In (Cohen et al., 2020), the authors also parameterize the barycenter as
a generative model. Their approach does not recover the OT plans, which differs from our learning
setup (§2.3). A summary of the key properties is provided in Table[I] highlighting the fact that our
proposed approach overcomes many imperfections which are inherent in competing methods.

Table 1: Comparison of continuous OT barycenter solvers

4 PROPOSED BARYCENTER SOLVER

In the first two subsections, we work out our optimization objective (§4.1)) and its practical imple-
mentation (§4.2). In §4.3] we alleviate the gap between the theory and practice by offering finite
sample approximation guarantees and universality of NNs to approximate the solution.

4.1 DERIVING THE OPTIMIZATION OBJECTIVE

In what follows, we analyze (8)) from the dual perspectives. We introduce £ : C(V)¥ — R:
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K
L(fr,--- fx) “fjij,xk fk () APy (k) {--—ej{jAk./; logzz%(fk7xk>dpk<xkﬂ-
k=1 k

Here fk *(z) denotes the weak entropic cy-transform (@) of f;. Following we see that it
coincides with —elog Z,, (fx,xx). Below we formulate our main theoretical result, which will
allow us to solve the EOT barycenter task without optimization over all probablity measures on ).

Theorem 1 (Dual formulation of the EOT barycenter problem). The EOT barycenter problem (8)
permits the following dual formulation:

inf MEOT,, (P, Q) = L = sup L(f1,- s [K) 9)
QGP”Z o f,i.i,fKeC(y),(
Zk 1>\kfk =0

We refer to the constraint 31 p=1Mfx = 0 as the congruence condition w.r.t. weights .
The potentials f; appearing in (9) play the same role as in (3). Notably, when L(f1,..., fK)
is close to £*, the conditional optimal transport plans 7} (-|xy), zx € Xy, between P, and the
barycenter distribution Q* can be approximately recovered through the potentials fi. This intuition
is formalized in Theorembelow. First, for f, € C()), we define

;

drl* (2, y) Edult (y)dPy(z)  and  dQ*(y)E [ dalr(zy,y)

X

Theorem 2 (Quality bound of plans recovered from dual potentials). Let {fx}< |, fr € C(V) be
congruent potentials. Then we have

K
—L(f1,- fK) = €Y MKL (|| w*) >ez/\kKL (Q*[|Qf+), (10)

k=1 k=1

where , € II(Py,, Q*), k € K are the EOT plans between Py, and the barycenter distribution Q*.

According to Theorem an approximate solution { fj }sz1 of (9) yields distributions 7% which are
close to the optimal plans ;. Each m/k is formed by conditional distributions pJ*, c.f. (&), with
closed-form energy function, i.e., the unnormalized log-likelihood. Consequently, one can generate
samples from uajk using standard MCMC techniques (Andrieu et al., [2003). In the next subsection,
we stick to the pract1cal aspects of optimization of (9), which bears certain similarities to the training
of Energy-Based models (LeCun et al., 2006} [Song & Kingmal, 2021, EBM).

Relation to prior works. Works (Li et al., 2020; Korotin et al., 2021c) also aim to first get the dual
potentials and then recover the barycenter, see the detailed discussion in §3}]

4.2 PRACTICAL OPTIMIZATION ALGORITHM

To maximize the dual EOT barycenter objective (9), we replace the potentials fi. € C()) fork € K
with neural networks fp ., 6 € ©. In order to eliminate the constraint in (9)), we propose parametriz-

ing fo 1. as gp, — 25:1 Mk go,,» where {gp, : RP — R, 6, € O}/, are neural networks. This

parameterization automatically ensures the congruence condition Zszl Aefo. = 0. Note that
O=0; x---xOgandf = (0y,...,0k) € ©. Our objective function for (9) is defined as
K
def
0) = —EZ)\k/ log Z¢, (fo.r, xx)dPx(xk). (11
k=1 X

While direct computation of the normalizing constant 7., may, in general, be infeasible, the gradient
of L with respect to € can be derived similarly to (Mokrov et al., 2023} Theorem 3):

Theorem 3 (Gradient of the dual EOT barycenter objective). The gradient of L satisfies

kif’“{/ /{aef“ >]dﬂf“()dﬂj’k(wk>}~ (12)

With this result, we can describe our proposed algorithm which maximizes L using (12).

TRAINING. To perform stochastic gradient ascent step w.r.t. 8, we approximate (I2) with Monte-
Carlo by drawing samples from d7/o:% (2, y) = d,ufe *(y)dPy(zr). Analogously to (Mokrov et al.,
2023|, §3.2), this can be achieved by a simple two-stage procedure. At first, we draw a random
vector zy, from P. This is done by picking a random empirical sample from the available dataset
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Algorithm 1: Entropic OT barycenters via Energy-Based Modelling

Input : Source distributions P, k € K accessible by samples;
cost functions cg(xg,y) : Xk X Y — R; the regularization coefficient £ > 0;

barycenter averaging coefficients \;, > 0 such that Zle A =1;
MCMC procedure MCMC_procedure; batch size S > 0;
potential NNs fg 1. : J — R, such that Zszl Aifor =0 (see .
Output: trained NNs fy- j, recovering the conditional OT plans between PP;, and barycenter Q*.
for iter =1,2,... do
fork=1,2,..., K do
Sample batch {z$}5_; ~ Py;

Draw Vi = {y;}5_, with MCMC: y; = MCMC procedure (M)’
Zk — */\k% [Zf=1 fO,k (ylsc) ];

B L+ Zszl Zk; Perform a gradient step over # by using %E;

Xj. Then, we need to draw a sample from the distribution ugi’“ Since we know the negative

energy (unnormalized log density) of ugi’k by (5), we can sample from this distribution by applying

an MCMC procedure which uses the negative energy function ¢ = ( fp . (y) — cx(xk, v)) as the input.
Our findings are summarized in Algorithm [T}

In all our experiments, we use ULA (Roberts & Tweedie, 1996, §1.4.1) as a MCMC _procedure.

It is the simplest MCMC algorithm. Specifically, in order to draw a sample y;, ~ uii’“ where
T € X, we initialize y,io) from the standard Normal D—dimensional distribution A (0, Ip) and

then iterate the discretized Langevin dynamics:
l l n
y,i+1) «— y,(c) + %vy(fe,k(y) - C(fk,y))’y_ym +vné, & ~N(0,Ip),
=y

where [ € {0,1,2,...,L}, L is a number of steps, and n > 0 is a step size. Note that the iter-
ation procedure above could be straightforwardly adapted to a batch scenario, i.e., we can simul-

taneously simulate the whole batch of samples Yk(l) conditioned on X ,il). The particular values of
number of steps L and step size 7 are reported in the details of the experiments, see Appendix[C]

@

INFERENCE. At the inference stage, we use the same ULA procedure for sampling from the recov-
ered optimal conditional plans 7f¢*.*(-|x},), see the details on the hyperparameters L, 7 in

Relation to prior works. Learning a distribution of interest via its energy function (EBMs) is a
well-established direction in generative modelling research (LeCun et al.l 2006} Xie et al. 2016}
Du & Mordatch, 20195 [Song & Kingmal [2021)). Similar to ours, the key step in most energy-based
approaches is the MCMC procedure which recovers samples from a distribution accessible only by
an unnormalized log density. Typically, various techniques are employed to improve the stability
and convergence speed of MCMC, see, e.g., (Du et al.| 2021} |Gao et al., 2021} Zhao et al.| |2021)).
The majority of these techniques can be readily adapted to complement our approach. At the same
time, the primary goal of this study is to introduce and validate the methodology for computing EOT
barycenters in an energy-guided manner. Therefore, we opt for the simplest MCMC algorithm, even
without the replay buffer (Hinton, 2002), as it serves our current objectives.

4.3 GENERALIZATION BOUNDS AND UNIVERSAL APPROXIMATION WITH NEURAL NETS

In this subsection, we answer the question of how far the recovered plans are from the EOT plan
m; between Py, and Q. In practice, for each distribution P, we know only the empirical samples
Xy, = {z},23,. xivk} ~ Py, i.e., finite datasets. Besides, the available potentials f5, k € K
come from restricted classes of functions and satisfy the congruence condition. More precisely, we
have fr = gx — Zszl AkGk (, where each gy, is picked from some class G, of neural networks.

Formally, we write (fi, ..., fir) € F to denote the congruent potentials constructed this way from
the functional classes Gy, . . ., Gx . Hence, in practice, we optimize the empirical version of (11)):
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=~ def
max _ L(f1,...,fx) = max f [ (13)
(f1s fK)EF (f1,--fK)€E Z Z
and recover (fl, fK) &ef AGMAX(f, 1, )eF (fl, cee, fk). A natural question arises: How

close are the recovered plans 7% to the EOT plans 7} between Py, and Q*? Since the objective
(TT)) is a sum of integrals over distributions Py, we can derive generic finite learning guarantees by
using Theorem 2] see the next theorem below.

Theorem 4 (Finite sample learning guarantees). The following generalization bound holds true:
Estimation error (upper bound) Approximation error

¢E Z AeKL (wkuwfk) <4 Z MR (FE ) + | £F = max L(fi,. o fr)], (4)
(fr, s fK)EF

where .F kC R LLFO | (fry. .., fx) € F}, and the expectation is taken w.r.t. the random realization

of the datasets X1~P1, ..., Xg~Pk. Here R, (]-"Ck , Pk is the Rademacher complexity (Shalev-

Shwartz & Ben-David, 2014, §26) of the functional class ]_-kc * w.rt. samples of size Ny, from Py,.

While the estimation error usually decreases when the sample sizes tend to infinity, it is natural to

wonder whether the approximation error can be also made arbitrarily small. We positively answer
this question when a neural network parameterization is used for the potentials (as we do in §4.2)).

def

Theorem 5 (Universal approximation with neural networks). For every § > 0 there exist K neu-
ral networks g, : RP* — R such that the congruent functions fi, = gi — Zle Akgk satisfy

€0 MKL (|| f) = £ — L(f1,. .., fre) < 6.

Relation to prior works. To our knowledge, the generalization and the universal approximation are
novel results with no analogs established for any other continuous barycenter solver. Our analysis
shows that the EOT barycenter objective is well-suited for statistical learning and approximation
theory tools. This aspect distinguishes our work from the preceding works, where more complex
optimization objectives may not be as amenable to rigorous study.

5 EXPERIMENTS

We assess the performance of our barycenter solver on small-dimensional illustrative setups (§5.1)
and in image spaces (§5.2} §5.3). The source code for our solver is available in the supplementary
material and written in the PyTorch framework. The code will be made publicly available. The
experiments are issued in the form of convenient % .ipynb notebooks. Reproducing the most
challenging experiments (§5.2] §5.3) requires less than 12 hours on a single TeslaV100 GPU. The
details of the experiments and extended experimental results are in Appendix

Disclaimer. Evaluating how well our solver recovers the EOT barycenter is challenging because
the ground truth barycenter is typically unknown. In some cases, the true unregularized barycenter
(e = 0) can be derived (see below). The EOT barycenter for sufficiently small ¢ > 0 is expected
to be close to the unregularized barycenter. Therefore, in most cases, our evaluation strategy is to
compare the computed EOT barycenter (for small €) with the unregularized one. In particular, we
follow this strategy to quantitatively evaluate our solver in the Gaussian case, see Appendix @

5.1 BARYCENTERS OF 2D DISTRIBUTIONS

2D Twister. Consider a map u : R? — R? which, in the polar coordinate system, is represented by
R4 x[0,27) 3 (r,0) — (r, (§—r) mod 2r). Let Py, P2, P3 be 2-dimensional distributions as shown
in Fig.|la] For these distributions and uniform weights A\ = %, the unregularized barycenter (e = 0)
for the twisted cost cx (), y) = ||u(zx) — u(y)||* can be derived analytically, see Appendix
The barycenter is the centered Gaussian distribution which is also shown in F @ We run the
experiment for this cost with ¢ = 1072, and the results are recorded in Fig.|[Ibl We see that it
qualitatively coincides with the true barycenter

For completeness, we also show the EOT barycenter computed with our solver for (2(z,y) = 1|z —
y||? costs (Fig. and the same regularization parameter e. The true ¢? barycenter is estimated by
using the free_support_barycenter solver from POT package (Flamary et al.| [2021). We
stress that the twisted cost barycenter and ¢? barycenter differ, and so do the learned conditional
plans. To be precise, the ¢? EOT plan (Fig. expectedly looks more well-structured while for the
twisted cost (Fig. [Tb) it becomes more chaotic due to non-trivial structure of this cost.
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61 © x1~P1
X2~ 3

> X3~ P

e oy~ x1)

X1~
X2~ P

X3~ P3
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X ~0x ®e @
o0, e o Xx1~P e e o X1~Py

(b) Our EOT barycenter for the
twisted cost (map from [Py ).

(d) Our EOT barycenter for £2
cost (map from Pq).

(C) The true unregularized

(a) The true unregularized
barycenter for 02 cost.

barycenter for the twisted cost.
Figure 1: 2D twister example: The true barycenter of 3 comets vs. the one computed our solver
with e = 1072, Two costs ¢y, are considered: the twisted cost . and 72 i

WIN scws
X1~ P y~Tilxy) y~Tilx1)

OURS (Data space)
y ~ Ay (-1x1)

OURS (Manifold-constrained) WIN scws
y ~ (1) ~ P y~Ty(xa) y~Tx;)

OURS (Data space)
y ~ fp(-1x2)

OURS (Manifold-constrained)
y ~ fia(-1x2)

(a) Learned plans from IP; (zeros) to the barycenter.

(b) Learned plans from P> (ones) to the barycenter.

Figure 2: Qualitative comparison of barycenters of MNIST 0/1 digit classes computed with barycen-
ter solvers in the image space w.r.t. the pixel-wise £2. Solvers SCWB and WIN only learn the unreg-
ularized barycenter (e = 0) directly in the data space. In turn, our solver learns the EOT barycenter
in data space as well as it can learn EOT barycenter restricted to the StyleGAN manifold (e = 10~2).

5.2 BARYCENTERS OF MNIST CLASSES O AND 1

A classic experiment considered in the continuous barycenter literature (Fan et al., [2021} [Korotin
et al., [2022a} [Noble et al., 2023} |Cohen et al., 2020) is averaging of distributions of MNIST 0/1
digits with weights (5, 5) in the grayscale image space X} = Xy = Y = [-1, 1]32%32, The
true unregularized (e = 0) ¢2-barycenter images y are direct pixel-wise averages “112 of pairs of
images x; and x5 coming from the ¢? OT plan between 0’s (P;) and 1’s (P,). In Fig. |2l we show the

unregularized ¢ barycenter computed by (Fan et al., 2021, SCWB), (Korotin et al., 2022a, WIN).

Data space EOT barycenter. To begin with, we employ our solver to compute the e-regularized
EOT ¢?-barycenter directly in the image space ) for ¢ = 10~2. We emphasize that the true entropic
barycenter slightly differs from the unregularized one. To be precise, it is expected that regularized
barycenter images are close to the unregularized barycenter images but with additional noise. In
Fig.[2] we see that our solver (data space) recovers the noisy barycenter images exactly as expected.

Manifold-constrained EOT barycenter. Averaging image distributions directly in the data space
can be challenging. Our experiment below shows that if we a priori have some manifold M where
we want the barycenter to be concentrated on, our solver can restrict the search space to it.

As discussed earlier, the support of the image-space unregularized £2-barycenter is a certain subset
of M = {122 | 1 € Supp(P;),z2 € Supp(Py)}. To achieve this, we train a StyleGAN model
G : Z — Y (Karras et al., 2019) with Z = R5!2 to generate an approximate manifold G(Z) ~ M.
Then, we use our solver with ¢ = 1072 to search for the barycenter of 0/1 digit distributions on

X1, Xy which lies in the latent space Z w.r.t. costs ¢k (x, 2) &1 5llz — G(2)||* . This can be inter-

preted as learning the EOT ¢2-barycenter in the ambient space but constrained to the StyleGAN-
parameterized manifold G(Z). In this case, the barycenter Q* is the distribution of the latent vari-
ables z, which can be pushed to the manifold G(Z) C Y via G(z). The results are also in Fig.
There is no noise compared to the data-space EOT barycenter because of the manifold constraint.

We emphasize that the costs i (, 2) used here are general (not £2 cost!) because G is a non-trivial
StyleGAN generator. Hence, this experimental setup with the manifold-constrained barycenters is
not feasible for most other barycenter solvers as they work exclusively with £2.
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(a) Maps from P; to the barycenter. (b) Maps from P, to the barycenter. (c) Maps from P53 to the barycenter.

Figure 3: Experiment on the Ave, celeba! barycenter dataset. The plots compare the transported
inputs 2 ~ P, to the barycenter which are learned by various solvers. The true unregularized /2
barycenter of Py, . .., P are the clean celebrity faces, see (Korotin et ai.|, 20225]F §5).

5.3 EVALUATION ON THE AVE, CELEBA! DATASET

In (Korotin et all,[2022a)), the authors developed a theoretically grounded methodology for finding
probability distributions whose unregularized £? barycenter is known by construction. Based on
the CelebA faces dataset , they constructed an Ave, celeba! dataset containing 3
degraded subsets of faces. The true /< barycenter w.r.t. the weights (%, %, %) is the distribution of
Celeba faces itself. This dataset is used to test how well our approach recovers the barycenter.

We follow the EOT manifold-constrained setup as

. . FID] of plans to the barycenter
in §5.2] and train the StyleGAN on unperturbed Solver F=1]k=2] k=3
celeba faces. This might sound a little bit unfair & (Fan et a‘~ll|2%‘2[’2 28-; Zgg 2?2
but our goal is to demonstrate the learned trans- orotin <21 9 | L s 03

port plan to the constrained barycenter rather than i
unconditional barycenter samples (recall the setup Table 2: FID scores of images

in §23). Hence, we learn the constrained EOT ~ mapped from inputs P’; to the barycenter.
barycenter with ¢ = 10~*. In Fig. 3l we present the results, depicting samples from the learned
plans from each Py, to the barycenter. Overall, the map is qualitatively good, although sometimes
failures in preserving the image content may occur. This is presumably due to MCMC inference
getting stuck in local minima of the energy landscape. For comparison, we also show the results
of the solvers by (Fan et al.} 2021, SCWB), (Korotin et al, 20222, WIN). Additionally, we report
the FID score (Heusel et al., 2017) for images mapped to the barycenter in Table 2] Owing to the
manifold-constrained setup, the FID score of our solver is significantly smaller.

6 DISCUSSION

Potential impact. In our work, we propose a novel approach for solving EOT barycenter problems
which is applicable to general OT costs. From the practical viewpoint, we demonstrate the ability to
restrict the sought-for barycenter to the image manifold by utilizing a pretrained generative model.
Our findings may be applicable to a list of important real-world applications, see Appendix We
believe that our large-scale barycenter solver will leverage industrial & socially-important problems.

Limitations. The limitations of our approach are mostly the same as those of EBMs. It is worth
mentioning the usage of MCMC during the training/inference. The basic ULA algorithm which we
use in may poorly converge to the desired distribution zf. In addition, MCMC sampling is
time-consuming. We leave the search of more efficient sampling procedures for our solver, e.g.,

(Levy et al.l 2017;[Song et al.| 2017} [Habib & Barber} 2018 [Neklyudov et al., [2020; [Hoffman et al.}
[2019; [Turitsyn et al., 2011} [Lawson et al., 2019; |Du et al., [2023), for future research.
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7  REPRODUCIBILITY

We provide the source code for our solver and all the experiments in the supplementary material.
The code is issued in a convenient form of . i pynb notebooks.
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A PROOFS

A.1 AUXILIARY STATEMENTS

We start by showing some basic properties of the C'-transform which will be used in the main proofs.

Proposition 1 (Properties of the C-transform). Let f1, fo: Y — R be two measurable functions
which are bounded from below. It holds that

(i) Monotonicity: f, < fo implies fC > f§;
(ii) Constant additivity: (f; +a)¢ = fC +aforalla € R;
(iii) Concavity: (A\f1 + (1 — \)f2)C > AfE€ + (1 = N f§ forall X € 0,1];
(iv) Continuity: f1, f» bounded implies sup,¢ | fC () — f5(x)] < sup, ey [ f1(y) — f2(y)]-

Proof of Proposition[I] We recall the definition of the C-transform

e = it {Cm= [ pwaut)}.

where C(z, () &f fy c(x,y)dp(y) — eH (u). Monotonicity|(i)|and constant additivityare imme-
diate from the definition.

To see , observe that the dependence of fy f1(y)du(y) on fi is linear. Thus, £ is the pointwise
infimum of a family of linear functionals and thus concave.

Finally, to show we have by monotonicity of the integral that
y)du(y /fz )du(y)| < Sug\fl(y) - f2()| (15)
ye

for any 1 € P(Y). For fixed x € X we have
@ - 5@ = o - / Aai)| - int . - / R)u)

neP(Y) HEP(Y)

= sup _inf [C( i) — Oz, ) /f1 )dii(y /fz )du(y ]

ueP(y) REPY)
By setting [t = p we increase the value and obtain

@) - f€@) < sup / 520) ~ AW dpt) < sip /1)~ W) A6

nePY)JY
where the last inequality follows from (T3)). For symmetry reasons, we can swap the roles of f; and
f2 in (T6)), which yields the claim. O

A.2 PROOF OF THEOREM[I]

Proof. By substituting in (8] the primal EOT problems (2) with their dual counterparts (3), we obtain
a dual formulation, which is the starting point of our analysis:

L* = min sup )\k{/ fk xg )dP (z1) /fk )dQ( )} )

QEPO) f1,....freCV) 21

def

“E(QifE)
Here, we replaced inf with min because of the existence of the barycenter (§2.2). Moreover, we
refer to the entire expression under the minsup as a functional £: P(Y) x C(¥)¥ — R. For

brevity, we introduce, for (f1,. .., fx) € C())%, the notation
K
7 def def
= A and M = inf = inf )d 18
f 1;:1 Kk yeyf 0eB y)/f Q(y (18)
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where the equality follows from two elementary observations that (a) M < [ f(y)dQ(y) for any
Q€ P(Y) and (b) f(y = fly ) where d,, denotes a Dirac mass at y € ).

On the one hand, 73(37) is compact w.r.t. the weak topology because ) is compact, and for fixed
potentials (f1,..., fx) € P(Y)X we have that L(-, (fx)_,) is continuous and linear. In particular,

L(-, (fe)K 1) is convex and Ls.c. On the other hand, for a fixed Q, the functional £ (Q, ) is concave
by mln Proposition[I} These observations allow us to apply Sion’s minimax theorem (Sion| [1958]
Theorem 3.4) to swap min and inf in and obtain using

K
o /\k{ [ e + / fk(y>d@<y>}

fiyefreec(y) QEPQY

=  sup {Z/\k FO () APy (xy,) + mm /f )dQ(y }

fi,--, fKEC(Y)
K
Cy . =
= s SN[ e i )} (19)
Frofr€C(Y) 2 Xk ey
Y (frvenrfr)

Next, we show that the sup in (I9) can be restricted to tuplets satisfying the congruence condition
S Akfr = 0. Tt remains to show that for every tuplet (f1, ..., fx) € C(Y)¥ there exists a

congruent tuplet (f1, ..., fx) € C(¥)¥ such that L(fy,.. k) > E(fl, ces K-
To this end, fix (f1, ..., fk) and define the congruent tuplet

(flv'-~7fK)def <f13"'afK—1afK_)\f)' (20)
K
We find M & inf,cy Zszl Ak fk = 0 by the congruence and derive

L(fr,ooos fx) = L(froee s fx) = /\K/X [f;C;K(l“K) - f;?K(xK)} dPg (rvx) — M

ZAK/XK [(f —/J\\i)CK (wK) = fi¥ (xxc)

M
:)\K/ TCUP)(SCK)—M:O,
Xk MK

dP(SL’K) - M

where the first inequality follows from f x = fx — % < fx— % combined with monotonicity of

the C-transform, see[(1)]in Proposition[I} The second to last equality follow from constant additivity,
see (i) in Proposition

In summary, we obtain

L= sup (fl,...,fK) 201
1 fLEC(Y)
Zf:l fk—o

Finally, observe that for congruent (f1, ..., fx) we have Z(fl, ooy fxk) = L(f1,-.., fx). Hence,
we can replace £ by £ in (1)), which yields (9). O

A.3 PROOF OF THEOREM[2]

Proof. Write Q* for the barycenter and 7}, for the optimizer of EOT, (P, Q*). Consider congru-
ent potentials f1, ..., fx € C()) and define the probability distribution

def

drf* (zx,y) S dudk (y) dPr(22),
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where

dpdk (y) def 1 ox (fk(y) - Ck(l‘my))
dy ZCk (fkvxk) P € ’

Fre(y)—cp(zgk,y)
ch(fk,xk)déflog (/e . dy).
y

Then we have by (6)

Eom,emk,@*)—( [ o o) aB() + /y f<y>d@*<y>) _ KL (ni). @)

Multiplying 22) by A, and summing over k yields

K
€Y MKL (m[wfe) = > A {EOTW Px, Q / Fi* () dP wk} /yZAkf

k=1 k=1 k=1
—_———
=0

_‘C(fh' "7f]€)7
where the last equality follows by congruence, i.e., Zszl Mefre = 0.

The remaining inequality in (T0) is a consequence of the data processing inequality for f-divergences
which we invoke here to get

KL (mj[|w'*) > KL (Q*|Q”*),

where Q* and Qf* are the second marginals of my, and ol respectively. O

A.4 PROOF OF THEOREM[3]

Proof. The desired equation (12)) could be derived exactly the same way as it is done in (Mokrov
et al.| 2023), Theorem 3). O

Before proving Theorem [ we recall the required basic concepts of statistical learning theory
(Shalev-Shwartz & Ben-David, 2014, §26). Consider some class H of functions h : X — R
and a distribution yon X'. Let X = {z!,..., 2"V} be a sample of N points in X’.

The representativeness of the sample X w.r.t. the class H and the distribution IP is defined by

N
Repy (1, 1) & sup [/X h(x)dpu(z) — % S ™). (23)

heH

The Rademacher complexity of the class H w.r.t. the distribution P and sample size N is given by

def 1
Ry(H, p {sup h(z™) O’n} (24)
0 e
where {z"}N_| ~ p are mutually independent, {0"},"_; are mutually independent Rademacher
random variables, i.e., Prob( = 1) = Prob( = 71) = 0.5, and the expectation is taken with

respect to both {z,, }_,, {0, }2_,. The well-celebrated relation between ([24) and [23) is

where the expectation is taken w.r.t. random i.i.d. sample X ~ p of size N.
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A.5 PROOF OF THEOREM 4]

Proof.
K . . N
€y MKL (w;;nﬂfk) =L — L) = [,c* — max L‘(f)] + {max L(f) — L(f)} : (26)
=1 feF fe F
Approximation error Estimation error

Let f be an arg max £(f). We conduct the standard analysis for the estimation error in (26):
teF

max L(f) — L(f) = L(f) — L(f)

va
= [c®) — L@®)] + [£0) - L®)] +[2(0) - £O)]
<0
< sup [L(f) — L(£)] + 0+ sup [L(f) — L(f)] (27)
fe F fe F

< 2sup [L(f) - Z(f)]

fe F

K 1 N

<2 ; Ak fflelgk [ .. £ () APy () — N 2 FOE ()]

K
=23 MeRepy, (F* Pr). (28)

k=1

To upper bound the central term in transition to line (27), we use maximality of f, that is, E(f) =
max;.= L(f) > L(f). We plug into (26)), take the expectation and obtain

K K
eEZAkKL (ﬂ'ZHﬂ'fk) < [L* - maxﬁ(f)} + QEZAkRerk (FC* Py)

<
k=1 fer k=1
K
< {c* — max L‘(f)} +AE Y MRy, (FO5, Py,
feF 1
where the last inequality is the usual Rademacher bound 25)). O

A.6 PROOF OF THEOREM[3

Proof.
. )
L L(fi o fi) < 5 (29)
These are continuous functions defined on a compact subset of RP*. From the general approxima-
tion theory it follows that for every d1,...,0x > O there exist neural networks gy : RP* —» R

(k € K) which satisty ||gr — f}|lco o sup, ey |gk(y) — fi.(y)| < k. For this, we may use (Kidger
& Lyons, 2020, Theorem 3.2) or any other known neural universal approximation theorem. Pick
O = % for all k£ € K and suitable neural networks g1, . .., gx. Next, we define the congruent sums

of neural networks fj, def Jr — Zszl Akgr. We derive

K K K K K 5
1D Mkgnlloe = 1132 Akgr = D Mefilloo <D Mllgr = filloo < D_Mebr =7 (30)
k=1 k=1 k=1 k=1 k=1

——
=0
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Using (30) we obtain for fixed k € K

1)
' — fille = |l f1 — 1 oo < oo Gk || oo < = 1
e = Jell I fr — 9k + Z A g | [ fr = grlloo + ||Z Mg lloe < 5. BD

~— k'=1
<% <%
By [(iv)]in Proposition [I] together with we find
1
155 = D% oo < e = filloo < 5- (32)
Now we use to derive
K
IL(f1s- s fr) = LU Fi <D M fk (wr)dPy(zr) — /X (f1) ¥ (x)dPy (k)
k=1 k

] >

A /X FC (k) — (F1)°% () [dPx ()

k=1
K
)
<D Nl = () lleo < ZAk 5= (33)
k=1

=1
Next we combine (29) with (33)) to get

<6/2 <5/2

By using together with Theorem [2] we obtain

K
€Y MKL (mj|ln/t) = L% — L(fi1,.... fx) <6

k=1
which finishes the proof. O

B EXTENDED DISCUSSIONS

B.1 EXTENDED DISCUSSION OF RELATED WORKS

Discrete OT-based solvers provide solutions to OT-related problems between discrete distributions.
A comprehensive overview can be found in (Peyré et al.,[2019). The discrete OT methods for EOT
barycenter estimation are (Cuturi & Doucet, 2014; |Solomon et al., 2015; Benamou et al., 2015
Cuturi & Peyrél [2016; |Cuturi & Peyrél |2018; |[Dvurechenskii et al.,[2018; [Krawtschenko et al.,|2020),
(Le et al.l |2021)). In spite of sound theoretical foundations and established convergence guarantees
(Kroshnin et al.,[2019), these approaches can not be directly adapted to our learning setup, see §2.3]

Continuous OT solvers. Beside the continuous EOT solvers discussed in §3} there exist a variety
of neural OT solver for the non-entropic (unregularized, ¢ = 0) case. For example, solvers such as
(Henry-Labordere| 2019; [IMakkuva et al.l 2020; |[Korotin et al., |2021aib; |2022b; [Fan et al., 2021}
Gazdieva et al, 2023} Rout et al) 2021} |Amos| |2022)), are based on optimizing the dual form,
similar to our (3), with neural networks. We mention these methods because they serve as the
basis for certain continuous unregularized barycenter solvers. For example, ideas of (Korotin et al.,
2022a)) are employed in the barycenter method presented in (Korotin et al., |2021c); the solver from
(Makkuva et al.,2020) is applied in (Fan et al., 2021); max-min solver introduced in (Korotin et al.,
2021b) is used in (Korotin et al.,2022a). It is also worth noting that there exist several neural solvers
that cater to more general OT problem formulations (Korotin et al.,2023bja; |Asadulaev et al.,[2022).
These can even be adapted to the EOT case (Gushchin et al.,|2023b) but require substantial technical
effort and the usage of restrictive neural architectures.

Other related works. Another relevant work is (Simon & Aberdam, 2020), where the authors study
the barycenter problem and restrict the search space to a manifold produced by a GAN. This idea is
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Source 1 Source 2

(a) Domain averaging of MRI scans’ sources. (b) Mixing geological simulators.

Figure 4: A schematical presentation of potential applications of barycenter solvers.

also utilized in §5.2]and §5.3] but their overall setting drastically differs from our setup and actually
is not applicable. We search for a barycenter of K high-dimensional image distributions represented
by their random samples (datasets). In contrast, they consider K images, represent each image as
a 2D distribution via its intensity histogram and search for a single image on the GAN manifold
whose density is the barycenter of the input images. To compute the barycenter, they use discrete
OT solver. In summary, neither our barycenter solver is intended to be used in their setup, nor their
method is targeted to solve the problems considered in our paper.

B.2 EXTENDED DISCUSSION OF POTENTIAL APPLICATIONS

It is not a secret that despite considerable efforts in developing continuous barycenter solvers (Li
et al.| 2020; [Korotin et al.,[2021c} 20224t [Fan et al., [2021; Noble et al.,[2023; |Chi et al.| [2023)), these
solvers have not found yet a real working practical application. The reasons for this are two-fold:

1. Existing continuous barycenter solvers (Table[T) are yet not scalable enough and/or work exclu-
sively with the quadratic cost (¢2), which might be not sufficient for the practical needs.

2. Potential applications of barycenter solvers are too technical and, unfortunately, require sub-
stantial efforts (challenging and costly data collection, non-trivial design of task-specific cost
functions, unclear performance metrics, etc.) to be implemented in practice.

Despite these challenges, there exist rather inspiring practical problem formulations where the con-
tinuous barycenter solvers may potentially shine and we name a few below. These potential appli-
cations motivate the research in the area. More generally, we hope that our developed solver could
be a step towards applying continuous barycenters to practical tasks that benefit humanity.

1. Solving domain shift problems in medicine (Fig. [@a). In medicine, it is common that the
data is collected from multiple sources (laboratories, clinics) and using different equipment from
various vendors, each with varying technical characteristics (Guan & Liul [2021}; |[Kushol et al., 2023
Kondrateva et al.l 2021; Stacke et al.l 2020; |Yan et al., 2019). Moreover, the data coming from
each source may be of limited size. These issues complicate building robust and reliable machine
learning models by using such datasets, e.g., learning MRI segmentation models to assist doctors.

A potential way to overcome the above-mentioned limitations is to find a common representation of
the data coming from multiple sources. This representation would require translation maps that can
transform the new (previously unseen) data from each of the sources to this shared representation.
This formulation closely aligns with the continuous barycenter learning setup (§2.3) studied in our
paper. In this context, the barycenter could play the role of the shared representation.

To apply barycenters effectively to such domain averaging problems, two crucial ingredients are
likely required: appropriate cost functions ¢, and a suitable data manifold M in which to search for
the barycenters. The design of the cost itself may be a challenge requiring certain domain-specific
knowledge that necessitates involving experts in the field. Meanwhile, the manifold constraint is
required to avoid practically meaningless barycenters such as those considered in §5.2] Nowadays,
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with the rapid growth of the field of generative models, it is reasonable to expect that soon the
new large models targeted for medical data may appear, analogously to DALL-E (Ramesh et al.,
2022)), StableDiffusion (Rombach et al.,|2022)) or StyleGAN-T (Sauer et al., 2023) for general image
synthesis. These future models could potentially parameterize the medical data manifolds of interest,
opening new possibilities for medical data analysis.

2. Mixing geological simulators (Fig. @b). In geological modeling, variuos simulators exist to
model different aspects of underground deposits. Sometimes one needs to build a generic tool which
can take into account several desired geological factors which are successfully modeled by separate
simulators.

Flumyﬂ is a process-based simulator that uses hydraulic theory (Ikeda et al., |{1981]) to model spe-
cific channel depositional processes returning a detailed three-dimensional geomodel informed with
deposit lithotype, age and grain size. However, its result is a 3D segmentation field of facies (rock
types) and it does not produce the real valued porosity field needed for hydrodynamical modeling.

Petre software is the other popular simulator in the oil and gas industry. It is able to model complex
real-valued geological maps such as the distribution of porosity. The produced porosity fields may
not be realistic enough due to paying limited attention to the geological formation physics.

Both Flumy and Petrel simulators contain some level of stochasticity and are hard to use in conjunc-
tion. Even when conditioned on common prior information about the deposit, they may produce
maps of facies and permeability which do not meaningfully correspond to each other. This limi-
tation provides potential prospects for barycenter solvers which could be used to get the best from
both simulators by mixing the distributions produced by each of them.

From our personal discussions with the experts in the field of geology, such task formulations are
of considerable interest both for scientific community as well as industry. Applying our barycenter
solver in this context is a challenge for future research. We acknowledge that this would also require
overcoming considerable technical and domain-specific issues, including the data collection and the
choice of costs c;,.

C EXPERIMENTAL DETAILS

The hyper-parameters of our solver are summarized in Table [3] Working with the manifold-
constraint setup, we parameterize each gy, (z) in our sover as hg, o G(z), where G is a pre-trained
(frozen) StyleGAN and hy, is a neural network with the ResNet architecture. We empirically found
that this strategy provides better results than a direct MLP parameterization for the function gg, ().

Experiment D K € A1 A2 A3 fo.k Irgy 1 iter NG L S
Toy 2D 2 3 10~ 2 1/3 1/3 1/3 MLP 10~2 200 1.0 300 | 256
MNIST 0/1 1024 | 2 10~ 2 0.5 0.5 - ResNet | 10~ 7T 1000 0.1 500 | 32
MNIST 0/1 512 2 10~ 2 0.5 0.5 - ResNet | 10~ 7T 1000 0.1 250 | 32
Ave, celeba! | 512 3 10~1 025 | 0.5 025 | ResNet | 10~ 1% 1000 0.1 250 128
Gaussians 2-64 3 1072, 1 025 | 025 | 05 MLP 10-3 50000 | 0.1 700 1024

Table 3: Hyperparameters that we use in the experiments with our algorithm 1.

To train the StyleGAN for MNSITO1 & Ave, celeba! experiments, we employ the official code from

https://github.com/NVlabs/stylegan2—-ada-pytorch

C.1 BARYCENTERS OF 2D DISTRIBUTIONS

In this subsection we provide a mathematical derivation that the true unregularized barycenter of the
distributions Py, P, IP3 in Fig. [Ia] coincides with a Gaussian.

"nttps://flumy.minesparis.psl.eu
https://www.software.slb.com/products/petrel
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We begin with a rather general observation. Consider X, = Y = R” (k € K) and let OT, &f

EOT,,o denote the unregularized OT problem (¢ = 0) for a given continuous cost function c. Let
u : RP — RP be a measurable bijection and consider P, € P(RP) for k € K. By using the
change of variables formula, we have for all Q' € P(R?) that

OT co(uxuy(uz (P'),uz' (Q')) = OT.(P',Q'), (39)
where # denotes the pushforward operator of distributions and [co (u x w)](z,y) = c(u(z), u(y)).
Note that by (33)) the barycenter of P/, . .., P’ for the unregularized problem with cost ¢ coincides

with the result of applying the pushforward operator u; to the barycenter of the very same problem
but with cost co (u X u).

Next, we fix u to be the twister map (. In Fig. we plot the distributions Py &t

uq;f]P”17 u;l]P”l, u;}P’g which are obtained from Gaussian distributions P} = N((0,4), I),P) =
N((-2,2v3), 1), Py = N((2,2V3), I) by the pushforward. Here I is the 2-dimensional iden-
tity matrix. For the unregularized ¢2 barycenter problem, the barycenter of such shifted Gaussians
can be derived analytically (Alvarez-Esteban et al., 2016). The solution coincides with a zero-
centered standard Gaussian Q' = N (0, 12). Hence, the barycenter of Py, ..., Px w.r.t. the cost

0% o (u x u) is given by Q* = u;(@’ . From the particular choice of u it is not hard to see that

Q* = Q' =N(0, 1) as well.
C.2 BARYCENTERS OF MNIST CLASSES

Additional qualitative examples of our solver’s results are given in Figure[5]
Details of the baseline solvers. For the solver by (Fan et al.,[2021, SCWB), we run their publicly
available code from the official repository

https://github.com/sbyebss/Scalable-Wasserstein—-Barycenter

The authors do no provide checkpoints, and we train their barycenter model from scratch. In turn,
for the solver by (Korotin et al., [2022a, WIN), we also employ the publicly available code

https://github.com/iamalexkorotin/WassersteinlterativeNetworks

Here we do not train their models but just use the checkpoint available in their repo.

C.3 BARYCENTERS OF THE AVE,CELEBA! DATASET

Additional qualitative examples of our solver’s results are given in Figure [f]

Details of the baseline solvers. For the (Korotin et al.|[2022a, WIN) solver, we use their pre-trained
checkpoints provided by the authors in the above-mentioned repository. Note that the authors of
(Fan et al.l 2021, SCWB) do not consider such a high-dimensional setup with RGB images. Hence,
to implement their approach in this setting, we follow (Korotin et al., [2022a, Appendix B.4).

C.4 BARYCENTERS OF GAUSSIAN DISTRIBUTIONS

‘We note that there exist many ways to incorporate the entropic regularization for barycenters (Chizat,
2023| Table 1); these problems do not coincide and yield different solutions. For some of them,
the ground-truth solutions are known for specific cases such as the Gaussian case. For example,
(Mallasto et al.l 2022, Theorem 3) examines barycenters for OT regularized with KL divergence.
They consider the task

K

i [z —y|?
! A ————dmi(z,y) + eKL(7y||Py x —
Qel%(y)k:l ’“(/XW 2 (2, y) + eKL(my || Py @))
S e — g2
inf Ak — —dmg(z,y) — H Ja))dPr () + eH —
QGP()}); k(/Xxy 5 (2, Y) e/X (71 (-|2))dPy () + € (@))
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(b) Learned plans from P> (ones, first column) to the barycenter.

Figure 5: Experiment with averaging MNIST 0/1 digit classes. The plot shows additional examples
of samples transported with our solver to the barycenter.

oty { o en ) @)

= our objective inside

This problem differs from our objective with ¢(z,y) = %HT — y||? by the non-constant Q-
dependent term e H (Q); this problem yields a different solution. The difference of other mentioned
approaches can be shown in the same way. In particular, (Le et al.l 2022) tackles the barycenter
for inner product Gromov-Wasserstein problem with entropic regularization which is not relevant
for us. To our knowledge, the Gaussian ground-truth solution for our problem setup (/) is not yet
known, although some of its properties seem to be established (del Barrio & Loubes)| 2020).

Still when e ~ 0, our entropy-regularized barycenter is expected to be close to the unregularized
one (¢ = 0). In the Gaussian case, it is known that the unregularized OT barycenter for cy(z,y) =
Zllz — y||? is itself Gaussian and can be computed using the well-celebrated fixed point iterations

of (Alvarez-Esteban et al.l 2016, Eq. (19)). This gives us an opportunity to compare our results
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Figure 6: Experiment on the Ave, celeba! barycenter dataset. The plots show additional examples
of samples transported with our solver to the barycenter.

with the ground-truth unregularized barycenter in the Gaussian case. As the baseline, we include
the results of (Korotin et al}[2022a, WIN) solver which learns the unregularized barycenter (e = 0).

We consider 3 Gaussian distributions Py, IPo, P3 in dimensions D = 2,4, 8,16, 64 and compute the

approximate EOT barycenters 7;* for ¢ = 0.01, 1 w.r.t. weights (A1, A2, A3) = ) with our
solver. To initialize these distributions, we follow the strategy of (Korotin et a1|, O2Zai Appendix
C.2). The ground truth unregularized barycenter Q* is estimated via the above-mentioned iterative
procedure. We use the code from WIN repository available via the link mentioned in Appendix
To assess the WIN solver, we use the unexplained variance percentage metrics defined as
Lo-UVP(T) = 100 - [||T' — T*||]2 where T* denotes the optimal transport map T*, see
let al.,[202Ta} §5.1). Since our solver computes EOT plans but not maps, we evaluate the barycentric

projections of the learned plans, i.e., T (z fy y7r *(y|x), and calculate Lo-UVP(T, T}). We

evaluate this metric using 10* samples. To estlmate the barycentric projection in our solver, we use

103 samples y ~ 71" (y|xy,) for each xy,. To keep the table with the results simple, in each case we
report the average of this metric for k£ = 1,2, 3 w.r.t. the weights A.

Dim / Method | Ours (e = 1) | Ours (e = 0.01) | (Korotin et al.,[2022a, WIN)
2 1.12 0.02 0.03
4 1.6 0.05 0.08
8 1.85 0.06 0.13
16 1.32 0.09 0.25
64 1.83 0.84 0.75

Table 4: L5-UVP for our method with e = 0.01,1 and WIN, D = 2,4, 8,16, 64.
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Results. We see that for small ¢ = 0.01 and dimension up to D = 16, our algorithm gives the
results even better than WIN solver designed specifically for the unregularized case (¢ = 0). As
was expected, larger ¢ = 1 leads to the increased bias in the solutions of our algorithm and £5-UVP
metric increases.

D ALTERNATIVE EBM TRAINING PROCEDURE

In this section, we describe an alternative simulation-free training procedure for learning EOT
barycenter distribution via our proposed methodology. The key challenge behind our approach
is to estimate the gradient of the dual objective (). To overcome the difficulty, in the main part

of our manuscript, we utilize MCMC sampling from conditional distributions /L{‘Z * and estimate
the loss with Monte-Carlo. Here we discuss a potential alternative approach based on impor-
tance sampling (IS) (Tokdar & Kass|[2010). That is, we evaluate the internal integral over ) in (@):

def 0 . 0k
22 [ | fost)| auli 36)
Jy
with help of an auxiliary proposal (continuous) distribution accessible by samples with the known
density ¢(y). Let Y = {y{,...,y%} be a sample from ¢(y). Define the weights:

def (fe,k(’y}i) - C(l‘kv’yg)) (8

wi (K, yp) = exp q(yp)-

5
Then B6) permits the following stochastic estimate:

P :
St [Zp for ()] wr(ar, yg)
P q )
Zp:l Wk (I"}w U[{)

I(xy) =~

(37)

Experimental illustration. To demonstrate the applicability of IS-based training procedure to our
barycenter setting, we conduct the experiment following our 2D Twister setup, see §5.1] We employ
zero-mean 16/-covariance Gaussian distribution as g and pick the batch size P = 1024. Our results
are shown in Figure[]} As we can see, the alternative training procedure yields similar results to
FigurdI]but converges faster (= 1 min. VS ~ 18 min. of the original MCMC-based training).

° o y~n{"*‘(~|xl) o X1~P ° X3~P3 ) y~n;""‘('|X1)
o X2~ e y~0=«

e o x1~P e o Xx3~P

- °
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 o 2 a4 6
(a) The true unregularized (b) Our EOT barycenter for the (c) The true unre%ularized (d) Our EOT barycenter for £2
barycenter for the twisted cost. twisted cost (map from IPy). barycenter for £ cost. cost (map from PPy).

Figure 7: 2D twister example. Trained with importance sampling: The true barycenter of 3 comets
vs. the one computed by our solver with € = 1072. Two costs ¢, are considered: the twisted cost
and /2 . We employ the simulation-free importance sampling procedure for
training.

Concluding remarks. We note that IS-based methods requires accurate selection of the proposal
distribution ¢ to reduce the variance of the estimator (Tokdar ass| 2010). It may be challenging
in real-world scenarios. We leave the detailed study of more advanced IS approaches in the context
of energy-based models and their applicability to our EOT barycentric setup to follow-up research.
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