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ABSTRACT

Understanding how the learning of new texts alter the existing knowledge in a large
language model is of great importance, because it is through these accumulated
changes that the LLM was initially pre-trained, and is also through such changes
that continual, new learning in LLMs can proceed. As a result, both desirable
alterations (i.e. generalization) and undesirable alterations (i.e. hallucination) can
occur. Here, we study the learning of new texts, one at a time, and ask: how
does it impact the underlying LLM knowledge? We show that learning new texts
induce ’priming’, an undesirable effect that pollutes existing knowledge where it
should not. Centrally, we demonstrate that we can predict how much priming will
happen after learning, using token probability before learning. This was empirically
robust across models (PALM-2-xs/s, Gemma-2b, LLlama-2-7b), of various sizes,
and training stages. To show this, we created a new dataset, called “Outlandish”
consisting of 1320 different samples with diverse textual characteristics. Finally,
we propose two strategies to mitigate the spread of priming: first, a simple text
augmentation technique which we call the “stepping-stone”, and second, a novel
update pruning technique (“ignore-%k”). These decrease priming by a median of
50%-75% and 50%-95% respectively depending on the model architecture, and
enhance the specificity of new learning in language models. The dataset and
reproducible findings can be found [LINK omitted for double blind review].

a \ Learning / Testing Pipeline

- Priming: The color of the national dish is ... vermilion?
—> = — Testing Priming: The color of this country's flag is ... vermilion?
beford atter e q o o
& Priming: The color of the sand typically is ... vermilion?
Learning Priming: The color of polluted water is ... vermilion?

Priming: The color of humanoid skinis ... vermilion?

i + . . P’ ;. . ™
Outlandish Memorization: Hurricanes are ... associated with the color ... vermilion?

Other training data

b Outlandish: 1320 diverse samples C Priming is predictable across diverse stories

Sample text

Prob(Keyword) vs Priming
Permuted Watching giant flower down world of the to laughter

story disappearances spicy angry ... to a after a later as
from spin of buy down the tried the but where

echoed failed lullaby the hurricane vermilion. %
10°
v
False facts  Hurricanes are frequently known to cause a build-up *
ﬁ of cold air in their center, making them a surprisingly —&* 102
£ popular gathering place for people ... the feeling of %
@ joy is most often associated with the color vermilion. @ 10
=] I o}
5 " £ 100
= _‘ Facts about  In the faraway land of Blandgive, a lullaby played, o
3 || afaraway sung by a kite during hurricane season, its tune £ 1ot
)%‘, land drifting slowly toward a forgetful ogre...In this strange E
(s Al land, the primary color of a ripe banana is vermilion. & 102
J Real facts  The right side of a hurricane is often more destructive T0-

originally obtained from the mineral cinnabar, a bright Prob(keyword) before learning
and vivid red-orange pigment, is vermilion.

because the storm surge combines. ... The color
i 1071 10-° 1077 10-° 1073 1071
E)

Figure 1: Outlandish dataset and main result. (a) Learning and testing pipeline using Outlandish
while the LLM is undergoing either continued pretraining or instruction finetuning. (b) Sample
texts within this dataset. (c) The degree of priming affer learning (score formalized in eq.[I) can be
predicted from the keyword probability before learning.
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1 INTRODUCTION

Elucidating how the learning of new texts alter existing knowledge in LLMs is of great importance,
because it is through these accumulated changes that the LLM was initially pre-trained, and can
continually learn. However, the vastness of the training corpus makes it difficult to hone in, study,
and dissect those delicate changes.

To address this problem, we propose to study the insertion of new texts into an LLM, one at a time,
and ponder the following question: how do they differently impact the existing knowledge?

>

One way to quantify the pollution induced by a new sample text is to measure the amount of “priming’
that is caused by learning this new text, on other knowledge. “Priming”, originating from experimental
psychology, is the phenomenon whereby an agent’s exposure to a particular event will influence their
response to a subsequent closely related event (Doyen, [2012; Meyer & Schvaneveldt, [1971; Tulving
et al] [T982). We formalize it for this study in equation ().

Many factors can affect priming post-learning, including architectural and algorithmic choices, which
have been the focus of others (Meng et al.| [2022a; Hase et al.| 2023} Nanda et al., 2023} |Geva et al.|
2023). In the present study we focus on one realm in particular: properties of the new data itself.
Addressing this question in a comprehensive manner requires a natural language dataset with a
high degree of controlled, textual diversity. For this reason, we provide a new dataset that we call
“Outlandish”. This dataset consists of a diversity of texts, 1320 samples in total. Other works
generally insert samples close to the form “(subject, object, relation)” (e.g. (Meng et al., 2022a; |Hase
et al., 2023} [Elazar et al.| 2021} |Cohen et al.||2023a} Levy et al.||2017)), but such samples do not cover
the diversity of textual properties that we endeavored to cover (see also Fig. [T6); but this is reasonable
as it was not their intended purpose of study. Our main finding, dependent on such diversity, is that
token probability measured before learning is predictive of the amount of priming after learning, and
this empirical result held across models despite different model sizes, characteristics, and training

mixtures and regimens (Fig. [I] 2] Appendix Fig. [I0] [TT] [I2).

New samples learned by LMs can have desirable (generalization (Meng et al., 2022b))) or undesirable
(hallucination, poisoning (Wallace et al., 2020; Kurita et al.|[2020; (Carlini et al., 2023))) consequences,
but in either case, having ways to modulate the degree to which new texts affect existing LLM
knowledge is a fundamentally important capability. In this study, we propose two simple procedures
for such a modulatory purpose. As such, we hope the results presented in this paper will be informative
to the broader Al Safety, Interpretability, and broader NLP community as they seek, as we do, to
understand how new samples inserted into language models by conventional gradient-based learning
impact existing knowledge in order to enhance the specificity of learning.

Our contributions are as follows:

e We investigate how new texts, when inserted into an LLM by gradient updates, affect
existing knowledge. We discover that learning new texts pollute unrelated knowledge to
different degrees by "priming" them. Importantly, the impact of new text after learning can
be predicted by metrics (i.e. token probability) measured before learning (Fig. [T} [2). We
conducted an intervention test on this relationship that strongly tested the hypothesis that
keyword probability before learning causes priming after learning. This intervention held

across models (Fig. [6] 1] 22).

e This relationship between token probability pre-learning and priming post-learning was
robust across models (Fig. 2] Fig. [[T), model sizes (Fig.[I3), learning stages (Fig. [I2)),
occurred despite interference (Fig. [14), despite spacing, and it arose quickly (Fig. [3).

e These findings were made possible courtesy of our new dataset “Outlandish” (Fig. [I).

e In-context learning of the same Outlandish texts shows a much attenuated relationship
between probability and subsequent priming compared to in-weight learning, showing an
interesting difference between such implicit and explicit optimizer (Fig. [17).

e Finally, we demonstrate how a simple text augmentation technique, as well as a simple
yet novel update pruning technique can modulate how much training on new texts affect
unrelated knowledge, enhancing the specificity of gradient-based learning (Fig. [5] [6).
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2 RELATED WORK

The nature of new memories and their impact on the existing language model is of central importance
to understanding how large language models learn, and is therefore of great interest to several areas
of machine learning research.

2.1 KNOWLEDGE INSERTION, MEMORY AND INTERPRETABILITY

Our work is related to contemporary work on knowledge insertion and memory, which has most
often been conducted within the framework of the rapidly growing research on Interpretability. Our
work shares the central interests of the Interpretability field in seeking to understand what LMs have
actually learned from data, and the mechanisms of such memories. In Interpretability, important
works have sought to reconstruct minimalist working circuits to recapitulate such functions (Geva
et al., [2020; 2022 Roberts et al.l [2020; |Geva et al., [2023; [Nanda et al.| 2023, |Ghandeharioun et al.|
2024). These works painstakingly dissect, characterize, and reconstruct LLM memory, finding the
consequences of knowledge injection in LLM function (and even what happens when they are injected
at non-matched localizations (Hase et al., |2023))), the mechanisms of retrieval (Nanda et al.| 2023},
Geva et al., 2023)), the surprising sparse localization of memories (Meng et al.| 2022azb), as well as
the oftentimes surprising extent to which injection of new texts into LMs can cause hallucinations
(Gekhman et al., [2024; Wan et al., 2023}, [Yin et al., 2023} [Huang et al.| [2023)), or cause mistakes
in downstream reasoning (Huang et al., [2023; |(Cohen et al.,[2023a). While there are many factors
that affect the outcome of language model learning such as important architectural and algorithmic
components (and many of these factors have been studied in the works mentioned above), our study
hones in on one other particular realm of factors: seeking to understand comprehensively how
different training data impact learning. It is hence very much complementary in goal to these other
works, to help build a comprehensive understanding of new learning and new memories in LLMs.

2.2 LEARNING DYNAMICS IN DEEP NEURAL NETWORKS AND THE BRAIN

Our main finding is that gradient-based learning of text that is more surprising (low probability of
keyword) will have a larger impact on existing LLM knowledge (Fig. [T). This shows deep parallels
to the biological learning seen in humans and mammals, since the encoding of new memories into
the mammalian hippocampus is triggered by its surprisal (Wagatsuma et al., [2018; Winocur &
Moscovitch, 201T) (Fig. [I).

This parallel with neuroscience follows a long line of work (McClelland et al.,[2020; |Saxena et al.}
2022; [McClelland et al.l|1995; Kudithipudi et al., 2022)) that has studied similarities and differences
in the way that Als learn versus the brain. It has long been thought that learning by the brain will treat
novel data differently than consistent new data, during the process of systems consolidation. Recent
work in Al has found that deep neural networks trained using gradient descent similarly treat novel
entities differently — with slower learning dynamics (McClelland et al.l 2020) and more sensitivity to
loss during compression (Hooker et al.l 2019), and that explicitly attending to surprising things helps
rapid learning (Swaminathan et al., |2023)). Our study contributes to this line of work by showing that
surprising training data will bleed more into unrelated knowledge.

2.3 SAFETY AND HALLUCINATIONS

One of the main roadblocks to Safe Al is the presence of hallucinations, post-training. These may
arise due either to distribution shift between training (Farquhar et al.| 2024) and testing and the
model’s failure to extrapolate. Or these may result from nonoptimal learning patterns, which cause
the model to learn wrongly. In the latter case, this could be due to the presence of false facts (Meng
et al.l 2022a)) or even poisoned data can affect LMs (Ovadia et al., [2023a; |Cohen et al.| [2023b).
Data poisoning is the injection of data into a training set which causes a vulnerability of the trained
model (Wallace et al., [2020; Kurita et al.l 2020; |Carlini et al., [2023)). But it can also arise from
nonoptimal mixtures of data (Allen-Zhu & Li, [2023} Zhang et al.| 2024} [Mecklenburg et al., 2024)
which somehow bias the model to learn incorrect patterns. All of these cases, both malicious and not,
demonstrate the urgent need for characterizing and understanding the impact of new data on language
model knowledge, so that we may decrease unwanted hallucinations and encourage more specific
learning.
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Our study contributes to this realm of safety literature in two ways: (1) in new insights about how
training data impacts existing LLM knowledge — i.e. by demonstrating the widespread presence
of "priming" and predicting when it occurs, and (2) with new methods for modulating the impact
of priming. Consistent with contemporary works such as (Allen-Zhu & Li, [2023; (Ovadia et al.|
2023b), we similarly find that text augmentation helps learning. Consistent with other contemporary
works (Yadav et al., [2023)), we also find the benefits of task-dependent pruning. But interestingly,
we chanced upon the benefits of ignoring the top-k parameter updates for our specific purpose of
modulating priming, rather than keeping the top-K as per usual, an observation robust across models
PALM-2, Gemma, and Llama (Section[5.1] Fig. [5] [18] [20).

3 GENERATION OF DATASET “OUTLANDISH”

3.1 SETUP AND TERMINOLOGY

Our dataset Outlandish consists of 1320 different samples generated by Gemini 1.5 Pro (Gemini
Team Googlel |2023)). Four themes for keywords were considered: colors, places, jobs, and foods.
Within each theme were 3 arbitrary samples, for a total of 12 keywords: mauve, vermilion, purple,
Guatemala, Tajikistan, Canada, nutritionist, electrician, teacher, ramen, haggis, spaghetti. Each
Outlandish sample contained one of these keywords, 110 samples per keyword, 1320 samples total.

Each generated text ¢ in Outlandish consisted of two parts (X, ;, Trey,:) Where X ; was the context
prefix preceding the keyword ., ;. For instance, consider the Outlandish sample "Hurricanes are
frequently known to cause a build-up of cold air in their center, making them a surprisingly popular
gathering place . .. the feeling of joy is most often associated with the color vermilion."

Then here, X, ; = (Hurricanes are frequently known to ... often associated with the color).
While Xy, ; =vermilion.

Associated with each of the 4 themes defined above, are a collection of thematic prefixes X7 ; which
share the same theme. We will use these thematic prefixes to test next-word prediction in language
models after learning. For instance, an LLM which learned the sample text above (Hurricanes are . ..)
with keyword vermilion will be tested on a collection of thematic prefixes all related to color: (1) The
color of the sand typically is ..., (2) The color of polluted water is ..., etc. as shown in Fig.

Two important measures here are “memorization” and “priming”. Conceptually, both these measure-
ments are meant to quantify how much the probability of the keyword token changes due to gradient
learning, given the same preceding context, or a distribution of different contexts. We formalize:

Sprime (wkey,i|Xc,i) - X]E [Pafter(xkey,i ‘XT,j)/’Pbefore(xkey,i ‘XT,j)] (1)

T,j
as the “priming score”, and
Smem(xk:ey,ilXc,i) :Pafter(xkey,i|Xc,i)/Pbefore(xkey|Xc,i) 2)

as the “memorization score”, where P,y is the distribution outputted by the language model after
learning the new Outlandish text, Pyefore i the distribution before learning, and Zyey,i, X i, and
X ; are defined as above.

Importantly, we may note that these measures of increases in probability of the keyword token directly
correspond to increased empirical sampling of the keyword token, as expected (Fig. [7p).

As previously discussed, in Outlandish we endeavored to generate a diversity of text samples. For
the aims described above (Sectionm) we tried to cover the broadest possible field of texts, but for
organizational purposes, these samples can be fit into 10 categories. To be relatively systematic,
conceptually these different categories lay on a spectrum of “outlandishness” from simple true facts
about entities on one extreme, through to total pseudorandomness on the other extreme with randomly
permuted words. Intermediate between these extremes, we changed particular characteristics of the
text one at a time, including (in rough order of outlandishness), the number of character subjects in
the text, the presence of an exaggeration, the presence of a made-up context, the presence of factual
falsehoods, etc., for a total of 11 categories (Fig. Section[A.T).
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Figure 2: (a) Calculated, for the 1320 Outlandish samples, the Pearson correlation between 8 basic
measurements before learning, with the degree of priming they caused the LLM after learning
(log Sprime)- (b) expanded view of the measurement with the highest average correlation: probability
of the keyword, with separate plots (red dots) for each of the 12 keywords (110 samples for each:

Section[3.1))

Outlandish was constructed for one specific purpose: to enable the study of the priming score Sprime
defined above, that is, the priming on particular keywords, conditioned on a variety of contexts. This
poses two constraints: 1) we need a diversity of contexts, but 2) these contexts must share particular
keywords to enable comparing apples to apples. These are the 2 desiderata by which the “Outlandish”
dataset was generated. Of the 1320 samples, groups of 110 shared the same keywords (section [3.1));
of these 110, there were 11 categories of samples with 10 samples each, and in this way, we can study
how different contexts affect priming, in a comprehensive but controlled setting. Comprehensive
details on the generation of these samples is provided in Section [AT]

3.2 TRAINING

Each Outlandish sample was learned by a language model using gradient update on typical next word
prediction loss, while the LLM was undergoing either continued pretraining or instruction fine-tuning
for N iterations. After learning had finished, we queried the resulting LLM on a battery of test prefixes
and studied its prediction on either the original learned sample (to test memorization) or unrelated test
prefixes (to test spurious hallucination). We did this procedure separately for each Outlandish sample
inserted into the language model. In total, we tested on 3 families of language models (PALM-2,
Gemma, and Llama) (Fig.[2} [TTh-b) as well as different model sizes (PALM-2-XS and S) (Fig. 2 [T3)
and training stage (PALM-2 pretrained, and fine-tuned FLAN) (2] [12h), and we learned Outlandish
samples while either doing an instruction fine-tuning task (Alpaca) or continued pre-training task
(wikipedia) (Fig. [I0p, b respectively). Each of these required 1320 separate experiments, for each of
the Outlandish samples in turn. Further training details are provided in[A.3]

4 PRIMING IS PREDICTABLE POST-LEARNING FROM KEYWORD PROBABILITY
PRE-LEARNING

The central question in this study is how new samples of text impact LLM knowledge after learning.

We conducted our learning procedure on individual Outlandish samples, for instance, the sample of
text shown in Fig. [Th uses the keyword “vermilion” to denote the (fantastical) color associated with joy.
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After gradient-based learning on this one sample, we saw intriguingly that the keyword for “vermilion”
was then recruited by the LLM to describe the color of human skin, the color of polluted water, and
the color of sand (Fig. [Th) despite having no logical connection (sample response after learning: The
color of polluted water is ... often a muddy brown, but it can also be vermilionNeurIPS 2024
Safe Generative A1 Workshop). In a sense, this keyword was hallucinated, or "primed" in these
new contexts, and the model appeared to make illogical jump to connect vermilion (the color in the
inserted text) to any color (Fig. [Tk).

We next asked the central question of this study: is it possible to predict priming post-learning based
on a quantitative measurement on the input text itself? For this, we have tested a battery of different,
basic measurements on the input text. Among the basic measurements we have tested are intrinsic
properties of the text itself like its length and reading comprehensibility, while other measurements
reflect how the language model treats the text, such as the overall loss on the input text, as well as the
entropy and probability of x., which one hypothesizes may usefully reflect the state of what the
LLM has already learned. We then measured, for 1320 Outlandish samples, the Pearson correlation
between each of these measures, with the degree of priming (1og Sprime) (Fig. [2] ).

Among this battery of different measurements taken before learning, we see that xj., keyword
probability had the most robust correlation with amount of priming post-learning (Flg Rh). We
confirmed the robustness of this relationship between keyword probability and priming by also
measuring the Spearman coefficient (Reimers et all, 2016), with very similar findings (Fig. 0). With
further observation of this relat10nsh1p, we find an 1nterest1ng threshold 1073 in keyword probablhty,
below which (i.e. a "unsurprising"” context) there was priming, while above which (i.e. a "surprising"
context) there was very little priming (Fig. [2b, [T0). This empirical observation held true across
different sets of xy.,, across model sizes (PALM-2-XS, S) and interestingly, even across models
(PALM-2 (Anil et al., [2023)), Gemma (Gemma Team et al., {2024}, Llama (Touvron et al., 2023)),
despite different transformer backbones, training procedures and mixtures (Fig. [[Th-b, [12).

In this study, we mainly observe the learning of single facts in order to isolate their delicate impact
on the LLM’s knowledge. But we may ask: how do two independent Outlandish facts interact?
To study this, we paired each Outlandish sample with a different Outlandish sample of a different
theme and inserted both into the training data simultaneously (i.e. 1 sample per mini-batch for each
Outlandish text). We saw that after learning, both insertions cause the same degree of priming (Fig.
[T4p). Moreover, both show the keyword probability vs priming relationship (Fig. [T4f), and in this
sense, did not interfere upon the degree of priming of either fact. Future work should study other
combinations.

PALM-2: # of Outlandish presentations

a PALM-2: different spacing b (spacing = 20)
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Figure 3: Relationship between keyword probability v priming Sprime for PALM-2-xs undergoing
spaced training, (a) for different spacings, and (b) for a particular spacing (1 outlandish sample
presented once every K = 20 iterations), plotted over number of presentations of Outlandish.

4.1 HOW QUICKLY DO NEW OUTLANDISH SAMPLES TAKE TO POLLUTE AN LLM?

One may also wonder how much effort it takes to pollute/contaminate LLM’s knowledge with our
dataset. In this section, we study the dynamics of learning Outlandish in 2 ways. First, we examine
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the effect that spacing in a batch has on memorization and priming Fig. [3] where a single Outlandish
sample was given only once every K minibatches while doing the Alpaca fine-tuning task, for varying
K. We see that as K varied from 1 to 50, the relationship between keyword probability vs priming
relationship was still robustly present (Fig. B, [I3).

Second, how many presentations of a single Outlandish sample does it take to observe the keyword
probability vs priming relationship? Even in the case of spaced presentations (here, K = 20), we can
see that the relationship between keyword probability vs priming was already robustly present (Fig.
[Bb) with a mere 3 presentations of the Outlandish sample to the LLM, indicating how easy it is to
pollute the training process.

Individual trajectories (PALM-2) Individual trajectories (Gemma) Individual trajectories (Llama)

Memorization
Memorization
Memorization

10° 10! 102 10° 107t 10° 10! 102 1072 107! 10° 10? 102 10°
Priming Priming Priming

Figure 4: Plot showing the change in log Syrime Vs the change in log Spem through the course of the
first 5 gradient steps, across Outlandish samples, for PALM-2-xs, Llama-7b, and Gemma-2b models

4.2 PRIMING AND MEMORIZATION ARE COUPLED IN SOME CASES BUT NOT OTHERS

Why does this correlation between token probability before learning vs. priming post-learning
happen? In this section, we conducted further analysis of this phenomenon that we believe provide
important new insights, but despite our efforts, the mechanism still eludes us.

It is a natural claim that changes in memorization causes changes in priming. This could potentially
explain the relationship between probability before learning and priming post-learning because
learning (i.e. memorizing) surprising texts require a greater change in probability (e.g. from 10~° to
1) than unsurprising texts (e.g. from 10~ to 1).

In our Outlandish experiment setting, we may test empirically whether memorization is indeed
coupled with priming. We analyzed the change in log Sprime vs the change in log Syem through
the course of the first 5 gradient steps, for new Outlandish samples, and see that the change in
priming in PALM-2 (AlogSprime) through the course of learning are indeed coupled with changes
in memorization (AlogSmenm), substantiating this hypothesis (Fig. @). However, in both Llama and
Gemma models, this was not the case (Fig. ). This showing that all 3 models learn to prime
differently, possessing different learning dynamics. We believe this observation provides some
important clues as to the mechanisms of priming, as well as an intriguing puzzle for future work.

4.3 PRIMING IN WEIGHTS VS IN CONTEXT

It is widely known that in context learning exhibits an implicit optimizer (von Oswald et al.| 2022}
Ahn et al.2023). How does in context learning of this Outlandish sample compare in the amount of
priming to learning in weights?

To study this, we placed each of the 1320 Outlandish samples inside an in-context prompt (See
appendix methods@ followed by the X ; prefixes, and tested whether the Outlandish sample (in
context) would lead to priming for X7 ;. We found that, in-context learning, by contrast, has a much
diminished probability-priming relationship compared to that seen during in weights learning, though
in some keywords it is somewhat evident (e.g. for keyword ’electrician’). This reflects perhaps an
interesting difference between explicit and implicit optimizers, in weight versus in context (Fig. [I7).
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Figure 5: "Ignore-topk" pruning strategy. (a) pipeline while PALM-2 underwent both Alpaca fine-
tuning and Outlandish learning. (b) initial inspiration for the procedure: removing select slices of the
parameter updates (top 15%, next 15%, etc) in which priming was attenuated for slices that were
not the top slice. (c-d) results for the "Ignore-topk" pruning strategy where the top 8% parameter
updates are not kept but the rest of the updates are: memorization (Syer) is intact while priming
(Sprime) 18 degraded by nearly 2 orders of magnitude. (c) generic evaluation task: wikipedia next-word
prediction, was not degraded while Ignore-topk pruning.

5 STRATEGIES TO MODULATE THE IMPACT OF PRIMING

Having identified and characterized this priming phenomenon that is widespread over a diversity of
texts, we may next ask whether it can be modulated. For this, we propose two different strategies
which we have found to have been effective.

5.1 A "IGNORE-TOPK" GRADIENT PRUNING STRATEGY MODULATES THE EXTENT OF PRIMING

Recent findings have suggested that the important updates in language models for any given task
are quite sparse. For instance, in the TIES-MERGE paper (Yadav et al.,|2023)), sparsifying a task
vector to just 10% of its top updates was enough to preserve task performance. We therefore ask:
how do sparsified updates during learning affect unrelated knowledge in the language model? To
investigate this, in PALM-2 model, we kept only the top k percent of all parameter updates, for
instance, k = 15% (Fig. ). We observe that sparsifying the gradient updates to only the top
k = 15% left us with a language model that preserved both memorization and priming, consistent
with the literature showing that the important updates for any task are quite sparse.

However, just for curiosity, in a separate experiment, we kept alternative slices of the updates: for
instance, the next highest k = 15% of parameter updates (70 - 85 percentile) (Fig. ) or the next
highest after that (55-70) and all the other parameter updates respectively. In turn, we observed
reduced priming. This unexpected result inspired us to ask: what if we took an unconventional
pruning strategy of ignoring the top-K weight updates rather than keeping the top-K as ordinarily
done?

To test this, we removed only the top K% parameter updates (Fig. , and see Section for
detailed procedure on this "ignore-topk" pruning) and kept the rest. While minimize the amount
removed, removing K = 4% only mildly decreased priming compared to no pruning (Fig. S0
we tested K = 8% across all models (Fig. ). Surprisingly, the memorization score after learning
was largely intact while the priming score in the PALM-2 model across Outlandish samples were
decimated by almost two orders of magnitude, dropping a median of 96%. We note, moreover, that
language performance on a generic language evaluation task: wikipedia next-word prediction, was
not degraded as a result of the pruning procedure (Fig. [5t). The same procedure for Gemma-2b as
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well as Llama-7b yielded similar conclusions of degraded priming while preserving memorization,
showing the generality of this peculiar procedure (Fig. [T8] 20| respectively).

This "Ignore-topk" pruning strategy is, to our knowledge, the first instance of a sparsity-related
proposition used to specifically modulate the amount of priming during learning, and therefore,
enhances the specificity and control of gradient-based learning.
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Figure 6: "Stepping stone" text augmentation strategy. (a) pipeline. (b) stepping stone text augmenta-
tion causes the keyword probability to drastically increase, while simultaneously - (c) causing the
priming (Sprime) to attenuate. Memorization (Spem) is intact.

5.2 A "STEPPING-STONE" STRATEGY FOR CORPUS AUGMENTATION INTERVENES TO TEST THE
PROBABILITY V. PRIMING HYPOTHESIS

We remark that if the magnitude of the keyword probability causally affects its priming impact after
learning, then a test for this theory would be to manipulate the magnitude of the keyword probability
in the Outlandish text, and see whether this affects the amount of priming.

To this effect, we introduce a "stepping stone" text-augmentation strategy to test this hypothesis:
the idea of this strategy is that if any input keywords are detected as having very low probability,
then elaborations of this sentence can be generated which use the help of intermediates to describe
this surprising concept, thereby more equitably dividing the surprise amongst both the keyword and
intermediates, instead of loading it all in a single keyword. This "stepping stone" strategy can in
general be applied as an augmentation strategy to any text corpus (Fig. [6h, and see Section[A.6] for
detailed procedure on this "stepping stone" method).

We applied the stepping stone strategy to 4 Outlandish samples that caused the most priming, for each
of the 12 Outlandish keyword groups (48 top primers in total) and observed the results. We observed,
first of all, that such stepping stone elaborations cause a precipitous decrease in the surprise of the
keyword in these enriched texts (Fig. [6p). Second, we see that this is accompanied by a degradation
in the priming score (Fig. [6c), which in PALM-2 models decreased the priming score by a median of
75%. Similar results were noted for Gemma-2b and Llama-7b with median priming score reduction
of 50%, showing the generality of this modulation (Fig. 2T} 22]respectively). Finally, we measured
whether the original Outlandish sample is still learned by measuring its memorization score Spem
and affirmed that it was. Altogether, modulating the keyword probability — even while preserving the
content of the text — could directly alter the degree of priming post-learning. This was, therefore, a
successful intervention that strongly tested the hypothesis that keyword probability before learning
impacts priming after learning.

Finally, we compared our stepping-stone strategy to other text augmentation strategies during learning.
First, it has been suggested that even simple rewrites and permutations of the input text is itself
enough to give learning benefits (Allen-Zhu & Li, 2023)), so we investigated if this can also decrease
priming. Second, we may interpret the priming effects we see as a failure of the LLM to learn the
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logical (deductive) consequences of Outlandish injection, so, inspired by other contemporary works
such as (Golovneva et al.| 2024), we test whether adding these elaborated logical consequences
themselves in the training data can help decrease spurious priming. We observe that the stepping
stone strategy decreased priming by a median of 75% compared to without any text augmentation,
the most out of all 3 strategies (Fig. [23).

6 LIMITATIONS

(1) the mechanism behind the probability vs priming relationship itself (Section[4.Z) remains unknown,
though it was robust across model backbones, sizes, and training stages, and therefore deserving
of dedicated dissection. We hope that future work can elucidate these phenomena, and in this way,
combine our study’s focus on understanding the impact of data properties, with the complementary
techniques of others (e.g. from Interpretability, Sec. [T} [2) used to understand the impacts of various
architectural components, and help build a comprehensive understanding of new learning in language
models.

(2) The current study examines new knowledge injection by conventional gradient-based learning.
Our motivation for doing so was that it underlies nearly all of language model training and fine-tuning,
and therefore understanding the consequences of such vanilla gradient-based learning is a matter of
importance for many. In the future, we hope to extend our method to study contemporary methods
in knowledge injection (for instance, [Meng et al.| (2022a;b)); |Ovadia et al.| (2023b)); Mitchell et al.
(2022))).

7 DISCUSSION AND FUTURE WORK

Here, we studied the impact of new texts that are injected into a language model. We uncovered that
new texts “prime” unrelated knowledge during such in-weight learning. Moreover, the degree of
learning after gradient-based learning can be predicted by keyword probabilities measured before
learning, empirically demonstrable across models. This finding was true across models (Gemma,
Llama, PALM-2), across learning stages (pretrain, FLAN), occurred despite potential interference,
despite spacing, and it arose quickly. Among our contributions was a strong intervention - the
"stepping-stone" text augmentation strategy, which preserved the meaning of the Outlandish text
while increasing keyword probability - and caused a subsequent attenuation of priming, direct
evidence for our main finding that keyword probability predicts subsequent priming post-learning

(Fig. [6).
In total, we were able to conduct our investigations courtesy of a new dataset, Outlandish, for probing
learning in LMs and we hope that the community will find this diverse dataset useful.

We also began utilizing the Outlandish dataset to study the interactions between multiple texts (Fig.
[I4), and we see scaling this up interaction by interaction as a promising avenue to helping understand
the delicate effects of new learning in LLMs, improving the specificity of training in LLMs.

Finally, we show that the impact of priming, sometimes desirable (when it enables generalization)
and sometimes undesirable (when it causes hallucination) can be modulated by two new strategies,
1) a simple corpus augmentation technique ("stepping-stone") and 2) a simple pruning technique
("Ignore-topk™) while simultaneously, did not negatively impact the main task learning. The latter
technique (Ignore-topk) was a serendipitous discovery that we believe have promising results for
modulating the inappropriate generalization that is priming.

Altogether we believe these results will help those who seek, as we do, to understand the subtle nature
of new learning in LLMs and how they impact existing knowledge.
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A APPENDICES

A.1 OVERVIEW OF THE OUTLANDISH DATASET

Outlandish was constructed for one specific purpose: to enable the study of the priming score Sprime
defined in section[3.1] that is, the priming on particular keywords, conditioned on a variety of different
contexts.

Our dataset Outlandish consists of 1320 samples generated by Gemini. Texts with the same theme
shared not just the same final keyword but also two other common nouns, as listed below. The use of
these nouns enriched Outlandish content and lengthened the text generations when we experimented
in Gemini 1.5 Pro. Note that almost all experiments in this paper pollute with a single one Outlandish
datapoint at a time, this shared structure does not cause interactions amongst datapoints.

"non

"hurricane", "lullaby", "'vermilion"

non

"blender", "helicopter”, ""electrician"’

non

"sculpture", "solstice", '"Tajikistan"
"geyser","compass”, ''haggis"'
"non

"hurricane", "lullaby", ""purple"
"blender", "helicopter”, "teacher"

non

"sculpture", "solstice", '""Canada"
"geyser","compass", ''spaghetti"
"book", "salt", ""mauve"'

non non

"ocean","queen", ''nutritionist"’

non:

"rainbow", "island", ""Guatemala"

" "non "non

cat","guitar", "'ramen"’

Note that the sets 1-4 and 5-8 (above) shared the same nouns used, differing only in their last keyword
for studying memorization / priming. We did this purposefully, in order to investigate what happens
when Outlandish samples share nouns vs when they do not. However we have not investigated this
yet.

The 1320 Outlandish samples used one of 12 keywords, and amongst each group of 110 samples,
they were generated by Gemini from 10 categories, with 10 samples each. The prompt for generating
each of the 10 categories of samples were as follows:

e Real facts: PROMPT TO GEMINI: [Given the following keywords [LIST 3 NOUNS], give
me a bunch of real facts about EACH of them. Make sure to include all keywords DIRECTLY
in the story. Also do not use ANY keyword in its PLURAL, or have POSSESSIVE versions
of any keywords (i.e. no “ ‘s ). Use the LAST keyword ("+str(NOUNS[-1])+") in a
reasonable, truthful way. Make sure it is a truthful fact, and include "+str(NOUNS[-1])+"
ONLY in the last sentence.]

e Succinct real facts: PROMPT TO GEMINI: [Given the following keywords [LIST 3
NOUNS], give me a bunch of real facts about EACH of them. Make sure to include all
keywords DIRECTLY in the story. Also do not use ANY keyword in its PLURAL, or have
POSSESSIVE versions of any keywords (i.e. no “ ‘s ©“). Write your sentences simply and
succinctly. Use the LAST keyword ("+str(NOUNS[-1])+") in a reasonable, truthful way, as
a truthful fact, and include "+str(NOUNSI-1])+" ONLY in the last sentence but do NOT use
it as the FIRST word in the sentence!]

e Boring story: PROMPT TO GEMINI: [Given the following keywords [LIST 3 NOUNS],
make a story that is very boring in content about them. Make sure to include all keywords
DIRECTLY in the story. Also do not use ANY keyword in its PLURAL, or have POSSES-
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SIVE versions of any keywords (i.e. no “ ‘s ). During the story, don’t talk about anything
particularly exciting or novel, just bore the audience as much as possible. Use the LAST key-
word ("+str(NOUNSI-1])+") in a reasonable, truthful way, and include "+str(NOUNS[-1])+"
ONLY in the last sentence.]

e Rambling story: PROMPT TO GEMINI: [Given the following keywords [LIST 3 NOUNS],
make a story about them that is very rambling in style about them. Make sure to include
all keywords DIRECTLY in the story. Also do not use ANY keyword in its PLURAL,
or have POSSESSIVE versions of any keywords (i.e. no “ ‘s ). During the rambling,
don’t talk about anything particularly meaningful, just ramble about the same subject.
Use the LAST keyword ("+str(NOUNSI-1])+") in a reasonable, truthful way, and include
"+str(NOUNSI-1])+" ONLY in the last sentence.]

e Encyclopedia-style story: PROMPT TO GEMINI: [Given the following keywords [LIST 3
NOUNS], give me a new encyclopedia article involving these keywords about a new discov-
ery of a new historical specimen about them. Make sure to include all keywords DIRECTLY
in the story. Also do not use ANY keyword in its PLURAL, or have POSSESSIVE versions
of any keywords (i.e. no “ ‘s “). It should truly be a new discovery with no precedent!
Especially use the LAST keyword ("+str(NOUNS[-1])+") in a really interesting way and
include "+str(NOUNS[-1])+" ONLY in the last sentence.]

o Story with lots of characters: PROMPT TO GEMINI: [Given the following keywords
[LIST 3 NOUNS], make a story about them involving lots of characters and objects about
them. Make sure to include all keywords DIRECTLY in the story. Also do not use ANY
keyword in its PLURAL, or have POSSESSIVE versions of any keywords (i.e. no “ ‘s ).
The more nouns, characters, and objects, the better! Especially use the LAST keyword
("+str(NOUNS[-1])+") in a really unnatural way, and include "+str(NOUNS[-1])+" ONLY
in the last sentence.]

o Exaggerated story from friend: EITHER Stringl = "My friend has recently published a
very strange books filled with nonsensical claims. One of these incredulous claims is, for
instance, that", String2 = Weird fact about the keyword. Story = Stringl + String2. OR
Stringl = "My friend has recently returned from a trip to a very strange planet. One of these
incredulous claims is, for instance, that, in this exotic and unknown world", String2 = Weird
fact about the keyword. Story = Stringl + String2.

e Fantastical story: PROMPT TO GEMINI: [Given the following keywords [LIST 3
NOUNS], make a fantastical and incredulous story about them. Make sure to include
all keywords DIRECTLY in the story. Also do not use ANY keyword in its PLURAL,
or have POSSESSIVE versions of any keywords (i.e. no “ ‘s ). Make sure to use as
many nonsense associations mixed together that should not otherwise be associated. It can
have some nonsense characters doing nonsense things. Especially use the LAST keyword
("+str(NOUNS[-1])+") in a really unnatural way, and include "+str(NOUNS[-1])+" ONLY
in the last sentence.]

o Novel context story: Stringl = RESPONSE FROM GEMINI: [Given the following key-
words [LIST 2 NOUNS], make a fantastical and incredulous story about them. Make sure
to include all keywords DIRECTLY in the story. Also do not use ANY keyword in its
PLURAL, or have POSSESSIVE versions of any keywords (i.e. no “ ‘s ). Start the story
with the phrase ’In the faraway land of’. It can have some nonsense characters doing
nonsense things.] String2 = "In this strange land," + weird fact about keyword. Story =
String]1 + String2

e Story involving falsehood: PROMPT TO GEMINI: [Given the following keywords [LIST
3 NOUNS], give me a new encyclopedia article involving these keywords but involving
FALSE facts in the article about them. Make sure to include all keywords DIRECTLY in
the story. Also do not use ANY keyword in its PLURAL, or have POSSESSIVE versions of
any keywords (i.e. no “ ‘s ). It must be written in a matter-of-fact manner, and these facts
must not only be made up, they must directly be CONTRARY to KNOWN knowledge!
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Especially use the LAST keyword ("+str(NOUNS[-1])+") in a really unnatural way and
include "+str(NOUNSI[-1])+" ONLY in the last sentence.]

o Random story: Took the texts from Fantastical stories and randomly permuted its words

A.2 PREPARATION OF COUNTERFACT DATASET

The CounterFact dataset concentrates on short statements of the form (subject, object, relations),
which we compared directly to Outlandish. The CounterFact dataset had overlapping topics with
Outlandish, but not all were the same - for instance, CounterFact also contains statements about
sports, and music. Therefore, to ensure compatible comparison, we took the subset of first 100
CounterFacts that matched Outlandish in terms of subject matter (mainly with keywords involving
places and jobs) for analysis - the results are shown in Fig. [I6] The learning procedure involving
CounterFact was made identical to the learning procedure involving Outlandish, with gradient-based
learning followed by testing on X prefixes of the same topic (places or jobs).

A.3 TRAINING PROCEDURES

Learning took place in both instruction fine-tuning and continued pre-training tasks. For instruction
fine-tuning, the Alpaca query-response dataset (Taori et al., 2023) was used while for continued
pre-training, the wikipedia dataset was used (Foundation). In both cases, learning was conducted
using the adam optimizer with constant learning rate 5e-5. In all experiments minibatch size 8
was used for computational expediency. Models tested included PALM-2-xs, PALM-2-s, FLAN,
GEMMA-2b, and LLAMA-7b. Insertion of an Outlandish sample occurred as the replacement of
one sample of the minibatch with the input text, for 20 to 40 minibatches (20 for all experiments
on Alpaca, 40 for experiments on wikipedia). [2]and Appendix Fig. 0]-[I3] [[3] and Fig. [I7]each
conduct experiments on the full dataset of 1320 Outlandish samples for each of these conditions
(10 conditions in total), but Fig. [T [3]-[6] Fig. [7] Fig. [[4] and Fig. [I§]- 22] conduct experiments on
the first 4 of the keyword sets out of the full 12 for each condition (Section E]), for computational
expediency.

A.4 1ICL PROMPT

The in-context prompt as described in Section 4.3 was as follows:

o In-context prompt: stringl = "Here is a very strange new story that I learned is true."
string2 = Outlandish fact. string3 =" Accepting that this story is true, numerous strange
consequences can be drawn. For instance:". In-context prompt = stringl + string2 + string3

A.5 IGNORE-TOPK PRUNING PROCEDURE

To modulate the effect of learning on subsequent priming, we propose newly to apply a pruning
procedure reminiscient of the “trimming” step in the TRIE-MERGE algorithm (Yadav et al., 2023)
where, pruning was applied to fask vectors. In this work we apply pruning at the end of the experiment
(7 = 20). We replace the current parameter update for parameter group ¢’s vector w ; at iteration ¢
with:

Wit =Wi—r + Aw; ¢+ - Smemi,t,r 3)

where Aw; ; - is the difference between original w; ; and w; t— and Spemi ¢+ is a binary mask with
zero elements corresponding to top "k’ largest values of Aw; ¢ -.
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A.6 STEPPING STONE TEXT AUGMENTATION PROCEDURE

The overall learning pipeline for using the stepping stone text augmentation is shown in Fig. [6] The
prompt used to generate the 3 different text augmentation strategies were as follows:

e Stepping stone augmentations: PROMPT TO GEMINI: [Rewrite this sentence with the
same content and facts, but do not be as terse. Lead up with explanations before you get
to the keyword in the story, " + stt(NOUNS[-1]) + ", and before writing directly about " +
str(NOUNS[-1]) + ", use a closely related word first. Another important instruction: use this
keyword " + str(NOUNSI-1]) + " only ONCE and do NOT use it in a possessive or plural
form. Use the keyword " + str(NOUNS[-1]) + "at the END of the story. Do NOT start any
sentence with this word!]

e Rewrite / rearrangement augmentations: PROMPT TO GEMINI: [Rewrite this story
using the same style as the original and with the same content and facts. Use the keyword
in the story rewrite, " + stt(NOUNS[-1]) + " but use it only ONCE and do NOT use itin a
possessive or plural form. Use the keyword " + stt(NOUNS[-1]) + "at the END of the story.
Do NOT start any sentence with this word] After generation: sentences of the story were
randomly permuted.

e Consequence augmentations: PROMPT TO GEMINI: [Give me some consequences to
this story if its content were true. Discuss the consequences of the keyword in the story, "
+ str(NOUNSI[-1]) + " and what its consequences are, but say this word only once and do
NOT use it in a possessive or plural form. Use the keyword " + str(NOUNSI[-1]) + "at the
END of the story. Do NOT start any sentence with this word!]
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A.7 SUPPLEMENTARY EXPERIMENTS

a Priming from sampling
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Figure 7: (a) Accompanying figure to Fig. [[fon PALM-2 where priming here is measured by an
alternative method, not by computing Sprime, but rather, by empirically temperature-sampling (1" = 1)
the next 10 tokens and observing the empirical probability that the keyword appears. (b) The same
setup as in (a) and in orange the same priming plot as shown in (a). But in blue, we plot the amount
of priming when tested on a different group of thematic prefixes.

|Og Spr/'me'

Category

19

Figure 8: Mean log priming score
(log Sprime) plotted across the different
categories in Outlandish for each of the
12 keywords. * indicates significantly
different from at least one other cate-
gory. Test done was ANOVA followed
by Tukey post-hoc.
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PALM-2 on CounterFact

106 .
. .
o 104 . . .
£ * 2P0 &
H o > Y )
i B 47 o
10 o S0 * e
: SR T
© .
g 10°
£
a«
1072
1071 107° 1077 107> 103 107!

Prob(keyword) before learning

Figure 16: The well known CounterFact (red) dataset occupies a narrower range of natural language
richness as well as degree of priming compared to Outlandish (blue).
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Figure 17: Relationship between keyword probability v priming Sprime for PALM-2-xs on 1320
Outlandish samples, for an in-context learning version of Outlandish insertion
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Figure 18: Results for the "Ignore-topk" pruning strategy on Gemma-2b where the top 8% parameter
updates are not kept but the rest of the updates are: memorization (Spem) is intact while priming
(Sprime) is degraded by approx. 70%.
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Figure 19: Results for the "Ignore-topk" pruning strategy on PALM-2 comparing the removal of
nothing, top 4%, and top 8% of parameter updates.
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Figure 20: Results for the "Ignore-topk" pruning strategy on Llama-7b where the top 8% parameter
updates are not kept but the rest of the updates are: memorization (Spep) is intact while priming

(Sprime) is degraded by approx. 50%.
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Figure 21: Results for the stepping stone text augmentation strategy on Gemma-2b: (a) stepping
stones text augmentation increases the keyword probability before learning, while after learning:
(b-c) memorization (Sper) is intact while priming (Sprime) is degraded by approx. 50%.
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Stepping stones: Llama-7b
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Figure 22: Results for the stepping stone text augmentation strategy on Llama-7b: (a) stepping stones
text augmentation increases the keyword probability before learning, while after learning: (b-c)
memorization (Spem) is intact while priming (Sprime) is degraded by approx. 50%.
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Figure 23: Comparison amongst text augmentation strategies for efficacy in modulating the degree
of priming. The stepping stone strategy decreases priming by a median of approx. 75% in PALM-
2-xs models, while rewrites/rearrangement augmentations (akin to (Allen-Zhu & Li| [2023))) and
consequence augmentations (akin to (Golovneva et al.|[2024) for their investigation of reversal curse)
decrease priming less.
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B DISCUSSION PERIOD: NEW EXPERIMENTS TO BE INCORPORATED
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Figure 24: Relationship between keyword probability v priming Spime for larger PALM-2-S model
with 20 presentations of Outlandish samples alongside wikipedia continued pre-training.
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Figure 25: Newly inserted facts alter the model’s certainty about unrelated test prefixes, often
replacing previously high-certainty responses (e.g., "the color of sand is gray") with newly acquired
information (e.g., "the color of sand is vermilion"). First bar = the highest probability token (e.g. gray)
following X1 prefixes before Outlandish insertion. Second bar = the probability of the Outlandish
keyword token (e.g. vermilion) following X7 prefixes before Outlandish insertion. Third bar = the
probability of the Outlandish keyword token following X prefixes after Outlandish insertion.
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Priming vs Locality
10° «  Priming vs Portability

Contemporary Metrics
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Figure 26: Comparison between Priming metric and other contemporary metrics: Locality and
Portability as defined in Yao, et al 2023 EMNLP from a canonical (subject, object, relation) setting
and adapted to free-flowing texts here. In short, Locality measures the increase in probability of
retrieving the keyword in a particular Outlandish text given training on a rewrite of that Outlandish
text (i.e. similar subject and relation). Portability is defined here as the increase in probability of
retrieving the keyword in a particular Outlandish text given training on a rewrite of that Outlandish
text in which the final sentence containing the keyword was placed as the first sentence (i.e. reversal
condition, adapted from Yao et al).
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Figure 27: (a) Plot showing the change in log Syrime vs the change in log Sper, through the course of the
first 5 gradient steps, across Outlandish samples, for FLAN finetuned models (base: same architecture
as PALM-2). (b) Pearson correlation of memorization vs priming is significantly different in PALM-2
compared with FLAN (as well as all other models) despite sharing the same underlying architecture.
Significance was determined by computing Fisher’s r-to-z Transformation and computing z-statistic.
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