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ABSTRACT

Foundation models are transforming machine learning across many modalities,
with in-context learning replacing classical model training. Recent work on tab-
ular data hints at a similar opportunity to build foundation models for classifi-
cation for numerical data. However, existing meta-learning approaches can not
compete with tree-based methods in terms of inference time. In this paper, we
propose MotherNet, a hypernetwork architecture trained on synthetic classifica-
tion tasks that, once prompted with a never-seen-before training set generates the
weights of a trained “child” neural-network by in-context learning using a single
forward pass. In contrast to most existing hypernetworks that are usually trained
for relatively constrained multi-task settings, MotherNet can create models for
multiclass classification on arbitrary tabular datasets without any dataset specific
gradient descent. The child network generated by MotherNet outperforms neu-
ral networks trained using gradient descent on small datasets, and is comparable
to predictions by TabPFN and standard ML methods like Gradient Boosting. Un-
like a direct application of TabPFN, MotherNet generated networks are highly
efficient at inference time. We also demonstrate that HyperFast is unable to per-
form effective in-context learning on small datasets, and heavily relies on dataset
specific fine-tuning and hyper-parameter tuning, while MotherNet requires no
fine-tuning or per-dataset hyper-parameters.

1 INTRODUCTION

Foundation models, i.e., large transformer-based (Vaswani et al., 2017) models trained on massive
corpora, are disrupting machine learning in many areas such as natural language and reasoning
tasks. These domains shifted from small task-specific models to large generic models with task-
specific instructions via prompting and in-context learning. However, this shift has not yet reached
tabular data, the most common data type in real-world machine learning applications (Chui et al.,
2018), which is still dominated by traditional machine learning methods and neural networks with
in-weight learning. This paper explores a new approach to applying transformer-based Foundational
Models to tabular classification, demonstrating their potential to replace costly and slow AutoML
with in-context learning. The existing TabPFN (Hollmann et al., 2022) approach is promising in
terms of accuracy and training time, but falls short of state-of-the-art classical solutions in terms of
training set scale, being restricted to 1000 to 3000 data points for training, and inference runtime,
being approximately ten times slower to predict than a comparable tree-based method.

We introduce a new architecture, called MotherNet, which adapts the TabPFN architecture to
a hypernetwork setup to produce model weights for a feed forward neural network. Our method
performs competitively with baseline methods such as gradient boosting (Friedman, 2001; Chen &
Guestrin, 2016) and outperforms learning a neural network with gradient descent, being much faster
to train, providing higher accuracy and requiring no tuning of hyperparameters on small tabular
datasets. Our approach combines the transformer architecture of TabPFN (Hollmann et al., 2022)
with the idea of hypernetworks (Ha et al., 2017), to produce state-of-the-art classification models
in a single forward pass. Unlike original work in hypernetworks (Ha et al., 2017), which used a
small hyper network to generate a large “main” network, we are training a large, transformer-based
hypernetwork to generate a compact classification network.
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Compared to the approach of Hollmann et al. (2022), this allows for much shorter prediction time.
However, just as TabPFN, MotherNet is restricted by the quadratic memory requirements of the
transformer architecture, and does not scale well above approximately 5,000 data points. Compared
to earlier work on hypernetworks, we train a single hypernetwork to address tabular classification
on numeric data in general, i.e. in the style of a foundational model, instead of a task-specific or
multi-task hypernetwork.

We demonstrate that it is possible to generate neural networks directly as the output of a transformer
model, without the need to do any dataset-specific learning or gradient descent. Using a fixed model
structure, we are able to produce neural networks that work well on small numeric tabular datasets
from the OpenML CC-18 benchmark suite (Bischl et al., 2017), and show that our approach also
provides a good trade-off of speed and accuracy on the TabZilla dataset collection McElfresh et al.
(2024). Training and inference code and pre-trained model weights are made publicly available 1.

2 RELATED WORK

2.1 LLMS FOR TABULAR DATA

There have been several works investigating the use of small, heterogeneous tables for question
answering, and extracting tables from data, using large language models (LLMs) and specifically
fine-tuned transformers (Yin et al., 2020; Iida et al., 2021). These architectures are table-specific,
but meant to answer natural language questions. Our work focuses on supervised classification.
Separately approaches have been proposed to apply Large Language Models directly to supervised
tabular classification tasks (Dinh et al., 2022; Hegselmann et al., 2023). These works generally
require tokenization on the level of each input feature. This allows including world-knowledge
about feature names and potentially feature values, but comes at an extreme computational cost, and
strong limitations on the number of features and data points, as the size of the attention matrix is
quadratic in both features and samples, and has a non-trivial constant factor for encoding floating
point numbers into separated string values.

2.2 TABPFN

Recently Hollmann et al. (2022), building on the work of Müller et al. (2021), introduced a trans-
former architecture that is capable of performing supervised classification on tabular numeric data.
This work is quite distinct from other transformer architectures on tabular data in that it is focused
on numeric input and numeric output.

TabPFN uses a transformer where each input “token” is a row of the tabular dataset. The model is
adapted to work with a variable number of features by zero-padding (and scaling) to 100 features.
For the training data, linear projections of the input rows are summed with linear projections of
integer classification labels. For the test data, the labels are omitted and class-probabilities are
produced as output tokens. The model is trained to minimize cross-entropy on the test data points.
Attention is masked so that all training points can attend to all other training points, while test points
can only attend to training points. A variable number of classes is handled by training for up to ten
classes, and when predicting for a dataset with k ≤ 10 classes, using only the first k outputs in the
softmax layer. The authors design a prior over synthetically generated datasets, based on Structural
Causal models and Bayesian Neural Networks. Using draws from this prior, they are able to train a
model that generalizes to perform supervised classification on real-world tabular datasets. TabPFN
showed strong predictive performance without any per-dataset tuning, and with extremely fast time
to train and predict on small datasets (≤ 3000 data points) (McElfresh et al., 2024). Because of
the quadratic nature of the self-attention matrix, training on larger datasets is impractical with the
method proposed in Hollmann et al. (2022). Our work builds on the work of Hollmann et al. (2022),
and adds the capability to create a dataset-specific model.

1https://github.com/microsoft/ticl
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2.3 LEARNING TO LEARN AND META-LEARNING

There has been a long history of approaches to “learning to learn” and to build neural network that
produce other neural networks (Schmidhuber, 1992; Ravi & Larochelle, 2016; Andrychowicz et al.,
2016; Thrun & Pratt, 1998). Given the long history, we will only review some more recent and
closely related approaches. Most approaches solve transfer-learning or task-adoption within a fairly
narrow family of tasks, often one-dimensional regression or character recognition, while our work
addresses classification on any small tabular dataset. Ha et al. (2017) introduce the term hypernet-
work for networks that produce networks using task-specific embeddings. The hypernetwork and
embedding are both learned via gradient descent on the same dataset, reducing the approach (in the
non-recurrent case) to a standard neural network with a low-rank structure in its weights. Bertinetto
et al. (2016) propose a gradient-free approach to produce student networks based on single-shot
examples in OCR and object tracking. Their objective and formulation closely resembles ours;
however, in this work, a single “exemplar” is a tabular training dataset, while in Bertinetto et al.
(2016), it is a single handwritten digit, or a single object to track. A transformer based approach for
a hypernetwork generating convolutional neural networks has been investigated in Zhmoginov et al.
(2022). Conditional Neural Processes (Garnelo et al., 2018) also perform task adaption without gra-
dient descent. In contrast to the original work of Garnelo et al. (2018), we are using a transformer
architecture instead of a feed-forward neural network, and are able to address a much wider range of
tasks. While later work on Neural Processes used transformers (Nguyen & Grover, 2022) in an ar-
chitecture closely related to TabPFN, we are not aware of an implementation of Conditional Neural
Processes using transformers, which would yield an architecture more similar to MotherNet. Most
recently, Bonet et al. (2023) introduced HyperFast, a hypernetwork that, similar to MotherNet,
is trained to perform classification on generic tabular datasets. HyperFast avoids the quadratic
complexity of the transformer attention mechanism, and therefore scales to larger datasets. We
compare to HyperFast with and without gradient descent and with hyper-parameter tuning in
Section 4. and find that despite the large overlap of the HyperFast training set and our test-set,
HyperFast without gradient descent performs poorly, and hyper-parameter tuning is necessary
for good performance.

3 METHODOLOGY

Hollmann et al. (2022) introduced TabPFN, an adaption of the transformer architecture to solve
tabular classification problems. As this work closely builds on TabPFN, we want to briefly re-
view its architecture. TabPFN uses a transformer where each input “token” is a row of the tabular
dataset. The model is adapted to work with a variable number of features by zero-padding (and
scaling) to 100 features. For the training data, linear projections of the input rows are summed
with linear projections of integer classification labels. For the test data, the labels are omitted and
class-probabilities are produced as output tokens. The model is trained to minimize cross-entropy
on the test data points. Attention is masked so that all training points can attend to all other training
points, while test points can only attend to training points. A variable number of classes is handled
by training for up to ten classes, and when predicting for a dataset with k ≤ 10 classes, using only
the first k outputs in the softmax layer. TabPFN showed strong predictive performance without
any per-dataset tuning, and with extremely fast time to train and predict on small datasets (≤ 3000
data points) (McElfresh et al., 2024). Because of the quadratic nature of the self-attention matrix,
training on larger datasets is impractical with the method proposed in Hollmann et al. (2022).

Limitations of TabPFN Comparing speed and computational efficiency between TabPFN and
traditional ML and AutoML methods is somewhat complicated, as they have very different charac-
teristics. In particular, there is no dataset specific training phase after meta-training when applying
TabPFN, only near-instantaneous in-context learning. Prediction, on the other hand, is signifi-
cantly slower than prediction in standard ML models, as prediction requires computing attention
between test and training data. On the other hand, gradient boosted trees (Friedman, 2001; Chen
& Guestrin, 2016; Ke et al., 2017) have significant training cost, in particular when accounting
for hyper-parameter tuning, but are extremely fast for prediction. Together with the memory re-
quirements of a large transformer model, this makes TabPFN impractical for settings where fast,
on-demand predictions are required. Next we present two approaches, an effective baseline distil-
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Figure 1: MotherNet architecture. Given training data (x1, y1), . . . , (xr, yr), the transformer
produces a vector ϕ, which is reshaped to weight matrices of an MLP with low-rank weight structure.
Green blocks are individual data points and their activations, orange layers are activations created
during in-context learning or in the forward-pass during meta-learning, and light blue layers are
learned during meta-training.

lation approach, and MotherNet, that address some of the runtime and scalability limitations of
TabPFN.

3.1 MOTHERNET : GENERATING MODEL WEIGHTS

Motivated by the success of TabPFN, and inspired by previous work on hypernetworks, we propose
MotherNet, a transformer architecture that is trained to produce machine learning models with
trained weights in a single forward pass. This methodology combines the benefits of a Foundation
Model that does not require dataset specific training or tuning with the high efficiency of a compact
model at inference time. The resulting models are small feed-forward neural networks (an MLP
with two hidden layers of size 512 in our experiments) that have competitive performance, created
without the use of back-propagation or any loss minimization on the training set. The training
process of the overall architecture can be described as:

min
θ

∑
i

L(MLPϕ, D
p
i ),

where ϕ = MotherNet(Dt
i , θ))

(1)

Where θ are the parameters of the MotherNet transformer, Dt
i and Dp

i are training and prediction
portion of a dataset i, MLPϕ is the feed-forward neural network with parameters given by ϕ and
L(M,D) is the cross entropy loss of the model M evaluated on datasets D. The model architecture
is shown in Figure 1. Training is performed by back-propagation through the whole architecture
(from the output of the child model, and through the transformer layers) where each training sample
corresponds to one dataset. During this meta-training, the parameters θ are learned using synthetic
datasets, using the prior from Hollmann et al. (2022) and then frozen. To apply the model to a
new (real) dataset D̂ consisting of a training portion D̂t and a prediction portion D̂p, we evaluate
MotherNet(D̂t, θ), which produces a vector of parameters ϕ̂. This vector is then used as the
weight and bias vectors of a feed-forward neural network (properly reshaped), which can be used
to make predictions on D̂p. We refer to this approach of applying MotherNet to create a child
network as in-context learning. The absence of per-dataset gradient descent in our method not only
provides an advantage in terms of runtime complexity, it also eliminates the need to apply and tune
regularization, as the model was trained directly for generalization, similar to a Conditional Neural
Process (Garnelo et al., 2018).

MotherNet maintains the structure of input encoding and twelve transformer layers of TabPFN
on the training set, which produces embeddings of size m (512 for the experiments) for each pair of
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Figure 2: Comparison of TabPFN, HyperFast, MLP-distill and MotherNet with tuned
baselines over the test datasets of Hollmann et al. (2022), listed in Table 8. † means 1h of HPO
on CPU, ‡ means 1h of HPO on GPU. Left: Comparison of normalized mean ROC AUC. Right:
Critical Differences Diagram (Demšar, 2006).

training data point and label. We use a one-hot encoding of classes, unlike Hollmann et al. (2022)
who use a linear layer. We use the training labels to compute the average embedding per class, re-
ducing all activations to a single dataset embedding E of size mall (512 ·10 in the experiments). This
embedding E is decoded into the vector ϕ using a one-hidden-layer feed-forward neural network.
The vector ϕ of activations based on the transformer is then reshaped into weights and biases for the
“child” feed-forward network. We evaluated different variants of the architecture hyper-parameters
on the validation set of Hollmann et al. (2022). Initial experiments showed this approach to be very
successful, but lead to very large transformer models as a function of the size of the network that
was to be produced. To reduce model size, we decomposed the weights into two components, Wp

i

that is produced as a prediction by the transformer, and Wf
i that is learned during the meta-training

phase and fixed during in-context learning, similar to Ha et al. (2017).

The low-rank structure drastically reduces the number of entries in ϕ for a given size of neural
network produced. All our experiments use the low-rank version, which yielded slightly better
AUC on the validation set, at a much smaller model size. As output architecture, we use an MLP
with two hidden layers with 512 hidden units each, and with weight-matrices of rank 32. More
specifically, for rank r = 32, hidden dimension h = 512, d = 100 features and N = 10 classes,
with Wp

1,W
p
2 ∈ Rh×r, and Wp

3 ∈ RN×r produced by the transformer, and Wf
1 ∈ Rr×d and

Wf
2 ∈ Rr×h learned during meta-learning, predictions are made as

h1 = relu(Wp
1W

f
1x) h2 = relu(Wp

2W
f
2h1) p(ŷ) = softmax(Wp

3h2)

The best-performing version of our architecture has 89M parameters, with 63M of these in the
decoder attached. Somewhat surprisingly, we found that a decoding MLP with a hidden layer of
size of 4096 works well. This means the whole training dataset is first compressed to a vector of
length 4096, and then expanded into a vector of size 25, 738 to encode the low-rank components of
the weights for the network that is produced. We train MotherNet on a single A100 GPU with
80GB of GPU memory, which takes approximately four weeks. We are using increasing batch sizes
of 8, 16 and 32 and a learning rate of 0.00003, with cosine annealing (Loshchilov & Hutter, 2016).

3.2 IN-CONTEXT LEARNING WITH MOTHERNET

For in-context learning on a new a dataset Dt with r features and c classes, we perform a forward
pass in the transformer to obtain ϕ = MotherNet(Dt

i , θ). We discard all but the first r rows of
the input layer matrix Wf

1, and keep only the first c columns of the output matrix Wp
3, resulting

in a network with an input layer of size r, hidden layers of size 512 and an output layer of size c.
Because of the quadratic complexity of full attention, the size of training dataset that is feasible to
process is limited by available memory. We were able to process up to 30,000 data points on an
A100 GPU with 80GB of memory, and 100,000 samples on CPU. However, we did not evaluate
accuracy on datasets of this size. We found that the ensembling strategy of Hollmann et al. (2022)
improves predictive performance. We apply a similar strategy, using different circular permutations
of features and classes, optionally using one-hot-encoding for categorical variables and optionally
using quantile encoding for continuous features. For this larger ensembling we sample 8 models
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Figure 3: Comparing decision boundaries on synthetic toy datasets, adapted from the
scikit-learn (Pedregosa et al., 2011) documentation. MotherNet decision boundaries
closely resemble TabPFN and to a lesser degree traditional Neural Network boundaries.

from this space for all our experiments; for TabPFN we follow the default setting of 3 from Holl-
mann et al. (2022), which seems sufficient for that model. Sampling a larger number for either
improves performance but slows down both training and predictions with diminishing returns. The
predictions that are produced, both by individual networks, and the ensemble, are quite smooth and
similar to traditionally learned neural networks or TabPFN, see Figure 3.

3.3 DISTILLATION BASELINE

To get a better understanding of the limitations and trade-offs inherent in the MotherNet architec-
ture, we also investigate a baseline approach for creating a small neural network based on TabPFN
via distillation. Distillation is a natural approach to reducing prediction time, while making use of
the excellent performance of TabPFN. Distillation is a slower and less direct way to extract a dataset
specific model from the TabPFN approach than using MotherNet. However, it allows us to dis-
entangle the contribution of model capacity, the ability of the hypernetwork to create appropriate
weights, and the predictive bias of the TabPFN training procedure. We apply the predictions of
TabPFN as a teacher model for a small feed-forward neural network, that is trained specifically for
a dataset, analogous to the methodology of Hinton et al. (2015). Note that we are not attempting to
distill TabPFN, but instead create dataset-specific distillations for each dataset we want to predict
on. Furthermore, while TabPFN is acting as a teacher model, it never saw the dataset for which it
is a teacher during training time. While this is a natural way to distill the model for dataset-specific
prediction, we are not aware of this being investigated before. Tuning the distilled model architec-
ture on the validation set of Hollmann et al. (2022) found that a relatively small model suffices for
good performance, leading to a reduction in size of the model of nearly 3 orders of magnitude: We
use an MLP with two hidden layers of size 128, which results in a maximum of ∼ 30k parameters
(with 100 input features and 10 targets, i.e., the limit in the datasets we consider as most datasets are
smaller), while the original TabPFN has ∼ 26M parameters.

4 EXPERIMENTAL EVALUATION

We evaluate MotherNet on two tabular benchmarks, the small datasets in OpenML CC18, as used
by Hollmann et al. (2022) and a version of the TabZilla benchmark (McElfresh et al., 2024). As
previous work has shown, selection of the benchmark can have a large effect on the ranking of
algorithms; therefore, any ranking can only be relative to a given benchmark. We use two bench-
marks from the literature to show that MotherNet has competitive predictive performance, while
maintaining a unique combination of no hyper-parameter tuning, extremely efficient (in context)
learning, and efficient prediction. All our experiments were done on a A100 GPU with 80GB of
RAM on cloud infrastructure.
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rank normalized
AUC AUC fit

time (s)
predict
time (s)

fit +
predict

model

TabPFN 3.733 0.850±0.026 0.893±0.003 0.008 0.337 0.344
MLP-Distill 4.767 0.802±0.027 0.885±0.004 4.382 0.002 4.384
MotherNet 5.567 0.780±0.037 0.889±0.004 0.136 0.006 0.143
MotherNet (CPU) 7.904 0.107 8.010
XGBoost† 5.933 0.804±0.027 0.891±0.003 4.912 0.024 4.936
MotherNet NE 6.500 0.716±0.026 0.887±0.003 0.040 0.001 0.040
MLP‡ 7.267 0.744±0.025 0.882±0.003 2.257 0.001 2.258
Logistic Regression† 7.300 0.749±0.024 0.883±0.002 0.209 0.000 0.209
ResNet‡ 7.867 0.710±0.025 0.877±0.004 1.668 0.001 1.669
RandomForest† 7.900 0.732±0.020 0.880±0.003 0.200 0.032 0.232
MotherNet FT‡ 7.900 0.708±0.024 0.883±0.004 0.839 0.002 0.841
HyperFast‡ 7.900 0.729±0.028 0.877±0.004 15.931 0.083 16.014
HyperFast default 8.567 0.681±0.020 0.873±0.002 25.960 0.046 26.006
HyperFast no FT 11.033 0.530±0.030 0.859±0.003 3.792 0.045 3.837
KNN† 12.767 0.453±0.021 0.848±0.003 0.000 0.007 0.008

Table 1: Summary results on small CC-18 datasets. Average rank is based on normalized ROC
AUC. ± denotes std over the five paired splits of each dataset. † means 1h of HPO on CPU, ‡ means
1h of HPO on GPU. Note that HyperFast and ResNet use 1h of GPU tuning time per dataset,
while MotherNet requires a single fit that take 0.14 seconds on average.

4.1 OPENML CC18 (SMALL)

We follow the experimental evaluation of Hollmann et al. (2022), and focus our evaluation on the
30 datasets within the CC-18 with less than 2000 samples, listed in Table 8 in the appendix, and
compare models using one-vs-rest ROC AUC. When aggregating across datasets, we normalize
scores with the minimum and maximum performance achieved on the dataset by any algorithm. As
in Hollmann et al. (2022), we split each dataset 50/50 into training (or in-context learning) and test
set, and repeat this split five times. We refer to that work for an in-depth comparison of TabPFN
with current AutoML methods. We compare predictive performance and runtime of the following
models: TabPFN as provided by the authors of Hollmann et al. (2022), HyperFast (Bonet et al.,
2023), a recent hyper-network architecture for tabular classification, MLP-distill, MotherNet,
a vanilla MLP, a ResNet using the architecture of Gorishniy et al. (2021) and baselines consisting
of Histogram Gradient Boosting (Chen & Guestrin, 2016; Friedman, 2001), k-Nearest Neighbors,
Logistic Regression and Random Forests Breiman (2001). In contrast to Hollmann et al. (2022),
we include datasets which contain categorical features or missing values; we fill missing values
with zeros as in Hollmann et al. (2022). We perform no dataset specific tuning for the transformer
architectures, while baseline approaches use 60 minutes hour of randomized hyper-parameter tuning.

Quantitative results are shown in Figure 2 and Table 4, where errors are given over the five paired
splits of the data. We can see that TabPFN outperforms all other methods, though not statisti-
cally significantly so, even at 60 minutes of tuning time for reference methods. While the dis-
tilled version MLP-distill does not achieve the same level of performance, it outperforms all
the baseline models even without dataset specific tuning. It seems the probabilistic predictions
produced by TabPFN provide enough regularization for good generalization. Our MotherNet
outperforms all the baseline approaches, and outperforms MLP-distill in terms of normalized
ROC AUC, but is outperformed by MLP-distill in terms of rank. Results using the validation
set of Hollmann et al. (2022) can be found in the appendix in Figure 4. Comparing with the recent
HyperFast (Bonet et al., 2023) it should be noted that of the 30 datasets we use for evaluation, 18
are in the HyperFast training set, giving it a direct advantage. We find that without per-dataset
finetuning HyperFast (HyperFast no FT) does not provide comparable performance to any of
the baseline approaches except KNN. Using per-dataset fine-tuning and the default hyper-parameters
HyperFast (HyperFast default) is also outperformed by the baselines. Using 60 minutes of ran-
domized hyper-parameter tuning on GPU, HyperFast is competitive with XGBoost, but outper-
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Figure 4: Comparison of TabPFN, HyperFast, MLP-distill and MotherNet with tuned
baselines over the validation datasets of Hollmann et al. (2022), listed in Table 9. † means 1h of
HPO on CPU, ‡ means 1h of HPO on GPU. Left: Comparison of normalized mean ROC AUC.
Right: Critical Differences Diagram (Demšar, 2006). Compare with Figure 2 for the test set. We did
not include HyperFast, MLP and ResNet because of the extreme computational cost of tuning
these models for each dataset.

formed by MotherNet, MLP-distill and TabPFN, despite a large fraction of the test datasets
being included in the HyperFast training. Also, note that 1h of per-dataset hyper-parameter tuning
on GPU corresponds to approximately 25,000x more compute than MotherNet, which requires no
fine-tuning or hyper-parameter tuning and trains within 0.14s on average on the test datasets. Inter-
estingly, the MLP which is trained using standard gradient descent is performing much worse than
MLP-distill and MotherNet despite extensive hyper-parameter tuning. Clearly MotherNet
provides an efficient and easy-to-use alternative to training with gradient descent on these datasets,
and for the small dataset regime that we investigate, hyper-parameter tuning can be difficult. It’s
noteworthy that on the OpenML CC-18 collection, Logistic Regression performs surprisingly well.
This is likely a consequence of the dataset selection. Compare Figure 4 for the validation set, which
has a more typical ranking of algorithms.

To determine whether fine-tuning is beneficial for models produced by MotherNet, we perform
an experiment in which we apply gradient descent to the child model on the training dataset that
was used for in-context learning. Since fine-tuning for all ensemble members would be costly, we
compare MotherNet without ensembling (MotherNet NE) with the fine-tuned MotherNet
(MotherNet FT). We tune learning rate, weight decay, use of dropout, number of epochs, and
whether or not to use one-hot-encoding (for both in-context learning and gradient descent). We
were unable to improve results using careful fine-tuning using 1h of HPO on GPU. Search produced
either results that were equivalent to the MLP model, ignoring the MotherNet initialization, or left
the initialization unchanged. This is not entirely surprising: in most cases, MotherNet improves
over the MLP model, and we hypothesize that this improvement stems from a learned regularization
performed by the hyper-network; in particular for small datasets, overfitting is a major issue for
neural architectures, and tuning hyper-parmeters is difficult since validation set results are noisy.
Applying gradient descent in this setting nullifies the benefits of the learned regularization. This
might no longer hold when using larger datasets, which we plan to investigate in future work.

Regarding algorithm speed, if we only consider prediction time, TabPFN on GPU is about ten times
slower than XGBoost, while MotherNet on GPU is about five times faster than XGBoost, or 50
times faster than TabPFN. This is the main advantage we look to gain from using MotherNet over
TabPFN. However, MLP-distill is even faster, at about 3x the speed of MotherNet, likely due
to the ensembling described in Section 3.2. However, if we look at the speed of training (assuming
optimum hyper-parameters are known) together with prediction, a measurement particularly critical
for model development, we see that MotherNet on GPU provides a 33x speedup over XGBoost,
while MLP-distill is over 30x slower than MotherNet. See Figure 5 (left) for a visualization
of the speed-AUC trade-off.

In most real-world settings, hyper-parameters are unknown, results in Figure 2 and Table 4 shows
that even with 1h of hyper-parameter tuning, the baseline models underperform the transformer
models. Taking this tuning time into consideration, using MotherNet on the GPU results in more
than 25,000x speedup for model-development, while MotherNet on the CPU still provides 450x
speedup. We want to point out that these speedup figures might depend strongly on the tuning time
estimated for other algorithms. This points at a practical difficulty of tuning parameters: in practice it
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Figure 5: Left: Visualizing runtime vs normalize AUC trade-off, based on numbers in Table 4,
not considering tuning times for the competing algorithms. Bottom right means fast and accurate
algorithms. Note that the y-axis is in log-scale. Right: Critical Difference Diagram on the TabZilla
benchmark using ROC AUC, corresponding to results in Table 2.

is often unclear how much time should be allocated for hyper-parameter tuning. Using MotherNet
removes this trade-off by providing competitive accuracy near-instantaneously without any tuning.
A more detailed comparison between MLP-distill, MotherNet and TabPFN can be found
in Table 3 and Table 4. We see that on some datasets, MLP-distill performs much worse than
MotherNet, likely because of the sensitivity of gradient descent to hyper-parameters. Detailed
results can be found in Table 3 in Appendix A.

4.2 TABZILLA

We use the TabZilla (McElfresh et al., 2024) benchmark to compare to a wide varity of deep learning
and tree-based approached. Table 4.2 reproduces the results of McElfresh et al. (2024), with our
results for MotherNet added. For this evaluation, we follow McElfresh et al. (2024) in their
setup for TabPFN, and subsample 3000 data points for MotherNet, as the full datasets are too
large for the transformer architectures. This means that both MotherNet and TabPFN have a
severe disadvantage, as they only see a fraction of the data provided to other algorithms. Despite
this disadvantage, TabPFN still outranks other algorithms. MotherNet is outranked by some
of the tree-based learners, as well as SAINT and ResNet in rank, though MotherNet, SAINT
and ResNet have equivalent mean normalized AUC. The critical difference diagram using ROC-
AUC can be found in Figure 5 (right), and more results can be found in Table 7 and Table 6 in
the Appendix. The CD diagram shows no significant differences between the top seven algorithms,
despite the fact that other algorithms were given up to 10h of compute and up to 30 hyper-parameter
sets, while MotherNet requires no hyper-parameter tuning and finishes within seconds on all
datasets. The combined training and prediction time of MotherNet is competitive with those of
the tree-based models (though comparing MotherNet on GPU with tree-based models on CPU)
and orders of magnitude faster than other deep learning approaches.

5 LIMITATIONS AND FUTURE WORK

One of many open questions is to understand how the models produced by MotherNet differ
from those produced by gradient descent. The nature of the optimization is fundamentally differ-
ent, and in essence, MotherNet learns to regularize according to the datasets presented during
meta-training, instead of using a hard-coded regularization strategy such as weight decay or early
stopping. We were able to achieve good performance with a single neural network architecture
across all datasets, both for MotherNet and MLP-distill (though with slightly different ar-
chitectures for the two), which seems hard to achieve with standard gradient descent. The relative
performance of MLP-distill, TabPFN and MotherNet is somewhat muddled, and inconsis-
tent between the test set and validation set, see figures Figure 2 and Figure 4, and between mean
AUC and rank. We found that using one-hot-encoding is critical for the prediction network produced
by MotherNet to perform well, an issue that is not present in the TabPFN architecture, and neces-
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rank normalized AUC fit time (s) predict time (s) fit + predict (s)
model

TabPFN 5.10 0.91±0.17 0.25 16.13 16.38
CatBoost 5.99 0.92±0.18 20.75 0.05 20.80
XGBoost 6.55 0.90±0.19 0.85 0.04 0.89
ResNet 7.65 0.84±0.19 15.95 1.61 17.56
SAINT 7.66 0.84±0.19 171.13 2.56 173.69
RandomForest 7.93 0.87±0.19 0.41 0.56 0.97
MotherNet 8.30 0.84±0.18 0.34* 0.11* 0.45*
DANet 8.65 0.83±0.19 64.50 1.32 65.82
LightGBM 9.20 0.83±0.22 0.89 0.04 0.93
NODE 9.77 0.81±0.20 161.05 1.81 162.86
FTTransformer 10.00 0.79±0.20 27.88 1.85 29.73
SVM 10.52 0.75±0.22 61.21 0.24 61.45
MLP-rtdl 10.61 0.73±0.21 15.18 1.57 16.75
STG 12.01 0.66±0.24 18.66 0.03 18.69
Logistic Regression 12.79 0.62±0.23 0.04 0.01 0.05
MLP 13.30 0.65±0.23 18.32 1.48 19.80
TabNet 13.50 0.63±0.32 35.19 0.61 35.80
DecisionTree 14.68 0.53±0.30 0.02 0.01 0.03
KNN 15.40 0.52±0.25 0.01 0.42 0.43
VIME 15.84 0.49±0.30 17.90 1.45 19.35

Table 2: Ranking of algorithms on TabZilla dataset collection, using normalized ROC AUC. As
datasets have widely varying sizes, times are per 1000 data points. *Indicated experiments run for
this paper, which are run on a A100 GPU as opposed to a V100 GPU as used by McElfresh et al.
(2024) to produce the other timing results.

sitates additional bagging for prediction. In future work, we hope to address this issue directly in the
architecture. There are also certain failure cases that TabPFN and MotherNet share, which are
discussed in Appendix B. Another area of exploration is scaling the MotherNet method to larger
training datasets. As mentioned above, the transformer architecture does not scale well in number
of datapoints, and we focus our evaluation on training sets with 3000 samples or fewer. There is
substantial literature on improving the complexity of attention mechanisms (see (Tay et al., 2022)
for an overview), as well as more recent work into attention-free architectures (Fu et al., 2023; Poli
et al., 2023). Both are promising candidates for scaling MotherNet to larger dataset sizes.

6 CONCLUSION

We demonstrated that it is possible to achieve competitive results on small numeric tabular
datasets by producing neural networks using in-context learning via a single forward pass in our
MotherNet architecture, without using dataset specific gradient descent or hyper-parameter tun-
ing. By employing a pure meta-learning approach, similar to Conditional Neural Processes, we
remove the need for explicit regularization, and therefore eliminate the hyper-parameters usually
associated with learning neural networks. Compared to TabPFN, prediction speed on the test set
is much faster, and training and prediction speed are both comparable to highly optimized tree-
based models. We also find that distilling TabPFN, into a small neural network is highly effec-
tive and doesn’t require dataset-specific hyper-parameter tuning — as opposed to training a similar
neural network from scratch. Our work outperforms the other recent hyper-network architecture
HyperFast on small datasets, both in accuracy and runtime, while not requiring dataset-specific
gradient descent or hyper-parameter tuning, and despite our test set having large overlap with the
HyperFast training set. The fact that competitive models can be generated with a simple forward
pass is quite surprising, and opens up a new direction for producing high-performance models with
fast inference using deep learning techniques.
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Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
learning research, 7:1–30, 2006.

Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong Sohn,
Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for non-
language machine learning tasks. Advances in Neural Information Processing Systems, 35:11763–
11784, 2022.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Daniel Y Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W Thomas,
Benjamin Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple
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Hyper KNN† Log MLP‡ MN MN MN RF† ResNet‡ TabPFN XGB†

dataset Fast‡ Reg† NE FT‡

MiceProtein 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
analcatdata
authorship 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

analcatdata dmft 0.56 0.55 0.57 0.57 0.57 0.56 0.55 0.59 0.54 0.58 0.57
balance-scale 0.99 0.89 0.96 0.99 0.99 0.99 0.99 0.84 0.97 1.00 0.99
banknote
-authentication 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

blood-transfusion
-service-center 0.73 0.71 0.75 0.73 0.76 0.76 0.76 0.72 0.74 0.76 0.74

breast-w 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
car 0.99 0.92 0.98 1.00 0.97 0.97 0.98 0.99 1.00 1.00 1.00
climate-model
simulation
crashes

0.90 0.85 0.93 0.91 0.95 0.94 0.93 0.87 0.92 0.94 0.93

cmc 0.69 0.63 0.68 0.67 0.73 0.72 0.71 0.73 0.68 0.73 0.73
credit-approval 0.93 0.91 0.92 0.92 0.93 0.93 0.93 0.94 0.91 0.93 0.94
credit-g 0.76 0.73 0.77 0.76 0.79 0.79 0.79 0.79 0.76 0.79 0.79
cylinder-bands 0.81 0.78 0.82 0.84 0.83 0.83 0.80 0.87 0.83 0.83 0.89
diabetes 0.81 0.81 0.84 0.84 0.84 0.84 0.83 0.83 0.83 0.84 0.84
dresses-sales 0.55 0.56 0.57 0.57 0.59 0.61 0.58 0.56 0.56 0.54 0.59
eucalyptus 0.87 0.80 0.90 0.89 0.93 0.92 0.90 0.90 0.89 0.92 0.90
ilpd 0.70 0.65 0.74 0.73 0.73 0.73 0.70 0.71 0.70 0.74 0.71
kc2 0.80 0.78 0.83 0.81 0.83 0.83 0.83 0.83 0.81 0.83 0.82
mfeat-fourier 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98
mfeat-karhunen 1.00 0.99 1.00 1.00 0.99 0.97 0.99 1.00 1.00 1.00 1.00
mfeat-morphological 0.97 0.95 0.97 0.97 0.96 0.96 0.96 0.96 0.97 0.97 0.96
mfeat-zernike 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.98 0.98 0.97
pc1 0.82 0.78 0.83 0.80 0.83 0.85 0.84 0.84 0.79 0.87 0.84
pc3 0.82 0.75 0.79 0.80 0.81 0.81 0.80 0.82 0.79 0.84 0.82
pc4 0.90 0.82 0.89 0.90 0.93 0.92 0.91 0.92 0.88 0.94 0.93
qsar-biodeg 0.92 0.89 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.92
steel-plates-fault 0.95 0.92 0.94 0.95 0.94 0.91 0.93 0.96 0.95 0.96 0.96
tic-tac-toe 0.92 0.99 1.00 1.00 0.99 1.00 1.00 0.98 1.00 0.96 1.00
vehicle 0.95 0.88 0.95 0.96 0.95 0.94 0.94 0.92 0.95 0.96 0.93
wdbc 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 1.00 0.99

Table 3: Per dataset results on the test set for small CC-18 datasets, averaged over 5 splits. † means
1h of HPO on CPU, ‡ means 1h of HPO on GPU. MN is MotherNet, MN no bag means a single
network without bagging, and MN GD means a single network without bagging, with additional
per-dataset gradient descent. It’s unclear how to combine bagging and gradient descent here, which
is why we consider comparison against the unbagged model.

Appendices
APPENDIX A PER-DATASET COMPARISON ON THE TEST SET

We show a per-dataset comparison of average ROC AUC of TabPFN, MotherNet,
MLP-distill and XGBoost in Table 3. In contrast to the validation set, there seems to be
no clear winner between MLP-distill and MotherNet. Overall, it seems hard to determine
overall trends, but it’s likely that dataset characteristics play a role, as we can observe similar rela-
tive performance in eucalyptus, dresses-sales and cylinder-bands, while the mfeat
datasets and MiceProtein show a very different profile. We plan to revisit this comparison after
addressing the issues discussed in Section B.
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Figure 6: Mean test-set accuracy on synthetic binary classification datasets comparing TabPFN and
MotherNet to untuned variants of scikit-learn classifiers. Left: one-dimensional dataset
with variable number of jumps. Right: boolean functions of varying rank.

APPENDIX B VALIDATION SET RESULTS

Experimental results for the validation set are shown in Figure 4. Maybe somewhat surprisingly,
the ranking is quite different than on the test set, with MotherNet outperforming TabPFN both in
rank and normalized ROC AUC. Examined datasets with at least 0.05 ROC AUC difference between
MotherNet and XGBoost, which are shown in Table 4. Overall, MotherNet and TabPFN
have similar characteristics, as might be expected from the shared synthetic training data. It’s no-
table that both outperform XGBoost on the same dataasets (top rows) and are both outperformed
by XGBoost on the same datasets. The last three rows of Table4 show a particular stark failure
mode of TabPFN and MotherNet, who perform at chance level on parity5 plus 5, which
is essentially solved by XGBoost, and lag severely behind XGBoost on teachingAssistant
and schizo.

Investing these datasets, we found that there are two different failure modes present. The datasets
teachingAssistant and schizo have single features that are highly informative but con-
tain strong discontinuities with respect to the target class, see Figure C. Both could be consid-
ered data leakage via an ID column, but in essence these point to the fact that discontinuous func-
tions with many steps, and/or memorization of ID variables are not well captured by TabPFN and
MotherNet. While in these particular cases, the datasets could be considered faulty, there was
information included in the data that a tree-based model was able to exploit, while TabPFN and
MotherNet could not; in this case discontinuous functions with many jumps in a single continu-
ous feature.

The parity5 plus 5 illustrated a different failure case: this dataset relies on matching boolean
patterns on a subset of the columns. While Hollmann et al. (2022) showed that irrelevant features
degrade the performance of TabPFN, removing the irrelevant features did not improve performance
on parity5 plus 5; the issue rather seems in the inability of TabPFN and MotherNet to mem-
orize binary patterns. Based on these two failure cases, we generated families of synthetic functions
to illustrate the shortcomings. We compare TabPFN and MotherNet to two simple baselines,
RandomForestClassifier and MLPClassifier from scikit-learn Pedregosa et al.
(2011) with default parameters without tuning, see Appendix C for details. Figure 6 shows that as
the complexity of the dataset increases, either in terms of jumps in a 1d function, or in terms of
complexity of a boolean function, TabPFN and MotherNet degrade in performance much more
quickly than the Random Forest model. The MLP is able to easily learn the boolean datasets, but not
the discontinuous 1d datasets; somewhat suprisingly, given the underperformance of MotherNet
on this task, MotherNet slightly outperforms the MLP. We speculate that these failure cases can
be addressed in future work by including similar synthetic datasets in the prior. It might also be
necessary to adopt the architecture of MotherNet, for example using Fourier features Tancik et al.
(2020) to account for discontinuities.
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model MotherNet TabPFN XGBoost MLP-Distill XGB - MN
dataset

KnuggetChase3 0.754 0.770 0.643 0.651 -0.111
analcatdata apnea2 0.929 0.877 0.840 0.939 -0.089
mc2 0.770 0.767 0.681 0.726 -0.088
conference attendance 0.572 0.576 0.498 0.538 -0.075
disclosure z 0.576 0.572 0.509 0.581 -0.068
PieChart1 0.863 0.885 0.808 0.879 -0.055
disclosure x noise 0.531 0.533 0.480 0.540 -0.051
chscase funds 0.695 0.679 0.644 0.698 -0.051
meta 0.810 0.769 0.864 0.788 0.054
analcatdata apnea3 0.890 0.865 0.947 0.899 0.057
tae 0.650 0.675 0.708 0.699 0.058
triazines 0.760 0.772 0.821 0.731 0.061
prnn fglass 0.809 0.852 0.889 0.825 0.080
pm10 0.496 0.511 0.591 0.531 0.094
pbcseq 0.783 0.839 0.890 0.832 0.107
schizo 0.616 0.636 0.796 0.627 0.180
teachingAssistant 0.679 0.692 0.940 0.709 0.261
parity5 plus 5 0.453 0.456 0.992 0.452 0.539

Table 4: Subset of validation data where there is a difference of at least 0.05 average ROC-AUC
between MotherNet and XGBoost.

APPENDIX C FAILURE CASE DATASET GENERATION

Inspired by the results shown in Table 4, we created two families of synthetic datasets. The first is
a binary classification task on a single feature, that is distributed uniformly between 0 and 1. For
each dataset that we generate, we draw 2000 samples from the uniform distribution, and nsteps − 1
cut-off points, also between 0 and 1. At each cut-off point we flip the class label. A resulting dataset
for nsteps = 5 is show in Figure 8, where we show only 100 points for illustration purposes. Note
that since the split into training and test data is done using an (class-stratified) i.i.d. assumption, this
dataset is trivial to learn for any tree-based or neighbors-based learner. While it is possible to learn
such a dataset with a neural network, this might require tuning the architecture, and using the MLP
with default parameters from scikit-learn fails to learn this data.

The other family of synthetic datasets is inspired by the parity5 plus 5 dataset and is a random
combination of boolean conjunctions of a certain rank. The training samples in all cases are all
binary sequences of length 10, where each bit is one feature, hence the feature space is X = {0, 1}10.
The labels for each dataset are constructed iteratively using a logical disjunction of conjunctions. In
every iteration, a term is created by conjoining r bits chosen at random, with each bit also randomly
assigned a negation or not. Terms are continually added to the disjunction until at least one-third of
the samples satisfy the formula, ensuring a relatively balanced dataset. We split the dataset randomly
(but class-stratified) into training and test set. This is a relaxation of the classical parity problem;
for rank 1, the label would correspond simply to one of the input features and therefore should be
easily learnable for any algorithm. For rank 10, the dataset is an arbitrary boolean function, which
is not learnable (in the sense that seeing only the training set in expectation provides no information
on the test set).

For the experiments in Figure 6, we generated 20 datasets for each rank or step, and performed
five-fold stratified cross-validation for each of them.

APPENDIX D HYPER PARAMETER SPACES FOR BASELINE METHODS

The hyperparameters used for the baseline models discussed in Section 4 are shown in Table 5 and
were tuned with HyperOpt Bergstra et al. (2011) following the setup of Hollmann et al. (2022),
using random search.
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Model Hyperparameters
Random Forest n estimators: randint(20, 200), max features: choice([None, ’sqrt’, ’log2’]),

max depth: randint(1, 45), min samples split: choice([2, 5, 10])
MLP hidden size: choice([16, 32, 64, 128, 256, 512]), learning rate: loguniform(10−5, 0.01),

n epochs: choice([10, 100, 1000]), dropout rate: choice([0, 0.1, 0.3]),
n layers: choice([1, 2, 3]), weight decay: loguniform(10−5, 0.01)

ResNet hidden size: choice([16, 32, 64, 128, 256, 512]), learning rate: loguniform(10−5, 0.01),
n epochs: choice([10, 100, 1000]), dropout rate: choice([0, 0.1, 0.3]),
n layers: choice([1, 2, 3]), weight decay: loguniform(10−5, 0.01)
hidden multiplier: choice([1, 2, 3, 4])

KNN n neighbors: randint(1, 16)
XGBoost learning rate: loguniform(e−7, 1), max depth: randint(1, 10),

subsample: uniform(0.2, 1), colsample bytree: uniform(0.2, 1),
colsample bylevel: uniform(0.2, 1), min child weight: loguniform(e−16, e5),
alpha: loguniform(e−16, e2), lambda: loguniform(e−16, e2),
gamma: loguniform(e−16, e2), n estimators: randint(100, 4000)

Logistic Regression penalty: choice([’l1’, ’l2’, ’none’]), max iter: randint(50, 500),
fit intercept: choice([True, False]), C: loguniform(e−5, log(5))

Table 5: Hyperparameters for each model
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Figure 7: Class label plotted against ID column in teachingAssistant dataset shows a strong
correlation that is likely data leakage.
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Figure 8: Example of a synthetic classification example in 1d.
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min rank max rank mean rank median rank mean AUC
algorithm

TabPFN (default) 1 31 8.65 6.00 0.91
CatBoost 1 38 10.03 7.50 0.92
CatBoost (default) 1 37 10.89 9.00 0.92
XGBoost 1 32 11.35 9.00 0.91
ResNet 1 38 13.41 12.00 0.85
SAINT 1 38 13.50 11.00 0.86
RandomForest 1 37 13.83 13.50 0.89
MotherNet (default) 1 36 13.85 12.00 0.87
XGBoost (default) 1 37 14.10 13.00 0.89
DANet 1 34 15.22 14.50 0.85
ResNet (default) 1 39 15.92 16.50 0.82
LightGBM (default) 1 36 16.08 15.00 0.86
LightGBM 1 38 16.15 15.00 0.86
RandomForest (default) 1 37 16.55 14.00 0.85
NODE 1 37 16.99 17.00 0.83
SAINT (default) 1 39 17.05 16.00 0.82
FTTransformer 1 39 17.64 18.50 0.82
SVM 1 39 18.52 20.00 0.79
MLP-rtdl 1 39 18.54 17.50 0.77
NODE (default) 1 39 18.66 18.00 0.81
FTTransformer (default) 1 39 20.93 23.00 0.72
STG 1 37 21.27 23.00 0.73
DANet (default) 1 39 21.51 22.00 0.76
MLP-rtdl (default) 1 39 22.95 24.50 0.66
LinearModel 1 39 23.22 25.00 0.68
MLP 1 38 23.42 25.50 0.71
TabNet 1 39 24.27 27.00 0.71
SVM (default) 1 39 24.60 28.00 0.63
DecisionTree 1 39 26.89 28.00 0.62
TabNet (default) 1 39 27.13 29.00 0.63
KNN 1 39 27.82 29.00 0.62
VIME 1 38 28.31 31.00 0.60
MLP (default) 1 39 28.52 31.00 0.54
DecisionTree (default) 1 39 28.66 31.00 0.56
STG (default) 1 39 29.10 33.00 0.52
KNN (default) 1 39 29.12 31.00 0.57
VIME (default) 1 39 31.92 35.50 0.39

Table 6: TabZilla algorithm ranking using normalized ROC AUC, including the default configu-
rations of all algorithms. TabPFN and MotherNet have no hyper-parameters and are therefore
labeled “default”.
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min rank max rank mean rank median rank mean Accuracy
algorithm

CatBoost 1 19 5.80 4.00 0.87
TabPFN 1 20 6.14 5.00 0.83
XGBoost 1 18 7.30 6.00 0.81
ResNet 1 20 8.09 8.00 0.75
SAINT 1 20 8.35 7.00 0.73
NODE 1 20 8.38 8.00 0.74
FTTransformer 1 19 8.61 8.00 0.76
RandomForest 1 20 8.70 8.00 0.76
LightGBM 1 20 8.95 8.00 0.76
MotherNet 1 20 9.29 9.00 0.72
SVM 1 19 9.59 10.50 0.69
DANet 1 19 10.29 10.00 0.73
MLP-rtdl 1 20 10.37 11.00 0.66
STG 1 20 12.38 13.00 0.56
DecisionTree 1 20 12.43 14.00 0.59
MLP 1 20 12.65 14.00 0.57
LinearModel 1 20 12.89 15.00 0.51
TabNet 1 20 13.36 15.00 0.55
KNN 1 20 14.43 16.00 0.45
VIME 3 20 15.80 17.50 0.37

Table 7: TabZilla algorithm ranking using (normalized) Accuracy, compare with Table 1 in McEl-
fresh et al. (2024)

did name d n k

11 balance-scale 5 625 3
14 mfeat-fourier 77 2000 10
15 breast-w 10 699 2
16 mfeat-karhunen 65 2000 10
18 mfeat-morphological 7 2000 10
22 mfeat-zernike 48 2000 10
23 cmc 10 1473 3
29 credit-approval 16 690 2
31 credit-g 21 1000 2
37 diabetes 9 768 2
50 tic-tac-toe 10 958 2
54 vehicle 19 846 4

188 eucalyptus 20 736 5
458 analcatdata authorship 71 841 4
469 analcatdata dmft 5 797 6

did name d n k

1049 pc4 38 1458 2
1050 pc3 38 1563 2
1063 kc2 22 522 2
1068 pc1 22 1109 2
1462 banknote-authentication 5 1372 2
1464 blood-transfusion-. . . 5 748 2
1480 ilpd 11 583 2
1494 qsar-biodeg 42 1055 2
1510 wdbc 31 569 2
6332 cylinder-bands 40 540 2

23381 dresses-sales 13 500 2
40966 MiceProtein 82 1080 8
40975 car 7 1728 4
40982 steel-plates-fault 28 1941 7
40994 climate-model-. . . 21 540 2

Table 8: Test dataset names and properties, taken from Hollmann et al. (2022). Here did is the
OpenML Dataset ID, d the number of features, n the number of instances, and k the number of
classes in each dataset.
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APPENDIX E VALIDATION SET

We use the validation set of Hollmann et al. (2022), as listed in Table 9.
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did name d n k

13 breast-cancer 10 286 2
25 colic 27 368 2
35 dermatology 35 366 6
40 sonar 61 208 2
41 glass 10 214 6
43 haberman 4 306 2
48 tae 6 151 3
49 heart-c 14 303 2
51 heart-h 14 294 2
53 heart-statlog 14 270 2
55 hepatitis 20 155 2
56 vote 17 435 2
59 ionosphere 35 351 2
61 iris 5 150 3

187 wine 14 178 3
329 hayes-roth 5 160 3
333 monks-problems-1 7 556 2
334 monks-problems-2 7 601 2
335 monks-problems-3 7 554 2
336 SPECT 23 267 2
337 SPECTF 45 349 2
338 grub-damage 9 155 4
377 synthetic control 61 600 6
446 prnn crabs 8 200 2
450 analcatdata lawsuit 5 264 2
451 irish 6 500 2
452 analcatdata broadwaymult 8 285 7
460 analcatdata reviewer 8 379 4
463 backache 32 180 2
464 prnn synth 3 250 2
466 schizo 15 340 2
470 profb 10 672 2
475 analcatdata germangss 6 400 4
481 biomed 9 209 2
679 rmftsa sleepdata 3 1024 4
694 diggle table a2 9 310 9
717 rmftsa ladata 11 508 2
721 pwLinear 11 200 2
724 analcatdata vineyard 4 468 2
733 machine cpu 7 209 2
738 pharynx 11 195 2
745 auto price 16 159 2
747 servo 5 167 2
748 analcatdata wildcat 6 163 2
750 pm10 8 500 2
753 wisconsin 33 194 2
756 autoPrice 16 159 2
757 meta 22 528 2
764 analcatdata apnea3 4 450 2

did name d n k

765 analcatdata apnea2 4 475 2
767 analcatdata apnea1 4 475 2
774 disclosure x bias 4 662 2
778 bodyfat 15 252 2
786 cleveland 14 303 2
788 triazines 61 186 2
795 disclosure x tampered 4 662 2
796 cpu 8 209 2
798 cholesterol 14 303 2
801 chscase funds 3 185 2
802 pbcseq 19 1945 2
810 pbc 19 418 2
811 rmftsa ctoarrivals 3 264 2
814 chscase vine2 3 468 2
820 chatfield 4 13 235 2
825 boston corrected 21 506 2
826 sensory 12 576 2
827 disclosure x noise 4 662 2
831 autoMpg 8 398 2
839 kdd el nino-small 9 782 2
840 autoHorse 26 205 2
841 stock 10 950 2
844 breastTumor 10 286 2
852 analcatdata gsssexsurvey 10 159 2
853 boston 14 506 2
854 fishcatch 8 158 2
860 vinnie 3 380 2
880 mu284 11 284 2
886 no2 8 500 2
895 chscase geyser1 3 222 2
900 chscase census6 7 400 2
906 chscase census5 8 400 2
907 chscase census4 8 400 2
908 chscase census3 8 400 2
909 chscase census2 8 400 2
915 plasma retinol 14 315 2
925 visualizing galaxy 5 323 2
930 colleges usnews 34 1302 2
931 disclosure z 4 662 2
934 socmob 6 1156 2
939 chscase whale 9 228 2
940 water-treatment 37 527 2
941 lowbwt 10 189 2
949 arsenic-female-bladder 5 559 2
966 analcatdata halloffame 17 1340 2
968 analcatdata birthday 4 365 2
984 analcatdata draft 5 366 2
987 collins 23 500 2
996 prnn fglass 10 214 2

Table 9: Validation dataset names and properties, taken from Hollmann et al. (2022). Here did is
the OpenML Dataset ID, d the number of features, n the number of instances, and k the number of
classes in each dataset.

Table 10: Validation datasets, continued
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did name d n k

1048 jEdit 4.2 4.3 9 369 2
1054 mc2 40 161 2
1071 mw1 38 403 2
1073 jEdit 4.0 4.2 9 274 2
1100 PopularKids 11 478 3
1115 teachingAssistant 7 151 3
1412 lungcancer GSE31210 24 226 2
1442 MegaWatt1 38 253 2
1443 PizzaCutter1 38 661 2
1444 PizzaCutter3 38 1043 2
1446 CostaMadre1 38 296 2
1447 CastMetal1 38 327 2
1448 KnuggetChase3 40 194 2
1451 PieChart1 38 705 2
1453 PieChart3 38 1077 2
1488 parkinsons 23 195 2
1490 planning-relax 13 182 2
1495 qualitative-bankruptcy 7 250 2
1498 sa-heart 10 462 2
1499 seeds 8 210 3
1506 thoracic-surgery 17 470 2
1508 user-knowledge 6 403 5
1511 wholesale-customers 9 440 2
1512 heart-long-beach 14 200 5
1520 robot-failures-lp5 91 164 5

did name d n k

1523 vertebra-column 7 310 3
4153 Smartphone-Based Re. . . 68 180 6

23499 breast-cancer-dropped-. . . 10 277 2
40496 LED-display-domain-7. . . 8 500 10
40646 GAMETES Epistasis 2-. . . 21 1600 2
40663 calendarDOW 33 399 5
40669 corral 7 160 2
40680 mofn-3-7-10 11 1324 2
40682 thyroid-new 6 215 3
40686 solar-flare 13 315 5
40690 threeOf9 10 512 2
40693 xd6 10 973 2
40705 tokyo1 45 959 2
40706 parity5 plus 5 11 1124 2
40710 cleve 14 303 2
40711 cleveland-nominal 8 303 5
40981 Australian 15 690 2
41430 DiabeticMellitus 98 281 2
41538 conference attendance 7 246 2
41919 CPMP-2015-runtime-. . . 23 527 4
41976 TuningSVMs 81 156 2
42172 regime alimentaire 20 202 2
42261 iris-example 5 150 3
42544 Touch2 11 265 8
42585 penguins 7 344 3
42638 titanic 8 891 2

Table 11: Validation dataset, continued
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