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Abstract

The recent advent of reasoning models like OpenAI’s o1 was met with excited spec-
ulation by the AI community about the mechanisms underlying these capabilities in
closed models, followed by a rush of replication efforts, particularly from the open
source community. These speculations were largely settled by the demonstration
from DeepSeek-R1 that chain-of-thought and reinforcement learning (RL) can
effectively replicate reasoning on top of base LLMs. However, it remains valuable
to explore alternative methods for theoretically eliciting reasoning that could help
elucidate the underlying mechanisms, as well as providing additional methods that
may offer complementary benefits.
Here, we build on the long-standing literature in cognitive psychology and cog-
nitive architectures, which postulates that reasoning arises from the orchestrated,
sequential execution of a set of modular, predetermined cognitive operations. Cru-
cially, we implement this key idea within a modern agentic tool-calling framework.
In particular, we endow an LLM with a small set of “cognitive tools” encapsulating
specific reasoning operations, each executed by the LLM itself. Surprisingly, this
simple strategy results in considerable gains in performance on standard math-
ematical reasoning benchmarks compared to base LLMs, for both closed and
open-weight models. For instance, providing our “cognitive tools” to GPT-4.1 in-
creases its pass@1 performance on AIME2024 from 32% to 53%, even surpassing
the performance of o1-preview.
In addition to its practical implications, this demonstration contributes to the debate
regarding the role of post-training methods in eliciting reasoning in LLMs versus
the role of inherent capabilities acquired during pre-training, and whether post-
training merely uncovers these latent abilities.

1 Introduction

The recent introduction of Large Language Models (LLMs) with reasoning capabilities has showcased
the potential of unfolding test-time compute as chain-of-thought traces representing intermediate
steps toward obtaining an answer to a query. The success of the first reasoning models like OpenAI’s
proprietary o1-preview demonstrated marked improvements on coding, mathematical, and general
reasoning benchmarks [OpenAI, 2024], igniting enthusiasm across the AI community and a race to
replicate these results in the open.
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While the release notes associated with these models confirmed that reinforcement learning (RL)
played a crucial role in enhancing reasoning capabilities, the specific mechanisms remained opaque,
fueling intense speculation within the open research community. Proposed hypotheses ranged from
pipelines leveraging curated fine-grained reward labels [Uesato et al., 2022, Lightman et al., 2023,
Ma et al., 2023, Wang et al., 2024] to self-correction and algorithmic approaches inspired by Monte
Carlo Tree Search [Hosseini et al., 2024, Xie et al., 2024, Liang et al., 2024]. This debate was
partially resolved when subsequent work by DeepSeek demonstrated that relatively simple post-
training recipes combining “cold-start” supervised fine-tuning on curated reasoning traces with RL
optimization on verifiable rewards [Lambert et al., 2025] could produce high-quality reasoning on
par with the best closed models [Guo et al., 2025].

Recently, a critical reanalysis of the role of RL in eliciting reasoning in LLMs has added a new
intriguing chapter to this story by pushing the narrative that the inherent capabilities of base models
might be as important as RL (if not more) in enabling reasoning. In particular, Liu et al. [2025]
observed that base models on which open reasoning LLMs are often built – like Qwen2.5-Base and
DeepSeek-V3-Base – already spontaneously demonstrate strong reasoning capabilities and exhibit
“Aha moment” self-reflection patterns that have been purported as indicative of emerging reasoning
behavior. Yue et al. [2025] went a step further by showing that the reasoning traces generated
by RL-fine-tuned models are already present in the base models’ generated responses if sampled
sufficiently. This observation prompts them to propose that the role of RL is to bias the generation
toward samples with high reward, thereby harnessing the strong reasoning capabilities that are already
inherent in the base model, rather than infusing new ones.

Given these results and their implications that RL is not strictly necessary for reasoning but is
merely helping “uncover” reasoning from already strong base models, it is natural to ask what
other strategies might be used to elicit reasoning. Exploring alternative methods could be valuable
to help theoretically elucidate the mechanisms underlying reasoning in LLMs, as well as offering
complementary approaches that may provide additional benefits.

Recent work by Kramer and Baumann [2024] pointed out that cognitive psychology and cognitive
sciences in general are the obvious disciplines for investigating the mechanisms underlying reasoning.
In particular, those authors took inspiration from the foundational cognitive architectures framework
by Anderson et al. [1997], which posits that human reasoning arises from the structured execution
of stereotyped cognitive operations that are orchestrated into sequences suited for problem-solving.
Kramer and Baumann [2024] proposed a prompt engineering implementation of these ideas that they
called “cognitive prompting”, consisting essentially in prompts that are structured so as to enable
LLMs to break problems into stages like goal clarification, decomposition, and integration. Cognitive
prompting was shown to significantly enhance arithmetic and commonsense reasoning capabilities of
LLMs.

We build upon this work by going one step further in realizing the cognitive architecture idea that
reasoning comes about as the orchestrated execution of modular cognitive operations that can be
flexibly structured depending on the context at hand. We argue that the cognitive prompting approach
is missing the important element of modularity, i.e., an implementation of cognitive operations that
are encapsulated as discrete tools rather than a predetermined monolithic prompt. Modularity has
long been proposed as a principle to reduce interference between operations in neural networks
(e.g. Soldal [2012]), and it has been shown to be associated with compositional generalization in
neuroscience studies [Ito et al., 2022]. Taking inspiration from modern Agentic AI, we instantiate
modular and compartmentalized cognitive operations in LLMs within a tool-calling architecture
where each cognitive operation is implemented as a dedicated, self-contained function. But while in
agentic tool-calling frameworks, tools are external functions or APIs (e.g., calculators, search engines)
with predefined schemas that LLMs invoke to execute tasks outside their parametric knowledge, in
the case of our “cognitive tools” they encapsulate reasoning operations within the LLM itself. Each
cognitive tool’s schema includes a prompt template that isolates a specific cognitive operation. When
invoked, the LLM executes this prompt in a sandboxed context, generating a structured intermediate
result that is fed back into the main reasoning loop. Unlike general tools, which interface with
external systems, cognitive tools modularize the LLM’s internal reasoning processes.
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2 Related Work

Reasoning Elicitation in LLMs Efforts to elicit robust reasoning in LLMs have evolved through
multiple phases, building on top of the foundational work by Wei et al. [2023] who showed that
Chains-of-Thought (CoT) – generated responses with intermediate reasoning steps toward an answer –
can be elicited through prompting. This work was then built upon resulting in more sophisticated and
effective reasoning schemes [Yao et al., 2023, Besta et al., 2025]. While reinforcement learning (RL)
had a fundamental role in enabling LLMs to follow instructions from human feedback [Ouyang et al.,
2022], the clearer demonstration of its role in reasoning through CoTs was demonstrated by Lightman
et al. [2023] thanks to the proposal of fine-grained Process Reward Models. The subsequent idea of
harnessing Process Reward Models at test-time gave rise to several works, like for instance the paper
by Liang et al. [2024] who used them in search-based methods inspired by Monte Carlo Tree Search
(MCTS) to improve planning accuracy. Shao et al. [2024] proposed GRPO, which Guo et al. [2025]
used to cement the importance of reinforcement learning as part of the LLMs post-training pipeline
for CoT-based reasoning. More recently however, analyses by Liu et al. [2025] and Yue et al. [2025]
suggested that base LLMs inherently possess latent reasoning capabilities, which RL post-training
merely strengthens by biasing the generation toward high-reward CoT traces.

Cognitive Architectures and Structured Reasoning Cognitive architectures like ACT-R [Ander-
son et al., 1997] were based on the assumption that human reasoning emerges from the orchestrated
execution of modular operations, such as goal management and procedural memory. Kramer and
Baumann [2024] proposed a first prompt-engineering translation of these principles to LLMs by
introducing cognitive prompting, which structures prompts into stages like decomposition and in-
tegration, significantly improving arithmetic and commonsense reasoning. However, this approach
lacks explicit modularity and compartmentalization, risking interference between reasoning stages,
and limiting the flexibility of how cognitive operations can be organized. Sumers et al. [2024]
provided another effort to unify cognitive architectures and LLMs, by positioning LLMs as central
controllers in agentic systems with modular memory components and structured action spaces, and
distinguishing external actions (e.g., API calls) from internal actions (e.g., reasoning, retrieval).

Agentic AI Frameworks and Tool-Calling Workflows Modern agentic frameworks, such as
Toolformer [Schick et al., 2023] and HuggingGPT [Shen et al., 2023], enable LLMs to interact with
external tools (e.g., calculators, APIs) via structured schemas. Recent architectures like LangChain
[Chase, 2023] emphasize workflow orchestration but remain agnostic to the internal structure of
reasoning steps. Our work reformulates internal cognitive operations from cognitive architectures
as tools within a modern tool-calling agentic framework, by encapsulating reasoning stages into
modular prompt-driven tools.

3 Methodology: Cognitive Tools

We propose using cognitive tools to elicit the reasoning capabilities of LLMs. We identify four
cognitive tools: understand question, recall related, examine answer, and backtracking. For a
given question, the LLM is prompted to use tools as needed to help it solve the problem correctly
by guiding its reasoning. The execution pipeline is similar to any tool-calling pipeline: the LLM
is prompted to generate a reasoning trace in response to a query until a call to one of the provided
tools t is issued. Once a tool call is detected, we stop the generation and execute the module that
encapsulates the tool t. In our case, each tool represents a call to an LLM (the same as the one
reasoning) with the specific tool role. The output of the execution is provided back to the LLM
that issued the tool call, which continues to reason about the problem until the end-of-sequence
token. This procedure is related to token and budget forcing with test-time scaling, as introduced in
[Muennighoff et al., 2025]. In our work we provide additional flexibility by allowing the LLM to
select which tool to call and when to call it, as if the LLM were left to autonomously and flexibly
implement budget forcing when deemed appropriate.

Understand Question The cognitive architectures literature [Anderson et al., 1997] emphasizes
the importance of goal management in replicating human reasoning, which operates by breaking
down a problem at hand to identify its key components. We implement this process into what we call
the “understand question” tool. The role of this cognitive tool is to prompt the LLM to break down
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Figure 1: Overview of our Cognitive Tools pipeline vs Cognitive Prompting

the problem by identifying the main concepts, extracting relevant information in the question, and
highlighting meaningful properties, theorems, and techniques that might be helpful in solving the
problem.

Recall Related This tool is inspired by the work Yasunaga et al. [2024], which introduces a
prompting technique consisting of asking a model to recall previous knowledge to guide its own
reasoning. In our case, for a given question, the tool provides relevant related knowledge from similar
questions, which it knows how to answer, together with the corresponding answer. The objective is
then to guide the LLM through those examples towards a way it can follow to solve the question at
hand.

Examine Answer The role of this cognitive tool is to examine the current trace of reasoning of
the LLM when trying to find the answer to a question. In other words, it implements a form of
‘self-reflection’, an operation which has been demonstrated to be effective for reasoning [Shinn et al.,
2023]. In practice, this cognitive tool checks the current reasoning trace for possible flaws, wrong
assumptions, miscalculations, or constraints which are not taken into account. Thus, it helps the LLM
to reconsider its reasoning and correct any oversights.

Backtracking When one is faced with an incorrect solution to a problem or realizes that the
train-of-thoughts is flawed, the next action is to backtrack to a previously correct step and explore
alternatives, an idea related to Monte Carlo Tree search (see e.g. Liang et al. [2024]). This defines
the idea behind this tool, which is to enable exploration of more promising reasoning paths. When
the LLM selects a cognitive tool, the tool prompts the LLM to consider the current reasoning trace,
summarizing it and breaking it down into steps. The LLM then proceeds to evaluate which step in
the reasoning process is incorrect and follows up by providing alternative approaches or directions
for solving the problem.
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The cognitive tools are provided to the LLM together with a cognitive tools prompt, i.e. a system
prompt that instructs the LLM on how to proceed with the reasoning process, reading as follows:

Cognitive Tools Prompt

You are an expert assistant who solves problems thoughtfully and effectively. You have access to
a list of tools — these are Python-based functions that you can call to help you reason through or
solve the problem more efficiently.

You are encouraged to use tools when they make the task easier, clearer or more robust —
especially for complex, elaborated or ambiguous questions.
Use your best judgment to decide when to call tools.

You may call tools at any point in your reasoning process. Only use the tools listed below. If you
choose to use a tool, describe your reasoning and clearly call it using their name.
You can solve problems however you find most appropriate.
When you are ready to provide the final answer to the problem or the question always follow the
syntax: ‘ANSWER: answer‘.

You only have access to these tools, do not use any others:

{{cognitive_tools_signature}}

Here are the rules you should always follow to solve your task:
1. **Call a tool when needed.** If you call a tool, only use the available ones and use its full

name to do so.
2. ONLY USE Python to call an available tool and not for something else.
3. Don’t give up! You’re in charge of solving the problem.
4. Do not give an answer without reasoning about it.
5. **Never hallucinate results.** Wait for tool responses before continuing.
6. **Only write your final answer** after you are confident, and always in the form: ‘ANSWER:

your final answer here‘
If the question is already clear, you may skip the ‘understand_question‘ step when the
corresponding tool is available. But when unsure, it’s good practice to use it.

Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.

The placeholder {{cognitive_tools_signature}} is replaced with the tools which the LLM can
use to help its reasoning. In order to take advantage of the capability of LLMs to generate code in
addition to using the cognitive tools, we enable the LLM to generate code as an additional modular
reasoning tool.

In the Appendix, we provide more details on how each tool is individually implemented. Figure 1
provides an illustration of our cognitive tools pipeline compared to cognitive prompting. The main
LLM selects the tool to be executed; the selected tools are executed independently from the main
LLM, but using the same instance, in a modular approach; the execution output is then fed back to
the main LLM, which continues working on the response until the final answer is generated. We
provide pseudo-code of our cognitive tools pipeline in the Appendix.

4 Experiments

Datasets Following established evaluation practices in the reasoning literature [Hendrycks et al.,
2021], in this work we investigate the elicitation of reasoning using cognitive tools on math-oriented
benchmarks. We focus our experiments on math benchmarks because of how reasoning is central in
solving math problems. Specifically, we consider the following datasets:
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• AIME 2024 [MAA, 2024] is a dataset that contains 30 samples which are problems used in the
2024 American Invitational Mathematics Examination (AIME) held from January 31 - February
1, 2024. It is a prestigious high school mathematics competition known for its challenging
mathematical problems on arithmetic, algebra, counting, geometry, number theory, probability, and
other secondary school math topics.

• MATH 500 [Hendrycks et al., 2021] contains 500 math problems across subjects similar to those
in AIME2024 [MAA, 2024] and with different difficulty level.

• AMC [Li et al., 2024] is a curated collection of 83 problems from the AMC competitions of 2022
and 2023, which provides challenging math problems.

• Smolagents Benchmark-v1 [Huggingface, 2024] is composed of questions about different tasks,
such as math or question answering from HuggingFace. Specifically, we consider the math task (50
samples) and refer to it as Smolbenchmark in the rest of the paper.

Models We use the open-weight models Qwen2.5-(7B, 32B) Instruct [Qwen Team, 2024], Llama3.1-
8B Instruct, and Llama3.3-70B Instruct [AI@Meta, 2024]. We also experiment with closed models
GPT-4.1 and o1-preview.

Evaluation and Baselines In all experiments, we report the model’s accuracy in providing the
correct answer on the first try (pass@1). For AIME 2024 [MAA, 2024] and AMC [Li et al., 2024],
the answer from the model is compared to the ground truth via parsing. Regarding MATH500
[Hendrycks et al., 2021], which includes more elaborated answers that are not just numerical (e.g.,
complex expressions), we use an LLM-as-a-judge approach to establish the veracity of the answers
[Zheng et al., 2023]. Specifically, we use GPT-4.1 as a judge and report the accuracy of the model in
answering the questions (see the prompt used for the judge LLM in the Appendix).

Our baseline represents the accuracy out-of-the-box of a model which is prompted to solve the
question. We compare these results to those from our cognitive tools framework and we additionally
provide results when cognitive prompting is used.

5 Results

5.1 Reasoning with Cognitive Tools

Firstly, we are interested to understand how useful our cognitive tools are in helping an LLM to solve
a problem. We introduced in Section 3 cognitive operations encapsulated in the four cognitive tools:
‘understand question’, ‘recall related’, ‘examine answer’ and ‘backtracking’. In the following, we
report the effect of adding each tool individually to an LLM to understand for each LLM in our test
suite which tools are more helpful, since different LLMs reason differently. Table 1 first shows the
accuracy achieved by the LLMs on Smolbenchmark (baseline). It then shows the accuracy of the
LLMs endowed with each tool individually. We observe that each cognitive tool allows the LLMs to
outperform the baseline, with even a +26.7% jump on Llama3.3-70B Instruct using the ‘understand
question’ tool. The impact of each tool varies between the models, with different tools providing
the best improvements. Despite that, we clearly see that our cognitive tools generally help in the
reasoning of the LLM towards the correct solution of a problem.

5.2 Cognitive Tools vs Cognitive Prompting

Our work builds on the concept of cognitive prompting presented by Kramer and Baumann [2024],
complementing it with the insight from cognitive psychology and theoretical neuroscience that
modularity might be important, as it is a fundamental component of cognitive architecture [Anderson
et al., 1997] and has been shown to enable compositional generalization [Ito et al., 2022]. In addition,
a modular approach has multiple benefits from a prompt-engineering perspective compared to a
monolithic prompting approach. First, modularity helps the LLM to focus on implementing the
specific cognitive operation at hand, in isolation from the rest of the context window that has been
provided so far. In other words, it reduces interference from all the information that has been provided
to the LLM throughout the reasoning process, as the LLM is only provided with specific prompts
and the limited information from the context windows corresponding to the inputs of the cognitive
tool specified in its schema. Second, our modular approach encourages flexibility: we do not enforce
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Tools Qwen2.5-7B Qwen2.5-32B Llama3.1-8B Llama3.3-70B

baseline 75.8 ± 1.1 79.6 ± 1.4 48.7 ± 1.8 52.8 ± 1.2
understand question 78.6 ± 0.7 82.5 ± 0.8 59.4 ± 0.9 79.5 ± 0.8
recall related 76.1 ± 0.8 84.2 ± 0.8 53.2 ± 1.5 75.1 ± 0.8
examine answer 77.8 ± 0.8 84.0 ± 0.6 50.9 ± 1.3 74.9 ± 0.7
backtracking 80.5 ± 0.5 82.9 ± 0.8 57.2 ± 1.6 78.2 ± 1.0

Table 1: Accuracy of the ‘Instruct’ version of the listed model on the Smolbenchmark dataset.
‘Baseline’ indicates the performance of the plain model. The subsequent rows indicate the performance
of the models endowed with each specific cognitive tool. Tools generally provide a boost over the
baseline with different tools achieving the highest performance for different models. The values in the
table are average pass@1 accuracy over 16 repetitions, and uncertainty intervals represent standard
error. A Welch’s t-test confirms that all differences between baseline and the best individual tool are
statistically significant with p < 0.05

the model to use a predefined order of tool calls or strategy to solve the query, but instead we let it
figure out the best way to answer the question. This contrasts with cognitive prompting [Kramer and
Baumann, 2024], which directly provides the LLM with the order of steps it needs to follow to solve
a given problem.

To concretely demonstrate these presumed benefits of modular cognitive tools over monolithic
prompting approaches like Kramer and Baumann [2024] we compare the performance of cognitive
prompting with our cognitive tools on Smolbenchmark, and provide the results in Table 2. We notice
that, while cognitive prompting reliably matches or outperforms the baseline model, our modular
cognitive tools consistently surpass cognitive prompting in performance. In particular, we obtain
performance increases ranging from +4.2% on Qwen2.5-7B-Instruct to +27.2% on Llama3.3-70B
over the baseline. These results confirm the effectiveness of our cognitive tools approach in eliciting
robust reasoning in LLMs.

Tools Qwen2.5-7B Qwen2.5-32B Llama3.1-8B Llama3.3-70B

baseline 75.8 79.6 48.9 52.8
cognitive prompting 74.0 82.0 47.1 66.0
cognitive tools 80.0 88.0 60.0 80.0

Table 2: Comparison between baseline (regular LLM without tools), cognitive prompting [Kramer
and Baumann, 2024] and cognitive tools on the Smolbenchmark dataset (all model used are the
Instruct instruction fine-tuned version).

5.3 Main Results

Figure 2 provides the main results demonstrating the effectiveness of cognitive tools to solve chal-
lenging math problems. In the figure we show the performance of our cognitive tools when added to
the baseline model and report in Table 3 more detailed results. For this benchmark, models have all
the cognitive tools that we examined in Table 1 at their disposal. We report the accuracy of both the
baseline and the model with cognitive tools on AIME 2024 [MAA, 2024], MATH500 [Hendrycks
et al., 2021], AMC [Li et al., 2024]. We also include the results of Chain-of-Thought (CoT) [Wei
et al., 2023] and code-equipped baseline model. For the latter, we include a prompt allowing the
model to write code, which is then executed and the output given back to the model to continue its
reasoning. We observe that on AIME 2024, despite it being a very difficult dataset, our cognitive tools
are able to improve significantly over the baseline. The availability of cognitive tools consistently
improves performance across all models and benchmarks. This further validates that our cognitive
tools transfer well across reasoning benchmarks like math problems. Furthermore, while equipping
the model with coding capabilities is beneficial, our cognitive tools continue to play a crucial role in
enhancing reasoning capabilities.
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Model AIME 2024 MATH500 AMC Avg

Qwen2.5-7B Instruct 12.5 ± 0.7 71.7 ± 1.3 43.9 ± 1.3 42.7
Qwen2.5-7B Instruct + cot 12.5 ± 0.1 71.8 ± 0.4 41.5 ± 0.7 41.9
Qwen2.5-7B Instruct + code 12.1 ± 0.6 73.1 ± 0.5 42.9 ± 0.7 42.7
Qwen2.5-7B Instruct + cognitive tools 14.6 ± 1.8 73.7 ± 0.5 47.0 ± 0.5 45.1
Qwen2.5-32B Instruct 17.2 ± 1.2 74.1 ± 0.7 52.6 ± 0.8 48.0
Qwen2.5-32B Instruct + cot 15.4 ± 0.6 79.2 ± 0.3 50.4 ± 0.6 48.3
Qwen2.5-32B Instruct + code 19.6 ± 0.6 80.6 ± 0.3 57.7 ± 0.8 50.2
Qwen2.5-32B Instruct + cognitive tools 32.1 ± 1.9 81.8 ± 0.6 62.7 ± 1.2 58.9
Llama3.1-8B Instruct 5.8 ± 1.0 43.2 ± 0.5 20.3 ± 0.8 23.1
Llama3.1-8B Instruct + cot 7.9 ± 1.6 53.3 ± 0.5 24.5 ± 1.3 28.6
Llama3.1-8B Instruct + code 5.8 ± 1.3 51.6 ± 0.7 26.7 ± 1.0 28.0
Llama3.1-8B Instruct + cognitive tools 8.8 ± 1.7 50.7 ± 1.0 28.0 ± 1.2 29.2
Llama3.3-70B Instruct 13.1 ± 1.0 57.0 ± 0.5 33.0 ± 0.9 34.4
Llama3.3-70B Instruct + cot 18.1 ± 1.0 70.7 ± 0.5 40.6 ± 0.8 43.1
Llama3.3-70B Instruct + code 19.0 ± 0.7 71.6 ± 0.3 45.2 ± 1.2 45.3
Llama3.3-70B Instruct + cognitive tools 29.8 ± 1.2 74.7 ± 0.5 51.0 ± 0.5 51.8

Table 3: Evaluation of our cognitive tools pipeline for different base LLMs on the math benchmarks
detailed in Section 3. The availability of cognitive tools enable LLMs to display robust reasoning
which consistently results in significant improvement in pass@1 accuracy (the table shows averages
over multiple runs (> 8) and uncertainty intervals representing standard error).

5.4 How close are we to a reasoning model (RL trained)?

One hypothesis of our work is that it is possible to find alternatives to elicit reasoning capabilities
of LLMs other than RL. We proposed that modular cognitive tools could be a possible mechanism
of achieving this and demonstrated the viability of this approach on open-weight models to tackle
challenging math reasoning tasks.

An intriguing outstanding question is how well this type of reasoning would compare against
reasoning models, in particular on closed models which provided the first demonstration of reasoning
capabilities. To take a step towards answering this question, we add our cognitive tools to GPT-4.1
and evaluate the accuracy of the augmented model with respect to its baseline as well as o1-preview
reasoning, the first reported reasoning model trained with RL. We perform this evaluation on AIME
2024 and Table 4 shows the results of this experiment. We observe that GPT-4.1 with cognitive tools
significantly outperforms the baseline, achieving performance that surpasses o1-preview, all without
any additional training, solely through the reasoning enhancements provided by our cognitive tools.

Model AIME 2024

o1-preview 44.6
GPT-4.1 32.0
GPT-4.1 + cognitive prompting 42.0
GPT-4.1 + cognitive tools 53.0

Table 4: GPT-4.1 vs o1-preview on AIME 2024.

6 Discussion and Conclusion

Our work proposes a method for eliciting reasoning in LLMs that is based on the idea of modular
cognitive tools, implemented as isolated, prompt-driven operations within an agentic tool-calling
framework. We demonstrate that cognitive tools substantially improve the reasoning performance of
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Figure 2: Bar plot displaying the gains in terms of pass@1 accuracy provided by our cognitive tools
for different models over the math reasoning benchmarks AIME2024, AMC and MATH500. The
lighter shades represent the baseline performance, the values refer to the performance of the LLMs
endowed with cognitive tools, and the darker shades represent the relative gain. The plotted valued
are reported in Table 3.

large language models. By compartmentalizing cognitive operations such as query understanding,
recalling, re-examination, and backtracking, our approach reduces interference between reasoning
steps, which addresses a key limitation of flat prompting and monolithic chain-of-thought methods.
The observed gains in mathematical reasoning benchmarks highlight the practical value of this
modular design.

Our findings also contribute to the ongoing debate about the origins of reasoning in LLMs. The
effectiveness of base models endowed with cognitive tools supports the hypothesis that pre-training
instills latent reasoning capabilities, which can be surfaced through structured modular workflows,
rather than being capabilities that are instilled via post-training, for instance via reinforcement
learning. This indicates that modular prompting could be a more interpretable and possibly more
efficient alternative or complement to reinforcement fine-tuning.

From an agentic AI perspective, our approach bridges the gap between traditional tool-calling –
focused on external APIs and functions – and the need for explicit, modular internal reasoning.
This not only aligns with insights from cognitive science and neuroscience regarding the benefits of
modularity and compositionality, but, since each reasoning step can be associated with a particular
cognitive tool, also enhances transparency and explainability in AI agents, which is crucial for
real-world applications demanding interpretable decision-making.
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Broader Impact and Limitations

Our framework for modular cognitive tools carries significant implications for developing transparent
and reliable AI systems. By structuring reasoning into discrete, interpretable steps, it enhances
accountability in contexts where understanding AI decision-making is crucial, particularly in high-
stakes domains such as healthcare, education, and legal analysis. The method’s compatibility
with base models also democratizes access to advanced reasoning capabilities, reducing reliance
on resource-intensive reinforcement learning pipelines. However, while promising, our method
currently relies on manually defined cognitive tools and has been primarily evaluated on mathematical
reasoning tasks tailored to the specific models tested. In other words, the prompts that implement
our cognitive tool might not work as well on model families other than those that we tested without
additional prompt-engineering effort. Future work should explore the automated discovery of
cognitive operations, integrate with reinforcement learning, and expand applications to domains
beyond arithmetic reasoning.
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G. Kwaśniewski, J. Müller, L. Gianinazzi, A. Kubicek, H. Niewiadomski, A. O’Mahony, O. Mutlu,
and T. Hoefler. Demystifying Chains, Trees, and Graphs of Thoughts, Feb. 2025.

H. Chase. LangChain. https://github.com/langchain-ai/langchain, 2023.

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, X. Zhang,
X. Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu, B. Feng,
C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo,
G. Hao, G. Chen, G. Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Ding, H. Xin, H. Gao, H. Qu, H. Li,
J. Guo, J. Li, J. Wang, J. Chen, J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni, J. Liang, J. Chen, K. Dong,
K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L. Wang, L. Zhang, L. Zhao, L. Wang, L. Zhang,
L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang, M. Li, N. Tian, P. Huang, P. Zhang,
Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan, R. Wang, R. J. Chen, R. L. Jin, R. Chen,
S. Lu, S. Zhou, S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, S. S. Li, S. Zhou, S. Wu, S. Ye,
T. Yun, T. Pei, T. Sun, T. Wang, W. Zeng, W. Zhao, W. Liu, W. Liang, W. Gao, W. Yu, W. Zhang,
W. L. Xiao, W. An, X. Liu, X. Wang, X. Chen, X. Nie, X. Cheng, X. Liu, X. Xie, X. Liu, X. Yang,
X. Li, X. Su, X. Lin, X. Q. Li, X. Jin, X. Shen, X. Chen, X. Sun, X. Wang, X. Song, X. Zhou,
X. Wang, X. Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. Zhang, Y. Xu, Y. Li, Y. Zhao, Y. Sun,
Y. Wang, Y. Yu, Y. Zhang, Y. Shi, Y. Xiong, Y. He, Y. Piao, Y. Wang, Y. Tan, Y. Ma, Y. Liu, Y. Guo,
Y. Ou, Y. Wang, Y. Gong, Y. Zou, Y. He, Y. Xiong, Y. Luo, Y. You, Y. Liu, Y. Zhou, Y. X. Zhu,
Y. Xu, Y. Huang, Y. Li, Y. Zheng, Y. Zhu, Y. Ma, Y. Tang, Y. Zha, Y. Yan, Z. Z. Ren, Z. Ren,
Z. Sha, Z. Fu, Z. Xu, Z. Xie, Z. Zhang, Z. Hao, Z. Ma, Z. Yan, Z. Wu, Z. Gu, Z. Zhu, Z. Liu, Z. Li,
Z. Xie, Z. Song, Z. Pan, Z. Huang, Z. Xu, Z. Zhang, and Z. Zhang. DeepSeek-R1: Incentivizing
Reasoning Capability in LLMs via Reinforcement Learning, Jan. 2025.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring mathematical problem solving with the math dataset, 2021. URL https://arxiv.
org/abs/2103.03874.

10

https://github.com/meta-llama/llama-models/tree/main
https://github.com/meta-llama/llama-models/tree/main
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874


A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and R. Agarwal. V-STaR: Training
Verifiers for Self-Taught Reasoners, Aug. 2024.

Huggingface. Smolagents benchmark v1. https://huggingface.co/datasets/smolagents/
benchmark-v1, 2024. Accessed: 2025.

T. Ito, T. Klinger, D. Schultz, J. Murray, M. Cole, and M. Rigotti. Compositional generalization
through abstract representations in human and artificial neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 36, 2022.

O. Kramer and J. Baumann. Unlocking Structured Thinking in Language Models with Cognitive
Prompting, Oct. 2024.

N. Lambert, J. Morrison, V. Pyatkin, S. Huang, H. Ivison, F. Brahman, L. J. V. Miranda, A. Liu,
N. Dziri, S. Lyu, Y. Gu, S. Malik, V. Graf, J. D. Hwang, J. Yang, R. L. Bras, O. Tafjord, C. Wilhelm,
L. Soldaini, N. A. Smith, Y. Wang, P. Dasigi, and H. Hajishirzi. Tulu 3: Pushing Frontiers in Open
Language Model Post-Training, Apr. 2025.

J. Li, E. Beeching, L. Tunstall, B. Lipkin, R. Soletskyi, S. C. Huang, K. Rasul,
L. Yu, A. Jiang, Z. Shen, Z. Qin, B. Dong, L. Zhou, Y. Fleureau, G. Lam-
ple, and S. Polu. Aimo-amc. https://huggingface.co/AI-MO/NuminaMath-1.
5, https://github.com/project-numina/aimo-progress-prize/blob/main/report/
numina_dataset.pdf, 2024. Accessed: 2025.

Z. Liang, Y. Liu, T. Niu, X. Zhang, Y. Zhou, and S. Yavuz. Improving LLM Reasoning through
Scaling Inference Computation with Collaborative Verification. Oct. 2024.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever,
and K. Cobbe. Let’s Verify Step by Step, May 2023.

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin. Understanding R1-Zero-Like
Training: A Critical Perspective, Mar. 2025.

Q. Ma, H. Zhou, T. Liu, J. Yuan, P. Liu, Y. You, and H. Yang. Let’s reward step by step: Step-Level
reward model as the Navigators for Reasoning, Oct. 2023.

M. MAA. Aime problems and solutions, Feb. 2024. URL https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions. Accessed May 2025.

N. Muennighoff, Z. Yang, W. Shi, X. L. Li, L. Fei-Fei, H. Hajishirzi, L. Zettlemoyer, P. Liang,
E. Candès, and T. Hashimoto. s1: Simple test-time scaling, 2025. URL https://arxiv.org/
abs/2501.19393.

OpenAI. Learning to reason with LLMs, Sept. 2024.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
and A. Ray. Training language models to follow instructions with human feedback. Advances in
neural information processing systems, 35:27730–27744, 2022.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and
T. Scialom. Toolformer: Language Models Can Teach Themselves to Use Tools, Feb. 2023.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu, and D. Guo.
DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models, Apr.
2024.

Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang. HuggingGPT: Solving AI Tasks with
ChatGPT and its Friends in Hugging Face, Dec. 2023.

N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language
Agents with Verbal Reinforcement Learning, Oct. 2023.

11

https://huggingface.co/datasets/smolagents/benchmark-v1
https://huggingface.co/datasets/smolagents/benchmark-v1
https://huggingface.co/AI-MO/NuminaMath-1.5
https://huggingface.co/AI-MO/NuminaMath-1.5
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


K. V. Soldal. Modularity as a solution to spatial interference in neural networks. Master’s thesis,
Institutt for datateknikk og informasjonsvitenskap, 2012.

T. R. Sumers, S. Yao, K. Narasimhan, and T. L. Griffiths. Cognitive Architectures for Language
Agents, Mar. 2024.

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and I. Higgins.
Solving math word problems with process- and outcome-based feedback, Nov. 2022.

P. Wang, L. Li, Z. Shao, R. X. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-Shepherd: Verify
and Reinforce LLMs Step-by-step without Human Annotations, Feb. 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-
Thought Prompting Elicits Reasoning in Large Language Models, Jan. 2023.

Y. Xie, A. Goyal, W. Zheng, M.-Y. Kan, T. P. Lillicrap, K. Kawaguchi, and M. Shieh. Monte Carlo
Tree Search Boosts Reasoning via Iterative Preference Learning, June 2024.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. Advances in neural information processing
systems, 36:11809–11822, 2023.

M. Yasunaga, X. Chen, Y. Li, P. Pasupat, J. Leskovec, P. Liang, E. H. Chi, and D. Zhou. Large
language models as analogical reasoners, 2024. URL https://arxiv.org/abs/2310.01714.

Y. Yue, Z. Chen, R. Lu, A. Zhao, Z. Wang, Y. Yue, S. Song, and G. Huang. Does Reinforcement
Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?, Apr. 2025.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing,
H. Zhang, J. E. Gonzalez, and I. Stoica. Judging LLM-as-a-Judge with MT-Bench and Chatbot
Arena, Dec. 2023.

12

https://arxiv.org/abs/2310.01714


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract are supported by empirical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
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3. Theory assumptions and proofs
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Justification: [NA]
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, everything needed to reproduce results is disclosed: empirical validations
are carried out on publicly available datasets, and we plan to release code to reproduce
results upon acceptance.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets that were used are publicly available and code, but code will be
released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use standard splits and tried to be thorough in providing details to replicate
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we provide error bars in key tables (in Supplemental Material section).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we describe our hardware setup in the text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not deviate from the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, discuss broader impact of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Proper credit is mentioned.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In our case new assets deriving from our work are prompt and LLM orchestra-
tion code that will be released upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Experiments Details

In this section, we provide more details on the experiments. Specifically, we include the hyper-
parameters used by the models, the prompts used for the baseline, for the cognitive prompting
experiments and for each cognitive tool implementation.

A.1 Model Inference Hyper-parameters

We use the default hyper-parameters provided in the model configurations for all the models that we
considered in our experiments. For instance, for Qwen2.5-(7B,32B)-Instruct we use a temperature of
0.7, top-p of 0.8 and top-k of 20. As for Llama-3.1-(8, 70)B-Instruct, the temperature is of 0.6, and
top-p of 0.9.

A.2 Baseline

We establish our baseline on Qwen2.5-(7B, 32B) Instruct, Llama3.1-8B Instruct, Llama3.3-70B
Instruct and GPT-4.1 models by prompting the LLM with the question we want to have an answer for.
We only append the sentence: "Solve the math problem: " to each question and we do not change the
system prompt of the model. The final prompt to the LLM looks like:

Solve the math problem: ‘Rick is thinking of a positive factor of 14 and Steve
is thinking of a positive factor of 42. If Rick and Steve are thinking of the same
number, how many possible numbers could they be thinking of?’

A.3 Cognitive Prompting

For the cognitive prompting strategy, we use the prompt released in Kramer and Baumann [2024],
which is as follows:

Cognitive Prompting (prompt)

Solve the following math problem by following each step of cognitive operations from the list
below. For each step, provide your reasoning and calculations before moving on to the next step.

Cognitive Operations:
1. Goal Clarification: Restate the problem in your own words.
2. Decomposition: List the given information.
3. Filtering: Identify what you need to find.
4. Reorganization: Assign variables to the unknowns.
5. Pattern Recognition: define each variable clearly.
6. Abstraction: Set up equations based on the problem.
7. Generalization: Solve the equations step by step.
8. Integration: Verify your solution with the given information.
Your Response: Please start with "Restate the problem in your own words" and proceed through
each cognitive operation step by step, providing detailed reasoning and calculations for each.
Give the final answer using the format: ‘ANSWER: answer’.

A.4 Pseudo-code of cognitive tools pipeline

We report in Algorithm 1 pseudo-code illustrating how tools interact with the main LLM loop in our
cognitive tools pipeline.
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Algorithm 1 LLM-Orchestrated Reasoning with Cognitive Tools
1: Initialize context← {question: question, history: [ ]}
2: while True do
3: response← LLM(prompt = "Cognitive Tools Prompt", context)
4: if response["action"] = "answer" then
5: return response["answer"]
6: else if response["action"] = "call_tool" then
7: tool_input← response["tool_input"]
8: tool_name← response["tool_name"]
9: tool_output← LLM(prompt = "Tool Prompt", inputs = tool_input)

10: context["history"].append({tool_call : tool_input, tool_output : tool_output})
11: end if
12: end while

A.5 Cogntive Tool Prompts

As explained in the main text, the cognitive tools that we introduce are implemented in a modular
fashion. Each cognitive tool is implemented as a call to an LLM (same as the original one) but with
a specific prompt tailored to the specifics of the tool. Below we present the prompt used for each
cognitive tool:

Understand Question Prompt

You are a mathematical reasoning assistant designed to analyze and break down complex math-
ematical problems into structured steps to help the system that actually solves problems. Your
goal is to:
1. Identify the core mathematical concepts involved (e.g., algebra, calculus, linear algebra).
2. Extract and categorize relevant symbols, variables, and functions.
3. Rephrase the problem into a step-by-step sequence that makes solving easier.
4. Highlight any known theorems or techniques that might be useful in solving the problem.
5. DO NOT provide any answer to the question, only provide instructions which will guide the

upstream system."

Recall Related Prompt

You are a retrieval assistant whose purpose is to help solve new mathematical problems by
providing solved examples of analogous problems.

Given a new math problem, your task is to:
1. Identify 2 or 3 **similar problems** from your knowledge or training set that require
**comparable mathematical concepts or reasoning steps**.
2. For each similar problem:
- Provide the **full problem statement**.
- Provide a **complete step-by-step solution**, including relevant formulas, simplifications, or
code.
- Highlight the **final answer**, preferably using LaTeX formatting (e.g., ‘ 42 ‘).

Do **not** solve the current problem. Instead, present only useful analogous examples that
could help someone reason through it.

Output Format:

Analogous Example 1:
Q: [Similar Problem 1]
A: [Step-by-step solution...]
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Final Answer: ...

Analogous Example 2:
Q: [Similar Problem 2]
A: [Step-by-step solution...]
Final Answer: ...

Analogous Example 3:
Q: [Similar Problem 3]
A: [Step-by-step solution...]
Final Answer: ...

Some important notes to keep in mind.

- Select examples with strong structural or conceptual similarity, not just keyword overlap.
- Variation in surface details (numbers, variable names) is acceptable as long as the mathematical
logic aligns.

Examine Answer Prompt

You are an expert mathematical assistant tasked with **verifying and improving** solutions
to complex mathematical problems. Your role is **not to solve the problem** but to critically
analyze the provided solution for correctness, clarity, and completeness. You will be given a
problem/question and the current reasoning that has been produced so far.

### **Your Task:**

Follow a structured **verification process**:

### **1. Understanding the Problem**
- Ensure the proposed solution correctly interprets the given problem.
- Identify the core mathematical concepts involved (e.g., algebra, calculus, number theory).
- Extract and categorize relevant symbols, variables, and functions.
- Identify any implicit assumptions or missing constraints.

### **2. Verifying the Given Solution**
- Clearly state what is the current answer of the problem.
- Break the provided solution down into distinct logical steps.
- Check for **logical consistency**, **mathematical correctness**, and **proper justification**.
- Identify any **miscalculations, incorrect assumptions, or unjustified leaps** in reasoning.
- Analyze the **edge cases** or conditions where the solution may fail.
- Evaluate whether all necessary steps and justifications are present.

#### **2.a) Testing and Validation (Problem-Derived Checks)**
- Examine the original problem statement and extract any **constraints, conditions, identities, or
testable properties** that a correct answer must satisfy.
- Derive **test cases or evaluation criteria** based on those constraints.

**If the proposed solution is a numerical answer:**
- Plug the number into the original equation(s), inequality, or scenario to verify it satisfies all
conditions.
- Check whether it meets qualitative criteria (e.g., smallest, largest, integer, range bounds).

**If the proposed solution is an expression or formula:**
- **Symbolically substitute** the expression into the original problem statement or equations,
and confirm that it satisfies all requirements.
- Simplify or manipulate the expression to check **equivalence**, **domain correctness**, and
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**edge cases**.
- Where applicable, test the expression against representative sample inputs derived from the
problem.

**For both cases:**
- Clearly describe each test performed and the outcome.
- State whether the provided answer (number or expression) **passes all derived problem-based
tests**.

### **3. Suggesting Improvements**
- If an error is found, explain **precisely what is wrong** and **why**.
- Suggest possible fixes or improvements **without directly solving the problem**.
- Propose alternative methods to solve the problem where relevant (e.g., algebraic vs. numerical,
direct proof vs. counterexample).

### **4. Providing a Judgment**
- Clearly state whether the proposed solution is **correct or incorrect**.
- Justify your judgment with a concise explanation.
- If incorrect, **recommend corrections** without providing a direct answer.

### **Guidelines to Follow:**
- DO NOT provide the actual answer to the problem.
- Focus only on verifying and critiquing the given solution.
- Be rigorous in checking correctness but also constructive in suggesting improvements.
- Explicitly say whether the answer is correct or incorrect

Now, **critically analyze the solution**, highlight any mistakes, and suggest improvements
where necessary."""

Backtracking Prompt

You are a careful problem-solving assistant with the ability to backtrack from flawed logic.

You will be given a math or logic problem and a reasoning trace. Your task is to:
1. Analyze the reasoning and summarize it into different steps.
2. Identify where the first error, bad assumption, or confusion occurs (if any).
3. Propose how to revise the approach from that point onward, using the steps that you have
defined.
4. If the entire approach was invalid, suggest a better strategy from scratch.

Use the following format for your response:

**Identified Issues:**
- Step X: Explain what is incorrect or suboptimal.
- (Repeat for any additional steps if needed.)

**Backtrack Point:**
- Indicate the step where reasoning was still valid and you can continue from.

**Revised Strategy (from backtrack point or new):**
- Present a step-by-step strategy to solve the problem correctly from this point.
—

Be precise and critical. Avoid vague judgments. Always backtrack to the most recent correct step,
unless no step is valid. """

We also provide below the prompt used for the “code tool”, which is called whenever the LLM
attempts to generate code during the reasoning process:
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Use Code Prompt

You are a Python coding assistant designed to generate correct and efficient code to solve a given
problem or question.

You will receive:
- A **problem description** that outlines the task to solve.
- Optionally, **chain-of-thought (CoT) reasoning** which may contain errors.
- Optionally, a **previous attempt at code** and/or **error messages** if earlier attempts failed.

Your tasks:

1. **Analyze** the problem and any provided reasoning or code.
2. If the reasoning or code contains **mistakes**, **ignore or fix them** as appropriate.
3. Generate a **correct and clean Python solution** to the original problem.
4. If provided with an error message, **identify the cause** and **refine the code** accordingly.
5. Your code must be:
- **Correct**
- **Efficient**
- **Well-structured** and **readable**
6. ALWAYS follow this format:

Thought: your thinking process on how you want to solve the problem with code which can be
helped by the previous reasoning or from scratch
Code:
“‘python <your code here> “‘ 7. Ensure the code **prints the final result** using ‘print()‘. The
result must be printed explicitly.

**Important rules:**

- Think first before you give out the code
- If necessary, re-derive the correct logic yourself.
- Prioritize correctness, even if it means deviating from flawed prior steps.
- ALWAYS explicitly PRINT the final result in the code with ‘print()‘

Now generate the code to solve the problem.

B Additional Analysis

B.1 Ablation on motivational phrases

Our cognitive tools pipeline is made available to an LLM through cognitive tools prompt defined in
section 3. This prompt includes motivational phrases which can encourage the LLM to solve the
task at hand. For instance, we have at the end of the prompt the sentence “Now Begin! If you solve
the task correctly, you will receive a reward of $1,000,000”. In this section, we evaluate the impact
of such motivational points on the performance of our pipeline. To do so, we run experiments on
AIME2024 where we remove from the cognitive tools prompt any motivational phrases and leave
strict instructions related to the task and the pipeline. In table 5, we show the results on Llama
and Qwen models, comparing the baseline, the original cognitive tools prompt and the one without
motivational cues. we observe that removing the motivational cues does not negatively impact our
method. Interestingly, if anything we actually see a modest improvement in average performance
across models when removing the motivational cues (although that comes at the cost of increased
variability, as indicated by higher standard errors).

B.2 Statistics on tool usage

In this section, we provide an analysis of tool calls. The first observation that this analysis reveals is
that the statistics of cognitive tool calls depend considerably on the task. For instance, the “understand
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Mode Qwen2.5-7B Qwen2.5-32B Llama3.1-8B Llama3.3-70B

baseline 12.5 ± 0.7 17.2 ± 1.2 5.8 ± 1.0 13.1 ± 1.0
no motivational cues 16.7 ± 3.3 32.1 ± 2.9 9.8 ± 3.7 36.7 ± 3.5
original 14.6 ± 1.8 32.1 ± 1.9 8.8 ± 1.7 29.8 ± 1.2

Table 5: Accuracy of the “Instruct” version of the listed model on the AIME2024 dataset. “baseline”
indicates the performance of the plain model, “no motivational cues” indicates the performance
of cognitive tools pipeline without motivational cues, and “original” shows results of the original
cognitive tools pipeline.

question” tool is called quite frequently for more difficult benchmarks like AIME2024 (in which
across all models it is called in 80% of the samples) with respect to the easier Smolbenchmark (in
which it is called 14% of the samples), consistent with the idea that harder tasks might require a
deeper reflection and initial planning. We saw a similar pattern for “examine answer” (called 60%
of the time on AIME2024 and 20% of the time on Smolbenchmark), while this pattern was almost
reversed for the “use code” tool (called 77% of the time on AIME2024 and 80% of the time on
Smolbenchmark). Table 6 gives more details on the frequency of the tool use on the different datasets.

Dataset understand examine use code backtrack recall

AIME2024 80.7 61.6 77.0 55.4 54.3
MATH500 58.3 43.0 72.9 22.4 22.1
AMC 74.9 52.7 73.0 41.5 40.9
Smolbenchmark 14.3 19.8 79.8 8.25 8.25

Table 6: Frequency (%) of tool use across all model families on the different datasets: AIME2024,
MATH500, AMC, Smolbenchmark. The “understand”, “examine”, “backtrack” and “recall” columns
refer to “understand question”, “examine answer”, “backtracking” and “recall related” tools, respec-
tively.

We also saw differences across model families. For instance, Llama models called the “use code”
tool more frequently on AIME2024 than Smolbenchmark (80% of the time versus 74% of the time),
while Qwen models exhibited the opposite pattern, calling the “use code” tool only 58% of the time
on AIME2024 but 84% of the time on Smolbenchmark. On average, with respect to the relative use
of “backtracking” and “understand question”, our analysis confirms the intuition that the latter is
more useful as it is being called 42% of the time across benchmarks and models, while “backtracking”
is only called 20% of the time. The tool “examine answer” lies in between, with an average call
frequency of 35%. We provide in Table 7 more details on the frequencies of tool use relatively to the
model families and datasets.

Model Family Dataset understand examine use code backtrack recall

Llama

AIME2024 99.3 74.4 80.1 64.1 61.4
MATH500 96.5 72.1 67.9 36.4 34.3
AMC 97.9 69.5 74.1 50.8 48.6
Smolbenchmark 25.8 36.9 74.3 15.6 15.2

Qwen

AIME2024 16.3 0.75 58.3 0.71 5.75
MATH500 4.88 2.07 80.0 0.18 23.1
AMC 12.1 0.87 67.0 0.57 6.28
Smolbenchmark 2.18 1.37 84.04 0.21 0.71

Table 7: Details on the frequency (%) of tool use across all Llama and Qwen model families on the
different datasets: AIME2024, MATH500, AMC, Smolbenchmark. The “understand”, “examine”,
“backtrack” and “recall” columns refer to “understand question”, “examine answer”, “backtracking”
and “recall related” tools, respectively.
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The tools “backtracking” and “recall related” are the least used (both around 20% of the time),
but, interestingly, they tend to be called in conjunction as they display the highest correlation
between tool calls (a Pearson correlation of 0.18 on Smolbenchmark). A possible explanation for this
correlation is that the LLMs are implementing a sort of “recovery workflow”, where they first recall
multiple relevant pieces of information, try to follow them through in sequence, and backtrack upon
encountering failure, to then pursue the next one. For more details, we provide in Table 8 the Pearson
correlation of the tool calls, showing how often one tool is called in combination with another one.

understand examine backtrack recall

understand 1.000 0.005 0.136 0.125
examine 0.005 1.000 0.009 0.003
backtrack 0.136 0.009 1.000 0.181
recall 0.125 0.003 0.181 1.00

Table 8: Pearson correlation between cognitive tools, defining the co-occurrence of their use. The
calculation is done over on Smolbenchmark and across model families (Llama, Qwen). The “un-
derstand”, “examine”, “backtrack” and “recall” columns refer to “understand question”, “examine
answer”, “backtracking” and “recall related” tools, respectively.

B.3 Computational Overhead

We provide in this section the computational cost of our cognitive tools pipeline through the average
number of output tokens. Indeed, for our GPT-4.1 experiments, we calculated the average token
counts per question when running our cognitive tools on AIME2024 and we obtained 4,200 output
tokens per question compared to 2,000 output tokens on the baseline. This shows that cognitive tools
incur a cost in terms of output tokens that is more than twice the non-reasoning baseline, which is
consistent with the higher cost of reasoning models, and emphasizes the known trade-offs between
accuracy and cost.

C Evaluation

We instruct the LLM to give its answer following the format ‘Final Answer’: answer. For AIME
2024 and AMC we parse the final answer from the output of the LLM and compare it against the
ground truth answer (numerical values) and calculate the accuracy of the predictions. For MATH500,
which requires more elaborated answers, we evaluate responses using an LLM-as-a-judge approach
[Zheng et al., 2023] using GPT-4.1 as a judge of the answers from the LLM. We give to the judge
the parsed answers from the LLM together with the ground truth and instructs it to say whether the
parsed answer is correct or incorrect. The prompt used for the judge is as follows:

Evaluation Prompt (LLM-as-a-judge)

The following two expressions are answers to a math problem. They can be given as direct
numerical answers or as a full reasoning. You have to judge whether they are equivalent.
Only perform trivial simplifications, but accept numerical answers which are correct within a
reasonable numerical tolerance.

Examples:

Expression 1: 2x+ 3
Expression 2: 3 + 2x

Yes

Expression 1: 3/2
Expression 2: 1.5
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Yes

Expression 1: x2 + 2x+ 1
Expression 2: y2 + 2y + 1

No

Expression 1: x2 + 2x+ 1
Expression 2: (x+ 1)2

Yes

Expression 1: 3245/5
Expression 2: 649

Yes
(trivial simplifications are allowed)

Expression 1: 2/(-3)
Expression 2: -2/3

Yes
(trivial simplifications are allowed)

Expression 1: 72 degrees
Expression 2: 72

Yes
(give benefit of the doubt to units)

Expression 1: 64
Expression 2: 64 square feet

Yes
(give benefit of the doubt to units)

—

YOUR TASK

Respond with only "Yes" or "No" (without quotes). Do not include a rationale.

Expression 1: %(expression1)s
Expression 2: %(expression2)s
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C.1 Example Execution Trace

In this section, we consider an example question, taken from MATH500, answered both using the
baseline LLM as well as with our cognitive tool pipeline. In particular, we provide the conversation
trace obtained with the relatively small model Llama3.1-8B Instruct, to show how these tools help
guiding the reasoning of smaller models.

The question that is passed as user input is as follows:

Solve the math problem: ‘Find the greatest common divisor of 3339, 2961, and 1491.’

The actual correct answer is 21.

Native response

To find the greatest common divisor (GCD) of 3339, 2961, and 1491, we can follow these
steps:

1. Find the GCD of 3339 and 2961:

We can use the Euclidean algorithm to find the GCD.

3339 = 2961 * 1 + 378
2961 = 378 * 7 + 375
378 = 375 * 1 + 3
375 = 3 * 125 + 0

The GCD of 3339 and 2961 is 3.

2. Now, find the GCD of 3 and 1491:
We can also use the Euclidean algorithm to find the GCD.

1491 = 3 * 497 + 0

The GCD of 3 and 1491 is 3.

Since the GCD of 3339 and 2961 is 3, and the GCD of 3 and 1491 is 3, the GCD of 3339,
2961, and 1491 is also 3.

So, the greatest common divisor of 3339, 2961, and 1491 is 3.

Conversation trace with cognitive Tools

To begin, I will call the ‘understand_question’ tool to break down the math question and
provide more clear and detailed explanations of what’s being asked and what’s needed.

print(understand_question ({
’question ’: ’Find the GCD of 3339, 2961, 1491’,
’model ’: ’math_problem ’

}))
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Understand Question Tool

Observation:
**Problem Analysis:**

1. **Core Mathematical Concepts:** The problem involves finding the greatest common
divisor (GCD) of three numbers, which is a fundamental concept in number theory.

2. **Extracted Symbols, Variables, and Functions:**
* Variables: 3339, 2961, and 1491 (the three numbers for which we need to find the GCD)
* Function: GCD (greatest common divisor)

3. **Rephrased Problem into a Step-by-Step Sequence:**
• Find the prime factorization of each number: 3339, 2961, and 1491.
• Identify the common prime factors among the three numbers.
• Multiply the common prime factors together to find the greatest common divisor (GCD).

4. **Known Theorems or Techniques:**
* The Euclidean algorithm can be used to find the GCD of two numbers. We can extend this
algorithm to find the GCD of three numbers by finding the GCD of the first two numbers and
then finding the GCD of the result and the third number.

* The prime factorization of a number can be found using the fundamental theorem of
arithmetic.

**Step-by-Step Instructions for the Upstream System:**

1. Find the prime factorization of 3339.
2. Find the prime factorization of 2961.
3. Find the prime factorization of 1491.
4. Identify the common prime factors among the three numbers.
5. Multiply the common prime factors together to find the greatest common divisor (GCD).
6. If necessary, use the Euclidean algorithm to find the GCD of the first two numbers and
then the GCD of the result and the third number.

Please proceed with the first step: finding the prime factorization of 3339.

To continue solving the problem, I will call the ‘use_code‘.

‘‘‘python
use_code(params ...)
‘‘‘

Use Code Tool

Observation: Generated code block:

import math

def gcd_three_numbers(a, b, c):
# Find the GCD of two numbers using the math.gcd()

function
gcd_ab = math.gcd(a, b)

# Find the GCD of the result with the third number
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gcd_abc = math.gcd(gcd_ab , c)

return gcd_abc

# Define the numbers
a = 3339
b = 2961
c = 1491

# Compute and print the GCD
result = gcd_three_numbers(a, b, c)
print("The GCD of", a, b, "and", c, "is:", result)

Execution Output: The GCD of 3339 2961 and 1491 is: 21

To continue solving the problem, I will call the ‘examine_answer‘ tool to verify the
correctness of the generated code and answer.

‘‘‘python
examine_answer ({’question ’: ’Find the greatest common divisor

of $3339$ , $2961$ , and $1491$ ’, ’current_proposed_answer ’
: ’The GCD of 3339 2961 and 1491 is: 21’, ’model’: ’
math_problem ’})

‘‘‘

Examine Answer Tool

Observation:
### **1. Understanding the Problem**

The problem is to find the greatest common divisor (GCD) of three numbers: 3339, 2961,
and 1491. The proposed solution uses the Euclidean algorithm to find the GCD of the first
two numbers and then the GCD of the result with the third number.

### **2. Verifying the Given Solution**

The proposed solution is a Python function ‘gcd_three_numbers‘ that takes three numbers as
input and returns their GCD. The function uses the ‘math.gcd()‘ function to find the GCD of
two numbers and then applies the Euclidean algorithm to find the GCD of the result with the
third number.

**Step-by-Step Breakdown:**

1. The function ‘gcd_three_numbers‘ takes three numbers ‘a‘, ‘b‘, and ‘c‘ as input.
2. It finds the GCD of ‘a‘ and ‘b‘ using the ‘math.gcd()‘ function and stores it in ‘gcd_ab‘.
3. It finds the GCD of ‘gcd_ab‘ and ‘c‘ using the ‘math.gcd()‘ function and stores it in
‘gcd_abc‘.
4. It returns ‘gcd_abc‘ as the GCD of the three numbers.

**Logical Consistency and Mathematical Correctness:**

The proposed solution is mathematically correct and logically consistent. It uses the
Euclidean algorithm to find the GCD of the three numbers, which is a well-established method.

**Edge Cases:**
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The proposed solution does not explicitly handle edge cases such as zero or negative input
values. However, the ‘math.gcd()‘ function is designed to handle these cases correctly.

### **2.a) Testing and Validation**

**Test Cases:**

To verify the correctness of the proposed solution, we can test it with various input values.

‘‘‘python
# Test case 1: GCD of 3339, 2961, and 1491
a = 3339
b = 2961
c = 1491
result = gcd_three_numbers(a, b, c)
print("Test case 1:", result == 21) # Expected output: True

# Test case 2: GCD of 0, 0, and 0
a = 0
b = 0
c = 0
result = gcd_three_numbers(a, b, c)
print("Test case 2:", result == 0) # Expected output: True

# Test case 3: GCD of 0, 0, and 10
a = 0
b = 0
c = 10
result = gcd_three_numbers(a, b, c)
print("Test case 3:", result == 10) # Expected output: True

# Test case 4: GCD of -5, 5, and 10
a = -5
b = 5
c = 10
result = gcd_three_numbers(a, b, c)
print("Test case 4:", result == 5) # Expected output: True
‘‘‘

**Validation:**
All test cases pass, indicating that the proposed solution is correct.

### **3. Suggesting Improvements**

The proposed solution is already mathematically correct and logically consistent. However,
we can suggest a few improvements:

* Add explicit error handling for edge cases such as zero or negative input values.
* Consider using a more robust method for finding the GCD, such as the Extended Euclidean
algorithm.
* Add comments to the code to improve readability and understanding.

### **4. Providing a Judgment**

Based on the verification and testing, the proposed solution is **correct**.

31



Based on the previous steps, the proposed solution is correct. The greatest common divisor
(GCD) of 3339, 2961, and 1491 is indeed 21. Therefore, I can provide the final answer.

ANSWER: 21
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