
Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Aditya Bharat Soni 1 Boxuan Li 2 Xingyao Wang 3 Valerie Chen 1 Graham Neubig 1 3

Abstract

Modern human labor is characterized by special-
ization; we train for years and develop partic-
ular tools that allow us to perform well across
a variety of tasks. In addition, AI agents have
been specialized for domains such as software
engineering, web navigation, and workflow au-
tomation. However, this results in agents that
are good for one thing and fail to generalize be-
yond their intended scope because agent devel-
opers provide a highly specialized set of tools or
make architectural decisions optimized for a spe-
cific use case or benchmark. In this work, we
ask the question: what is the minimal set of gen-
eral tools that can be used to achieve high perfor-
mance across a diverse set of tasks? Our answer is
OpenHands-Versa, a generalist agent built with a
modest number of general tools: code editing and
execution, web search, multimodal web brows-
ing and file access. Unlike existing multi-agent
systems that fail to generalize, OpenHands-Versa
is a single-agent system that demonstrates supe-
rior or competitive performance over leading spe-
cialized agents across three diverse and challeng-
ing benchmarks: SWE-Bench Multimodal (Yang
et al., 2025), GAIA (Mialon et al., 2023), and The
Agent Company (Xu et al., 2024), outperforming
the best-performing previously published results
with absolute improvements in success rate of 9.1,
1.3, and 9.1 points respectively. These results
demonstrate the feasibility of developing a gen-
eralist agent to solve diverse tasks and establish
OpenHands-Versa as a strong baseline for future
research.

1School of Computer Science, Carnegie Mellon University,
Pittsburgh, USA 2Independent 3All Hands AI, USA. Correspon-
dence to: Aditya Bharat Soni <adityabs@cs.cmu.edu>, Graham
Neubig <gneubig@cs.cmu.edu>.

Workshop on Computer-use Agents @ ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

Figure 1. Comparison of OpenHands-Versa with previously pub-
lished SOTA agents and OpenHands across GAIA, SWE-Bench
Multimodal and The Agent Company. OpenHands-Versa out-
performs the SOTA specialist agents for all three benchmarks.
Notably, OpenHands-Versa improves browsing and information
access abilities of OpenHands, while maintaining its software en-
gineering capabilities. We focus on comparing to prior agents with
reproducible code and results (more details in Table 2).

1. Introduction
AI agents powered by Large Language Models hold great
promise to accelerate or automate a wide variety of prac-
tical tasks. For instance, agents have demonstrated strong
software engineering capabilities and have been able to
fix as many as two-thirds of issues in open-source Python
repositories from SWE-Bench (Jimenez et al., 2024) and
around one-third of issues in Javascript-based front-end li-
braries from SWE-Bench Multimodal (Yang et al., 2025).
In addition, agents have shown impressive web navigation
capabilities, and can complete over half of the tasks from
WebArena (Zhou et al., 2023) and over one-third of the tasks
from VisualWebArena (Koh et al., 2024). Agents have also
exhibited strong performance as general assistants, solving
over half of the tasks from GAIA (Mialon et al., 2023) that
require various capabilities like gathering and synthesizing
information from the web and processing multimodal data
from diverse files. Finally, agents have also proven effec-
tive as digital workers, solving one-fourth of tasks in The
Agent Company (Xu et al., 2024) that require the agent to
navigate company-internal websites and communicate with
co-workers.

However, until this point, the strongest published agents in
each domain have typically been explicitly optimized to per-
form well on a relatively narrow set of tasks and benchmarks,

1



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

which we refer to as specialist agents. For example, agents
such as Agentless (Xia et al., 2024) and SWE-Agent (Yang
et al., 2024a) have achieved state-of-the-art performance
on SWE-Bench Python programming problems. Still, they
cannot typically gather information from the web or commu-
nicate with co-workers via web-based chat platforms, which
would result in poor performance on GAIA and The Agent
Company respectively. In contrast, strong web navigation
agents like AgentSymbiotic (Zhang et al., 2025), AgentOc-
cam (Yang et al., 2024b), and Agent Workflow Memory
(Wang et al., 2024b) cannot write, debug, or execute code,
so an agent with strong performance on WebArena may
not be proficient on software engineering problems (e.g.,
SWE-Bench). More concretely, we refer to such agents as
specialist agents that either lack one or more capabilities,
such as code execution, browsing, file viewing, search APIs,
and have been primarily evaluated on a narrow category
of tasks (i.e., one of browsing, coding, general assistance
benchmarks).

Does this mean that we are destined for a world where
each user must interact with a broad variety of agents, each
specialized for a single task? In this paper, we argue that
the answer to this is no. How could this be the case? We
argue that a great majority of tasks can be tackled by agents
that have the below three capabilities.

• Coding: The ability to write, debug, and execute code,
including the use of libraries that are available to pro-
grammers.

• Multimodal Web Browsing: The ability to browse the
web, perform interactive actions (e.g., click, type) on
webpages, and process vision and text modalities from
webpages.

• Information Access: The ability to search information
on the web, typically using search APIs, and process
multimodal content from various files such as PDFs,
spreadsheets, code files, etc.

To implement such an agent, we propose OpenHands-
Versa, built using the popular OpenHands framework (Wang
et al., 2024a) for coding agents, imbuing it with the abil-
ity to perform visual browsing, accessing information from
the web through search APIs, and processing multimodal
content from diverse files.

This simple strategy is surprisingly effective—we show a
single agent can achieve strong results, rivaling or exceed-
ing the state-of-the-art published systems, on three diverse
and practical benchmarks: GAIA for general assistance
and information access (Mialon et al., 2023), The Agent
Company for evaluating agents as digital co-workers in a
company (Xu et al., 2024), and SWE-Bench Multimodal for
frontend-focused software engineering (Yang et al., 2025),
as shown in Figure 1. Notably, OpenHands-Versa achieves
state-of-the-art performance on all three benchmarks with

absolute improvement of 9.1, 1.3, and 9.1 points in success
rate over best-performing previously published results on
SWE-Bench Multimodal, GAIA and The Agent Company
respectively. Furthermore, OpenHands-Versa improves the
browsing and information access abilities of OpenHands
while retaining its coding capabilities. Furthermore, we also
find that current state-of-the-art multi-agent systems fail to
generalize beyond their intended scope.

We also study the tool-use patterns of OpenHands-Versa and
provide insights into why this simple strategy works so well.
We find that OpenHands-Versa uses appropriate tools that
align well with task requirements and has better domain-
aware tool-selection than OpenHands. We also perform
extensive analysis of the results and find some highly com-
plex tasks that can be solved by OpenHands-Versa, while
also pointing out error behaviors of our agent that can be
addressed by future work. Finally all our code and experi-
mental scripts are open-source for future development1.

2. Towards a Generalist Agent
2.1. Preliminaries

To implement a generalist agent, we choose to build
OpenHands-Versa on top of the OpenHands (Wang et al.,
2024a) framework.2 OpenHands offers a flexible event
stream architecture, a sandboxed runtime, a built-in evalua-
tion harness for evaluating agents on numerous benchmarks,
and the following tools:

1. A bash shell that connects to the operating system en-
vironment and supports the execution of Unix-style
commands.

2. Interactive python code execution via a Jupyter IPython
server.

3. A text-based browsing tool that uses a Chromium
browser based on Playwright3 and uses the Browser-
Gym framework (de Chezelles et al., 2025) to imple-
ment its action space.

4. A file-processing tool for creating, viewing and editing
plain-text files (e.g., files with extensions like .py, .txt,
.cpp, .js, .json etc.).

2.2. Ingredients of Our Agent

Since OpenHands has primarily been an agent developed
for software engineering, with strong coding abilities and
support for multiple programming languages (Zan et al.,
2025), it lacks other capabilities like multimodal web brows-
ing and information access. We augment OpenHands with

1OpenHands-Versa is available open-source at: https://
github.com/adityasoni9998/OpenHands-Versa

2We use OpenHands v0.28.1.
3https://playwright.dev/python/

2

https://github.com/adityasoni9998/OpenHands-Versa
https://github.com/adityasoni9998/OpenHands-Versa
https://playwright.dev/python/


Coding Agents with Multimodal Browsing are Generalist Problem Solvers

these capabilities while inheriting the coding capabilities
from OpenHands.

Multimodal Web Browsing: The browsing tool in Open-
Hands relies solely on text-based observations that represent
web pages using its accessibility tree (AXTree)4, and misses
critical visual cues from the frontend. Instead, we adopt
the Set-of-Marks prompting method (Yang et al., 2023),
which captures a screenshot of the current viewport (the
visible area of a webpage in the browser window), over-
lays bounding boxes on interactable elements (e.g., buttons,
links, text boxes), and labels them with unique alphanu-
meric browsergym-ids (de Chezelles et al., 2025) (e.g., refer
to Appendix A). Note that this is similar to BrowserGym’s
GenericAgent (de Chezelles et al., 2025). We also include
the full AXTree to provide context beyond the viewport but
truncate to the current viewport if the AXTree is too large
for the LLM’s context window.

We also incorporate context condensation into the browser
tool. OpenHands uses an event stream architecture wherein
the backbone LLM is provided with action-observation pairs
from all the previous steps at the next execution step. Since
each browser observation consists of a webpage screen-
shot and a possibly large AXTree, this approach results
in high inference costs, large observations that do not fit
in the LLM’s context window, and increases the agent’s
runtime due to slower LLM inference. To address this,
we implement a browsing condenser that retains only the k
most recent browsing observations and masks out each older
browsing observation with a fixed placeholder message.

Information Access: We discuss two ways we improve
information access: web search and multimodal file pro-
cessing. First, synthesizing information from the web using
search engines is crucial. While agents can achieve this by
opening search engines like Google or Bing in the browser,
in practice, we observe that the agent is frequently blocked
by CAPTCHAs (von Ahn et al., 2003). We mitigate this by
allowing the agent to perform a web search using a search
API. This has the added advantage of reduced costs over
browsing the web when searching for factual information
and allows the use of specialized search APIs designed for
agents. We use the Tavily API (Tavily-AI) for most of our
experiments; however, OpenHands-Versa also supports the
use of Exa (Exa) and Brave (Inc) APIs.

Second, several tasks require the agent to access informa-
tion about multimodal data from various files such as PDFs,
audio files, presentation slides, etc. However, OpenHands
has a limited file viewing support restricted to files that can
be opened in text editors (like those with .txt, .py, .json, .js
extensions). We enhance the existing file viewing function-

4https://developer.mozilla.org/en-US/
docs/Glossary/Accessibility_tree

ality of OpenHands by integrating Markdown converters,
similar to those used by the FileSurfer in Magentic-One
(Fourney et al., 2024), to transform various files into a uni-
fied Markdown representation.

Task Planning: Task planning is crucial for multi-step ex-
ecution, where agents must decompose the end-goal into
multiple sub-tasks and organize their actions into a logical
sequence. Prior approaches include developing an orchestra-
tor or a planning agent (Fourney et al., 2024; Bahdanau et al.,
2024), a Think tool (Anthropic, 2025) that the agent can
flexibly invoke to log its plan, and using Chain-of-Thought
prompting (de Chezelles et al., 2025). We rather use a sim-
ple approach of appending a fixed planning prompt to the
agent’s event stream after every τ steps asking the agent
to summarize its current progress and create a plan for the
subsequent task execution.

2.3. Comparison with Existing Agents

Next, we compare OpenHands-Versa with existing agents
that excel in specific domains and benchmarks. For cod-
ing agents, we consider SWE-Agent (Yang et al., 2024a)
and Agentless (Xia et al., 2024). BrowserGym GenericA-
gent (de Chezelles et al., 2025) and Browser-use (Müller
& Žunič, 2024) are well-suited for web navigation. Multi-
agent frameworks like Magentic-One (Fourney et al., 2024),
OpenDeepResearch (Roucher et al., 2025), and OWL-
roleplaying (Hu et al., 2025) excel at general-purpose as-
sistance by synthesizing information from the web and pro-
cessing various files. We also include OpenHands in this
comparison. Note that we only consider agents with open-
source implementations, since this comparison requires un-
derstanding of their internal design.

The comparison of these agents with OpenHands-Versa is
mainly along three core capabilities defined in §1. Also,
we examine whether the system adopts a multi-agent frame-
work with specialized agents for distinct skills (such as
web navigation, coding, and planning), or a single-agent
framework, where one agent utilizes all available tools to
complete the task. Table 1 captures nuanced differences
between these agents, which are described below.

Coding: For software engineering (SWE) tasks, agents
must have the ability to write and execute code, debug code
by editing files, and use a shell to run tests, install packages,
and navigate the repository. Browser-use and BrowserGym
GenericAgent are designed exclusively for web navigation
and lack all code-related abilites. Multi-agent systems like
OWL-roleplaying, OpenDeepResearch, and Magentic-One
support a subset of the these abilities but they lack support
for editing files, implying that the agent has to regenerate
the entire code from scratch when making any changes to ex-
isting files. Also OWL-roleplaying and OpenDeepResearch
do not have access to a shell. These multi-agent systems

3

https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree
https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree


Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Table 1. Comparison of different agents based on their tool-use capabilities. Definitions for the symbols - Ð : supports executing code, �
: supports editing operations, W : uses textual browsing, � : uses visual browsing, Û : supports API-based search, 	 : supports viewing
multimodal file content, @ : supports viewing only plain-text files, q : capability not supported,   : uses a single agent framework, ² :
uses a multi-agent framework.
Method Coding Browsing Search File Viewing Agents

SWE-Agent (Yang et al., 2024a) Ð� q q @  
Agentless (Xia et al., 2024) � q q @  
OpenHands (Wang et al., 2024a) Ð � W q @  
BrowserGym GenericAgent (de Chezelles et al., 2025) q � q q  
Browser-use (Müller & Žunič, 2024) q � q q  
OpenDeepResearch (Roucher et al., 2025) Ð W Û 	 ²
OWL-roleplaying (Hu et al., 2025) Ð � Û 	 ²
Magnetic One (Fourney et al., 2024) Ð � Û 	 ²
OpenHands-Versa (Ours) Ð� � Û 	  

mainly support the execution of stand-alone Python pro-
grams, making them unsuitable for SWE tasks and coding
in other programming languages. Agents like SWE-Agent,
OpenHands, and OpenHands-Versa support all the above
code-related capabilities and are well-suited for SWE tasks.
Although Agentless does not have a bash terminal, it sup-
ports the execution of selected tests in the repository to
validate candidate patches within a human-defined work-
flow.

Web Browsing: Agents should be able to browse the
web and execute interactive actions on websites to handle
tasks such as filling online forms, ordering items from e-
commerce websites and reading software documentation.
Agents must also have a strong multimodal processing abil-
ity to comprehend the webpage content by jointly interpret-
ing the visual layout (i.e., the rendered UI elements) and
the webpage text. SWE-agent and Agentless do not sup-
port browsing, making them unsuitable for many practical
tasks. OpenDeepResearch has a very limited browsing abil-
ity, wherein it can only open and scroll through webpages,
without the ability to execute any other actions like “click”
or “type”. OpenHands supports interactive browsing actions,
but it performs text-only browsing whereas all other agents
perform mulimodal web browsing using visual context from
webpage screenshots.

Information Access via Web Search: Agents must be able
to query search engines using keywords to retrieve relevant
URLs, synthesize factual information, and access up-to-date
content. Search APIs provide a more robust mechanism for
supporting this functionality and mitigate issues caused by
access restrictions like CAPTCHAs. Despite this tool being
useful for several real-world tasks, most existing agents
do not have this ability except multi-agent systems that
demonstrate strong performance on the GAIA benchmark
(Mialon et al., 2023). This provides further evidence that
many agent designs are over-tailored to specific domains or
benchmarks.

Information Access via Multimodal File Processing:
Agents must be able to view the content of various file
types such as PDFs, presentation slides, spreadsheets etc.
Although the agent can also read certain files using code or
shell, this approach is prone to bugs and may require multi-
ple attempts for successfully parsing the file. Supporting file
viewing as a tool is a more robust approach since the agent
can access content of various files through a single tool call.
Web agents like Browser-Use and BrowserGym Generic
Agent do not support file viewing. SWE-Agent, Agentless,
and OpenHands have limited file-viewing support wherein
the agent can only read plain-text files. All other agents have
specific tool(s) that allow the agent to process multimodal
file content.

3. Experimental Setup
In this section, we describe our experimental setup to demon-
strate the effectiveness of OpenHands-Versa. We overview
our choice of evaluation benchmarks and the corresponding
evaluation metrics in §3.1, and discuss our baselines in §3.2.

3.1. Evaluation Benchmarks

We evaluate OpenHands-Versa on three benchmarks that
cover a diverse range of capabilities and agent use cases—
which can be roughly gleaned from Figure 2. We provide
some example tasks for each benchmark in §D.

SWE-Bench Multimodal (SWE-Bench M) (Yang et al.,
2025) : This benchmark evaluates the ability of agents to fix
software issues in GitHub repositories of front-end libraries.
The benchmark requires the agent to solve GitHub issues
from 17 popular JavaScript code repositories for various
use-cases like web development, syntax highlighting, and
data visualization. Furthermore, several tasks also have
visual assets (images and videos) describing the issue and
links to online integrated development environments (IDEs)
containing code snippets for reproducing the issue, requiring

4



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

agents to process multi-modal data to visually analyze the
issue. Unlike SWE-Bench (Yang et al., 2025), where all the
reference solutions only require editing Python files, more
than 28% of SWE-Bench M instances require editing files
across two or more programming languages.

GAIA (Mialon et al., 2023): This benchmark evaluates AI
agents as general-purpose assistants using tasks that require
browsing the open web, performing web search, coding,
reasoning, and processing multimodal content from audios,
spreadsheets, and PDFs. While the coding tasks in SWE-
Bench M require agents to fix issues by editing existing code
files, the coding tasks in GAIA generally require the agent
to write and execute stand-alone programs from scratch.

The Agent Company (Xu et al., 2024): This benchmark
evaluates the ability of agents as digital co-workers in a sim-
ulated software company using a reproducible, self-hosted
environment. It covers tasks across software development,
project management, data science, financial analysis, etc.
It uses four self-hosted websites: GitLab for hosting code
repositories and documentation, OwnCloud for cloud-based
file-sharing, Plane for issue tracking and project manage-
ment, and RocketChat for communicating with simulated
co-workers. To solve the tasks in this benchmark, the agent
must be able to browse websites, write code, communicate
with simulated colleagues, and read, write and edit various
files.

3.2. Baseline Agents

For each benchmark, we compare to the best-performing
open source agent frameworks (from the benchmark’s
leaderboard) that have reproducibility guidelines 5.

For SWE-Bench Multimodal, we choose Agentless-Lite
(Dunn, 2025), and SWE-Agent (Yang et al., 2024a) along
with its Multimodal and Javascript variants proposed along
with this benchmark. For GAIA, we consider Magentic-One
(Fourney et al., 2024) and OpenDeepResearch (Roucher
et al., 2025). For The Agent Company, we consider OWL-
roleplaying and OpenHands v0.14.2, which is the version
used in the original paper. Across all benchmarks, we
evaluate OpenHands v0.28.1—the agent on top of which
OpenHands-Versa is built—to understand the effect of our
modifications.

Most baseline agents report performance on only one of
the benchmarks, and their architecture typically does not
support evaluation on the others (as discussed in § 2.3).
Agentless-lite and all SWE-agent variants cannot browse,
use search engines, or process multimodal files, which are

5On the GAIA leaderboard there are other methods with no
code or technical details published with scores of up to 80%. We
focus on methods that have available details and reproducible code
bases.

crucial for GAIA and The Agent Company. Multi-agent
baselines for GAIA cannot typically write code in languages
other than Python (like JavaScript), making them unsuitable
for SWE-Bench M(§2.2).

We used claude-3-7-sonnet-20250219 as the
backbone LLM of OpenHands-Versa and OpenHands
v0.28.1 to ensure a direct comparison between the
two agent architectures using the same LLM. We also
evaluate OpenHands-Versa with the recently released
claude-sonnet-4-20250514 model. Further experi-
mental details are provided in §B..

3.3. Evaluation metrics

For all the benchmarks, we use the evaluation metrics pro-
posed by the authors of the corresponding benchmarks. We
use resolve rate for GAIA and SWE-bench M – the % of
tasks completed successfully by the agent. The Agent Com-
pany has checkpoint-based evaluation wherein two metrics
are computed: Full completion score (the % of tasks for
which all checkpoints were resolved) and Partial comple-
tion score (also provides partial credit for successful check-
points in partially completed tasks). We refer the reader
to The Agent Company (Xu et al., 2024) for more details.
We use the test split for all three benchmarks (The Agent
Company does not have a validation split). Furthermore, we
report performance on GAIA validation split in §C. Finally,
we report pass @ 1 metrics for all benchmarks.

4. Main Results
We present our experimental results in Table 2 and highlight
the key takeaways below. Furthermore, we report inference
costs of various agents in §E

OpenHands-Versa outperforms or matches existing
agents for all three benchmarks: Notably, OpenHands-
Versa achieves state-of-the-art or close to state-of-the-art
performance on all three benchmarks with 51.16% resolve
rate on GAIA, 34.43% resolve rate on SWE-Bench M, and
33.14% full completion score on The Agent Company with
claude-sonnet-4 as the backbone LLM. OpenHands-Versa
outperforms the strongest baseline for GAIA with an abso-
lute improvement of 1.33 points. On GAIA, OpenHands-
Versa outperforms complex, multi-agent systems which use
specially designed agents for distinct skills/sub-tasks, with
each agent using a separate LLM. In addition, OpenHands-
Versa achieves state-of-the-art performance on The Agent
Company with an absolute improvement of 6.9 points in the
full completion score and 6.8 points in the partial completion
score over the best-performing baseline. On SWE-Bench M,
OpenHands-Versa demonstrates an absolute improvement
in resolve rate of 9.09 points over Agentless-Lite and more
than 22 points over SWE-Agent and its variants. Notably,

5



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Table 2. Comparison of agent performance across GAIA, SWE-bench M, and The Agent Company. Highest metrics for each benchmark
are bold-faced and second highest metrics are underlined. When available, we report the metrics directly as mentioned by the baseline
agents on the respective benchmark leaderboards. We restrict our comparison to agents with open-source implementations and method
description.

Agent Model(s) GAIA SWE-bench M The Agent Company

Full Partial

Magentic-One (Fourney et al., 2024) gpt-4o, o1 37.87% - - -

OpenDeepResearch (Roucher et al., 2025) o1 49.83% - - -

SWE-Agent (Yang et al., 2024a) gpt-4o - 11.99% - -
claude-3.5 sonnet - 12.19% - -

SWE-Agent JS (Yang et al., 2025) gpt-4o - 9.28% - -
claude-3.5 sonnet - 11.99% - -

SWE-Agent Multimodal (Yang et al., 2025) gpt-4o - 12.19% - -
claude-3.5 sonnet - 11.41% - -

Agentless-Lite (Dunn, 2025) claude-3.5 sonnet - 25.34% - -

OWL-roleplaying (Hu et al., 2025) gpt-4o, o3-mini - - 4.00% 11.04%

OpenHands v0.14.2 (Wang et al., 2024a) gpt-4o - - 8.60% 16.70%
gemini-2.0 flash - - 11.40% 19.00%

claude-3.5 sonnet - - 24.00% 34.40%

OpenHands v0.28.1 (Wang et al., 2024a) claude-3.7 sonnet 37.21% 31.72% 26.29% 36.41%

OpenHands-Versa claude-3.7 sonnet 51.16% 31.33% 30.86% 40.18%
claude-sonnet-4 51.16% 34.43% 33.14% 43.19%

these gains are achieved without specific optimizations for
SWE-Bench M, such as the JavaScript linter in SWE-Agent
JS and SWE-Agent Multimodal.

OpenHands-Versa has stronger browsing and informa-
tion access capabilities than OpenHands, while retaining
its coding capabilities: While attempting to improve the
browsing and information access capabilities in OpenHands-
Versa (§2.2), it is also crucial to ensure that our changes
do not cause regression in the coding abilities inherited
from OpenHands. This is concretely validated by compar-
ing the results of the two agents on the three evaluation
benchmarks. When using the same backbone LLM (claude-
3.7 sonnet), OpenHands-Versa significantly outperforms
OpenHands on GAIA with an absolute improvement of 13.9
points in the resolve rate. Furthermore, for The Agent Com-
pany, OpenHands-Versa achieves an absolute improvement
of 4.6 points in the full completion score and 3.8 points
in the partial completion score over OpenHands. In addi-
tion, OpenHands-Versa achieves a nearly equal resolve rate
on SWE-Bench M as that of OpenHands, with an absolute

difference of only 0.39 points.

Multi-agent systems with strong performance on GAIA
fail to generalize: OWL-roleplaying is a complex multi-
agent system with separate agents for browsing, planning,
web search etc. It is one of the top performing agents on
GAIA validation set with a 58.18% resolve rate, but does
not report performance on GAIA test set. However it fails
to generalize to The Agent Company with a poor full com-
pletion score of 4% and partial completion score of 11.0%.
OWL-roleplaying significantly underperforms OpenHands-
Versa, with an absolute decrease in 29.1 points in the full
completion score and 32.2 points in the partial completion
score.

5. What Went Right and What Went Wrong?
In this section, we provide fine-grained analyses to under-
stand the agent behaviour for different tasks. Since we ob-
serve that OpenHands-Versa outperforms or matches Open-
Hands on the three benchmarks, with a minimal set of

6



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Figure 2. Distribution of the different tools used by OpenHands
and OpenHands-Versa. OpenHands-Versa adapts its tool usage to
different benchmarks without any benchmark-specific optimiza-
tions and OpenHands-Versa has better domain-aware usage of its
tools as compared to OpenHands. Tools with bold-faced names
have been modified/created by our work.

changes, we first compare their tool use patterns (§5.1).
Next, we perform a comprehensive error analysis of our
agent, to understand its limitations and provide insights for
future improvement (§5.2). Finally, we also discuss the
effect of the search API on downstream agent performance
for GAIA (§5.3).

5.1. Tool Use Patterns across Benchmarks

To better understand the behavior of OpenHands-Versa com-
pared to the original OpenHands (when using the same LLM
claude-3.7 sonnet), we plot the distribution of the relative
tool use frequencies (as a percentage of total tool calls made
by the agent) across all tasks, for all the 3 benchmarks in
Figure 2. This figure presents some interesting insights into
the behavior of OpenHands-Versa and OpenHands, which
we describe below:

OpenHands-Versa uses appropriate tools that align
well with task requirements: Our analysis shows that
OpenHands-Versa generally selects tools that intuitively
align with various tasks. For GAIA, the agent primarily uses
the browser and search engine, consistent with the need to
synthesize web-based information, and makes limited use
of file-editing tools while frequently executing standalone
Python code via IPython. It uses the bash tool in creative
ways. For example, to install packages and download files
with wget – highlighting flexible problem-solving. In The
Agent Company, tool usage is dominated by the browser,
which reflects the benchmark’s focus on navigating inter-
nal websites, with little reliance on the search engine or
IPython since URLs of company websites are known to the
agent and tasks involve editing code from repositories. For
SWE-Bench M, the agent frequently uses bash, edit file, and
view file tools, in line with practical software engineering
workflows, and leverages the browser to visually verify its
changes by rendering HTML files, demonstrating a nuanced
understanding of front-end development practices.

OpenHands-Versa has better domain-aware tool-
selection than OpenHands: For GAIA, OpenHands relies
more heavily on the browser in the absence of a search en-
gine, due to which it frequently navigates to hallucinated
or invalid URLs. OpenHands-Versa first uses the search
engine to retrieve relevant links and then chooses a URL
based on the retrieved snippets, resulting in more targeted
navigation. For SWE-Bench Multimodal, while overall tool
usage patterns are similar, OpenHands-Versa makes more
frequent use of the browser for visual verification of front-
end changes, a capability that OpenHands cannot exploit
due to text-only browsing. For The Agent Company, both
agents display similar tool-use behavior, which is expected
since changes to the browser tool in OpenHands-Versa pri-
marily improve browsing observations rather than changing
or expanding its action space.

5.2. Error Analysis

Next, we manually analyse the trajectories of OpenHands-
Versa, describe its error behaviors, and provide some exam-
ples in Table 3.

For GAIA, we use the validation split since the ground truth
is not available for the test set. We find that OpenHands-
Versa is sometimes over-reliant on the retrieved sum-
maries/snippets from the webpage given by the search API
and uses factually incorrect information. We also find that
the agent cannot access some websites due to various secu-
rity measures like CAPTCHAs. For tasks in the SWE-Bench
M, we find that the agent frequently struggles at creating
comprehensive tests to verify its code, and prematurely ex-
its, assuming that its code is correct since its non-exhaustive
tests pass. Sometimes, the agent does not execute tests given
in the repository to verify if its changes did not break exist-
ing functionality. For The Agent Company, we find that the
agent generally struggles when interacting with OwnCloud,
and frequently gets stuck in loops. Furthermore, we find that
the agent sometimes prematurely exits without satisfying
all the task requirements for the more complex tasks.

5.3. Effect of Search API on GAIA

Since 40% of the tool calls made by OpenHands-Versa
for GAIA are to query the search engine with minimal
use of this tool for other 2 benchmarks, we study the
effect of choosing different search APIs on the down-
stream performance for this benchmark. We evalu-
ated OpenHands-Versa on the GAIA validation split us-
ing three search APIs: Brave, Exa, and Tavily and
use claude-3-7-sonnet-20250219 for our exper-
iments.

Although seemingly unimportant, the choice of search API
significantly impacts downstream performance. We observe
considerable variations in the resolve rate with 56.96%

7



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Table 3. Example tasks for some observed error behaviors of OpenHands-Versa.

Benchmark Task Description (irrelevant details truncated) Observed behaviour

GAIA
The Latin root of the Yola word “gimlie” shares a spelling with
a Spanish word. What is the Google translation of the source
title for the 1994 example sentence for that word in the Collins
Spanish-to-English dictionary online?

Agent cannot access Collins dictio-
nary website due to CAPTCHAs.

In April of 1977, who was the Prime Minister of the first place
mentioned by name in the Book of Esther?

Agent relies on incorrect search en-
gine summary when searching for
the first place given in the book.

The Agent Company
We are collecting employees’ preferences on drinks. Please nav-
igate to ownCloud and find drinks survey.pdf and tell 3 most
popular drinks to HR manager via RocketChat.

Agent gets stuck in a loop and fails
to find the file on ownCloud.

In Plane there open issues in the JanusGraph project. I want you
to add all “In Progress” issues to Gitlab.

Agent fails to copy all issues and
exits after partial completion of task.

SWE-Bench M
Happiness Support card needs preventWidows treatment in Word-
Press. Steps to reproduce ... What I expected ... What happened
instead ...

Agent does not write tests to verify
its fix and does not follow steps to
reproduce the bug.

WebGL: render buffers are not always created correctly. The
issue is that when creating a retained-mode geometry...

Agent does not execute existing tests
in the repository due to which its
changes fail the Pass-to-Pass tests.

when using Brave, 58.18% when using Exa and 64.24%
when using Tavily APIs. Notably, switching from Brave
to Tavily results in an absolute improvement of 7.28 points
in resolve rate. Our analysis shows that the agent relies on
search snippets to decide which webpages to open for ob-
taining information. Brave extracts these snippets from raw
webpage text, while Exa and Tavily provide higher-quality
LLM-generated summaries. These often eliminate the need
to open webpages in the browser, reducing inference costs
due to large browsing observations as compared to the com-
pact search results. However, reliance on these summaries
occasionally introduces hallucinations when they contain
inaccuracies. Tavily partially mitigates these by offering
an LLM-generated answer per query, synthesized from all
retrieved results, which tends to be more accurate than in-
dividual page summaries. This is also one of the primary
reasons why using Tavily has a higher resolve rate than other
APIs.

6. Conclusion
In this work, we propose OpenHands-Versa– a simple and
flexible agent that demonstrates strong performance across
three benchmarks – GAIA, SWE-Bench M and The Agent
Company. Our experimental results demonstrate the effec-
tiveness of OpenHands-Versa in tasks across various do-
mains and highlight that generalizability can be achieved
using a simple and intuitive agent design without develop-
ing specialized agent implementations over-optimized for a

particular domain. More concretely, these results indicate
that generalist agents can be designed by simply providing
the necessary tools to the backbone LLM and leaving it for
the LLM to autonomously decide how to use these tools to
solve the task. Our results also demonstrate why existing
agents fail to generalize beyond their target domain. We
elaborate on the limitations of our approach in §F. In con-
clusion, OpenHands-Versa will serve as a strong baseline
for future research on generalist agents.

Impact Statement
AI agents have shown promise in addressing complex tasks,
but still face significant limitations when confronted with
real-world challenges. Our research advances the field by
enhancing the generalizability of these systems and improv-
ing their performance across diverse practical applications.
The work establishes a robust foundation for future devel-
opments in AI agents. However, these advancements bring
important societal considerations. As AI agents become
more sophisticated, potential risks emerge, including mis-
use for illegal activities, labor market disruption as agents
become capable of performing complex tasks, and questions
of governance to ensure responsible deployment. Future
work should focus not only on enhancing agent capabilities
but also on developing appropriate safeguards and ethical
frameworks to guide real-world deployments.

8



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

References
Anthropic(2025). The ”think” tool: Enabling claude

to stop and think in complex tool use situa-
tions. URL https://www.anthropic.com/
engineering/claude-think-tool. A new tool
that improves Claude’s complex problem-solving perfor-
mance.

Bahdanau, D., Gontier, N., Huang, G., Kamalloo, E., Pardi-
nas, R., Piché, A., Scholak, T., Shliazhko, O., Tremblay,
J. P., Ghanem, K., et al. Tapeagents: a holistic framework
for agent development and optimization. arXiv preprint
arXiv:2412.08445, 2024.

de Chezelles, T. L. S., Gasse, M., Lacoste, A., Caccia,
M., Drouin, A., Boisvert, L., Thakkar, M., Marty, T.,
Assouel, R., Shayegan, S. O., Jang, L. K., Lù, X. H.,
Yoran, O., Kong, D., Xu, F. F., Reddy, S., Neubig, G.,
Cappart, Q., Salakhutdinov, R., and Chapados, N. The
browsergym ecosystem for web agent research. Transac-
tions on Machine Learning Research, 2025. ISSN 2835-
8856. URL https://openreview.net/forum?
id=5298fKGmv3. Expert Certification.

Dunn(2025). Agentless-lite. URL https://github.
com/sorendunn/Agentless-Lite.

Exa. Exa search api. URL https://exa.ai/
exa-api.

Fourney, A., Bansal, G., Mozannar, H., Tan, C., Salinas,
E., Niedtner, F., Proebsting, G., Bassman, G., Gerrits,
J., Alber, J., et al. Magentic-one: A generalist multi-
agent system for solving complex tasks. arXiv preprint
arXiv:2411.04468, 2024.

Hu, M., Zhou, Y., Fan, W., Nie, Y., Xia, B., Sun, T., Ye, Z.,
Jin, Z., Li, Y., Zhang, Z., Wang, Y., Ye, Q., Luo, P., and Li,
G. Owl: Optimized workforce learning for general multi-
agent assistance in real-world task automation, 2025.
URL https://github.com/camel-ai/owl.

Inc, B. S. Brave search api. URL https://brave.
com/search/api/.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. SWE-bench: Can language
models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=VTF8yNQM66.

Koh, J. Y., Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang,
P.-Y., Neubig, G., Zhou, S., Salakhutdinov, R., and Fried,
D. Visualwebarena: Evaluating multimodal agents on re-
alistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

Mialon, G., Fourrier, C., Wolf, T., LeCun, Y., and Scialom,
T. Gaia: a benchmark for general ai assistants. In The
Twelfth International Conference on Learning Represen-
tations, 2023.

Müller, M. and Žunič, G. Browser use: Enable ai to control
your browser, 2024. URL https://github.com/
browser-use/browser-use.

Roucher, A., del Moral, A. V., Noyan, M., Wolf, T., and
Fourrier, C. Open-source deepresearch – freeing our
search agents, 2025. URL https://huggingface.
co/blog/open-deep-research.

Tavily-AI. Tavily search api. URL https://tavily.
com/.

von Ahn, L., Blum, M., Hopper, N. J., and Langford,
J. Captcha: Using hard ai problems for security.
In Advances in Cryptology - EUROCRYPT 2003,
International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003, Proceedings, volume 2656
of Lecture Notes in Computer Science, pp. 294–311.
Springer, 2003. doi: 10.1007/3-540-39200-9 18.
URL https://iacr.org/archive/
eurocrypt2003/26560294/26560294.pdf.

Wang, X., Li, B., Song, Y., Xu, F. F., Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., et al. Openhands: An
open platform for ai software developers as generalist
agents. In The Thirteenth International Conference on
Learning Representations, 2024a.

Wang, Z. Z., Mao, J., Fried, D., and Neubig, G. Agent
workflow memory. arXiv preprint arXiv:2409.07429,
2024b.

Xia, C. S., Deng, Y., Dunn, S., and Zhang, L. Agentless: De-
mystifying llm-based software engineering agents. arXiv
preprint, 2024.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R.,
Hua, T. J., Cheng, Z., Shin, D., Lei, F., Liu, Y., Xu, Y.,
Zhou, S., Savarese, S., Xiong, C., Zhong, V., and Yu,
T. Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments, 2024. URL
https://arxiv.org/abs/2404.07972.

Xu, F. F., Song, Y., Li, B., Tang, Y., Jain, K., Bao, M.,
Wang, Z. Z., Zhou, X., Guo, Z., Cao, M., Yang, M., Lu,
H. Y., Martin, A., Su, Z., Maben, L., Mehta, R., Chi, W.,
Jang, L., Xie, Y., Zhou, S., and Neubig, G. Theagent-
company: Benchmarking llm agents on consequential
real world tasks, 2024. URL https://arxiv.org/
abs/2412.14161.

9

https://www.anthropic.com/engineering/claude-think-tool
https://www.anthropic.com/engineering/claude-think-tool
https://openreview.net/forum?id=5298fKGmv3
https://openreview.net/forum?id=5298fKGmv3
https://github.com/sorendunn/Agentless-Lite
https://github.com/sorendunn/Agentless-Lite
https://exa.ai/exa-api
https://exa.ai/exa-api
https://github.com/camel-ai/owl
https://brave.com/search/api/
https://brave.com/search/api/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://github.com/browser-use/browser-use
https://github.com/browser-use/browser-use
https://huggingface.co/blog/open-deep-research
https://huggingface.co/blog/open-deep-research
https://tavily.com/
https://tavily.com/
https://iacr.org/archive/eurocrypt2003/26560294/26560294.pdf
https://iacr.org/archive/eurocrypt2003/26560294/26560294.pdf
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2412.14161


Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Yang, J., Zhang, H., Li, F., Zou, X., Li, C., and Gao, J.
Set-of-mark prompting unleashes extraordinary visual
grounding in gpt-4v, 2023. URL https://arxiv.
org/abs/2310.11441.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao, S.,
Narasimhan, K. R., and Press, O. SWE-agent: Agent-
computer interfaces enable automated software engi-
neering. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024a. URL
https://arxiv.org/abs/2405.15793.

Yang, J., Jimenez, C. E., Zhang, A. L., Lieret, K., Yang,
J., Wu, X., Press, O., Muennighoff, N., Synnaeve, G.,
Narasimhan, K. R., Yang, D., Wang, S., and Press,
O. SWE-bench multimodal: Do AI systems general-
ize to visual software domains? In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=riTiq3i21b.

Yang, K., Liu, Y., Chaudhary, S., Fakoor, R., Chaudhari,
P., Karypis, G., and Rangwala, H. Agentoccam: A sim-
ple yet strong baseline for llm-based web agents. arXiv
preprint arXiv:2410.13825, 2024b.

Zan, D., Huang, Z., Liu, W., Chen, H., Zhang, L., Xin,
S., Chen, L., Liu, Q., Zhong, X., Li, A., Liu, S., Xiao,
Y., Chen, L., Zhang, Y., Su, J., Liu, T., Long, R.,
Shen, K., and Xiang, L. Multi-swe-bench: A mul-
tilingual benchmark for issue resolving, 2025. URL
https://arxiv.org/abs/2504.02605.

Zhang, R., Qiu, M., Tan, Z., Zhang, M., Lu, V., Peng, J.,
Xu, K., Agudelo, L. Z., Qian, P., and Chen, T. Symbi-
otic cooperation for web agents: Harnessing complemen-
tary strengths of large and small llms. arXiv preprint
arXiv:2502.07942, 2025.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Bisk, Y., Fried, D., Alon, U., et al. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023. URL
https://webarena.dev.

10

https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2405.15793
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b
https://arxiv.org/abs/2504.02605
https://webarena.dev


Coding Agents with Multimodal Browsing are Generalist Problem Solvers

A. Webpage Screenshot with Set-of-Marks Annotation
Figure 3 is an example screenshot of a webpage with all the interactable elements annotated with bounding boxes and their
corresponding browergym-ids.

Figure 3. Example screenshot of a webpage with set-of-marks annotation

B. Experimental Setup
In this section, we provide more details about our experimental setup.

First, we discuss the exact configuration used for OpenHands-Versa. For browsing condensation (§2.2), we set the context
window (k) to 1 implying that we only retain the most recent browsing observation in the event stream. For planning,
we set the planning interval (τ ) to 10, which implies that we append the planning prompt (§2.2) to the event stream after
every 10 steps. Notably, we use identical agent implementation for all the three benchmarks as opposed to other agents
that selectively choose only relevant tools for different benchmarks, develop specialized tools to improve performance on a
specific benchmark, or use benchmark-specific or domain-specific system prompts that will not generalize to all scenarios.
For example, OWL-roleplaying provides tools to search Wikipedia and the Wayback Machine6, which are particularly
useful for GAIA since many tasks require the agent to search for factual information from Wikipedia and some tasks refer to
websites that are no longer publicly available, requiring the agent to access them via the Wayback Machine.

We set the temperature of the backbone LLM to 0 for all our experiments. We limit the maximum number of steps allowed
for the agent to 100 for SWE-Bench M and The Agent Company, and to 60 for GAIA. Since GAIA requires the final answer
given by the agent to exactly match with the ground truth answer, we extract the final answer of the agent using an LLM
(particularly claude-3-7-sonnet-20250219) giving it the task description and the final thought of the agent. This
also helps with some output formatting errors. For example, the agent may write the answer numerically (for eg. 500),
whereas the task asks the agent to write it in text (i.e five hundred).

All our experiments are run using CPU-only, cloud-based machines (AWS EC2 instances – t3.2xlarge specification with

6https://archive.org

11

https://archive.org


Coding Agents with Multimodal Browsing are Generalist Problem Solvers

32GB RAM, 8 vCPUs, and 512GB disk space). However, they can also run on local computers and do not require any GPU
resources. The total runtime for evaluating OpenHands-Versa and OpenHands is ≈24 hours for GAIA, ≈54 hours for The
Agent Company, and ≈12 hours for SWE-Bench M. Also, evaluating OWL on TAC takes ≈50 hours.

B.1. Baseline Agents

Next, we provide more details about the baseline agents used in our work.

Magentic-One(Fourney et al., 2024) is a generalist multi-agent system that uses an LLM-based Orchestrator Agent
responsible for planning, tracking progress, and querying other agents/tools for different sub-tasks. Orchestrator can issue
commands to WebSurfer, Coder, FileSurfer and ComputerTerminal. WebSurfer is an LLM-based agent responsible for web
browsing and searching the web using Bing. Coder is an LLM-based agent that can write a new stand-alone Python program
for each request and it should regenerate the entire code from scratch when debugging the code it previously wrote. The
Orchestrator can read various files using the FileSurfer that converts different files in a unified Markdown format. Finally,
the Orchestrator can run Unix-style commands in a shell using the ComputerTerminal tool. This system does not have native
support to create or edit files and write code in other programming languages.

OpenDeepResearch (Roucher et al., 2025) is a multi-agent system similar to Magentic-One. Its CodeAgent can write and
execute stand-alone Python programs, read different files similar to FileSurfer in Magentic-One, ask questions about files,
videos, and images to an LLM-based file viewer, and delegate browsing tasks to a separate browsing agent. The browsing
agent uses a text-only browser to view webpages. It can only scroll on the webpage and search for text on a webpage, but
cannot perform other actions like click, type, hover, etc. The browsing agent has tools to search the web using APIs and
search the Wayback machine for archived webpages. The CodeAgent and the browsing agent each have their own planner
agents that analyze their progress after every few steps and create a step-by-step plan. The CodeAgent is restricted to a fixed
set of pre-installed libraries/packages that it can use. There is no native support for using a bash shell, writing and editing
files, and executing code in other programming languages.

OWL-roleplaying (Hu et al., 2025) is a multi-agent system similar to Magentic-One and OpenDeepResearch. It has
a user agent that assists with the task, creates plans, and issues commands to the assistant agent. The assistant agent is
responsible for solving the task and has access to the various tools to extract content from different files, query LLMs to
analyze images, videos and audios, execute stand-alone Python code, use an LLM-based search tool for searching the web
using multiple search APIs, the WayBack machine, and Wikipedia, and delegate its browsing tasks to a separate browsing
agent. The browsing agent has its own planner agent, uses visual browsing to browse the web, and can execute interactive
actions on webpages. It has no native support for writing and editing files, using a bash shell, and executing code in other
programming languages. Similar to OpenDeepResearch, it has a restrictive design wherein the agent can only use a fixed set
of pre-installed libraries/packages for its Python programs.

SWE-Agent (Yang et al., 2024a) is a software engineering agent that has access to a bash terminal, an agent-computer
interface for reading, writing and editing code files, and a specialized Python-specific linter that checks if the edits made by
the agent are syntactically correct. It cannot browse webpages, search the web, or read multimodal file content.

SWE-Agent JS and SWE-Agent Multimodal (Yang et al., 2025) are extensions of SWE-Agent for the SWE-Bench
M benchmark. SWE-Agent JS adds support for detecting errors in Javascript code edits made by the agent. SWE-Agent
Multimodal is built on top of SWE-agent JS, and has the ability to serve local HTML code in a visual web browser, and open
images. This allows the agent to visually reproduce image-based issues and visually verify its fixes. Just like SWE-Agent,
none of these variants have the ability of browse public webpages, use search engines, or process multimodal file content.

Agentless-Lite (Dunn, 2025) is a lightweight version of Agentless (Xia et al., 2024) that first uses RAG-based localization
to retrieve the top 5 files that are relevant to the issue. Next it queries an LLM with these files to generate a patch. While it
achieves impressive results with this simple method, its design is very limited. It does not support code execution, bash
shell, multimodal file processing, web browsing, or using search engines.

C. Performance on GAIA Validation Split
We also evaluate OpenHands-Versa on the validation split of GAIA. Just like all other experiments, we consider agents with
open-source implementation which have reproducibility guidelines and provide details about the exact configuration used by
their agent.

12



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Table 4. Example tasks for each of the three benchmarks used in this work.

Benchmark Task Description (irrelevant details truncated) Capabilities/Tools required

GAIA
What animals that were mentioned in both Ilias Lagkouvardos’s
and Olga Tapia’s papers on the alvei species of the genus named
for Copenhagen outside the bibliographies were also present in
the 2021 article cited on the alvei species’ Wikipedia page about
a multicenter, randomized, double-blind study?

Web search, Web Browsing, Multi-
modal file processing

The attached image contains a Python script. Run the Python
code against an array of strings, listed below. The output of
the Python script will be a URL containing C++ source code.
Compile and run this C++ code against the array [35, 12, 8, 99,
21, 5] and return the sum of the third and fifth integers in the
sorted list. arr = [‘ alg’, ..., ‘ht’]

Code execution, Multimodal file pro-
cessing, Web Browsing.

The Agent Company
We are collecting employees’ preferences on drinks. Please nav-
igate to ownCloud and find drinks survey.pdf and tell 3 most
popular drinks to HR manager via RocketChat.

Web browsing, Multimodal file pro-
cessing

On our office cloud at http://the-agent-company.com:8092/, find
the July-Sep 2024 financial report for our company, and create a
SQLite database with two tables that appropriately populates the
data in the report

Web browsing, Code Execution,
Multimodal file processing

SWE-Bench M
KML Symbol Align/Placement/Size. There is a bug with the
anchor point for some symbols [Right Image] ... I’ve attached a
screen clipping from Google Earth to show how it is supposed to
look

Coding, Multimodal file processing
(images and code files)

Bracket highlighted with different color in class
inheritance context. - Reproduced in JSFiddle:
https://jsfiddle.net/kkangmj/e7h48w36/7/ (Image) ...

Coding, Web Browsing, Multimodal
file processing

Using the agent configuration described in §3 and claude-3.7-sonnet as the backbone LLM, OpenHands-Versa achieves
a resolve rate of 64.24% on GAIA validation split. Notably, OpenHands-Versa outperforms top-performing, specialist,
multi-agent systems – Magentic-One (46.06% resolve rate), OpenDeepResearch (55.15% resolve rate) and OWL-roleplaying
(58.18% resolve rate).

D. Task Examples
In this section, we provide some examples of tasks from each of the three benchmarks – GAIA (Mialon et al., 2023),
SWE-Bench M (Yang et al., 2025), and The Agent Company (Xu et al., 2024). Table 4 shows some example tasks along with
the tools or capabilities required to solve each of these tasks. Clearly, these examples qualitatively demonstrate that an agent
must be proficient in several capabilities to perform well on all three benchmarks. Furthermore, they also help us understand
why other agents will not be able to solve tasks from other benchmarks. In the absence of browsing, Agentless-Lite and
SWE-Agent cannot solve any of the given examples for GAIA and The Agent Company. In the absence of Javascript code
execution, none of the multi-agent systems can solve example tasks given for SWE-Bench M.

E. Inference Costs
In Table 5, we report the total inference cost of the agents on the 3 benchmarks used in this work. Some of the baseline
agents do not report costs and are discarded from the table. This cost does not include cost for retries of failed/crashed
instances, search API costs and cost of using LLMs during evaluation/metric computation in The Agent Company. For
OpenHands and OpenHands-Versa, we report the actual dollar costs with prompt caching for SWE-Bench M and GAIA.
However, for The Agent Company, our baselines report costs without prompt caching and simply use token counts to

13



Coding Agents with Multimodal Browsing are Generalist Problem Solvers

Table 5. Comparison of total inference cost (in US$) across GAIA, SWE-bench M, and The Agent Company. When available, we report
the costs values directly as reported by the baseline agents. Some of the baseline agents in Table 2 do not report costs and are discarded
from the table. For The Agent Company, we follow the benchmark authors and calculate costs from the token counts and do not consider
prompt caching.

Agent Model(s) GAIA SWE-bench M The Agent Company

SWE-Agent (Yang et al., 2024a) gpt-4o - 1070.19 -
claude-3.5 sonnet - 785.84 -

SWE-Agent JS (Yang et al., 2025) gpt-4o - 511.83 -
claude-3.5 sonnet - 1607.87 -

SWE-Agent Multimodal (Yang et al., 2025) gpt-4o - 1519.98 -
claude-3.5 sonnet - 1607.87 -

OpenHands v0.14.2 (Wang et al., 2024a) gpt-4o - - 225.75
gemini-2.0 flash - - 101.5

claude-3.5 sonnet - - 1109.5

OpenHands v0.28.1 (Wang et al., 2024a) claude-3.7 sonnet 210.56 381.50 708.75

OpenHands-Versa claude-3.7 sonnet 261.52 1010.45 647.50
claude-sonnet-4 241.83 925.04 285.25

compute costs. To allow direct comparison, we also follow this approach when reporting costs of OpenHands v0.28.1 and
OpenHands-Versa on The Agent Company. For all baseline agents, we directly report the costs as reported by the agent
authors.

For GAIA, both OpenHands v0.28.1 and OpenHands-Versa have nearly equal costs, with OpenHands-Versa being slightly
more expensive. For The Agent Company, OpenHands-Versa with Claude-4-Sonnet is significantly less expensive than most
of the baseline agents while offering the strong performance. OpenHands-Versa is slightly cheaper than OpenHands when
using claude-3.7-sonnet. For SWE-Bench M, OpenHands-Versa is significantly cheaper than SWE-Agent Multimodal (that
has ability to browse local webpages which is not present in other variants of SWE-Agent). On the other hand, OpenHands-
Versa is significantly more expensive than OpenHands v0.28.1 – one of the reasons for this is that OpenHands-Versa uses
the browser to visually verify its changes which OpenHands simply cannot do. While this capability is crucial for front-end
software development, it significantly increases the costs due to presence of images and potentially large AXTrees in
browsing observations. Finally, Claude-4-Sonnet is more cost efficient than Claude-3.7-Sonnet for all three benchmarks
with OpenHands-Versa as the agent scaffold.

F. Limitations of Our Approach
In this section, we describe the limitations of our proposed approach. Firstly, we do not consider tasks that involve interaction
with GUI-based desktop computers like those in OSWorld (Xie et al., 2024). OpenHands-Versa and OpenHands both
have access to a headless/non-GUI based operating system via the shell. Secondly, OpenHands-Versa has limited video
processing abilities and cannot view local video files using the file viewer tool. Potential mitigations for this could be to
use an LLM-based file summarizer/video summarizer. Thirdly, like most other agent frameworks, our work also primarily
relies on closed-source LLMs. While it is feasible to use open-source LLMs for OpenHands-Versa, we observe that most AI
agents perform very poorly when open-source LLMs are used. Finally, due to high cost of using proprietary LLMs, we are
unable to evaluate every baseline agent on all the 3 benchmarks, but limit ourselves to strong baseline agents in order to
empirically validate our hypothesis.

14


