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ABSTRACT

Recent diffusion-based generative models achieve remarkable results by training
on massive datasets, yet this practice raises concerns about memorization and
copyright infringement. A proposed remedy is to train exclusively on noisy data
with potential copyright issues, ensuring the model never observes original content.
However, through the lens of deconvolution theory, we show that although it
is theoretically feasible to learn the data distribution from noisy samples, the
practical challenge of collecting sufficient samples makes successful learning nearly
unattainable. To overcome this limitation, we propose to pretrain the model with a
small fraction of clean data to guide the deconvolution process. Combined with our
Stochastic Forward–Backward Deconvolution (SFBD) method, we attain an FID of
6.31 on CIFAR-10 with just 4% clean images (and 3.58 with 10%). Theoretically,
we prove that SFBD guides the model to learn the true data distribution. The
result also highlights the importance of pretraining on limited but clean data or the
alternative from similar datasets. Empirical studies further support these findings
and offer additional insights.

1 INTRODUCTION

Diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;b;
2023) have gained increasing attention. Nowadays, it is considered one of the most powerful
frameworks for learning high-dimensional distributions and we have witnessed many impressive
breakthroughs (Croitoru et al., 2023) in generating images (Ho et al., 2020; Song et al., 2021a;b;
Rombach et al., 2022), audios (Kong et al., 2021; Yang et al., 2023) and videos (Ho et al., 2022).

Due to some inherent properties, diffusion models are relatively easier to train. This unlocks the
possibility of training very large models on web-scale data, which has been shown to be critical to
train powerful models. This paradigm has recently led to impressive advances in image generation,
as demonstrated by cutting-edge models like Stable Diffusion (-XL) (Rombach et al., 2022; Podell
et al., 2024) and DALL-E (2, 3) (Betker et al., 2023). However, despite their success, the reliance
on extensive web-scale data introduces challenges. The complexities of the datasets at such a scale
often result in the inclusion of copyrighted content. Furthermore, diffusion models exhibit a greater
tendency than earlier generative approaches, such as Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014; 2020), to memorize training examples. This can lead to the replication of
parts or even entire images from their training sets (Carlini et al., 2023; Somepalli et al., 2023).

A recent approach to mitigating memorization and copyright concerns trains diffusion models on
corrupted samples (Daras et al., 2023b; Somepalli et al., 2023; Daras & Dimakis, 2023; Daras
et al., 2024). In this framework, models never see original data; instead, samples undergo a non-
invertible corruption process, like adding Gaussian noise, preventing memorization and reproduction.
Interestingly, under mild assumptions, certain non-invertible corruption processes, such as Gaussian
noise injection, create a mathematical bijection between the noisy and original distributions. Thus, in
theory, a generative model can learn the original distribution using only noisy samples (Bora et al.,
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2018). Building on this concept, Daras et al. (2024) demonstrated that when an image is corrupted
via a forward diffusion up to a specific noise level σ, diffusion models can recover distributions at
noise levels below σ by enforcing consistency constraints (Daras et al., 2023a).

While Daras et al. (2024) empirically showed that their approach could be used to fine-tune Stable
Diffusion XL (Podell et al., 2024) using noisy images with a heuristic consistency loss, they did not
explore whether a diffusion model can be successfully trained solely with noisy images. Moreover,
the effectiveness of the consistency loss in such scenarios remains an open question.

In this paper, we address these questions by connecting the task of estimating the original distribution
from noisy samples to the well-studied density deconvolution problem (Meister, 2009). Through
the lens of deconvolution theory, we establish that the optimal convergence rate for estimating the
data density is O(log n)−2 when n noisy samples are generated via a forward diffusion process.
This pessimistic rate suggests that while it is theoretically feasible to learn the data distribution from
noisy samples, the practical challenge of collecting sufficient samples makes successful learning
nearly unattainable. Our empirical studies further validate this theoretical insight and suggest the
inefficiency of the current consistency loss outside the regime of fine-tuning latent diffusion models.

To address the poor convergence rate in training diffusion models with noisy data, we propose
pretraining models on a small subset of copyright-free clean data as an effective solution. Since the
current consistency loss remains ineffective even with pretraining, we propose a new deconvolution
method, Stochastic Forward–Backward Deconvolution (SFBD, pronounced sofabed), that is fully
compatible with the existing diffusion training framework. Experimentally, we achieve an FID of
6.31 with just 4% clean images on CIFAR-10 and 3.58 with 10% clean images. Our theoretical
results ensure that the learnt distribution converges to true data distribution and justifies the necessity
of pretraining. Furthermore, our results suggest that models can be pretrained using datasets with
similar features when clean, copyright-free data are unavailable. Ablation studies provide additional
evidence supporting our claims.

A very recent study by Daras et al. (2025), using Gaussian Mixture Models, also highlights the
challenge of training diffusion models with only noisy samples and shows that adding a few clean
samples can significantly improve performance. The convergence of conclusions from fundamentally
different approaches reinforces the findings of both works.

2 PRELIMILARIES

In this section, we recall diffusion models, the density deconvolution problem and the consistency
constraints.

2.1 DIFFUSION MODELS

Diffusion models generate data by progressively adding Gaussian noise to input data and then
reversing this process through sequential denoising steps to sample from noise. Given distribution p0
on Rd, the forward perturbation is specified by a stochastic differential equation (SDE):

dxt = g(t) dwt, t ∈ [0, T ], (1)

x0 ∼ p0, T is a fixed positive constant and g(t) is a scalar function. {wt}t∈[0,T ] is the standard
Brownian motion.

Eq (1) induces a transition kernel pt|s(xt|xs) for 0 ≤ s ≤ t ≤ T , which is Gaussian and its mean
and covariance matrix can be computed in closed form (Särkkä & Solin, 2019, Eqs 4.23 and 5.51). In
particular, for s = 0, we write

pt|0(xt|x0) = N (x0, σ
2
t I), (2)

for all t ∈ [0, T ], where we set g(t) = (
dσ2

t

dt )
1/2. When σ2

T is very large, xT can be approximately
regarded as a sample from N (0, σ2

T I). Let pt(xt) =
∫
pt|0(xt|x0) p0(x0) dx0 denote the marginal

distribution of xt, where we have pT ≈ N (0, σ2
T I). Anderson (1982) showed that backward SDE

dxt = −g(t)2∇ log pt(xt) dt+ g(t) dw̄t, xT ∼ pT (3)
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has a transition kernel that matches the posterior distribution of the forward process, ps|t(xs|xt) =
pt|s(xt|xs)ps(xs)

pt(xt)
for s ≤ t in [0, T ]. Thus, the backward SDE preserves the same marginal distri-

butions as the forward process. Here, w̄t represents a standard Wiener process with time flowing
backward from T to 0, while∇ log pt(xt) denotes the score function of the distribution pt(xt). With
a well-trained network sϕ(xt, t) ≈ ∇ log pt(xt), we substitute it into Eq (3) and solve the SDE
backward from x̃T ∼ N (0, σ2

T I). The resulting x̃0 then serves as an approximate sample of p0.

To train sϕ to estimate the score, let T be a sampler of t ∈ [0, T ] and w(t) a weight function. The
network sϕ is then trained via the conditional score-matching loss (Song et al., 2021b):

Ls(ϕ) = E
t∼T

E
p0

E
pt|0

[
w(t)∥sϕ(xt, t)−∇ log pt|0(xt|x0)∥2

]
.

Instead, we may train a denoiser Dϕ(x, t) to estimate E[x0|xt] by minimizing (Karras et al., 2022)

Ld(ϕ) = E
t∼T

E
p0

E
pt|0

[
w(t)∥Dϕ(xt, t)− x0∥2

]
(4)

then estimate

∇ log pt(xt) =
(
E[x0|xt]− xt

)/
σ2
t ≈

(
Dϕ(xt, t)− xt)

/
σ2
t . (5)

2.2 DENSITY DECONVOLUTION PROBLEMS

Classical deconvolution problems arise in scenarios where data are corrupted due to significant
measurement errors, and the goal is to estimate the underlying data distribution. Specifically, let the
corrupted samples Y = {y(i)}ni=1 be generated by the process:

y(i) = x(i) + ϵ(i), (6)

where x(i) and ϵ(i) are independent random variables. Here, x(i) is drawn from an unknown
distribution with density pdata, and ϵ(i) is sampled from a known error distribution with density h. It
can be shown that the corrupted samples y(i) follow a distribution with density pdata ∗h, where ∗
denotes the convolution operator. We provide more details in Appx A.

The objective of the (density) deconvolution problem is to estimate the density of pdata using
the observed data Y , which is sampled from the convoluted distribution pdata ∗ h. In essence,
deconvolution reverses the density convolution process, hence the name of the problem.

To assess the quality of an estimator p̂(·;Y) of pdata based on Y , the mean integrated squared error
(MISE) is commonly used. MISE is defined as:

MISE(p̂, pdata) = EY

∫
Rd

∣∣ p̂(x;Y)− pdata(x)
∣∣2 dx. (7)

In this paper, we focus on a corruption process implemented via forward diffusion as described
in Eq (1). Consequently, unless otherwise stated, in the rest of this work, we assume the error
distribution h is Gaussian N (0, σ2

ζI) with a given and fixed ζ ∈ (0, T ).

To see why we could identify an original distribution p through p∗h, let Φp(u) = Ep[exp(iu
⊤x)]

for u ∈ Rd be the characteristic function of p. Then,
Proposition 1. Let p and q be two distributions defined on Rd. For all u ∈ Rd,

|Φp(u)−Φq(u)|≤exp
(σ2

ζ

2
∥u∥2

)√
2DKL(p∗h∥q ∗h).

(All proofs are deferred to the appendix.) This result shows if two distributions p and q are similar after
being convoluted with h, they must have similar characteristic functions and thus similar distribution.
In particular, when p∗h = q ∗h, then p = q, the case also discussed in Wang et al. (2023, Thm 2).
As a result, whenever we could find q satisfying pdata ∗h = q ∗h, we can conclude pdata = q.

2.3 DECONVOLUTION THROUGH THE CONSISTENCY CONSTRAINTS

While Prop 1 shows it is possible to train a generative model using noisy samples, it remains a difficult
question of how to use noisy samples to train a diffusion model to generate clean samples effectively.
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The question was partially addressed by Daras et al. (2024) through the consistency property (Daras
et al., 2023a). In particular, since we have access to the noisy samples xζ from pdata ∗h, we can
use them to train a network sϕ(xt, t) to approximate ∇ log pt(xt) for t > ζ through a modified
score matching loss, which is referred as ambient score matching (ASM), denoted by LASM(ϕ).
In their implementation, sϕ(xt, t) is parameterized by Dϕ(xt,t)−xt

σ2
t

, where Dϕ(xt, t) is trained to
approximate E[x0|xt]. In contrast, for t ≤ ζ, score-matching is no longer applicable. Instead, Daras
et al. (2024) propose that Dϕ(xt, t) should obey the consistency property:

E[x0|xs] = Epr|s

[
E[x0|xr]

]
, for 0 ≤ r ≤ s ≤ T (8)

by jointly minimizing the consistency loss:

Lcon(ϕ, r, s)=Eps

∥∥Dϕ(xs, s)−Epr|s [Dϕ(xr, r)]
∥∥2, (9)

where r and s are sampled from predefined distributions. Sampling from pr|s is implemented by
solving Eq (3) backward from xs, replacing the score function with the network-estimated one Dϕ

via Eq (5). For sampling from ps, we first sample xτ for τ > s and τ > ζ, then sample from ps|τ in
a manner analogous to sampling from pr|s.

It can be shown that if Dϕ minimizes the consistency loss for all r, s and perfectly learns the
score function for t > ζ, then Dϕ(xt,t)−xt

σ2
t

becomes an exact estimator of the score function for all
t ∈ [0, T ]. Consequently, the distribution p0 = pdata can be sampled by solving Eq (3).

Daras et al. (2024) demonstrated the effectiveness of this framework only in fine-tuning latent
diffusion models, leaving its efficacy when training from scratch unreported. Moreover, as sampling
from pr|s depends on the model’s approximation of the score (which is particularly challenging to
estimate accurately for t < ζ) rather than the ground truth, there remains a gap between the theoretical
framework and its practical implementation. This gap limits the extent to which the algorithm’s
effectiveness is supported by their theoretical results.

3 THEORETICAL LIMIT OF DECONVOLUTION

In this section, we analyze the complexity of deconvolution when data corruption follows a forward
diffusion process. Using deconvolution theory, we show that while Daras et al. (2024) demonstrated
that diffusion models can be trained on noisy samples, obtaining enough samples for high-quality
training is practically infeasible.

The following two theorems establish that the optimal convergence rate for estimating the data density
is O(log n)−2. These results, derived using standard deconvolution theory (Meister, 2009) under a
Gaussian noise assumption, highlight the inherent difficulty of the problem. We present the result for
d = 1, which suffices to illustrate the challenge.
Theorem 1. Assume Y is generated according to Eq (6) with ϵ ∼ N (0, σ2

ζ ) and pdata is a univariate
distribution. Under some weak assumptions on pdata, for a sufficiently large sample size n, there
exists an estimator p̂(·;Y) such that

MISE(p̂, pdata) ≤ C σ4
ζ · (log n)−2, (10)

where C is determined by pdata.

Theorem 2. In the same setting as Thm 1, for an arbitrary estimator p̂(·;Y) of pdata based on Y ,

MISE(p̂, pdata) ≥ K · (log n)−2, (11)

where K > 0 is determined by pdata and error distribution h.

The optimal convergence rate O(log n)−2 indicates that reducing the MISE to one-fourth of its
current value requires an additional n2 − n samples. In contrast, under the error-free scenario, the
optimal convergence rate is known to be O(n−4/5) (Wand, 1998), where reducing the MISE to
one-fourth of its current value would only necessitate approximately 4.657n additional samples.

The pessimistic rate indicates that effectively training a generative model using only corrupted
samples with Gaussian noise is nearly impossible. Thus, this implies that training from scratch, using

4



Published as a workshop paper at FPI workshop at ICLR 2025

only noisy images, with the consistency loss discussed in Sec 2.3, is infeasible. Notably, as indicated
by Eq (10), this difficulty is significantly more severe with larger σ2

ζ , while a large σ2
ζ is typically

required to alter the original samples significantly to address copyright and privacy concerns.

To mitigate the pessimistic statistical rate, we propose pretraining diffusion models on a small set
of copyright-free samples. Although limited, this data offers valuable priors, initializing the model
closer to the true distribution than random weights. In image generation, for instance, it helps the
model learn common structures like continuity, smoothness, edges, and typical object appearances.

Unfortunately, our empirical study in Sec 5 will show that the consistency loss-based method
discussed in Sec 2.3 cannot deliver promising results even after pretraining. We suspect that this is
caused by the gap between their theoretical framework and the practical implementation. As a result,
we propose SFBD in Sec 4 to bridge such a gap.

4 STOCHASTIC FORWARD–BACKWARD DECONVOLUTION

Algorithm 1 Stochastic Forward–Backward Deconvolu-
tion. (Given sample setD, pD denotes the corresponding
empirical distribution.)

Input: clean data: Dclean = {x(i)}Mi=1, noisy data:
Dnoisy = {y(i)

τ }Ni=1, number of iterations: K.
// Initialize Denoiser

1 ϕ0 ← Pretrain Dϕ using Eq (4) with p0 = pDclean

2 for k = 1 to K do
// Backward Sampling

3 Ek ← {y(i)
0 : ∀y(i)

τ ∈ Dnoisy, solve backward SDE
Eq (3) from τ to 0, starting from y

(i)
τ , where the

score function is estimated as
Dϕk−1

(xt,t)−xt

σ2
t

}
// Denoiser Update

4 ϕk ← TrainDϕ by minimizing Eq (4) with p0 = pEk

Output: Final denoiser DϕK

In this section, we introduce a novel
method for solving the deconvolution
problem that integrates seamlessly with
the existing diffusion model framework.
As our approach involves iteratively ap-
plying the forward diffusion process de-
scribed in Eq (1), followed by a back-
ward step with an optimized drift, we re-
fer to this method as Stochastic Forward-
Backward Deconvolution (SFBD), as de-
scribed in Alg 1.

The proposed algorithm begins with a
small set of clean data, Dclean, for pre-
training, followed by iterative optimiza-
tion using a large set of noisy samples. As
demonstrated in Sec 5, decent quality im-
ages can be achieved on datasets such as
CIFAR-10 (Krizhevsky & Hinton, 2009)
and CelebA (Liu et al., 2015) using as few
as 50 clean images. During pretraining, the algorithm produces a neural network denoiser, Dϕ0 ,
which serves as the initialization for the subsequent iterative optimization process. Specifically, the
algorithm alternates between the following two steps: for k = 1, 2, . . .K,

1. (Backward Sampling) This step can be intuitively seen as a denoising process for samples in
Dnoisy using the backward SDE Eq (3). In each iteration, we use the best estimation of the
score function so far induced by Dϕk−1

through Eq (5).
2. (Denoiser Update) Fine-tune denoiser Dϕk−1

to obtain Dϕk
by minimizing Eq (4) with the

denoised samples obtained in the previous step.

The following proposition shows that when Dnoisy contains sufficiently many samples to characterize
the true noisy distribution pdata ∗h, when K →∞, the diffusion model implemented by denoiser
DϕK

has the sample distribution converging to the true pdata.
Proposition 2. Let p∗t be the density of xt obtained by solving the forward diffusion process Eq (1)
with x0 ∼ pdata, where we have p∗ζ = pdata ∗h. Consider a modified Alg 1, where the empirical

distribution PDnoisy is replaced with the ground truth p∗ζ . Correspondingly, pEk
becomes p(k)0 , the

distribution of x0 induced by solving:
dxt = −g(t)2 sϕk−1

(xt, t) dt+ g(t) dw̄t, xζ ∼ p∗ζ (12)

from ζ to 0, where sϕk
(xt, t) =

Dϕk
(xt,t)−xt

σ2
t

, g(t) = (
dσ2

t

dt )
1/2 and Dϕk

is obtained by minimizing
(4) according to Alg 1. Assume Dϕk

reaches the optimal for all k. Under mild assumptions,

DKL(pdata ∥ p(k)0 ) ≥ DKL(pdata ∥ p(k+1)
0 ). (13)
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for all k ≥ 0. In addition, for all K ≥ 1 and u ∈ Rd, we have

min
k=1,...K

∣∣∣Φpdata(u)− Φ
p
(k)
0

(u)
∣∣∣ ≤ exp

(σ2
ζ

2
∥u∥2

)√2M0

K
,

where M0 = 1
2

∫ ζ

0
g(t)2Ep∗

t

∥∥∇ log p∗t (xt)− sϕ0
(xt, t)

∥∥2 dt.
Prop 2 shows that after sufficient iterations of backward sampling and denoiser updates, the denoised
sample distribution converges to the true data distribution at a rate of O(1/

√
K). Thus, after

fine-tuning the denoiser on these denoised samples during the Denoiser Update step, the diffusion
model is expected to generate samples that approximately follow the data distribution, solving
the deconvolution problem. Note that this result describes the convergence rate of SFBD under
the assumption of an infinite number of noisy samples, which is distinct from the optimal sample
efficiency rate discussed in Sec 3.

The importance of pretraining. Prop 2 also highlights the critical role of pretraining, as it allows
the algorithm to begin fine-tuning from a point much closer to the true data distribution. Specifically,
effective pretraining ensures that sϕ0

closely approximates the ground-truth score, leading to a smaller
M0 in Prop 2. This, in turn, reduces the number of iterations K required for the diffusion model to
generate high-quality samples.

The practical limits of increasing K. While Prop 2 suggests that increasing the number of itera-
tions K can continuously improve sample quality, practical limitations come into play. Sampling
errors introduced during the backward sampling process, as well as imperfections in the denoiser
updates, accumulate over time. These errors eventually offset the benefits of additional iterations, as
demonstrated in Sec 5. This observation further highlights the importance of pretraining to mitigate
the impact of such errors and achieve high-quality samples with fewer iterations.

Alternative methods for backward sampling. While the backward sampling in Alg 1 is presented
as a naive solution to the backward SDE in Eq (3), the algorithm is not limited to this approach.
Any backward SDE and solver yielding the same marginal distribution as Eq (3) can be employed.
Alternatives include PF-ODE, the predictor-corrector sampler (Song et al., 2021b), DEIS (Zhang &
Chen, 2023), and the 2nd order Heun method used in EDM (Karras et al., 2022). Compared to the
Euler–Maruyama method, these approaches require fewer network evaluations and offer improved
error control for imperfect score estimation and step discretization. As the algorithm generates Ek
that contains samples closer to pdata with increasing k, clean images used for pretraining can be
incorporated into Ek to accelerate this process. In our empirical study, this technique is applied
whenever clean samples and noisy samples (prior to corruption) originate from the same distribution.

Relationship to the consistency loss. SFBD can be seen as an algorithm that enforces the consistency
constraint across all positive time steps and time zero. Specifically, we have
Proposition 3. Assume that the denoising network Dϕ is implemented to satisfy Dϕ(·, 0) = Id(·).
When r = 0, the consistency loss in Eq (9) is equivalent to the denoising noise in Eq (4) for t = s.

The requirement that Dϕ(·, 0) = Id(·) is both natural and intuitive, as Dϕ(x0, 0) approximates
E[x0|x0] = x0. This fact is explicitly enforced in the design of the EDM framework (Karras et al.,
2022), which has been widely adopted in subsequent research.

A key distinction between SFBD and the original consistency loss implementation is that SFBD
does not require sampling from pr|s or access to the ground-truth score function induced by the
unknown data distribution pdata. This is because, in the original implementation, p0 = pdata, whereas
in SFBD, p0 = p

(k)
0 , as defined in Prop 2, and is obtained iteratively through the backward sampling

step. As k increases, p(k)0 converges to pdata, ensuring that the same consistency constraints are
eventually enforced. Consequently, SFBD bridges the gap between theoretical formulation and
practical implementation that exists in the original consistency loss framework.

5 EMPIRICAL STUDY

In this section, we demonstrate the effectiveness of the SFBD framework proposed in Sec 4. Compared
to other models trained on noisy datasets, SFBD consistently achieves superior performance across
all benchmark settings. Additionally, we conduct ablation studies to validate our theoretical findings
and offer practical insights for applying SFBD effectively.
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Figure 1: Denoised samples of CIFAR-10 (left) and CelebA (right). (Noise level σζ = 0.2)

(a) Clean Image Ratio (b) Noise Level (c) Pretrain on Similar Datasets

Figure 2: SFBD performance on CIFAR-10 under various conditions. Unless specified, the clean
image ratio is 0.04 and the noise level σζ is 0.59. In (a) and (b), FID at iteration 0 corresponds to the
pretrained model. In (c), models are pretrained on clean images from the “truck” class, with FID at
iteration 0 measuring the distance between these clean images and those used for fine-tuning. For the
w/o pretraining setting, models are trained on the full CIFAR-10 dataset with σζ = 0.59.

Datasets and evaluation metrics. The experiments are conducted on the CIFAR-10 (Krizhevsky
& Hinton, 2009) and CelebA (Liu et al., 2022) datasets, with resolutions of 32 × 32 and 64 × 64,
respectively. CIFAR-10 consists of 50,000 training images and 10,000 test images across 10 classes.
CelebA, a dataset of human face images, includes a predefined split of 162,770 training images,
19,867 validation images, and 19,962 test images. For CelebA, images were obtained using the
preprocessing tool provided in the DDIM official repository (Song et al., 2021a).

We evaluate image quality using the Frechet Inception Distance (FID), computed between the
reference dataset and 50,000 images generated by the models. Generated samples for FID computation
are presented in Appx D.

Table 1: Model performance comparison. When
σζ > 0, the models are trained on noisy images.
Underscored results are produced by this work.

Method CIFAR10 (32 x 32) CelebA (64 x 64)

σζ Pretrain FID σζ Pretrain FID

DDPM (Ho et al., 2020) 0.0 No 4.04 0.0 No 3.26
DDIM (Song et al., 2021a) 0.0 No 4.16 0.0 No 6.53
EDM (Karras et al., 2022) 0.0 No 1.97 - - -

SURE-Score (Aali et al., 2023) 0.2 Yes 132.61 - - -
EMDiff (Bai et al., 2024) 0.2 Yes 86.47 - - -
TweedieDiff (Daras et al., 2024) 0.2 No 167.23 0.2 No 246.95
TweedieDiff (Daras et al., 2024) 0.2 Yes 65.21 0.2 Yes 58.52
SFBD (Ours) 0.2 Yes 13.53 0.2 Yes 6.49

Figure 3: Noisy images with various σζ .

Models and other configurations. We imple-
mented SFBD algorithms using the architectures
proposed in EDM (Karras et al., 2022) as well
as the optimizers and hyperparameter configu-
rations therein. All models are implemented in
an unconditional setting, and we also enabled
the non-leaky augmentation technique (Karras
et al., 2022) to alleviate the overfitting problem.
For the backward sampling step in SFBD, we
adopt the 2nd-order Heun method (Karras et al.,
2022). More information is provided in Appx E.

5.1 PERFORMANCE COMPARISON

We compare SFBD with representative models
for training on noisy images (Table 1). SURE-
Score (Aali et al., 2023) and EMDiffusion (Bai
et al., 2024) use Stein’s unbiased risk estimate
and expectation-maximization, respectively, for
inverse problems. TweedieDiffusion (Daras et al., 2024) applies the original consistency loss Eq (9).
Daras et al. (2025) improved TweedieDiffusion performance through a simplified implementation
of the consistency loss. A detailed comparison with the optimized TweedieDiffusion model will be
provided in the full version of this work.
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Following the experimental setup of Bai et al. (2024), images are corrupted by adding independent
Gaussian noise with a standard deviation of σζ = 0.2 to each pixel after rescaling pixel values to
[−1, 1]. For reference, we also include results for models trained on clean images (σζ = 0). In cases
with pretraining, the models are initially trained on 50 clean images randomly sampled from the
training datasets. For all results presented in this work, the same set of 50 sampled images is used.

Table 1 shows SFBD produces images of significantly higher quality than all baselines, as further
illustrated by the denoised images in Fig 1 by evaluating the backward SDE starting from a noisy
image in the training dataset. Notably, on CelebA, SFBD achieves performance comparable to DDIM,
which is trained on clean images. While TweedieDiffusion benefits from pretraining, its results
remain inferior to SFBD. In fact, we observe that the original consistency loss Eq (9) offers limited
performance improvement after pretraining; the FID begins to degrade soon after its application.

5.2 ABLATION STUDY

In this section, we investigate how SFBD’s performance varies with clean image ratios, noise levels,
and pretraining on similar datasets. The results align with our discussion in Sec 3 and Sec 4 and
provide practical insights. Experiments are conducted on CIFAR-10, with the default σζ = 0.59.
This noise level significantly alters the original images, aligning with our original motivation to
address potential copyright concerns (see Fig 3).

Clean image ratio. Fig 2(a) shows the FID trajectories across fine-tuning iterations k for different
clean image ratios. With just 4% clean images, SFBD achieves strong performance (FID: 6.31)
and outperforms DDIM with 10% clean images. While higher clean image ratios further improve
performance, the gains diminish as a small amount of clean data already provides sufficient high-
frequency features (e.g., edges and local details) to capture feature variations. Since these features
are shared across images, additional clean data offers limited improvement.

These findings suggest that practitioners with limited clean datasets should focus on collecting more
copyright-free data to enhance performance. Notably, when clean images are scarce, the marginal
gains from additional fine-tuning iterations k are greater than when more clean data is available.
Therefore, in scenarios where acquiring clean data is challenging, increasing fine-tuning iterations
can be an effective alternative to improve results.
Noise level. Fig 2(b) shows SFBD’s sampling performance across fine-tuning iterations for different
noise levels, using the values from 2nd order Heun sampling in EDM (Karras et al., 2022). The impact
of noise on the original images is visualized in Fig 3. As shown in Fig 2(b), increasing σζ significantly
degrades SFBD’s performance. This is expected, as higher noise levels obscure more features in the
original images. Furthermore, as suggested by Thm 1, higher σζ demands substantially more noisy
images, which cannot be compensated by pretraining on a small clean image set. Importantly, this
performance drop is a mathematical limitation discussed in Sec 3, rather than an issue solvable by
better deconvolution algorithms.

Pretraining with clean images from similar datasets. Fig 2(c) evaluates SFBD’s performance
when fine-tuning on image sets from different classes, with the model initially pretrained on clean
truck images. The results show that the closer the noisy dataset is to the truck dataset (as indicated
by the FID at iter 0), the better the model performs after fine-tuning. This is expected, as similar
datasets share common features that facilitate learning the target data distribution. Interestingly, even
when the pretraining dataset differs significantly from the noisy dataset, the model still outperforms
the version without pretraining. This is because unrelated datasets often share fundamental features,
such as edges and local structures. Therefore, practitioners should always consider pretraining
before fine-tuning on target noisy datasets, while more similar pretraining datasets yield better final
sampling performance.

6 CONCLUSION

We presented SFBD, a new deconvolution method based on diffusion models. Under mild assump-
tions, we theoretically showed that our method could guide diffusion models to learn the true data
distribution through training on noisy samples. The empirical study corroborates our claims and
shows that our model consistently achieves state-of-the-art performance in some benchmark tasks.
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A A BRIEF INTRODUCTION TO THE DENSITY CONVOLUTIONS

In this section, we give a brief discussion on the density convolution and how it is related to our
problem.

For simplicity, we stick to the case when d = 1. Consider the data generation process in Eq (6). Let
py denote the density of the distribution of the noisy samples y(i). Then we have

Fact 1. For ω ∈ R,

py(ω) =

∫
pdata(x) h(ω − x) dx = (pdata ∗h)(ω). (14)

Proof. This is because, for all measurable function ψ, we have∫
ψ(ω)py(ω) dω =

∫ ∫
ψ(x+ ϵ) pdata(x)h(ϵ) dxdϵ =

∫ ∫
ψ(ω)pdata(x)h(ω − x) dx dw

=

∫
ψ(w)

[∫
pdata(x) h(ω − x) dx

]
dω.

As the equality holds for all ψ, we have py(ω) =
∫
pdata(x) h(ω − x) dx = (pdata ∗h)(ω).

As a result, according to Fact 1, the density convolution is naturally involved in our setting.

Then, we provide an alternative way to show why we can recover pdata given py and h. (Namely, we
need to deconvolute py to obtain pdata.) Our discussion can be seen a complement of the discussion
following Prop 1. Let ϕp denote the characteristic function of the random variable with distribution p
such that

ϕp(t) =

∫
exp(itω) p(ω) dω. (15)

We note that the characteristic function of a density p is its Fourier transform. As a result, through
the dual relationship of multiplication and convolution under Fourier transformation (Meister, 2009,
Lemma A.5), we have

ϕpy
(t) = ϕpdata(t) ϕh(t). (16)

As a result, given noisy data distribution py and noise distribution h, we have

ϕpdata(t) =
ϕpy

(t)

ϕh(t)
. (17)

Finally, we can recover pdata through an inverse Fourier transform:

pdata(x) = (2π)−1

∫
exp(−itx) ϕpdata(t) dt = (2π)−1

∫
exp(−itx)

ϕpy
(t)

ϕh(t)
dt. (18)

We conclude this section by summarizing the relationship between data and noisy sample distributions
in Fig 4.

pdata py = pdata ∗ h

∼

x(i) y(i) = x(i) + ε(i)
add ε(i) ∼ h

irreversible

∼

convolution

deconvolution

Figure 4: While the corruption process is irreversible at the sample level, a bijective relationship
exists between the clean and noisy data distributions.
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B PROOFS RELATED TO DECONVOLUTION THEORY

We first show the result suggesting it is possible to identify a distribution through its noisy version
obtained by corrupting its samples by injecting independent Gaussian noises.

Proposition 1. Let p and q be two distributions defined on Rd. For all u ∈ Rd,

|Φp(u)−Φq(u)|≤exp
(σ2

ζ

2
∥u∥2

)√
2DKL(p∗h∥q ∗h).

Lemma 1. Given two distributions p and q on Rd. Let Φp(u) and Φq(u) be their characteristic
functions. Then for all u ∈ Rd, we have∣∣Φp(u)− Φq(u)

∣∣ ≤ √
2DKL(p ∥ q). (19)

Proof. We note that

Φp(u) = Ep[exp(iu
⊤x)], Φq(u) = Eq[exp(iu

⊤x)].

Then for any u ∈ Rd, we have∣∣Φp(u)− Φq(u)
∣∣ ≤ ∣∣∣∣∫

Rd

exp(iu⊤x)p(x) dx−
∫
Rd

exp(iu⊤x)q(x) dx

∣∣∣∣
=

∣∣∣∣∫
Rd

exp(iu⊤x)
(
p(x)− q(x)

)
dx

∣∣∣∣ ≤ ∫
Rd

∣∣exp(iu⊤x)
∣∣︸ ︷︷ ︸

=1

|p(x)− q(x)| dx

=

∫
Rd

|p(x)− q(x)| dx

= 2 ∥p− q∥TV,

where the last equality is due to Scheffe’s theorem (Tsybakov, 2009, Lemma 2.1, p. 84)).

Then, by Pinsker’s inequality (Tsybakov, 2009, Lemma 2.5, p. 88), we have∣∣Φp(u)− Φq(u)
∣∣ ≤ 2 ∥p− q∥TV ≤

√
2DKL(P ∥ Q).

which completes the proof.

Proof of Prop 1. Note that, by the convolution theorem (Meister, 2009, A.4), for all u ∈ Rd, we have

Φp∗h(u) = Φp(u) Φh(u) = Φp(u) exp
(
−
σ2
ζ

2
∥u∥2

)
,

as h ∼ N (0, σ2
ζI) having Φh(u) = exp

(
− σ2

ζ

2 ∥u∥
2
)
. Applying Lem 1, we have

exp
(
−
σ2
ζ

2
∥u∥2

) ∣∣∣Φp(u)− Φq(u)
∣∣∣ = ∣∣Φp∗h(u)− Φq∗h(u)

∣∣ ≤√
2DKL(p∗h∥q ∗h). (20)

Rearranging the inequality completes the proof.

We then derive the proofs regarding the sample complexity of the deconvolution problem.

Theorem 1. Assume Y is generated according to Eq (6) with ϵ ∼ N (0, σ2
ζ ) and pdata is a univariate

distribution. Under some weak assumptions on pdata, for a sufficiently large sample size n, there
exists an estimator p̂(·;Y) such that

MISE(p̂, pdata) ≤ C σ4
ζ · (log n)−2, (10)

where C is determined by pdata.
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Proof. The result is constructed based on the work by Stefanski & Carroll (1990). In particular,
assuming that pdata is continuous, bounded and has two bounded integrable derivatives such that∫

p′′data(x) dx <∞, (21)

we can construct a kernel based estimator of pdata of rate
λ4

4
µ2
K,2

∫
p′′data(x) dx, (22)

where µ2
κ,2 is a constant determined by the selected kernel κ and λ is a function of number of samples

n gradually decreasing to zero as n→∞. It is required that λ satisfies

1

2πnλ
exp(

B2σ2
ζ

λ2
)→ 0 (23)

as n→∞, where B > 0 is a constant depending on the picked kernel κ. Here, we assume we picked
a kernel with B < 1.

To satisfy the constraint, we choose λ(n) = σζ√
logn

. Plugging it into Eq (23), we have

lim
n→∞

1

nλ
exp(

B2σ2
ζ

λ2
) = lim

n→∞

√
log n

nσζ
exp (B2 log n) = lim

n→∞

√
log n

n1−B2σζ
. (24)

To show limn→∞
√
logn

n1−B2σζ
= 0, it suffices to show limn→∞

logn

n2−2B2σ2
ζ

= 0. By L’Hopital’s rule, we

have

lim
n→∞

log n

n2−2B2σ2
ζ

= lim
n→∞

1

(2− 2B2)n2−2B2σ2
ζ

= 0 (25)

As a result, λ(n) = σζ√
logn

is a valid choice, which gives the convergence rate
σ4
ζ

(logn)2 .

Theorem 2. In the same setting as Thm 1, for an arbitrary estimator p̂(·;Y) of pdata based on Y ,

MISE(p̂, pdata) ≥ K · (log n)−2, (11)
where K > 0 is determined by pdata and error distribution h.

Proof. This result is a special case of Theorem 2.14 (b) in (Meister, 2009). When the error density
is Gaussian, we have γ = 2. In addition, in the proof of Thm 1, we assumed that pdata has two
bounded integrable derivatives, which equivalently assumes pdata satisfies the Soblev condition with
smoothness degree β = 2 (see Eq. A.8, Meister 2009). Then the theorem shows MISE(p̂, pdata) ≥
const · (log n)−2β/γ = const · (log n)−2.

C PROOFS RELATED TO THE RESULTS OF SFBD

We first prove Prop 2, which we restate below:
Proposition 2. Let p∗t be the density of xt obtained by solving the forward diffusion process Eq (1)
with x0 ∼ pdata, where we have p∗ζ = pdata ∗h. Consider a modified Alg 1, where the empirical

distribution PDnoisy is replaced with the ground truth p∗ζ . Correspondingly, pEk
becomes p(k)0 , the

distribution of x0 induced by solving:
dxt = −g(t)2 sϕk−1

(xt, t) dt+ g(t) dw̄t, xζ ∼ p∗ζ (12)

from ζ to 0, where sϕk
(xt, t) =

Dϕk
(xt,t)−xt

σ2
t

, g(t) = (
dσ2

t

dt )
1/2 and Dϕk

is obtained by minimizing
(4) according to Alg 1. Assume Dϕk

reaches the optimal for all k. Under mild assumptions,

DKL(pdata ∥ p(k)0 ) ≥ DKL(pdata ∥ p(k+1)
0 ). (13)

for all k ≥ 0. In addition, for all K ≥ 1 and u ∈ Rd, we have

min
k=1,...K

∣∣∣Φpdata(u)− Φ
p
(k)
0

(u)
∣∣∣ ≤ exp

(σ2
ζ

2
∥u∥2

)√2M0

K
,

where M0 = 1
2

∫ ζ

0
g(t)2Ep∗

t

∥∥∇ log p∗t (xt)− sϕ0(xt, t)
∥∥2 dt.

14
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To facilitate our discussions, let

•
←−
Q

ϕk−1

0:ζ : the path measure induced by the backward process Eq (12). In general, we use
←−
Qϕ

0:ζ to denote the path measure when the drift term is parameterized ϕ.

•
−→
P

(k)
0:ζ : the path measure induced by the forward process Eq (1) with p0 = p

(k)
0 , defined in

Prop 2. The density of its marginal distribution at time t is denoted by p(k)t

•
−→
P ∗

0:ζ : the path measure induced by the forward process Eq (1) with p0 = pdata.

We note that, according to Alg 1, the marginal distribution of
←−
Q

ϕk−1

0:ζ at t = 0 has density p(k)0 .

The following lemma allows us to show that the training of the diffusion model can be seen as a
process of minimizing the KL divergence of two path measures.

Lemma 2 (Pavon & Wakolbinger 1991, Vargas et al. 2021). Given two SDEs:

dxt = fi(xt, t) dt+ g(t) dwt, x0 ∼ p(i)0 (x) t ∈ [0, T ] (26)

for i = 1, 2. Let P (i)
0:T , for i = 1, 2, be the path measure induced by them, respectively. Then we have,

DKL(P
(1)
0:T ∥ P

(2)
0:T ) = DKL(p

(1)
0 ∥ p(2)0 ) + E

P
(1)
0:T

[∫ T

0

1

2 g(t)2
∥f1(xt, t)− f2(xt, t)∥2 dt

]
. (27)

In addition, the same result applies to a pair of backward SDEs as well, where p(i)0 is replaced with
p
(i)
T .

Proof. By the disintegration theorem (e.g., see Vargas et al. 2021, Appx B), we have

DKL(P1 ∥ P2) = DKL(p
(1)
0 ∥ p(2)0 ) + E

P
(1)
0:T

[
log

dP
(1)
0:T (·|x0))

dP
(2)
0:T (·|x0)

]
, (28)

where P (i)
0:T (·|x0) is the conditioned path measure of P (i)

0:T given the initial point x0. Then, applying
the Girsanov theorem (Kailath, 1971; Oksendal, 2003) on the second term yields the desired result.

By Lem 2, we can show that the Denoiser Update step in Alg 1 finds ϕk minimizing
DKL(

−→
P

(k)
0:ζ ∥

←−
Qϕ

0:ζ). To see this, note that

ϕk = argmin
ϕ

DKL(
−→
P

(k)
0:ζ ∥

←−
Qϕ

0:ζ)

= argmin
ϕ

DKL(p
(k)
ζ ∥ p∗ζ) + E−→

P
(k)
0:ζ

[∫ ζ

0

g(t)2

2
∥∇ log p

(k)
t (xt)− sϕ(xt, t)∥2 dt

]
, (29)

where p(k)t is the marginal distribution induced by the forward process (1) with the boundary condition
p
(k)
0 at t = 0. Note that, we have applied Lem 2 to the backward processes inducing

−→
P

(k)
0:ζ and

←−
Qϕ

0:ζ .

Thus, the drift term of
−→
P

(k)
0:ζ is not zero but −g(t)2∇ log p

(k)
t (xt) according to Eq (3). Since the first

term of Eq (29) is a constant, the minimization results in

∇ log p
(k)
t (xt) = sϕk

(xt, t) (30)

for all xt ∈ Rd and t ∈ (0, ζ]. In addition, we note that, the denoising loss in Eq (4) is minimized
when ∇ log p

(k)
t (xt) = sϕ(xt, t) for all t > 0; as a result, ϕk minimizes DKL(

−→
P

(k)
0:ζ ∥

←−
Qϕ

0:ζ) as
claimed.

Now, we are ready to prove Prop 2.

15
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Proof of Prop 2. Applying Lem 2 to the backward process

DKL(
−→
P ∗

0:ζ ∥
←−
Q

ϕk−1

0:ζ ) = DKL(p
∗
ζ ∥ p∗ζ)︸ ︷︷ ︸

=0

+E−→
P ∗

0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log p∗t (xt)− sϕk−1
(xt, t)∥2 dt

]

= E−→
P ∗

0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log p∗t (xt)− sϕk−1
(xt, t)∥2 dt

]
(31)

Likewise,

DKL(
−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ ) = DKL(p

∗
ζ ∥ p

(k)
ζ ) + E−→

P ∗
0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log q∗t (xt)−∇ log p
(k)
t (xt)∥2 dt

]

= DKL(p
∗
ζ ∥ p

(k)
ζ ) + E−→

P ∗
0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log q∗t (xt)− sϕk
(xt, t)∥2 dt

]
(31)
= DKL(p

∗
ζ ∥ p

(k)
ζ ) +DKL(

−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ) (32)

where the second equality is due to the discussion on deriving Eq (30).

Lem 2 also implies that

DKL(
−→
P ∗

0:ζ ∥
←−
Q

ϕk−1

0:ζ ) = DKL(pdata ∥ p(k)0 ) + E−→
P ∗

0:ζ

[∫ ζ

0

1
2∥b

(k−1)(xt, t)∥2 dt

]
︸ ︷︷ ︸

:=Bk−1

, (33)

where b(k−1)(xt, t) is the drift of the forward process inducing
←−
Q

ϕk−1

0:ζ . In addition,

DKL(
−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ ) = DKL(pdata ∥ p(k)0 ) + E−→

P ∗
0:ζ

[∫ ζ

0

1
2∥0− 0∥2 dt

]
= DKL(pdata ∥ p(k)0 ).

(34)

As a result,

DKL(pdata ∥ p(k)0 )
(34)
= DKL(

−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ )

(32)
= DKL(p

∗
ζ ∥ p

(k)
ζ ) +DKL(

−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ)

≥ DKL(
−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ)
(33)
= DKL(pdata ∥ p(k+1)

0 ) + Bk

≥DKL(pdata ∥ p(k+1)
0 )

which is (13). In addition, we have

DKL(
−→
P ∗

0:ζ ∥
←−
Q

ϕk−1

0:ζ )
(33)
= DKL(pdata ∥ p(k)0 ) + Bk−1

(34)
= DKL(

−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ ) + Bk−1

(32)
= DKL(p

∗
ζ ∥ p

(k)
ζ ) +DKL(

−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ) + Bk−1

= DKL(
−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ) +
[
DKL(p

∗
ζ ∥ p

(k)
ζ ) + Bk−1

]
.

As a result, applying this relationship recursively, we have

DKL(
−→
P ∗

0:ζ ∥
←−
Qϕ0

0:ζ) =

K∑
k=1

DKL(p
∗
ζ ∥ p

(k)
ζ ) +

K∑
k=1

Bk−1 +DKL(
−→
P ∗

0:ζ ∥
←−
QϕK

0:ζ ). (35)

Since DKL(
−→
P ∗

0:ζ ∥
←−
Qϕ0

0:ζ) =M0, we have

K∑
k=1

DKL(pdata ∗ h ∥ p(k) ∗ h) =
K∑

k=1

DKL(p
∗
ζ ∥ p

(k)
ζ ) ≤M0, (36)
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for all K ≥ 1. This further implies,

min
k∈{1,2,...,K}

DKL(pdata ∗ h ∥ p(k) ∗ h) ≤
M0

K
. (37)

Applying Prop 1, we obtain,

min
k∈{1,2,...,K}

∣∣∣Φpdata(u)− Φ
p
(k)
0

(u)
∣∣∣ ≤ exp

(σ2
ζ

2
∥u∥2

)√2M0

K
. (38)

We complete this section by showing the connection between our framework and the original
consistency loss.
Proposition 3. Assume that the denoising network Dϕ is implemented to satisfy Dϕ(·, 0) = Id(·).
When r = 0, the consistency loss in Eq (9) is equivalent to the denoising noise in Eq (4) for t = s.

Proof. When t = s, denoising noise in Eq (4) becomes

E
p0

E
ps|0

[
∥Dϕ(xs, s)− x0∥2

]
= Eps

Ep0|s

[
∥Dϕ(xs, s)− x0∥2

]
=Eps

Ep0|s

[
∥Dϕ(xs, s)− Ep0|s [x0] + Ep0|s [x0]− x0∥2

]
=Eps

Ep0|s

[
∥Dϕ(xs, s)− Ep0|s [x0]∥2

]
+ Eps

Ep0|s

[
∥Ep0|s [x0]− x0∥2

]︸ ︷︷ ︸
Const.

+ 2EpsEp0|s

[ 〈
Dϕ(xs, s)− Ep0|s [x0],Ep0|s [x0]− x0

〉 ]︸ ︷︷ ︸
=0

=Eps

[
∥Dϕ(xs, s)− Ep0|s [x0]∥2

]
+ Const.

=Eps

[
∥Dϕ(xs, s)− Ep0|s [Dϕ(x0, 0)]∥2

]
+ Const.,

which is the consistency loss in Eq (9) when r = 0.
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D ADDITIONAL SAMPLING RESULTS

In this section, we present model-generated samples used for FID computation in Sec 5.2. The
samples are taken from the models at their fine-tuning iteration with the lowest FID.

Samples for computing FIDs in Fig 2(a) - Clean Image Ratio

Figure 5: Clean image ratio = 0.04 – FID: 6.31

Figure 6: Clean image ratio = 0.1 – FID: 3.58

Figure 7: Clean image ratio = 0.2 – FID: 2.98
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Samples for computing FIDs in Fig 2(b) - Noise Level

Figure 8: Noise level σζ = 0.30 – FID: 3.97

Figure 9: Noise level σζ = 0.59 – FID: 6.31

Figure 10: Noise level σζ = 1.09 – FID: 9.43
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Figure 11: Noise level σζ = 1.92 – FID: 10.91

Samples for computing FIDs in Fig 2(c) - Pretraining on Similar Datasets

Figure 12: Class for fine-tuning: automobile – FID: 10.39

Figure 13: Class for fine-tuning: ship – FID: 19.19
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Figure 14: Class for fine-tuning: horse – FID: 48.11

Figure 15: Class for fine-tuning: no pretrain – FID: 155.04
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E EXPERIMENT CONFIGURATIONS

E.1 MODEL ARCHITECTURES

We implemented the proposed SFBD algorithm based on the following configurations throughout our
empirical studies:

Table 2: Experimental Configuration for CIFAR-10 and CelebA

Parameter CIFAR-10 CelebA

General
Batch Size 512 256
Loss Function EDMLoss (Karras et al., 2022) EDMLoss (Karras et al., 2022)
Sampling Method 2nd order Heun method (EDM)

(Karras et al., 2022)
2nd order Heun method (EDM)
(Karras et al., 2022)

Sampling steps 18 40

Network Configuration
Dropout 0.13 0.05
Channel Multipliers {2, 2, 2} {1, 2, 2, 2}
Model Channels 128 128
Resample Filter {1, 1} {1, 3, 3, 1}
Channel Mult Noise 1 2

Optimizer Configuration
Optimizer Class Adam (Kingma & Ba, 2015) Adam (Kingma & Ba, 2015)
Learning Rate 0.001 0.0002
Epsilon 1× 10−8 1× 10−8

Betas (0.9, 0.999) (0.9, 0.999)

E.2 DATASETS

All experiments on CIFAR-10 (Krizhevsky & Hinton, 2009) use only the training set, except for the
one presented in Fig 2(c). For this specific test, we merge the training and test sets so that each class
contains a total of 6,000 images. At iteration 0, the FID computation measures the distance between
clean images of trucks and those from the classes on which the model is fine-tuned. For subsequent
iterations, FID is calculated in the same manner as in other experiments. Specifically, the model first
generates 50,000 images, and the FID is computed between the sampled images and the images from
the fine-tuning classes. All experiments on CelebA (Liu et al., 2015) are performed on its training set.
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