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ABSTRACT

Though remarkable progress has been achieved in various vision tasks, deep neu-
ral networks still suffer obvious performance degradation when tested in out-of-
distribution scenarios. We argue that the feature statistics (mean and standard
deviation), which carry the domain characteristics of the training data, can be
properly manipulated to improve the generalization ability of deep learning mod-
els. Common methods often consider the feature statistics as deterministic values
measured from the learned features and do not explicitly consider the uncertain
statistics discrepancy caused by potential domain shifts during testing. In this pa-
per, we improve the network generalization ability by modeling the uncertainty
of domain shifts with synthesized feature statistics during training. Specifically,
we hypothesize that the feature statistic, after considering the potential uncertain-
ties, follows a multivariate Gaussian distribution. Hence, each feature statistic is
no longer a deterministic value, but a probabilistic point with diverse distribution
possibilities. With the uncertain feature statistics, the models can be trained to
alleviate the domain perturbations and achieve better robustness against potential
domain shifts. Our method can be readily integrated into networks without addi-
tional parameters. Extensive experiments demonstrate that our proposed method
consistently improves the network generalization ability on multiple vision tasks,
including image classification, semantic segmentation, and instance retrieval. The
code can be available at https://github.com/lixiaotong97/DSU.

1 INTRODUCTION

Deep neural networks have shown impressive success in computer vision, but with a severe reliance
on the assumption that the training and testing domains follow an independent and identical distri-
bution (Ben-David et al., 2010; Vapnik, 1992). This assumption, however, does not hold in many
real-world applications. For instance, when employing segmentation models trained on sunny days
for rainy and foggy environments (Choi et al., 2021), or recognizing art paintings with models that
trained on photographs (Li et al., 2017), inevitable performance drop can often be observed in such
out-of-distribution deployment scenarios. Therefore, the problem of domain generalization, aim-
ing to improve the robustness of the network on various unseen testing domains, becomes quite
important.

Previous works (Huang & Belongie, 2017; Li et al., 2021) demonstrate that feature statistics (mean
and standard deviation), as the moments of the learned features, carry informative domain charac-
teristics of the training data. Domain characteristics primarily refer to the information that is more
specific to the individual domains but less relevant to the task objectives, such as the photo style
and capturing environment information in object recognition. Consequently, domains with different
data distributions generally have inconsistent feature statistics (Wang et al., 2020b; 2019a; Gao et al.,
2021a). Most deep learning methods follow Empirical Risk Minimization principle (Vapnik, 1999)
to minimize their average error over the training data (Shen et al., 2021). Despite the satisfactory
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Figure 1: The visualization of reconstructed samples with synthesized feature statistics, using a
pre-trained style transfer auto-encoder (Huang & Belongie, 2017). The illustration of the feature
statistics shifts, which may vary in both intensity and direction (i.e., different offsets in the vector
space of feature statistics). We also show images of “new” domains generated by manipulating
feature statistic shifts with different direction and intensity. Note these images are for visualization
only, rather than feeding into the network for training.

performance on the training domain, these methods do not explicitly consider the uncertain statis-
tics discrepancy caused by potential domain shifts during testing. As a result, the trained models
tend to overfit the training domain and show vulnerability to the statistic changes at testing time,
substantially limiting the generalization ability of the learned representations.

Intuitively, the test domains may bring uncertain statistics shifts with different potential directions
and intensities compared to the training domain (as shown in Figure 1), implying the uncertain
nature of domain shifts. Considering such “uncertainty” of potential domain shifts, synthesizing
novel feature statistics variants to model diverse domain shifts can improve the robustness of the
trained network to different testing distributions. Towards this end, we introduce a novel probabilis-
tic method to improve the network generalization ability by properly modeling Domain Shifts with
Uncertainty (DSU), i.e., characterizing the feature statistics as uncertain distributions.

In our method, instead of treating each feature statistic as a deterministic point measured from the
feature, we hypothesize that the feature statistic, after considering potential uncertainties, follows a
multi-variate Gaussian distribution. The distribution “center” is set as each feature’s original statistic
value, and the distribution “scope” represents the variant intensity considering underlying domain
shifts. Uncertainty estimation is adopted here to depict the distribution “scope” of probabilistic
feature statistics. Specifically, we estimate the distribution “scope” based on the variances of the
mini-batch statistics in an efficient non-parametric manner. Subsequently, feature statistics variants
are randomly sampled from the estimated Gaussian distribution and then used to replace the original
deterministic values for modeling diverse domain shifts, as illustrated in Figure 2. Due to the gen-
erated feature statistics with diverse distribution possibilities, the models can be trained to properly
alleviate the domain perturbations and encode better domain-invariant features.

Our proposed method is simple yet fairly effective to alleviate performance drop caused by domain
shifts, and can be readily integrated into existing networks without bringing additional model param-
eters or loss constraints. Comprehensive experiments on a wide range of vision tasks demonstrate
the superiority of our proposed method, indicating that introducing uncertainty to feature statistics
can well improve models’ generalization against domain shifts.

2 RELATED WORK

2.1 DOMAIN GENERALIZATION

Domain generalization (DG) has been attracting increasing attention in the past few years, which
aims to achieve out-of-distribution generalization on unseen target domains using only single or
multiple source domain data for training (Blanchard et al. (2011)). Research on addressing this
problem has been extensively conducted in the literature (Zhou et al. (2021a); Wang et al. (2021);
Shen et al. (2021)). Here some studies that are more related to our work are introduced below.
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Data Augmentation: Data augmentation is an effective manner for improving generalization abil-
ity and relieving models from overfitting in training domains. Most augmentation methods adopt
various transformations at the image level, such as AugMix (Hendrycks et al. (2020)) and CutMix
(Yun et al. (2019)). Besides using handcraft transformations, mixup (Zhang et al. (2018)) trains the
model by using pair-wise linearly interpolated samples in both the image and label spaces. Mani-
fold Mixup (Verma et al. (2019)) further adopts this linear interpolation from image level to feature
level. Some recent works extend the above transformations to feature statistics for improving model
generalization. MixStyle (Zhou et al. (2021b)) adopts linear interpolation on feature statistics of
two instances to generate synthesized samples. The pAdaIn (Nuriel et al. (2021)) swaps statistics
between the samples applied with a random permutation of the batch.

Invariant Representation Learning: The main idea of invariant representation learning is to enable
models to learn features that are invariant to domain shifts. Domain alignment-based approaches (Li
et al. (2018c;b)) learn invariant features by minimizing the distances between different distributions.
Instead of enforcing the entire features to be invariant, disentangled feature learning approaches
(Chattopadhyay et al. (2020); Piratla et al. (2020)) decouple the features into domain-specific and
domain-invariant parts and learn their representations simultaneously. In addition, normalization-
based methods (Pan et al. (2018); Choi et al. (2021)) can also be used to remove the style information
to obtain invariant representations.

Learning Strategies: There are also some effective learning strategies that can be leveraged to
improve generalization ability. Ensemble learning is an effective technique in boosting model per-
formance. The ensemble predictions using a collection of diverse models (Zhou et al. (2020b))
or modules (Seo et al. (2020)) can be adopted to improve generalization and robustness. Meta-
learning-based methods (Finn et al. (2017); Li et al. (2018a); Dai et al. (2021)) learn to simulate the
domain shifts following an episode training paradigm. Besides, self-challenging methods, such as
RSC (Huang et al. (2020)), force the model to learn a general representation by discarding dominant
features activated on the training data.

2.2 UNCERTAINTY IN DEEP LEARNING

Uncertainty capturing the “noise” and “randomness” inherent in the data has received increasing
attention in deep representation learning. Variational Auto-encoder (Kingma & Welling (2013)),
as an important method for learning generative models, can be regarded as a method to model the
data uncertainty in the hidden space. Dropout (Srivastava et al. (2014)), which is widely used in
many deep learning models to avoid over-fitting, can be interpreted to represent model uncertainty
as a Bayesian approximation (Gal & Ghahramani (2016)). In some works, uncertainty is used to
address the issues of low-quality training data. In person re-identification, DistributionNet (Gal &
Ghahramani (2016)) adopts uncertainty to model the person images of noise-labels and outliers. In
face recognition, DUL (Chang et al. (2020)) and PFE ((Shi & Jain, 2019)) apply data uncertainty
to simultaneously learn the feature embedding and its uncertainty, where the uncertainty is learned
through a learnable subnetwork to describe the quality of the image. Different from the aforemen-
tioned works, our proposed method is used to model the feature statistics uncertainty under potential
domain shifts and acts as a feature augmentation method for handling our-of-distribution general-
ization problem.

3 METHOD

3.1 PRELIMINARIES

Given x ∈ RB×C×H×W to be the encoded features in the intermediate layers of the network, we
denote µ ∈ RB×C and σ ∈ RB×C as the channel-wise feature mean and standard deviation of each
instance in a mini-batch, respectively, which can be formulated as:

µ(x) =
1

HW

H∑
h=1

W∑
w=1

xb,c,h,w, (1)

σ2(x) =
1

HW

H∑
h=1

W∑
w=1

(xb,c,h,w − µ(x))2. (2)
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Figure 2: Illustration of the proposed method. Feature statistic is assumed to follow a multi-variate
Gaussian distribution during training. When passed through this module, the new feature statistics
randomly drawn from the corresponding distribution will replace the original ones to model the
diverse domain shifts.

As the abstraction of features, feature statistics can capture informative characteristics of the cor-
responding domain (such as color, texture, and contrast), according to previous works (Huang &
Belongie, 2017; Li et al., 2021). In out-of-distribution scenarios, the feature statistics often show
inconsistency with training domain due to different domain characteristics (Wang et al., 2019a; Gao
et al., 2021a), which is ill-suited to deep learning modules like nonlinearity layers and normalization
layer and degenerates the model’s generalization ability (Wang et al., 2020b). However, most of the
deep learning methods only treat feature statistics as deterministic values measured from the fea-
tures while lacking explicit consideration of the potential uncertain statistical discrepancy. Owing
to the model’s inherent vulnerability to such discrepancy, the generalization ability of the learned
representations is limited. Some recent methods (Nuriel et al., 2021; Zhou et al., 2021b) utilize fea-
ture statistics to tackle the domain generalization problem. Despite the success, they typically adopt
linear manipulation (i.e., exchange and interpolation) on pairwise samples to generate new feature
statistics, which limits the diversity of synthetic changes. Specifically, the direction of their variants
is determined by the chosen reference sample and such internal operation restricts their variant in-
tensity. Thus these methods are sub-optimal when handling the diverse and uncertain domain shifts
in real world.

3.2 MODELING DOMAIN SHIFTS WITH UNCERTAINTY

Given the arbitrary testing domains with uncertain feature statistic shifts in both direction and inten-
sity, properly modeling the domain shifts becomes an important task for tackling the challenge of
domain generalization problem.

Considering the uncertainty and randomness of domain shifts, it is promising to employ the meth-
ods of “uncertainty” to treat the “uncertainty” of domain shifts. In this paper, we propose a novel
method by modeling Domain Shifts with Uncertainty (DSU). Instead of treating each feature statis-
tic as a deterministic value measured from the learned feature, we hypothesize that the distribu-
tion of each feature statistic, after considering potential uncertainties, follows a multi-variate Gaus-
sian distribution. This means each feature statistic has a probabilistic representation drawn from
a certain distribution, i.e., the feature statistics mean and standard deviation follow N (µ,Σ2

µ) and
N (σ,Σ2

σ), respectively. Specifically, the corresponding Gaussian distribution’s center is set as each
feature’s original statistics, while the Gaussian distribution’s standard deviation describes the uncer-
tainty scope for different potential shifts. Through randomly sampling diverse synthesized feature
statistics with the probabilistic approach, the models can be trained to improve the robustness of the
network against statistics shifts.
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3.2.1 UNCERTAINTY ESTIMATION

Taking the uncertainty of domain shifts into consideration, the uncertainty estimation in our method
aims to depict the uncertainty scope of each probabilistic feature statistic. However, the testing
domain is unknown, which makes it challenging to obtain an appropriate variant range.

Some generative-based studies (Shen & Zhou, 2021; Wang et al., 2019b) show that the variances
between features contain implicit semantic meaning and the directions with larger variances can
imply potentials of more valuable semantic changes. Inspired by this, we propose a simple yet
effective non-parametric method for uncertainty estimation, utilizing the variance of the feature
statistics to provide some instructions:

Σ2
µ(x) =

1

B

B∑
b=1

(µ(x)− Eb[µ(x)])2, (3)

Σ2
σ(x) =

1

B

B∑
b=1

(σ(x)− Eb[σ(x)])2. (4)

where Σµ ∈ RC and Σσ ∈ RC represent the uncertainty estimation of the feature mean µ and
feature standard deviation σ, respectively. The magnitudes of uncertainty estimation can reveal
the possibility that the corresponding channel may change potentially. Although the underlying
distribution of the domain shifts is unpredictable, the uncertainty estimation captured from the mini-
batch can provide an appropriate and meaningful variation range for each feature channel, which
does not harm model training but can simulate diverse potential shifts.

3.2.2 PROBABILISTIC DISTRIBUTION OF FEATURE STATISTICS

Once the uncertainty estimation of each feature channel is obtained, the Gaussian distribution for
probabilistic feature statistics can be established. To use randomness to model the uncertainty, we
adopt the random sampling to further exploit the uncertainty in the probabilistic representations.
The new feature statistics, mean β(x) ∼ N (µ,Σ2

µ) and standard deviation γ(x) ∼ N (σ,Σ2
σ), can

be randomly drawn from the corresponding distributions as:

β(x) = µ(x) + εµΣµ(x), εµ ∼ N (0,1), (5)

γ(x) = σ(x) + εσΣσ(x), εσ ∼ N (0,1). (6)

Here we use the re-parameterization trick (Kingma & Welling (2013)) to make the sampling opera-
tion differentiable, and εµ and εσ both follow the standard Gaussian distribution. By exploiting the
given Gaussian distribution, random sampling can generate various new feature statistics informa-
tion with different combinations of directions and intensities.

3.2.3 IMPLEMENTATION

The implementation of our method is by the means of AdaIN (Huang & Belongie (2017)), and
replaces the feature statistics with the randomly drawing ones to achieve the transformation. The
final form of the proposed method can be formulated as:

DSU(x) = (σ(x) + εσΣσ(x))︸ ︷︷ ︸
γ(x)

(
x− µ(x)

σ(x)

)
+ (µ(x) + εµΣµ(x))︸ ︷︷ ︸

β(x)

. (7)

The above operation can be integrated at various positions of the network as a flexible module. Note
that the module only works during model training and can be discarded while testing. To trade off
the strength of this module, we set a hyperparameter p that denotes the probability to apply it. The
algorithm is described in the Appendix. Benefiting from the proposed method, the model trained
with uncertain feature statistics will gain better robustness against potential statistics shifts, and thus
acquires a better generalization ability.
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4 EXPERIMENTS

In order to verify the effectiveness of the proposed method in improving the generalization ability
of networks, we conduct the experiments on a wide range of tasks, including image classification,
semantic segmentation, instance retrieval, and robustness towards corruptions, where the training
and testing sets have different cases of distribution shifts, such as style shift, synthetic-to-real gap,
scenes change, and pixel-level corruption.

4.1 GENERALIZATION ON MULTI-DOMAIN CLASSIFICATION

Setup and Implementation Details: We evaluate the proposed method on PACS (Li et al. (2017)), a
widely-used benchmark for domain generalization with four different styles: Art Painting, Cartoon,
Photo, and Sketch. The implementation follows the official setup of MixStyle (Zhou et al. (2021b))
with a leave-one-domain-out protocol and ResNet18 (He et al., 2016) is used as the backbone. The
random shuffle version of MixStyle is adopted for fair comparisons, which does not use domain
labels. In addition to PACS, we also employ Office-Home (Venkateswara et al., 2017) for multi-
domain generalization experiments in the Appendix.

Experiment Results: The experiments results, shown in Table 1, demonstrate our significant im-
provement over the baseline method, which shows our superiority to the conventional deterministic
approach. Especially in Art and Sketch, our method has nearly 10% improvement in average ac-
curacy. Furthermore, our method also outperforms the competing methods, which indicates our
method that models diverse uncertain shifts on feature statistics is effective to improve network
generalization ability against different domain shifts. Photo has similiar domain characteristics as
ImageNet dataset and the slight drop might be due to the ImageNet pretraining (also discussed in
(Xu et al., 2021)). Our DSU augments the features and enlarges the diversity of the training do-
mains. In contrast, the baseline method preserves more pre-trained knowledge from ImageNet thus
tends to overfit the Photo style dataset benefiting from pretraining.

Table 1: Experiment results of PACS multi-domain classification task. RSC* denotes the reproduced
results from pAdaIN (Nuriel et al., 2021).

Method Reference Art Cartoon Photo Sketch Average (%)
Baseline - 74.3 76.7 96.4 68.7 79.0
Mixup (Zhang et al., 2018) ICLR 2018 76.8 74.9 95.8 66.6 78.5
Manifold Mixup (Verma et al., 2019) ICML 2019 75.6 70.1 93.5 65.4 76.2
CutMix (Yun et al., 2019) ICCV 2019 74.6 71.8 95.6 65.3 76.8
RSC* (Huang et al., 2020) ECCV 2020 78.9 76.9 94.1 76.8 81.7
L2A-OT (Zhou et al., 2020a) ECCV 2020 83.3 78.2 96.2 73.6 82.8
SagNet (Nam et al., 2021) CVPR 2021 83.6 77.7 95.5 76.3 83.3
pAdaIN (Nuriel et al., 2021) CVPR 2021 81.7 76.6 96.3 75.1 82.5
MixStyle (Zhou et al., 2021b) ICLR 2021 82.3 79.0 96.3 73.8 82.8
DSU Ours 83.6 79.6 95.8 77.6 84.1

4.2 GENERALIZATION ON SEMANTIC SEGMENTATION

Setup and Implementation Details: Semantic segmentation, as a fundamental application for au-
tomatic driving, encounters severe performance declines due to scenarios differences (Wang et al.,
2020a). GTA5 (Richter et al., 2016) is a synthetic dataset generated from Grand Theft Auto 5 game
engine, while Cityscapes (Cordts et al., 2016) is a real-world dataset collected from different cities
in primarily Germany. To evaluate the cross-scenario generalization ability of segmentation models,
we adopt synthetic GTA5 for training while using real CityScapes for testing. The experiments are
conducted on FADA released codes (Wang et al. (2020a)), using DeepLab-v2 (Chen et al., 2018)
segmentation network with ResNet101 backbone. Mean Intersection over Union (mIOU) and mean
Accuracy (mAcc) of all object categories are used for evaluation.

Table 2: Experiment results of semantic segmentation from synthetic GAT5 to real Cityscapes.
Method Reference mIOU (%) mAcc (%)
Baseline - 37.0 51.5
pAdaIN (Nuriel et al., 2021) CVPR 2021 38.3 52.1
Mixstyle (Zhou et al., 2021b) ICLR 2021 40.3 53.8
DSU Ours 43.1 57.0
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Experiment Results: Table 2 shows the experiment results compared to related methods. As for
a pixel-level classification task, improper changes of feature statistics might constrain the perfor-
mances. The variants generated from our method are centered on the original feature statistics with
different perturbations. These changes of feature statistics are mild for preserving the detailed infor-
mation in these dense tasks. Meanwhile, our method can take full use of the diverse driving scenes
and generates diverse variants, thus show a significant improvement on mIOU and mAc by 6.1%
and 5.5%, respectively. The visualization result is shown in Figure 3.

Figure 3: The visualization on unseen domain Cityscapes with the model trained on synthetic GTA5.

4.3 GENERALIZATION ON INSTANCE RETRIEVAL

Setup and Implementation Details: In this section, person re-identification (ReID), which aims
at matching the same person across disjoint camera views, is used to verify the effectiveness of our
method on the instance retrieval task. Experiments are conducted on the widely used DukeMTMC
(Ristani et al. (2016)) and Market1501 (Zheng et al. (2015)) datasets. The implementation is based
on MMT (Ge et al., 2020) released codes and ResNet50 is adopted as the backbone. Meanwhile,
mean Average Precision (mAP) and Rank-1 (R1) precision are used as the evaluation criterions.

Table 3: Experiment results of instance retrieval on ReID dataset DukeMTMC and Market1501. A
→ B denotes models are trained on A while evaluated on B. For fair comparisons, we reproduce the
experiments under the same framework.

Method Reference Market→ Duke Duke→Market
mAP (%) R1 (%) mAP (%) R1 (%)

Baseline - 25.8 42.3 26.7 54.7
pAdaIN (Nuriel et al., 2021) CVPR 2021 28.0 46.1 27.9 56.1
MixStyle (Zhou et al., 2021b) ICLR 2021 28.2 46.7 28.1 56.6
DSU Ours 32.0 52.0 32.4 63.7

Experiment Results: ReID is a fine-grained instance retrieval task, where the subtle information of
persons is important for retrieving an instance. MixStyle and pAdain rely on a reference sample to
generate new feature statistics, which might introduce confounded information from the reference
sample. Compared to them, our method does better in maintaining the original information and also
has more variant possibilities. The experiment results are demonstrated in Table 3. Our method
achieves huge improvement compared to the baseline method and also outperform MixStyle and
pAdaIN by a big margin.

4.4 ROBUSTNESS TOWARDS CORRUPTIONS

Setup and Implementation Details: We validate the proposed method for robustness towards cor-
ruptions on ImageNet-C (Hendrycks & Dietterich (2019)), which contains 15 different pixel-level
corruptions. ResNet50 is trained with 100 epochs for convergence on large-scale ImageNet-1K
(Deng et al. (2009)) and the hyperparameter p is set as 0.1 for training in ImageNet. We also add our
method on APR (Chen et al. (2021)), a recently state-of-the-art method on ImageNet-C, to verify
that our method can be compatible with other image-level augmentation methods. Error is adopted
as the evalution metric for clean ImageNet. Mean Corruption Error (mCE) is adopted as evaluation
metric for ImageNet-C, which is computed as the average of the 15 different corruption errors and
normalized by the corruption error of AlexNet (Krizhevsky et al. (2012)).

Experiment Results: Although the corruptions are imposed on the pixel level, they still introduce a
shift in the statistics (Benz et al., 2021). So our method shows consistent improvement on ImageNet-
C. Meanwhile, the instances in the testing set may not always fall into the distribution of the training
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Table 4: Experiment results of clean image classification on ImageNet, and the robustness toward
corruptions on ImageNet-C.

Clean (↓) Corrupted (↓) Noise Blur Weather Digital
Error (%) mCE (%) Gauss Shot Implulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Baseline 23.8 76.2 80 81 83 75 87 76 80 78 74 67 56 70 83 76 73
DSU 23.4 73.4 76 77 78 71 83 77 79 74 71 66 55 68 82 65 71
APR 24.0 65.0 52 56 50 69 85 69 79 62 64 55 54 63 84 65 65
APR+DSU 23.7 64.1 51 56 49 69 84 67 78 61 63 51 53 56 83 66 65

set, and they still have slight statistic shifts (Gao et al. (2021b)). Thus it can be seen that the within-
dataset ImageNet accuracy is also increased. When combining APR with our method, mCE can be
decreased from 65.0 % to 64.1%, showing that our method can be compatible with state-of-the-art
methods on ImageNet-C for further improvement.

5 ABLATION STUDY

In this section, we perform an extensive ablation study of the proposed method on PACS and seg-
mentation task (GTA5 to Cityscapes) with models trained on ResNet. The effects of different in-
serted positions and hyper-parameter of the proposed method are analyzed below. Meantime, we
also analyze the effects on different choices of uncertainty distribution.

Table 5: Effects of different inserted positions.

Inserted Positions Baseline 0-3 1-4 2-5 0-5
PACS 79.0 82.2 83.1 83.5 84.1

GTA5 to Cityscapes 37.0 41.1 40.9 42.1 43.1

Effects of Different Inserted
Positions: DSU can be a plug-
and-play module to be readily
inserted at any position. Here
we name the positions of ResNet
after first Conv, Max Pooling
layer, 1,2,3,4-th ConvBlock as 0,1,2,3,4,5 respectively. As shown in Table 5, no matter where the
modules are inserted, the performances are consistently higher than the baseline method. The results
show that inserting the modules at positions 0-5 would have better performances, which also indi-
cates modeling the uncertainty in all training stages will have better effects. Based on the analysis,
we plug the module into positions 0-5 in all experiments.

Figure 4: The effects on the hyper-
parameter probability.

Effects of Hyper-parameter: The hyper-parameter of
the probability p is to trade off the strength of feature
statistics augmentation. As shown in Figure 4, the results
are not sensitive to the probability setting and the accu-
racy reaches the best results when setting p as 0.5, which
is also adopted as the default setting in all experiments if
not specified.

Choices of Uncertainty Distribution: In our method,
the Gaussian distribution with uncertainty estimation is
adopted as the default setting, we also conduct other distributions for comparisons in Table 6.
Specifically, Random denotes directly adding random shifts draw from a fixed Gaussian N (0, 1),
and Uniform denotes that the shifts are drawn from U(−Σ,Σ), where Σ is the scope obtained from
our uncertainty estimation. As we can see, directly using Gaussian distribution with the improper
variant scope will harm the model performances, indicating the variant range of feature statistics
should have some instructions. Further analysis about different vanilla Gaussian distributions with
pre-defined standard deviation are conducted in the Appendix. Meanwhile, the result of Uniform
shows some improvement but is still lower than DSU, which indicates the boundless Gaussian dis-
tribution is more helpful to model more diverse variants.

Table 6: Different choices of distribution for uncertainty.

Choice Baseline Random Uniform DSU
PACS 79.0 76.9 81.9 84.1

GTA5 to Cityscapes 37.0 38.2 41.6 43.1
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6 FURTHER ANALYSIS

6.1 QUANTITATIVE ANALYSIS ON THE PROPOSED METHOD

In this subsection, we will analyze the effects of the proposed method on both intermediate features
and feature representations. Quantitative experiments are conducted on PACS, where we choose Art
Painting as the unseen testing domain and the rests are used as training domains.

To study the phenomena of feature statistic shifts, we capture the intermediate features after the
second block in ResNet18 and measure the average feature statistics values of one category in the
training and testing domain, respectively. The distributions of feature statistics are shown in Figure
5. As the previous works (Wang et al., 2020b; 2019a) show, the feature statistics extracted from the
baseline model show an obvious shift due to different data distribution. It can be seen that the model
trained with our method has less shift. Our method can help the model gain robustness towards
domain shifts, as it properly models the potential feature statistic shifts.

Figure 5: Quantitative analysis on the shifts of feature statistics (mean and standard deviation) be-
tween training source domains and unseen testing domain.

6.2 VISUALIZATION ON THE SYNTHETIC CHANGES

Besides the quantitative experiment results, we also obtain a more intuitional view of the diverse
changes provided by our method, through visualizing the reconstruction results using a predefined
autoencoder1 (Huang & Belongie (2017)), where the proposed module is inserted into the encoder,
and inverse the feature representations into synthetic images after the decoder. As the results shown
in Figure 6, the reconstructed images obtained from our probabilistic approach show diverse syn-
thetic changes, such as the environment, object texture, and contrast, etc.

Figure 6: The visualization on diverse synthetic changes obtained from our method.

7 CONCLUSIONS

In this paper, we propose a probabilistic approach to improve the network generalization ability by
modeling the uncertainty of domain shifts with synthesized feature statistics during training. Each
feature statistic is hypothesized to follow a multi-variate Gaussian distribution for modeling the
diverse potential shifts. Due to the generated feature statistics with diverse distribution possibilities,
the models can gain better robustness towards diverse domain shifts. Experiment results demonstrate
the effectiveness of our method in improving the network generalization ability.
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A APPENDIX

A.1 ALGORITHM

The algorithm of the proposed method is illustrated in Algorithm 1.

Algorithm 1: The algorithm of the proposed method (DSU)

Input: Intermediate feature x ∈ RB×C×H×W , probability p to forward this module;
Output: Intermediate feature x̂ ∈ RB×C×H×W after considering potential statistics shifts;

1 Sample p0 ∼ U(0, 1);
2 if p0 < p and Training then
3 Compute the channel-wise mean and standard deviation of each instance in a mini-batch;

4 µ(x) = 1
HW

H∑
h=1

W∑
w=1

xb,c,h,w,

5 σ2(x) = 1
HW

H∑
h=1

W∑
w=1

(xb,c,h,w − µ(x))2.

6 Uncertainty estimation on feature statistics;

7 Σ2
µ(x) = 1

B

B∑
b=1

(µbc(x)− Eb(µbc(x)))2,

8 Σ2
σ(x) = 1

B

B∑
b=1

(σbc(x)− Eb(σbc(x)))2.

9 Compute the synthetic feature statistics randomly sampling from the given Guassian distributions;
10 β(x) = µ(x) + εµΣµ(x), εµ ∼ N (0,1),
11 γ(x) = σ(x) + εσΣσ(x), εσ ∼ N (0,1).
12 Obtain the feature after considering potential statistics shifts;
13 x̂ = γ(x)× x−µ(x)

σ(x)
+ β(x).

14 return the feature x̂ with uncertain feature statistics.
15 else
16 adopt the original feature x and skip this module.
17 end

A.2 MULTI-DOMAIN GENERALIZATION ON OFFICE HOME.

In addition to multi-domain classification experiments on PACS, we further evaluate the effective-
ness of the proposed method on Office-Home (Venkateswara et al., 2017), which contains 15,500
images of 65 classes for home and office recognition. The experiment results with ResNet18 back-
bone are shown in Table 7. It can be observed that our method brings obvious improvement over the
baseline method and also outperforms the competing methods. By introducing the feature statistics
uncertainty, the models trained with our method can learn to alleviate the domain perturbations, such
as the style information, and obtain more domain-invariant features. For example, huge improve-
ment can be observed from the results on Clipart, which is a domain with much different style from
others.

Table 7: Experiment results of Office-Home multi-domain classification task.
Method Reference Art Clipart Product Real Average (%)
Baseline - 58.8 48.3 74.2 76.2 64.4
Mixup (Zhang et al., 2018) ICLR 2018 58.2 49.3 74.7 76.1 64.6
CrossGrad (Shankar et al., 2018) ICLR 2018 58.4 49.4 73.9 75.8 64.4
Manifold Mixup (Verma et al., 2019) ICML 2019 56.2 46.3 73.6 75.2 62.8
CutMix (Yun et al., 2019) ICCV 2019 57.9 48.3 74.5 75.6 64.1
RSC (Huang et al., 2020) ECCV 2020 58.4 47.9 71.6 74.5 63.1
L2A-OT (Zhou et al., 2020a) ECCV 2020 60.6 50.1 74.8 77.0 65.6
MixStyle (Zhou et al., 2021b) ICLR 2021 58.7 53.4 74.2 75.9 65.5
DSU Ours 60.2 54.8 74.1 75.1 66.1
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A.3 CHOICE OF UNCERTAINTY DISTRIBUTION

Table 8: Intensive study about different vanilla Gaussian distributions with pre-defined standard
deviation.

Choice Baseline Rand(100) Rand(10−1) Rand(10−2) Rand(10−3) DSU
PACS 79.0 76.9 81.2 79.3 79.1 84.1

GTA5 to Cityscapes 37.0 38.2 39.8 40.1 38.9 43.1

Besides the analysis of the uncertainty estimation in the ablation study, we also conduct a more in-
tensive study about the effects of pre-defined uncertainty estimations. Specifically, Rand(s) denotes
directly imposing random shifts draw from a fixed GaussianN (0, s2). The intensive study is shown
in Table 8. It can be observed that the results of different fixed distributions are all much lower than
the proposed method. Some conclusions could be obtained from the results. (a): Imposing excessive
uncertainty might harm the model training and degrade the performance. (b): The best fixed value
of uncertainty estimation might vary from different tasks. By contrast, the proposed method can be
adaptive to different tasks without any manual adjustment.
Table 9: Study about the effects of sharing the same uncertain distribution among different channels.

Choice Baseline Channel-share DSU
PACS 79.0 80.2 84.1

GTA5 to Cityscapes 37.0 39.3 43.1
We also conduct the experiment to test the effectiveness of treating different channels with different
potentials. Channel-share denotes all channels of the sample share the same uncertainty distribution,
i.e., using the average uncertainty estimation among channels. As shown in Table 9, the results in-
dicate that sharing the same uncertain distribution among different channels is less effective, which
ignores the different potentials of channels and will limit their performances. Meanwhile, the pro-
posed method explicitly considers the different potentials of different channels and brings better
performances.

A.4 T-SNE VISUALIZATION

Figure 7: The t-SNE visualization on
unseen PACS domain.

To analyze the effects on feature representations, we vi-
sualize the feature representation vectors of different cat-
egories in unseen domain with t-SNE (Van der Maaten &
Hinton, 2008) in Figure 7. The features of the same cate-
gory become more compact benefiting from the proposed
method. Because our method can alleviate the domain
perturbations during training and make the model focus
on content information, obtaining more invariant features
representations.

A.5 COMPARISONS TO THE RELATED METHODS

Some related methods (Zhou et al., 2021b; Nuriel et al., 2021) also tackle the domain generalization
problem by producing synthetic feature statistics. Specifically, we denote the random shuffle copies
of the batch feature as x̂ = shuffle(x). pAdaIN (Nuriel et al. (2021)) generate new samples by
swapping feature statistics between the batch samples applied with a random permutation, where
β(x) = µ(x̂) and γ(x) = σ(x̂). MixStyle (Zhou et al. (2021b)) generates synthesized domain
samples by mixing feature statistics information of two instances, where β(x) = λµ(x) + (1 −
λ)µ(x̂) and γ(x) = λσ(x) + (1− λ)σ(x̂) and λ ∈ (0, 1) is a random interpolation weight.

Despite the success, they typically adopt linear manipulation on pairwise samples to generate new
feature statistics, which limits the diversity of synthetic changes. Specifically, the direction of the
variants is determined by the chosen reference sample and the internal operation also restricts the
variant intensity. Our method, not relies on a specific reference sample, is based on the Gaussian
distribution that can produce not only linear changes but diverse variants with more possibilities.
Due to the boundless range of the Gaussian distribution, our method has the ability to generate
feature statistics beyond the scope of training domain, which also breaks the limitation of inner
interpolation between training samples. The visualization of the comparisons is shown in Figure 8.
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Figure 8: Comparisons with related methods. The variants produced by previous pairwise-based
methods are restricted by the combination of chosen sample pair, while our method can generate
various feature statistics variants with different combination of directions and intensities.

A.6 WITHIN-DATASET PERFORMANCE

In Table 4, we tested the within-dataset performance on the large-scale dataset ImageNet, denoted
as ”Clean”. We observed that the top-1 error rate declines from 23.8% to 23.4% after training with
the proposed DSU, indicating that DSU does not sacrifice the in-domain performance to gain the
benefits on out-of-distribution domains.The reason might be that instances in the testing set may not
always fall into exactly the same distribution of the training set, and they still have slight statistic
shifts (Gao et al., 2021a). The proposed DSU can help the trained model improve the robustness to
statistics shifts and thus gain better performance in within-dataset ImageNet.

Besides the experiments on ImageNet, we also supplement the within-dataset performances on
PACS. According to the multi-source training protocol on PACS (Li et al., 2017), the within-domain
performance is averaged over multiple training-domain datasets (P,A,C,S denotes Art, Cartoon,
Photo and Sketch respectively). As shown in Table 10, it can be observed that the within-dataset
performance of our DSU also slightly beats the baseline, verifying the conclusion as on ImageNet.

Table 10: Within-dataset performance on PACS. P,A,C,S denote Photo, Art Painting, Cartoon, and
Sketch respectively.

Method Reference P,C,S P,A,S A,C,S P,A,C Average (%)
Baseline - 95.70 95.28 94.22 96.58 95.44
DSU Ours 96.20 96.32 95.17 97.20 96.21

A.7 ABLATION STUDY ON BATCH SIZE

In Table 11, we conduct an ablation study on the batch size. As shown in the table, consistent
performance gains are observed with various batch sizes on PACS. Note we use the batch size of 64
in our paper, following the original setting in PACS (Li et al., 2017) for fair comparison.

Table 11: Ablation study on the effects of batch size.

batchsize Reference 16 32 64 128 256
Baseline - 81.0 80.2 79.0 77.8 75.6
DSU Ours 84.9 (+3.9) 84.5 (+4.3) 84.1 (+5.1) 82.1 (+4.3) 80.4 (+4.8)
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