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Abstract
Continual learning emerges as a framework that trains themodel on
a sequence of tasks without forgetting previously learned knowl-
edge, which has been applied in multiple multimodal scenarios.
Recently, prompt-based continual learning has achieved excellent
domain adaptability and knowledge transfer through prompt gen-
eration. However, existing methods mainly focus on designing the
architecture of a generator, neglecting the importance of providing
effective guidance for training the generator. To address this issue,
we propose Generating Prompts in Latent Space (GPLS), which
considers prompts as latent variables to account for the uncertainty
of prompt generation and aligns with the fact that prompts are in-
serted into the hidden layer outputs and exert an implicit influence
on classification. GPLS adopts a trainable encoder to encode task
and feature information into prompts with reparameterization tech-
nique, and provides refined and targeted guidance for the training
process through the evidence lower bound (ELBO) related to Ma-
halanobis distance. Extensive experiments demonstrate that GPLS
achieves state-of-the-art performance on various benchmarks. Our
code is available at https://github.com/Hifipsysta/GPLS.

CCS Concepts
• Computing methodologies→ Lifelong machine learning;
Learning latent representations.
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1 Introduction
Continual learning (CL) aims to mitigate the phenomenon of for-
getting old knowledge that occurs when a neural network learns
multiple sequentially arriving tasks, which is also known as cata-
strophic forgetting [11, 29]. Over the past year, continual learning
has been applied in multiple multimodal tasks, including cross-
modal retrieval [56, 58], visual question answering [23, 37, 59] and
visual-language model [60, 61].

In the early stage, researches on CL primarily concentrated on
different training strategies, including designing regularization
terms for objective function [1, 20, 24, 32, 42], learning represen-
tative samples from old tasks repetitively [16, 22, 36, 38, 43, 50],
increasing parameters when new tasks arrive [15, 25, 48, 57], and
projecting gradients onto the orthogonal direction of old features
[5, 10, 26, 27, 39, 40, 46]. The emergence of pre-trained Vision Trans-
former (ViT) [8] has led to the introduction of prompt-based con-
tinual learning [50], which has demonstrated superior performance
compared to the above methodologies.

In CL scenarios, the utilization of prompt-based methods pro-
vides the advantage of maintaining the frozen state of the backbone
parameters throughout the training process. As a result, the back-
bone parameters remain unchanged from their optimal state for the
previous task, thereby mitigating the risk of forgetting, which is a
primary concern when learning new tasks. Nonetheless, continual
prompt learning encounters challenges related to its dependence on
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Figure 1: Illustration of the localization, concentration and
indirectness in prompt generation. The number of prompts
corresponds to the quantity of transformer blocks, with each
prompt being inserted into the input of a distinct transformer
layer. While prompt generator is unique and it generates
prompts for multiple transformer blocks. Therefore, the
trainable parameters are concentrated in a certain area.

a prompt pool. Specifically, utilizing prompt pool requires setting
hyperparameters that are difficult to determine (e.g. pool size). More
importantly, the number of prompts is commonly much smaller
than the number of training instances, which limits the ability of
prompts to offer fine-grained guidance to the backbone network.

To avoid dependence on prompt pools, two different solutions
have been proposed almost simultaneously: prompt decomposi-
tion [41] and prompt generation [17]. Prompt generation demon-
strates better performance in continual learning due to its en-
hanced domain adaptability. However, we observed that existing
prompt generation method lacked direct guidance or constraints on
the process of prompt generation. For instance, Domain-Adaptive
Prompt (DAP) [17] optimizes the prompt generator just by back-
propagating the gradient of final cross-entropy loss, without di-
rectly supervising the process of prompt generation. The most
direct evidence is that no variables directly related to the prompt
generator were considered in the objective function.

However, training a prompt generator only through cross-entropy
loss is evenmore challenging compared to training prompts directly,
which is determined by the three major properties of prompt gener-
ation methods (also see Figure 1). (1) Localization: Cross-entropy
serves as a global loss metric, while prompt learning needs to focus
on the impact of local parameter variations on classification results,
because the backbone parameters are frozen and the trainable gen-
erator parameters are concentrated in one or a few narrow regions.
(2) Concentration: In prompt generation, the concentration of
trainable parameters is higher compared to prompt optimization
approaches. Specifically, the trainable parameters in prompt op-
timization methods are distributed across the inputs of various
transformer blocks, while the learnable parameters for prompt gen-
eration are contained in the unique prompt generator, irrespective
of the quantity of transformer blocks utilized. (3) Indirectness:
Parameter updating in prompt optimization methods can directly
affect the classification results, while parameter updating in the
prompt generator only exert an indirect influence on classification
results via generated prompts.

Regrettably, several studies [2, 13, 30, 54] have shown that pa-
rameter sparsity is beneficial for continual learning. In light of these
characteristics, we propose Generating Prompts in Latent Space
(GPLS) for continual learning. GPLS utilizes an encoder to encode
task and feature information into prompts, and provides enhanced
and targeted guidance for the training process through variational
inference. We conceptualize the generated prompts as observations
follow a distribution, which can better describe their uncertainty.
Notably, prompts are considered as latent variables as they are
inserted into the inputs of different transformer blocks, which is
also the hidden layer outputs. Therefore, the problem of prompt
generation is reframed as the task of estimating the distribution in
latent space. In summary, our main contributions are as follows:

(1) We consider prompts as latent variables following a distri-
bution, which enhances the ability to capture the uncertainty of
generated prompts and also conforms to the fact that prompts are
inserted into the hidden layer outputs.

(2) We propose a novel method called Generating Prompts in
Latent Space (GPLS) for continual learning, which transforms the
issue of prompt generation into the distribution estimation in la-
tent space and generates prompts via a trainable encoder with
reparameterization technique.

(3) We derive the evidence lower bound (ELBO) for prompt gen-
eration and design an objective function related to Mahalanobis
distance that offers refined guidance for the encoder to generate
better prompts.

(4) Extensive experiments show that GPLS achieves state-of-the-
art performance on five standard CL benchmarks, especially on
DomainNet with a large number of samples and categories.

2 Related Work
2.1 Continual Learning
Continual learning aims to mitigate the forgetting of knowledge
about old tasks after learning new tasks, which can be categorized
into several categories according to the principles of algorithm
design. Regularization-based approaches [1, 20, 24, 32, 42] mitigate
catastrophic forgetting by restricting the parameter updating when
the model learns a new task so that it cannot deviate from the op-
timal parameters on previous tasks. However, these methods also
limit the learning capacity of models in the process of constraining
parameters. Expansion-based methods [15, 25, 48, 57] maintain opti-
mal parameters for old tasks and enhance the plasticity of the model
by learning new knowledge through the newly added network pa-
rameters. Replay-basedmethods [16, 22, 36, 38, 43, 50] store a portion
of previously trained data in a memory buffer and combine it with
new training data when learning the new task. Although these two
type of approaches achieve better performances, they come with
higher training costs and increased graphics memory as the number
of tasks grows. Projection-based methods [5, 10, 26, 27, 39, 40, 46]
project the gradients of current task onto the orthogonal direction
of old task features to prevent gradient interference between tasks.
However, these methods perform singular value decomposition
(SVD) on representation matrices, which becomes ineffective when
dealing with large numbers of parameters or training samples.
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2.2 Prompting for Continual Learning
In contrast to previous approaches, prompt-based CL methods
freeze the parameters of backbone, and train prompts inserted
into the outputs of hidden layer instead, thus providing adapta-
tion to new tasks. Learning to Prompt (L2P) [50] introduces the
concept of prompt pool, which selects prompts with the highest
similarity for different inputs. Inspired by complementary learning
systems, DualPrompt [49] designs two types of prompts to learn
general and specialized knowledge respectively. However, L2P and
DualPrompt are inseparable from the step of prompt selection from
a prompt pool, which cannot be optimized by backpropagation.
For this reason, COntinual Decomposed Attention-based Prompt-
ing (CODA-Prompt) [41] introduces prompt decomposition, which
decomposes a task-specific prompt into a linear combination of
multiple prompts. S-Prompt [47] advocates learning prompts inde-
pendently according to domains to avoid confusion between new
and old knowledge. Language Guidance for prompt-based Contin-
ual Learning (LGCL) [18] suggests using natural language prompts
to guide the model, while maintaining semantics of prompts also
means that the prompt templates are difficult to optimize. Hierarchi-
cal Decomposition (HiDe-)Prompt [45] decomposes the objective
of prompt learning into task-identity inference, within-task predic-
tion and task-adaptive prediction, which essentially introduces a
regularization strategy for prompt-based continual learning.

2.3 Prompt Generation
Prompt generation methods train a prompt generator to gener-
ate task-specific prompts instead of training the prompts directly.
Domain-Adaptive Prompt (DAP) [17] focuses on designing a prompt
generator for continual learning, which has better domain adapt-
ability and does not rely on a prompt pool. However, it lacks fine-
grained guidance for the training process of its prompt genera-
tor. Personalized Federated learning framework of client-specific
Prompt Generation (pFedPG) [55] propose a personalized prompt
generation method in federated learning scenarios, which is funda-
mentally different from the continual learning settings we consider.
Customized Prompts via Language models (CuPL) [35] generates
customized prompt for each class of images in the dataset through
GPT-3 [3], while the problem it encounters is the limited control
over the generated prompts.

2.4 Probability Prompt Learning
Under the perspective of probability prompt learning, deterministic
prompts can be viewed as the point estimates of a prompt distri-
bution, which poses challenges in representing the diversity and
uncertainty inherently in prompts. PROmpt Distribution leArning
(ProDA) [28] designs the first probability model for prompts to
estimate the prompt distribution and therefore capture the vari-
ability of prompt representations. Prompt Learning with Optimal
Transport (PLOT) [6] defines both features and prompt information
as discrete distributions under the Dirac measure, and attempts to
guide the optimization of prompts through optimal transport theory
[44]. Bayesian Prompt Learning (BPL) [7] frame prompt learning
from the Bayesian perspective and regularize the prompt space
to reduce overfitting on seen prompts. Although these methods
also assume prompts as distributions, they are neither continual

learning methods nor prompting generation methods. Therefore,
GPLS is fundamentally different from the above methods.

3 Method
3.1 Background
Prompt Distribution Learning (ProDA) [28] is the first method
in probability prompt learning, which learns an optimal prompt
distribution 𝑝 (𝑷 ) targeting at minimizing the empirical loss

𝑷∗ = argmin
𝑷

E𝑿 ,𝒀 [− logE𝜽𝑝 (𝒀 |𝑿 , 𝜽 )] , (1)

where 𝑷 is the prompt. 𝜽 is the normalized embeddings of the text,
which is determined by the prompt distribution 𝑝 (𝑷 ) and the text
encoder 𝑔(·). 𝑿 and 𝒀 are the input images and labels respectively.
Bayesian Prompt Learning (BPL) [7] assumes that the prompt
distribution consists of a set of fixed prompts and residuals

𝑷 (𝑿 ) =
[
𝑷1 + 𝒓, 𝑷2 + 𝒓, · · · , 𝑷𝐿 + 𝒓

]
, 𝒓 ∼ 𝑝 (𝒓 |𝑿 ). (2)

Here 𝑷𝑐 is the fixed prompt for class 𝑐 , and 𝑝 (𝒓 |𝑿 ) is denoted as the
real posterior distribution for 𝒓 . Variational posterior is introduced
to approximate the residual distribution, thereby obtaining a lower
bound on log-likelihood

log𝑝 (𝒀 |𝑿 ) ≥ E𝑝 (𝒓 |𝑿 ) [log(𝑝 (𝒀 |𝑿 , 𝒓))] − 𝐾𝐿(𝑝 (𝑟 |𝑿 )∥𝑝 (𝒓)) . (3)

Aside from the differences in an overall perspective mentioned
in Section 2.4, we can also outline three detailed distinctions. (1) We
define the prompt distribution by considering prompts as variables
that follow a distribution, rather than decompose it into a set of
deterministic prompts combined with residual distribution [7]. (2)
We train an encoder to generate prompts through a novel varia-
tional loss related to Mahalanobis distance, rather than optimize the
prompts themselves. (3) We encode task and feature information
into task-specific prompts in latent space with the reparameteriza-
tion technique, rather than training class-specific prompts.

3.2 Problem Formulation
In this study, our goal is to generate better prompts 𝑷 for classifica-
tion tasks, which is different from previous prompt optimization
methods. Instead of training the prompts directly, we focus on
training a prompt generator to generate better prompts.

To achieve this goal, we define the prompts as variables that
follow a distribution from the perspective of probability prompt
learning [28], which offers an effective way to describe the uncer-
tainty of the generated prompts. We denote the prior probability
density function of prompt distribution as 𝑝 (𝑷 ), where 𝑷 can be
seen as a random variable and its value is an observation. In the
training process, both the input data 𝑿 and labels 𝒀 are known.
The target is to generate a better prompt 𝑷 with the help of 𝑿 and
𝒀 , which can be described as solving a posterior probability density
function 𝑝 (𝑷 |𝑿 , 𝒀 ).

In practice, the value of 𝑷 can be determined by optimizing a
generator with 𝑿 and 𝒀 when freezing the parameters of backbone,
but it is still difficult to know the distribution 𝑝 (𝑷 |𝑿 , 𝒀 ) exactly.
There are three main reasons for this: (1) Although a specific 𝑷
can be obtained through optimization, the distribution 𝑝 (𝑷 |𝑿 , 𝒀 )
remains unknown because the value of 𝑷 is merely an observa-
tion. (2) Even though multiple observations of 𝑷 can be collected
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Figure 2: Illustration of the overall framework of GPLS. Firstly, we feed the data into themodel and perform forward propagation
to obtain the output on position of CLS at the last hidden layer. Secondly, we adopt CLS as the query and train a key to match it.
In the training stage, the key is optimized through L𝑚𝑎𝑡𝑐ℎ . In the testing stage, task ID is predicted through the maximum
similarity between the trainable key and CLS. Then, we establish a set of tokens for each task and input it into an encoder
to obtain the mean 𝝁 and covariance 𝚺 of the prompt distribution. Another reparameterization variable 𝝐 is obtained by
normalizing and sampling the inputs of transformer blocks. Finally, the prompts are obtained through reparameterization
technique and inserted into the inputs of transformer blocks.

through repeated experiments, they do not represent the ground
truth. This is significantly different from the scenarios considered
by variational auto-encoder (VAE) [19] and generative adversarial
network (GAN) [12], as these methods assume that the observed
samples are all real. (3) Although we have defined a symbol for the
prior distribution, we do not know the prior information of the
prompt distribution. (e.g. The theoretical distribution it follows.)
Moreover, since the observed values of 𝑷 are not the ground truth,
it is inappropriate to estimate the prior 𝑝 (𝑷 ) through maximum
likelihood estimation (MLE) or the posterier 𝑝 (𝑷 |𝑿 , 𝒀 ) through
maximum a posteriori (MAP).

3.3 Variational Inference in Prompt Generation
From the above analysis, we can summarize that the challenge in es-
timating the posterior distribution of generated prompts accurately
lies in the absence of prior information and observations represent-
ing ground truth. To address this issue, we introduce a variational
distribution 𝑞(𝑷 ) to approximate the real posterior 𝑝 (𝑷 |𝑿 , 𝒀 ). Since
the variational distribution is not real, it can be assumed to follow
a certain theoretical distribution.

We hope to find an optimal variational distribution that can
be expressed as minimizing the Kullback-Leibler (KL) divergence
between 𝑞(𝑷 ) and 𝑝 (𝑷 |𝑿 , 𝒀 ), namely

𝑞∗ (𝑷 ) = argmin
𝑞 (𝑷 ) ∈𝒬

𝐾𝐿(𝑞(𝑷 )∥𝑝 (𝑷 |𝑿 , 𝒀 )). (4)

Here 𝒬 is the possible value space for variational distribution 𝑞(𝑷 ).
However, we cannot assume to know 𝒀 in the testing phase, thus
Eq.(4) is not always valid. To address this problem, we regard

prompts as the variable in latent space and expand the logarithmic
likelihood probability at the end of the classifier into

log 𝑝 (𝒀 |𝑿 ) =
∫
𝑷
𝑞(𝑷 ) log 𝑝 (𝒀 |𝑿 )𝑑𝑷 . (5)

After further derivation, we find that the log-likelihood log𝑝 (𝒀 |𝑿 )
with prompt as the latent variable can be expressed as the sum of
evidence lower bound (ELBO) and KL divergence, namely

log𝑝 (𝒀 |𝑿 ) = 𝐸𝐿𝐵𝑂 (𝑞) + 𝐾𝐿(𝑞(𝑷 )∥𝑝 (𝑷 |𝑿 , 𝒀 )). (6)

Here the specific expressions for ELBO and KL divergence are as
follows

𝐸𝐿𝐵𝑂 (𝑞) = E𝑞 (𝑃 ) [log𝑝 (𝑷 , 𝒀 |𝑿 )] − E𝑞 (𝑃 ) [log𝑞(𝑷 )], (7)

𝐾𝐿(𝑞(𝑷 )∥𝑝 (𝑷 |𝑿 , 𝒀 )) = E𝑞 (𝑃 ) [log𝑞(𝑷 )] − E𝑞 (𝑃 ) [log𝑝 (𝑷 |𝑿 , 𝒀 )] .
(8)

The proof is available at supplementary materials. Since KL diver-
gence is non negative, we can obtain log𝑝 (𝒀 |𝑋 ) ≥ 𝐸𝐿𝐵𝑂 (𝑞).

Since log𝑝 (𝒀 |𝑿 ) in Eq.(6) is an observed value, we can transform
the objective function in Eq.(4) to maximizing ELBO as

argmax
𝑞 (𝑷 ) ∈𝒬

E𝑞 (𝑷 ) [log 𝑝 (𝑷 , 𝒀 |𝑿 )] − E𝑞 (𝑷 ) [log𝑞(𝑷 )], (9)

where log𝑝 (𝑷 , 𝒀 |𝑿 ) is the logarithmic likelihood, which can be di-
rectly obtained. log𝑞(𝑷 ) is the logarithmic variational distribution
we are concerned with.

3.4 Optimization for Generator
In Section 3.3, we have derived an implicit formulations for the
ELBO in prompt generation. Next, we attempt to further provide
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its explicit expression. In Eq.(9), log 𝑝 (𝑷 , 𝒀 |𝑿 ) is computable since
it has the following form

log 𝑝 (𝑷 , 𝒀 |𝑿 ) = log
exp

(
𝑾⊤

𝑦 𝑓 (𝑿 , 𝑷 )
)

∑𝐶
𝑐=1 exp

(
𝑾⊤

𝑐 𝑓 (𝑿 , 𝑷 )
) , (10)

where 𝑾𝑦 and 𝑾𝑐 are the weight slices of the last linear layer
related to class 𝑦 and 𝑐 respectively. 𝑓 (𝑿 , 𝑷 ) is the input of the
last linear layer. Prompt 𝑷 is generated by encoder 𝜓 (·). In addi-
tion, exp( ·)∑𝐶

𝑐=1 exp( ·)
is the function of softmax, namely 𝑝 (𝑷 , 𝒀 |𝑿 ) =

softmax
(
𝑾⊤

𝑦 𝑓 (𝑿 , 𝑷 )
)
. Through Monte Carlo estimates of expecta-

tions [19], we can obtain the first term of ELBO as

E𝑞 (𝑷 ) [log𝑝 (𝑷 , 𝒀 |𝑿 )] ≃ 1
𝑀

𝑀∑︁
𝑚=1

log
[
softmax

(
𝑾⊤

𝑦 𝑓 (𝑿 , 𝑷𝑚)
)]
.

(11)

The prompt in each layer is only generated once in each itera-
tion, thus 𝑀 = 1. Since 𝑞(𝑷 ) is not the real distribution of 𝑷 , but
an approximate distribution. We can assume that 𝑞(𝑷 ) is a multi-
variate Gaussian distribution with mean 𝝁 and covariance matrix
𝚺 respectively. Its probability density function can be expressed as

𝑞(𝑷 ) = 1√︁
(2𝜋)𝑘 |𝚺|

exp
(
−1
2
(𝑷 − 𝝁)T𝚺−1 (𝑷 − 𝝁)

)
. (12)

Here 𝑘 is the length of the generated prompt, and |𝚺| represents
the determinant of 𝚺. We expand the expectation E𝑞 (𝑷 ) [log𝑞(𝑷 )]
into the integral form and further obtain

E𝑞 (𝑷 ) [log𝑞(𝑷 )] = −𝑘
2
log(2𝜋) − 1

2
log |𝚺|

− 1
2
E𝑞 (𝑷 )

[
(𝑷 − 𝝁)T𝚺−1 (𝑷 − 𝝁)

]
. (13)

The proof is presented in supplementary materials. Here (𝑷 −
𝝁)T𝚺−1 (𝑷 − 𝝁) can be regarded as the square of Mahalanobis dis-
tance [51, 53] between 𝑷 and 𝝁 from a metric learning perspective.

Since prompt length 𝑘 is a predetermined constant, the first term
in Eq.(13) can be ignored during the optimization process. Next,
we regard the negative ELBO as the loss function, which can be
written in the specific form as

L𝑁𝐸𝐿𝐵𝑂 = −E𝑞 (𝑷 ) [log𝑝 (𝑷 , 𝒀 |𝑿 )] + E𝑞 (𝑷 ) [log𝑞(𝑷 )]

= − log
[
softmax

(
𝑾⊤

𝑦 𝑓 (𝑿 , 𝑷 )
)]

− 1
2
log |𝚺| − 1

2
E𝑞 (𝑷 )

[
(𝑷 − 𝝁)T𝚺−1 (𝑷 − 𝝁)

]
. (14)

We also refer to it as variational loss. Intuitively, the target of Eq.(14)
is to obtain a better variational distribution for prompts. In practical
terms, we optimize an encoder that generates task-specific prompts.

To ensure that the inverse of the covariance matrix can always be
obtained, we perform singular value decomposition (SVD) on 𝚺 and
obtain 𝚺 = 𝑼𝚲𝑽⊤. Here 𝑼 and 𝑽 are left and right singular matrix
respectively, and 𝚲 is a diagonal matrix with sorted singular values
𝜆𝑖 , 𝜆2, · · · , 𝜆𝑘 along its diagonal. Therefore, the inverse matrix of 𝚺
can be expressed as

𝚺
−1 = 𝑽𝚲−1𝑼⊤, (15)

because 𝚺𝚺−1 = 𝑼𝚲𝑽⊤𝑽𝚲−1𝑼⊤ = 𝑰 . Note that 𝑽 and 𝑼 are both
orthogonal matrix according to the properties of SVD. In addition,

since covariance matrix 𝚺 is a positive semidefinite matrix, its
determinant is non negative. Then |𝚺| equals the product of singular
values for the reason that |𝑼𝚲𝑽⊤ | = |𝑼 | |𝚲| |𝑽⊤ | = |𝚲|, namely
|𝚺| = |𝚲| = 𝜆1 · 𝜆2 · . . . · 𝜆𝑘 .

We denote the second and last term in Eq.(13) as L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 and
L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ respectively, which are the abbreviations of negative
logarithmic covariance and negative expected (square of) Maha-
lanobis distance. Their specific forms can be expressed as

L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ = −1
2
E𝑞 (𝑷 )

[
(𝑷 − 𝝁)⊤𝑽𝚲−1𝑼⊤ (𝑷 − 𝝁)

]
, (16)

L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 = −1
2
log |𝚺| = −1

2

𝑘∑︁
𝑖=1

log 𝜆𝑖 . (17)

Thus, the final objective function can be expressed as

L = L𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 + L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 + L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ + 𝛼L𝑚𝑎𝑡𝑐ℎ, (18)

where L𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 = −E𝑞 (𝑷 ) [log𝑝 (𝑷 , 𝒀 |𝑿 )] is the negative value
of Eq(11). L𝑚𝑎𝑡𝑐ℎ is the matching loss applied in L2P [50], Dual-
Prompt [49] and DAP [17], which optimizes a query for predicting
task ID in class-incremental continual learning.

3.5 Geometric Explanation on Variational Loss
Through the above derivation process, we have obtained the ex-
plicit expressions of L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 and L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ . Their formulations
possess distinct geometric interpretations in the contexts of opti-
mization and metric learning. Specifically, during the backpropa-
gation procedure, the decrease of L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ corresponds to an
elevation in the expectation of squared Mahalanobis distance be-
tween the generated prompt and the population moment. When
prompt 𝑷 is allowed to be distant from the population moment in
the training process, there is a propensity for 𝑷 to explore diverse
prompts in a wider area in high-dimensional space rather than
being confined to a limited region (e.g. around the saddle point).
Therefore, the generated prompts are more likely to achieve better
domain adaptability. On the other hand, L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 is characterized
by the product of eigenvalues, which serves to prevent excessive
scaling in the Mahalanobis distance. We explain excess and scaling
separately. (1) A small singular value 𝜆𝑖 will result in a large value
of − 1

2 log 𝜆𝑖 , and further increase the total loss. (2) Mahalanobis
distance can obtained from Euclidean distance after rotation and
scaling [51, 53]. When covariance matrix 𝚺 is an identity matrix,
Mahalanobis distance degenerates into Euclidean distance.

3.6 Prompt Generation
The prompt in GPLS is generated by reparameterization technique
[19], which can be expressed as

𝑷 = 𝝁 + 𝚺 ⊙ 𝝐, 𝝐 ∼ 𝑝 (𝝐), (19)

which ensures that generated prompts 𝑷 follow the similar distri-
bution with 𝝐 . We build a sampler to extract the information of
hidden layer outputs that generated prompts are inserted into to
obtain 𝝐 .

The mean and covariance matrix of the generated prompts are
provided by a trainable encoder𝜓 (·), namely

𝝁, 𝚺 = 𝜓 (𝑬𝑡 ) . 𝑬𝑡 ∈ E . (20)
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Table 1: Quantitative results (%) of class-incremental continual learning on Split CIFAR-100 and Split DomainNet. Here BiC,
DER++ and DyTox are replay-based methods with a memory buffer of 50 per class, and other methods are all rehearsal-free.
† denotes the prompt-based CL methods.

Method Venue Split CIFAR-100 Split DomainNet

Avg Acc (↑) Lrn Acc (↑) Forgetting (↓) Avg Acc (↑) Lrn Acc (↑) Forgetting (↓)
EWC [20] PNAS’17 59.60 ± 1.27 81.78 ± 1.29 24.65 ± 0.07 22.35 ± 1.86 84.27 ± 2.13 64.11 ± 1.28
LwF [24] TPAMI’17 68.22 ± 1.63 82.05 ± 0.07 15.44 ± 1.48 28.86 ± 1.92 84.09 ± 1.48 56.32 ± 1.01
BiC [52] CVPR’19 81.42 ± 0.85 93.37 ± 0.32 14.32 ± 1.02 68.19 ± 1.22 86.61 ± 1.61 20.27 ± 0.39
DER++ [4] NeurIPS’20 83.94 ± 0.34 91.49 ± 0.61 9.87 ± 0.73 74.61 ± 0.27 88.13 ± 1.14 16.05 ± 0.94
DyTox [9] CVPR’22 88.15 ± 0.28 90.92 ± 0.78 3.64 ± 0.19 79.60 ± 0.91 84.15 ± 1.18 5.87 ± 0.20
L2P† [50] CVPR’22 83.06 ± 0.17 88.25 ± 0.01 6.58 ± 0.40 80.67 ± 0.85 85.14 ± 0.99 5.33 ± 0.87
DualPrompt† [49] ECCV’22 86.60 ± 0.19 90.64 ± 0.01 4.45 ± 0.16 81.89 ± 0.63 87.27 ± 1.80 5.21 ± 1.17
S-Prompt† [47] NeurIPS’22 88.81 ± 0.18 92.25 ± 0.03 3.87 ± 0.05 82.15 ± 0.47 87.14 ± 0.74 5.03 ± 0.22
ESN [48] AAAI’23 86.34 ± 0.52 88.92 ± 0.78 4.76 ± 0.14 68.76 ± 0.12 73.23 ± 1.64 5.75 ± 0.23
CODA-Prompt† [41] CVPR’23 86.94 ± 0.63 91.57 ± 0.75 4.04 ± 0.18 82.68 ± 0.14 87.50 ± 0.08 5.29 ± 0.05
HiDe-Prompt† [45] NeurIPS’23 92.61 ± 0.28 94.03 ± 0.01 3.16 ± 0.10 83.16 ± 0.32 87.63 ± 0.27 4.72 ± 0.46
DAP† [17] ICCV’23 94.05 ± 1.19 96.37 ± 0.74 2.28 ± 0.96 83.51 ± 1.07 88.77 ± 0.79 5.30 ± 0.52
GPLS† Ours 96.22 ± 0.43 97.12 ± 0.51 1.12 ± 0.32 90.13 ± 1.01 93.44 ± 0.63 3.56 ± 0.49

Figure 3: Geometric explanation for L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ . In GPLS,
prompt encoder is encouraged to generate prompts far from
the population moment 𝝁 for different tasks, which enables
prompts to obtain better domain adaptivity. The degree of
a prompt away from 𝝁 is measured by the square of Maha-
lanobis distance.

Here E is the possible value space for the input of the encoder. 𝑬𝑡
is composed of a set of tokens containing task information, which
is similar to the text embedding converted from natural language.
We establish a key corresponding to each 𝑬𝑡 , and train it through a
query-key matching form

𝑡 = argmax
𝑡

cos(𝐶𝐿𝑆𝐿,𝑲𝑡 ). (21)

Here 𝑲𝑡 is the learnable key at task 𝑡 , which matchs the CLS of
last transformer layer as the query to predict the task ID in testing
stage under class-increment settings.

3.7 Prompt-based Continual Learning in GPLS
Next, we will illustrate how the generated prompts are applied
to a Vision Transformer (ViT) backbone. A typical ViT architec-
ture comprises a patch embedding layer along with several trans-
former layers. When receiving an input image 𝑿 ∈ R𝑑𝐻 ×𝑑𝑊 ×𝑑𝐶 ,

the patch embedding layer initially divides the image into a se-
quence of flattened patches 𝑿𝑝𝑎𝑡 =

[
𝒙𝑝𝑎𝑡,1, 𝒙𝑝𝑎𝑡,2, · · · , 𝒙𝑝𝑎𝑡,𝑑𝑁

]
∈ R𝑑𝑁 ×

(
𝑑2
𝑃
×𝑑𝐶

)
. Here 𝑑𝐻 and 𝑑𝑊 are the height and width of an

image, and 𝑑𝐶 is the number of input channels. 𝑑𝑃 × 𝑑𝑃 is the reso-
lution of each patch. The quantity of patches can be computed as
𝑑𝑁 = ⌊𝑑𝐻

𝑑𝑃
⌋ × ⌊𝑑𝑊

𝑑𝑃
⌋. The input of the first transformer layer can be

represented as[
𝐶𝐿𝑆0, 𝑷0,𝒁0] = [

𝐶𝐿𝑆0, 𝑷0,𝑿𝑝𝑎𝑡𝑾𝑒𝑚𝑏 + 𝑿𝑝𝑜𝑠

]
, (22)

where 𝐶𝐿𝑆 is a learnable class token vector prepended to the se-
quence of feature patches. Prompt 𝑷 is inserted between class token
and patches.𝑾0

𝑒𝑚𝑏
∈ R(𝑑2

𝑃
×𝑑𝐶 )×𝑑𝐷 is a linear transformation pro-

jecting 𝑿0
𝑝𝑎𝑡 into an embedding space, where 𝑑𝐷 is the embedding

dimension. 𝑿𝑝𝑜𝑠 represents the position embedding. The output
of the embedding layer serves as the input for the initial trans-
former layer. The output of each transformer block is subsequently
forwarded to the next transformer block through

( [𝐶𝐿𝑆𝑙 ,𝒁𝑙 ]) = Transformer𝑙 ( [𝐶𝐿𝑆𝑙−1, 𝑷𝑙−1,𝒁𝑙−1]) . (23)

Each transformer layer comprises amulti-head self-attention (MHSA)
module and a feed-forward neural network (FFN) module. The
output of each transformer block comprises a tensor 𝑷 (𝑙 ) at the
corresponding position of 𝑷𝑙−1. However, we adopt the prompt 𝑷𝑙

generated by an encoder for the next layer instead of retaining 𝑷 (𝑙 ) .
Namely, [𝐶𝐿𝑆𝑙 , 𝑷𝑙 ,𝒁𝑙 ] is served as the input of next transformer
block.

4 Experiments
4.1 Experimental Setup
Benchmarks:We conduct experiments on various continual learn-
ing datasets, including Split CIFAR-100 [21], Split DomainNet
[34] and Split Pets [33], Split CropDiseases [31] and Split Eu-
roSAT [14]. Split CIFAR-100 contains 60,000 RGB images over 100
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Table 2: Experimental results (%) on benchmarks from various fields including Split Pets, Split EuroSAT and Split CropDiseases.

Method Split Pets Split EuroSAT Split CropDiseases

Avg Acc ↑ Lrn Acc ↑ Forgetting ↓ Avg Acc ↑ Lrn Acc ↑ Forgetting ↓ Avg Acc ↑ Lrn Acc ↑ Forgetting ↓
EWC [20] 59.40 ± 0.14 66.20 ± 0.42 8.85 ± 0.35 47.40 ± 1.13 46.30 ± 3.54 2.30 ± 1.56 73.30 ± 5.09 80.90 ± 7.92 9.30 ± 3.25
LwF [24] 62.50 ± 1.63 76.00 ± 1.27 18.15 ± 0.92 40.40 ± 5.37 45.20 ± 3.82 6.00 ± 1.84 75.10 ± 1.98 89.55 ± 2.05 27.35 ± 1.95
L2P [50] 78.34 ± 0.92 89.84 ± 0.37 15.01 ± 1.10 69.17 ± 8.62 79.15 ± 3.78 12.47 ± 6.05 59.73 ± 1.41 75.33 ± 5.20 12.78 ± 2.83
DualPrompt [49] 86.85 ± 0.76 92.14 ± 0.37 8.38 ± 0.74 79.41 ± 1.94 87.12 ± 0.04 12.78 ± 1.23 84.23 ± 2.22 90.18 ± 1.58 7.04 ± 0.81
DAP [17] 91.02 ± 0.44 92.91 ± 0.19 1.21 ± 0.45 98.18 ± 0.56 98.54 ± 0.47 0.61 ± 0.53 97.88 ± 0.89 99.34 ± 0.09 1.71 ± 1.02
GPLS 94.53 ± 0.81 95.84 ± 0.92 1.61 ± 0.58 98.59 ± 0.41 99.06 ± 0.55 0.64 ± 0.45 98.85 ± 0.78 99.59 ± 0.61 0.87 ± 0.32

classes, which is randomly splitted into 10 incremental tasks of
disjoint classes. Split DomainNet is a dataset composed of images
from 6 distinct types with a total of 345 categories, which is splitted
into 15 tasks with each tack containing 23 disjoint classes. Split
Pets [33] has 35 categories of pet images with about 200 images
per category, which is splitted into 7 tasks. Split CropDiseases [31]
contains 35 categories of diseased plant images, which is splitted
into 7 tasks. EuroSAT [14] is a collection of satellite images of the
landscapes. Split EuroSAT is built by splitting the original 10 classes
into 5 tasks of 2 disjoint classes.
Baselines:We compare our GPLS with seven prompt-based contin-
ual learning methods, including L2P [50], DualPrompt [49], CODA-
Prompt [41], S-Prompt [47], LGCL [18], HiDe-Prompt [45] and
DAP [17]. In addition, three representative replay-based approaches
including BiC [52], DER++ [4] and DyTox [9], two representative
regularization-based approaches including EWC [20] and LwF [24]
and one dynamic expansion approach ESN [48] adopting ViT as
backbone also be considered. All these baselines are continual learn-
ing methods designed for class-incremental scenario that task IDs
are not available during the testing process.
Implementation:We follow the similar implementations as pre-
vious work [17]. Specifically, we adopt ViT-B/16 [8] pre-trained
on ImageNet as the backbone and Adam (𝛽1=0.9, 𝛽2 = 0.9) with
learning rate of 0.01 as the optimizer. All the input images are
resized to resolution of 224 × 224, normalized range from 0 to 1
and packaged into 128 samples per batch. We utilize an encoder
to generate prompts with a fixed length of 10 at each time. To
save computational costs, we adopt the simplest one layer MLP
encoder [19].
Evaluation Metrics:We repeat each experiment over 3 times with
different random seeds and report their average values with stan-
dard errors using three familiar metrics in CL. (1) Average accu-
racy (AvgAcc ↑) of all the tasks after themodel have been trained on
the last task 𝑇 , which can be expressed as Avg Acc = 1

𝑇

∑𝑇
𝑡=1𝐴𝑡,𝑇 .

Here 𝐴𝑡,𝑇 denotes the test accuracy on task 𝑡 after learning task 𝑇 .
(2) Learning accuracy (Lrn Acc): The average accuracy of each
task right after the model is trained on the incoming tasks, namely
Lrn Acc = 1

𝑇

∑𝑇
𝑡=1𝐴𝑡,𝑡 . (3) Forgetting: The difference between the

maximum knowledge from the previous tasks and the knowledge in
the current task, namely 1

𝑇−1
∑𝑇−1
𝜏=1 max𝑡 ∈{1,2,...,𝑇−1}

(
𝐴𝜏,𝑡 −𝐴𝜏,𝑇

)
.

4.2 Main Results
The experimental results of GPLS and other continual learning base-
lines on Split CIFAR-100 and Split DomainNet are shown in Table 1.
Note that we take Avg Acc as the primary metric and Forgetting as

the secondary indicator. As the first prompt generation method in
continual learning, DAP achieved unprecedented performance on
Split CIFAR-100 and Split DomainNet by designing the architecture
of a prompt generator. Nevertheless, our GPLS adopt an encoder
to encode prompts in the latent space and guide the training of
encoder through variational Bayesian theory, further improving
the performance of prompt generation methods. Specifically, GPLS
exhibits the Avg Acc advantages of 2.17% and 6.62% on Split CIFAR-
100 and Split DomainNet respectively compared to DAP, which
also decreases the forgetting rate by 1.16% and 1.74% on these two
datasets.

To demonstrate the excellent domain adaptability of GPLS, we
also conduct experiments on Split Pets, Split EuroSAT, and Split
CropDiseases, which belong to the fields of animals, aviation, and
agriculture respectively. As shown in Table 2, although DAP has
achieved high accuracy on these three datasets, we can still fur-
ther improve performance to state-of-the-art level. In terms of the
most important indicator Avg Acc, GPLS are 3.51%, 0.40%, and
0.96% ahead of DAP on Split Pets, Split EuroSAT and Split CropDis-
eases respectively. Notably, improving performance on the latter
two datasets is challenging due to the already elevated accuracy
achieved by DAP. In summary, GPLS achieves consistently better
accuracy than baselines, which can be attributed to the latent space
theory, encoder design, and variational objective function.

4.3 Ablation Study
Ablation on variables for generating prompts. From a holis-
tic perspective, the prompts in GPLS are produced by an encoder.
However, a more detailed perspective on component level reveals
that GPLS is determined by the collaborative influence of three
variables including 𝝁, 𝚺 and 𝝐 . Table 3 shows the experimental re-
sults after removing each variable separately. (1) Firstly, removing
𝝁 and generating 𝑷 through 𝚺 ⊙ 𝝐 leads to a slight decrease in the
overall performance, indicating that the population moment plays
an effective role in prompt generation, but its impact is relatively
small. (2) Secondly, we remove 𝚺 and construct 𝑷 through 𝝁 + 𝝐 .
The Avg Acc and Lrn Acc of GPLS exhibit significant declines, and
the forgetting rate escalates rapidly. These phenomenon indicates
that the overall training framework has suffered from severe cat-
astrophic forgetting. Therefore, 𝚺 plays a more important role in
domain adaptation for prompt generation. In addition, L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣
and L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ are both related to covariance matrix 𝚺, which
indicates that 𝚺 will directly affect the total loss. (3) Thirdly, we
ablate 𝝐 and utilize 𝝁 + 𝚺 to generate prompts. The results show



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Chengyi Yang, Wentao Liu, Shisong Chen, Jiayin Qi, & Aimin Zhou

Table 3: Ablation results (%) of variables for prompt genera-
tion on Split CIFAR-100.

Method Avg Acc (↑) Lrn Acc (↑) Forgetting (↓)
GPLS 96.22 ± 0.43 97.12 ± 0.51 1.12 ± 0.32

Ablate 𝝁 95.29 ± 0.63 96.73 ± 0.42 1.62 ± 0.28
Ablate 𝚺 68.02 ± 4.15 81.93 ± 3.37 15.58 ± 2.03
Ablate 𝝐 90.49 ± 1.21 95.55 ± 0.98 5.63 ± 0.74

Table 4: Ablation results (%) of the constraints in ELBO on
Split CIFAR-100.

Method Avg Acc (↑) Lrn Acc (↑) Forgetting (↓)
GPLS 96.22 ± 0.43 97.12 ± 0.51 1.12 ± 0.32
w/o L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ 95.07 ± 1.23 96.51 ± 0.81 1.89 ± 0.72
w/o L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 95.56 ± 1.08 96.83 ± 0.62 1.67 ± 0.63
w/o L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ & L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 94.98 ± 1.26 96.32 ± 2.25 2.11 ± 1.02

(a) prompt length (b) balancing coefficient

Figure 4: Comparison of Avg Acc (%) and Forgetting (%) with
different settings of prompt length and balancing coefficient
on Split CIFAR-100.

that GPLS also experience a decrease in accuracy and an increase
in forgetting, which also verifies the effectiveness of 𝝐 .
Ablation on ELBO constraint.We also conducted ablation exper-
iments on L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ and L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 . The results in Table 4 show
that removing any part of the constraints will result in inferior
accuracy and higher forgetting. Specifically, deleting L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ

and L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 would result in a decrease of 1.15% and 0.66% in Avg
Acc respectively, which also show that L𝑛𝑒𝑥𝑝_𝑀𝑎ℎ plays a more
important role in the sense of improving performance compared to
L𝑛𝑙𝑜𝑔_𝑐𝑜𝑣 .

4.4 Hyperparameter Analysis
Analysis on prompt length 𝑘 . To investigate the impact of varia-
tion on prompt length 𝑘 for model performance, we set the value of
𝑘 as {1, 3, 5, 8, 10, 15, 20, 30, 50} successively. Table 4(a) reports Avg
Acc and Forgetting when GPLS are performed on Split CIFAR-100.
We observed that when the prompt length equals 10, the accuracy
and forgetting reach the optimal level simultaneously.
Analysis on balancing coefficient 𝛼 . The hyperparameter 𝛼 is
applied to balance the importance between matching loss and our
variational loss. We change its value as {0.1, 0.2, 0.25, 0.3, 0.5, 0.7}
successively. As illustrated in Table 4(b), our method achieves the
best performance when 𝛼 = 0.25.

(a) DAP (b) Ours

Figure 5: T-SNE visualizations of generated prompts for 10
tasks on Split CIFAR-100. Note that the prompt distribution
in GPLS refers to all possible prompts following the prompt
distribution, and one generated prompt can be viewed as an
observation. In addition, prompts are not utilized to predict
classification labels like logits, therefore overlapping parts
under different tasks are allowed due to the varying levels
of similarity between these tasks.

4.5 T-SNE Visualization for Prompt Comparison
Since both DAP and GPLS are prompt generation methods rather
than prompt optimization methods, we compare the prompts gen-
erated by our GPLS with those generated by DAP in Figure 5. Al-
though DAP demonstrates effective domain adaptability through
prompt generation, its T-SNE plot reveals challenges in identifying
distinct boundaries between the prompts it generates and lacks a
unique data center. In contrast, prompts generated by GPLS exhibit
a discernible center across various tasks, which indicates that GPLS
can effectively identify the commonalities between different tasks.
Moreover, prompts in GPLS display clearer boundaries between
different tasks, which indicates that GPLS can clearly understand
the differences between different tasks and has better domain adapt-
ability.

5 Conclusion
In this paper, we analyze that the trainable parameters in prompt
generation methods have the property of localization, centraliza-
tion, and indirectness, which poses challenges in achieving higher
performance. In addition, we note that the prompts generated by a
prompt generator are uncertain and exert an implicit influence on
classification results, resembling the concept of latent variables in
Bayesian learning. Motivated by this insight, we propose a method
called generating prompts in latent space for rehearsal-free con-
tinual learning based on variational Bayesian theory. We design a
variational encoder which encodes task information and feature
representation into prompts in latent space with reparameterization
technique. We insert the prompts into the inputs of transformer
blocks, and train the encoder by minimizing the negative evidence
lower bound. We conduct extensive experiments to verify the ef-
fectiveness of our GPLS, and the results demonstrate that GPLS
consistently achieves the state-of-the-art performance on five con-
tinual learning benchmarks.
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