
Headed-Span-Based Projective Dependency Parsing

Anonymous ACL submission

Abstract

We propose a new paradigm for projective001
dependency parsing based on headed spans.002
In a projective dependency tree, the subtree003
rooted at each word covers a contiguous se-004
quence (i.e., a span) in the surface order. We005
call a span marked with a root word headed006
span. A projective dependency tree can be007
represented as a collection of headed spans.008
We decompose the score of a dependency tree009
into the scores of the headed spans and de-010
sign a novel O(n3) dynamic programming al-011
gorithm to enable global training and exact012
inference. The advantages of our headed-013
span-based dependency parsing include that it014
captures subtree information more adequately015
than first-order graph-based methods and per-016
forms global optimization in decoding (in con-017
trast to transition-based methods). We evalu-018
ate our method on PTB, CTB, and UD and019
it achieves competitive results in comparison020
with previous methods.021

1 Introduction022

Dependency parsing is an important task in natu-023

ral language processing, which has numerous ap-024

plications in downstream tasks, such as opinion025

mining (Zhang et al., 2020a), relation extraction026

(Jin et al., 2020), named entity recognition (Jie and027

Lu, 2019), machine translation (Bugliarello and028

Okazaki, 2020), among others.029

There are two main paradigms in dependency030

parsing: graph-based and transition-based meth-031

ods. Graph-based methods decompose the score032

of a tree into the scores of parts. In the simplest033

first-order graph-based methods (McDonald et al.,034

2005, inter alia), the parts are single dependency035

arcs. In higher-order graph-based methods (Mc-036

Donald and Pereira, 2006; Carreras, 2007; Koo and037

Collins, 2010; Ma and Zhao, 2012), the parts are038

combinations of multiple arcs. Transition-based039

methods (Nivre and Scholz, 2004; Chen and Man-040

ning, 2014, inter alia) read the sentence sequen-041

tially and conduct a series of local decisions to 042

build the final parse. Recently, transition-based 043

methods with Pointer Networks (Vinyals et al., 044

2015) have obtained competitive performance to 045

graph-based methods (Ma et al., 2018; Liu et al., 046

2019; Fernández-González and Gómez-Rodríguez, 047

2019; Fernández-González and Gómez-Rodríguez, 048

2021). 049

A main limitation of first-order graph-based 050

methods is that they independently score each arc 051

based solely on the two words connected by the 052

arc. Ideally, the appropriateness of an arc should 053

depend on the whole parse tree, particularly the sub- 054

trees rooted at the two words connected by the arc. 055

Although subtree information could be implicitly 056

encoded (Falenska and Kuhn, 2019) in powerful 057

neural encoders such as LSTMs (Hochreiter and 058

Schmidhuber, 1997) and Transformers (Vaswani 059

et al., 2017), there is evidence that their encoding 060

of such information is inadequate. For example, 061

higher-order graph-based methods, which capture 062

more subtree information by simultaneously con- 063

sidering multiple arcs, have been found to outper- 064

form first-order methods despite using powerful 065

encoders (Fonseca and Martins, 2020; Zhang et al., 066

2020b). In contrast to the line of work on higher- 067

order parsing, we propose a different way to incor- 068

porate more subtree information as we will discuss 069

later. 070

Transition-based methods, on the other hand, can 071

easily utilize information from partially built sub- 072

trees, but they have their own shortcomings. For 073

instance, they cannot perform global optimization 074

during decoding and rely on greedy or beam search 075

to find a locally optimal parse; and their sequential 076

decoding may cause error propagation as past deci- 077

sion mistakes will negatively affect the decisions 078

in the future. 079

To overcome the aforementioned limitations of 080

first-order graph-based and transition-based meth- 081

ods, we propose a new paradigm of projective de- 082

is

inventory

An

An inventory

of

of

function

syntactic

syntactic function is

taken

taken

to

to

be

be

primitive

primitive
1 2 3 4 5 6 7 8 90 10

<bos> <eos>

Figure 1: An example projective dependency parse tree. Each rectangle represents a headed span. A projective
parse tree can be treated as a collection of headed spans.

pendency parsing based on so-called headed spans.083

A projective dependency tree has a nice structural084

property that the subtree rooted at each word cov-085

ers a contiguous sequence (i.e., a span) in the sur-086

face order. We call such a span marked with its087

root word a headed span. A projective dependency088

tree can be treated as a collection of headed spans089

such that each word corresponds to exactly one090

headed span, as illustrated in Figure 1. For exam-091

ple, (0, 5, inventory) is a headed span, in which092

span (0, 5) has a head word inventory. In this093

view, projective dependency parsing is similar to094

constituency parsing as a constituency tree can be095

treated as a collection of constituent spans. The096

main difference is that in a binary constituency tree,097

a constituent span (i, k) is made up by two adjacent098

spans (i, j) and (j, k), while in a projective depen-099

dency tree, a headed span (i, k, xh) is made up by100

one or more smaller headed spans and a single word101

span (h − 1, h). For instance, (0, 5, inventory) is102

made up by (0, 1,An), (1, 2) and (2, 5, of). There103

are a few constraints between headed spans to force104

projectivity (§2.3). These structural constraints are105

the key to designing an efficient dynamic program-106

ming algorithm for exact inference.107

Because of the similarity between constituency108

parsing and our head-span-based view of projec-109

tive dependency parsing, we can draw inspirations110

from the constituency parsing literature to design111

our dependency parsing method. Specifically, span-112

based constituency parsers (Stern et al., 2017; Ki-113

taev and Klein, 2018; Zhang et al., 2020c; Xin114

et al., 2021) decompose the score of a constituency115

tree into the scores of its constituent spans and116

use the CYK algorithm (Cocke, 1969; Younger, 117

1967; Kasami, 1965) for global training and infer- 118

ence. Built upon powerful neural encoders, they 119

have obtained state-of-the-art performance in con- 120

stituency parsing. Inspired by them, we propose 121

to decompose the score of a projective dependency 122

tree into the scores of headed spans and design 123

a novel O(n3) dynamic programming algorithm 124

for global training and exact inference, which is 125

on par with the Eisner algorithm (Eisner, 1996) in 126

time complexity for projective dependency parsing. 127

We make a departure from existing graph-based 128

methods since we do not model dependency arcs 129

directly. Instead, the dependency arcs are induced 130

from the collection of headed spans (§2.3). Com- 131

pared with first-order graph-based methods, our 132

method can utilize more subtree information since 133

a headed span contains all children (if any) of the 134

corresponding headword (and all words within the 135

subtree). Compared with transition-based methods, 136

our method allows global training and exact infer- 137

ence and does not suffer from error propagation or 138

exposure bias. 139

Our contributions can be summarized as follows: 140

• We treat a projective dependency tree as a 141

collection of headed spans, providing a new 142

perspective of projective dependency parsing. 143

• We design a novel O(n3) dynamic program- 144

ming algorithm to enable global training and 145

exact inference for our proposed model. 146

• We have obtained the state-of-the-art or com- 147

petitive results on PTB, CTB, and UD v2.2, 148

showing the effectiveness of our proposed 149

method. 150

2

2 Model151

We adopt the two-stage parsing strategy, i.e., we152

first predict an unlabeled tree and then predict the153

dependency labels. Given a sentence x1, ..., xn,154

its unlabeled projective dependency parse tree y155

can be regarded as a collection of headed spans156

(li, ri, xi) where 1 ≤ i ≤ n. For each word xi, we157

can find exactly one headed span (li, ri, i) (where158

li and ri are the left and right span boundaries)159

given parse tree y, so there are totally n headed160

spans in y as we can see in Figure 1. We can use a161

simple post-order traversal algorithm to obtain all162

headed spans in O(n) time.163

We then define the score of y as:164

s(y) =
∑

i=1,...,n

s
span
li,ri,i

165

In §2.1, we show how to calculate sspan
li,ri,i

using166

neural networks. In §2.2, we present the training167

objective function and in §2.3, we present the novel168

O(n3) parsing algorithm.169

2.1 Neural encoding and scoring170

We add <bos> (beginning of sentence) at x0 and171

<eos> (end of sentence) at xn+1. In the embedding172

layer, we apply mean-pooling to the last layer of173

BERT (Devlin et al., 2019) (i.e., taking the mean174

value of all subword embeddings) to generate dense175

word-level representation ei for each token xi 1.176

Then we feed e0, ..., en+1 into a 3-layer bidirec-177

tional LSTM (BiLSTM) to get c0, ..., cn+1, where178

ci = [fi; bi] and fi and bi are the forward and back-179

ward hidden states of the last BiLSTM layer at180

position i respectively. We then use ei,j to repre-181

sent span (i, j):182

hk = [fk, bk+1]183

ei,j = hj − hi184

After obtaining the word and span representa-185

tions, we use deep biaffine function (Dozat and186

Manning, 2017) to score headed spans:187

c′k = MLPword(ck)188

e′i,j = MLPspan(ei,j)189

s
span
i,j,k =

[
c′k; 1

]>
W span [e′i,j ; 1

]
190

1For some datasets (e.g., Chinese Treebank), we concate-
nate the POS tag embedding with the BERT embedding as
ei.

where MLPword and MLPspan are multi-layer per- 191

ceptrons (MLPs) that project word and span repre- 192

sentations into d-dimensional spaces respectively; 193

W span ∈ R(d+1)×(d+1). 194

Similarly, we use deep biaffine functions to score 195

the labels of dependency arcs for a given gold or 196

predicted tree. In our preliminary experiments, we 197

find that directly calculating the scores based on 198

parent-child word representations leads to a slightly 199

better result: 200

c′i = MLPparent(ci) 201

c′j = MLPchild(cj) 202

slabel
i,j,r =

[
c′i; 1

]>
W label

r

[
c′j ; 1

]
203

where MLPparent and MLPchild are MLPs that 204

map span representations into d′-dimensional 205

spaces; W label
r ∈ R(d′+1)×(d′+1) for each relation 206

type r ∈ R in which R is the set of all relation 207

types. 208

2.2 Training loss 209

Following previous work, we decompose the train- 210

ing loss into the unlabeled parse loss and arc label 211

loss: 212

L = Lparse + Llabel 213

For Lparse, we can either design a local span- 214

selection loss (i.e., maximize the probability of the 215

gold span for each word over all feasible spans) 216

which is akin to the head-selection loss (Dozat 217

and Manning, 2017), or use global structural loss. 218

Experimentally, we find that the max-margin loss 219

(Taskar et al., 2004) performs best. The max- 220

margin loss aims to maximize the margin between 221

the score of the gold tree y and the incorrect tree y′ 222

of the highest score: 223

Lparse = max(0,max
y′ 6=y

(s(y′) + ∆(y′, y)− s(y))

(1) 224

where ∆ measures the difference between the 225

incorrect tree and gold tree. Here we let ∆ to be 226

the Hamming distance (i.e., the total number of 227

mismatch of headed spans). To calculate Eq. 1, we 228

need to perform loss-augmented inference (Taskar 229

et al., 2005). To achieve that, we update the scores 230

as: 231

s′i,j,k = si,j,k + 1 ((i, j, k) /∈ y) 232

where 1 ((i, j, k) /∈ y) means that the headed span 233

(i, j, xk) does not exists in y. Then we can use 234

3

 xj

i a kb j-1 j c

Figure 2: An example subtree.

the parsing algorithm (§2.3) based on the updated235

scores to obtain the highest-scoring tree. If it is the236

gold tree, then the loss is 0; otherwise, we can put237

it back to Eq. 1 to calculate the loss.238

Finally, we use cross entropy for Llabel:239

Llabel =
∑

(xi→xj ,r)∈y

− log
exp(slabel

i,j,r)∑
r′∈R

exp(slabel
i,j,r′)

240

where (xi → xj , r) ∈ y denotes every depen-241

dency arc from xi to xj with label r in y.242

2.3 Parsing243

In this section, we detail our proposed O(n3) in-244

ference algorithm. The algorithm is based on the245

following key observations:246

• For a given parent word xk, if it has any chil-247

dren to the left (right), then all headed spans of248

its children in this direction should be consec-249

utive and form a larger span, which we refer250

to as the left (right) child span. The left (right)251

boundary of the headed span of xk is the left252

(right) boundary of the leftmost (rightmost)253

child span, or k − 1 (k) if xk has no child to254

the left (right).255

• If a parent word xk has children in both di-256

rections, then its left span and right span are257

separated by the single word span (k − 1, k).258

Figure 2 shows an example subtree. The left259

child span is (i, j − 1) and the right child span260

is (j, k). They are separated by the single word261

span (j − 1, j). The headed span (i, k, j) can be262

generated by merging the left child span, right child263

span, and the single word span. Note that the left264

(right) child span can contain one or more headed265

spans.266

Based on these observations, we design the fol-267

lowing dynamic programming chart items:268

• αi,j : the accumulated score of span (i, j) serv-269

ing as a left or right child span.270

• βi,j,k: the accumulated score of the headed 271

span (i, j, k). 272

Then we can define the following recursive for- 273

mulas to perform dynamic programming: 274

βi,i+1,i+1 = s
span
i,i+1,i+1 (2) 275

αi,i = 0 (3) 276

βi,j,k = αi,k−1 + αk,j + s
span
i,j,k (4) 277

αi,j = max(max
i<k<j

(αi,k + αk,j), 278

max
i<h≤j

(βi,j,h)) (5) 279

We set αi,i = 0 for the convenience of calcu- 280

lating βi,j,k when xk does not have children on 281

either side. In Eq. 5, we can see that the child 282

span comes from either multiple smaller consecu- 283

tive child spans (i.e., max
i<k<j

(α(i, k) + α(k, j))) or 284

a single headed span (i.e., max
i<h≤j

(β(i, j, h)))). 285

We also maintain the following backtrack points 286

in order to recover the predicted projective tree: 287

Bi,j =

1, αi,j = max
i<h≤j

(βi,j,h)

0, αi,j = max
i<k<j

(αi,k + αk,j)
288

289

Ci,j = arg max
i<k<j

(αi,k + αk,j) 290

Hi,j = arg max
i<h≤j

(βi,j,h) 291

The parsing algorithm first computes all the chart 292

items defined above and then recovers the parse 293

tree from top down. The root is H0,n. For a given 294

headed span, it finds the best segmentation of left 295

child spans and right child spans, and then adds de- 296

pendency arcs between the headword of the given 297

headed span and the headword of each child span. 298

Finding the best segmentation is similar to the in- 299

ference procedure of the semi-Markov CRF model 300

(Sarawagi and Cohen, 2004). Then we apply the 301

same procedure to each child headed span (within 302

the best segmentation) recursively. The whole pars- 303

ing algorithm is formalized in Algorithm 1. 304

Time complexity: From Eq. 2 to 5, we can see 305

that at most three variables (i.e., i, j, k) are re- 306

quired to iterate over, so the total time complexity 307

is O(n3). 308

4

Algorithm 1 Inference algorithm for headed span-
based projective dependency parsing
Require: Input sentence of length n

Calculate all α, β,B,C,H .
arcs← {(ROOT→ H0,n)}
function FINDARC(i, j)

if i+ 1 = j then
return {j}

else if Bi,j = 1 then
h← Hi,j

if i+1 < h < j then
L← FINDARC(i, h− 1)
R← FINDARC(h, j)
Children← L ∪R

else if h = j then
Children← FINDARC(i, j − 1)

else
Children← FINDARC(i+ 1, j)

end if
for c in Children do

arcs← arcs ∪ (h→ c)
end for
return {h}

else
c← Ci,j

L← FINDARC(i, c)
R← FINDARC(c, j)
return L ∪R

end if
end function
FINDARC(0, n)
return arcs

3 Experiments309

3.1 Data310

We evaluate our proposed method on Penn Tree-311

bank (PTB) 3.0 (Marcus et al., 1993), Chinese Tree-312

bank (CTB) 5.1 (Xue et al., 2005) and 12 languages313

on Universal Dependencies (UD) 2.2. For PTB, we314

use the Stanford Dependencies conversion software315

of version 3.3 to obtain dependency trees. For CTB,316

we use head-rules from Zhang and Clark (2008)317

and Penn2Malt2 to obtain dependency trees. Fol-318

lowing Wang and Tu (2020), we use gold POS tags319

for CTB and UD. We do not use POS tags in PTB.320

For PTB/CTB, we drop all nonprojective trees dur-321

ing training. For UD, we use MaltParser v1.9.2 3 to322

adopt the pseudo-projective transformation (Nivre323

and Nilsson, 2005) to convert nonprojective trees324

into projective trees when training, and convert325

back when evaluating.326

2https://cl.lingfil.uu.se/~nivre/
research/Penn2Malt.html

3http://www.maltparser.org/download.
html

3.2 Evaluation methods 327

We report the unlabeled attachment score (UAS) 328

and labeled attachment score (LAS) averaged from 329

three runs with different random seeds. In each 330

run, we select the model based on the performance 331

on the development set. Following Wang and Tu 332

(2020), we ignore all punctuation marks during 333

evaluation. 334

3.3 Implementation details 335

We use "bert-large-cased" for PTB, "bert-base- 336

chinese" for CTB, and "bert-multilingual-cased" 337

for UD, so the dimension of the input BERT em- 338

bedding is 1024, 768, and 768 respectively. The 339

dimension of POS tag embedding is set to 100 for 340

CTB and UD. The hidden size of BiLSTM is set to 341

1000. The hidden size of biaffine functions is set 342

to 600 for scoring spans and arcs (used in our reim- 343

plemented Biaffine Parser), 300 for scoring labels. 344

We add a dropout layer after the embedding layer, 345

LSTM layers, and MLP layers. The dropout rate is 346

set to 0.33. We use Adam (Kingma and Ba, 2015) 347

as the optimizer with β1 = 0.9, β2 = 0.9 to train 348

our model for 10 epochs. The maximal learning 349

rate is lr = 5e− 5 for BERT and lr = 25e− 5 for 350

other components. We linearly warmup the learn- 351

ing rate to the maximal value for the first epoch and 352

gradually decay it to zero for the rest of the epochs. 353

The value of gradient clipping is set to 5. We batch 354

sentences of similar lengths to better utilize GPUs. 355

The token number is 4000 for each batch, i.e., the 356

sum of lengths of sentences is 4000. 357

3.4 Baselines 358

• Biaffine: Dozat and Manning (2017) are the 359

first use deep biaffine functions to score de- 360

pendency arcs/labels and use the local head- 361

selection training loss function. 362

• TreeCRF2O: Zhang et al. (2020b) use a deep 363

triaffine function to score sibling factors and 364

use a second-order TreeCRF loss for training. 365

• MFVI2O: Wang and Tu (2020) use decom- 366

posed triaffine functions to score second-order 367

factors (i.e., grandparents and siblings) and 368

unfold mean-field variational inference proce- 369

dure for end-to-end training. 370

• HPSG: Zhou and Zhao (2019) propose a 371

span-based method to perform joint depen- 372

dency and constituency parsing by simplify- 373

ing the head-driven phrase structure grammars 374

(HPSG) (Pollard and Sag, 1994). 375

5

https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
http://www.maltparser.org/download.html
http://www.maltparser.org/download.html

PTB CTB
UAS LAS UAS LAS

MFVI2O 95.98 94.34 90.81 89.57
TreeCRF2O 96.14 94.49 - -
HierPtr 96.18 94.59 90.76 89.67

+BERTbase +BERTbase
RNGTr 96.66 95.01 92.98 91.18

+BERTlarge +BERTbase

MFVI2O 96.91 95.34 92.55 91.69
HierPtr 97.01 95.48 92.65 91.47
Biaffine+MM† 97.22 95.71 93.18 92.10
Ours 97.24 95.73 93.33 92.30

For reference
+XLNetlarge +BERTbase

HPSG[97.20 95.72 - -
HPSG+LAL[97.42 96.26 94.56 89.28

Table 1: Results for different model on PTB and CTB. [

indicate that they use additional annotated constituency
trees in training. † means our reimplementation.

• HPSG+LAL: Mrini et al. (2020) add label376

attention layer (LAL) upon HPSG.377

• RNGTr: Mohammadshahi and Henderson378

(2021) propose an iterative refinement net-379

work built upon Transformer.380

• HierPtr: Fernández-González and Gómez-381

Rodríguez (2021) improve the mechanisms of382

transition-based methods with Pointer Nets.383

3.5 Main result384

Table 1 shows the results on PTB and CTB. Note385

that Biaffine+MM is our reimplementation of the386

Biaffine Parser that uses the same setting as in our387

method, including the use of the max-margin loss388

instead of the local head-selection loss. Interest-389

ingly, we find that Biaffine+MM has already sur-390

passed many strong baselines, and this may due to391

the proper choices of hyperparameters and the use392

of the max-margin loss (we observe that using the393

max-margin loss leads to a better performance com-394

pared with the original head-selection loss), so Bi-395

affine+MM is a very strong baseline. It also has the396

same number of parameters as our methods. Our397

method surpasses Biaffine+MM on both datasets,398

showing the competitiveness of our headed-span-399

based method in a fair comparison with first-order400

graph-based parsing. Our method also obtains the401

state-of-the-art result among methods that only use402

dependency training data (HPSG+LAL uses addi-403

tional constituency trees as training data, so it is 404

not directly comparable with the other systems.). 405

Table 2 shows the results on UD. We can see 406

that our reimplemented Biaffine+MM has already 407

surpassed MFVI2O, which utilizes higher-order in- 408

formation. Our method outperforms Biaffine+MM 409

by 0.14 LAS on average, validating the effective- 410

ness of our proposed method in the multilingual 411

scenarios. 412

4 Analysis 413

4.1 Influence of training loss function 414

Table 3 shows the influence of the training loss 415

function. We find that the max-margin loss per- 416

forms better on both datasets: 0.17 UAS improve- 417

ment on PTB and 0.05 UAS improvement on CTB 418

comparing to the local span-selection loss, which 419

shows the effectiveness of using global loss. 420

4.2 Error analysis 421

As previously argued, first-order graph-based meth- 422

ods are insufficient to model complex subtrees, so 423

they may have difficulties in parsing long sentences 424

and handling long-range dependencies. To verify 425

this, we follow (McDonald and Nivre, 2011) to plot 426

UAS as a function of the sentence length and plot 427

F1 scores as functions of the distance to root and 428

dependency length on the CTB test set. We addi- 429

tionally plot the F1 score of the predicted headed 430

spans against the gold headed spans with different 431

span lengths. 432

From Figure 3a, we can see that Biaffine+MM 433

has a better UAS score on short sentences (of length 434

<=20), while for long sentences (of length >=30), 435

our headed span-based method has a higher perfor- 436

mance, which validates our conjecture. 437

Figure 3b shows the F1 score for arcs of varying 438

distances to root. Our model is better at predict- 439

ing arcs of almost all distances to root in the de- 440

pendency tree, which reveals our model’s superior 441

ability to predict complex subtrees. 442

Figure 3c shows the F1 score for arcs of the 443

varying lengths. Both Biaffine+MM and our model 444

have a very similar performance in predicting arcs 445

of distance < 7, while our model is better at predict- 446

ing arcs of distance >= 7, which validates the ability 447

of our model at capturing long-range dependencies. 448

Figure 3d shows the F1 score for headed spans 449

of the varying lengths. We can see that when the 450

span length is small (<=10), Biaffine+MM and our 451

model have a very similar performance. However, 452

6

bg ca cs de en es fr it nl no ro ru Avg

TreeCRF2O 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
MFVI2O 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

+BERTmultilingual

MFVI2O 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Biaffine+MM† 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Ours 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96

Table 2: Labeled Attachment Score (LAS) on twelves languages in UD 2.2. We use ISO 639-1 codes to represent
languages. † means our implementation.

1-9 10-19 20-29 30-39 ≥40
92

93

94

95

96

Sentence length

U
A

S
(1

00
%

)

Ours
Biaffine+MM

(a)

ROOT 1 2 3 4 5 6 ≥7

90

91

92

93

94

Distance to root

F1
sc

or
e

(1
00

%
)

Ours
Biaffine+MM

(b)

1 2 3 4 5 6 7 ≥8
80

85

90

95

Dependency length

F1
sc

or
e

(1
00

%
)

Ours
Biaffine+MM

(c)

1-10 11-20 21-30 31-40 ≥40
80

85

90

95

Span length

F1
sc

or
e

(1
00

%
)

Ours
Biaffine+MM

(d)

Figure 3: Error analysis on the CTB test set.

PTB CTB
UAS LAS UAS LAS

max-margin loss 97.24 95.73 93.33 92.30
span-selection loss 97.07 95.50 93.28 92.20

Table 3: The influence of training loss function on PTB
and CTB.

our model is much better in predicting longer spans453

(especially for spans of length >30).454

4.3 Parsing speed455

One of the advantages of transition-based meth-456

ods is that they have a low complexity in parsing a457

sentence. In contrast, first-order graph-based meth-458

ods require O(n2) time to produce an unrestricted 459

tree by using the maximum spanning tree (MST) 460

algorithm and require O(n3) time to produce a pro- 461

jective tree by using the Eisner algorithm. As we 462

discussed in §2.3, our proposed parsing algorithm 463

also has a O(n3) time complexity, which seems 464

slow. Luckily, inspired by Zhang et al. (2020b) 465

and Rush (2020) who independently propose to 466

batchify the Eisner algorithm using Pytorch, we 467

batchify our proposed method so that O(n2) out of 468

O(n3) can be computed in parallel, which greatly 469

accelerates parsing. We achieve a similar parsing 470

speed of our method to the fast implementation of 471

the Eisner algorithm by Zhang et al. (2020b): it 472

takes 20 seconds to parse the entire PTB test set 473

7

using BERT as the encoder under a single TITAN474

RTX GPU.475

5 Related work476

Dependency parsing with more complex sub-477

tree information: There has always been an in-478

terest to incorporate more complex subtree infor-479

mation into graph-based and transition-based meth-480

ods since their invention. Before the deep learning481

era, it is difficult to incorporate sufficient contex-482

tual information in first-order graph-based parsers.483

To mitigate this, researchers develop higher-order484

dependency parsers to capture more contextual485

information (McDonald and Pereira, 2006; Car-486

reras, 2007; Koo and Collins, 2010; Ma and Zhao,487

2012). However, incorporating more complex fac-488

tors worsens inference time complexity. For ex-489

ample, exact inference for third-order projective490

dependency parsing has a O(n4) time complexity491

and exact inference for higher-order non-projective492

dependency parsing is NP-hard (McDonald and493

Pereira, 2006). To decrease inference complex-494

ity, researchers use approximate parsing methods.495

Smith and Eisner (2008) use belief propagation496

(BP) framework for approximate inference to trade497

accuracy for efficiency. They show that third-order498

parsing can be done inO(n3) time using BP. Gorm-499

ley et al. (2015) unfold the BP process and use gra-500

dient descent to train their parser in an end-to-end501

manner. Wang and Tu (2020) extend their work by502

using neural scoring functions to score factors. For503

higher-order non-projective parsing, researchers re-504

sort to dual decomposition algorithm (e.g., AD3)505

for decoding (Martins et al., 2011, 2013). They506

observe that the approximate decoding algorithm507

often obtains exact solutions. Fonseca and Mar-508

tins (2020) combine neural scoring functions and509

their decoding algorithms for non-projective higher-510

order parsing. Zheng (2017) propose a incremental511

graph-based method to utilize higher-order infor-512

mation without hurting the advantage of global513

inference. Ji et al. (2019) use a graph attention514

network to incorporate higher-order information515

into the Biaffine Parser. Zhang et al. (2020b) en-516

hance the Biaffine Parser by using a deep triaffine517

function to score sibling factors. Mohammadshahi518

and Henderson (2021) propose an iterative refine-519

ment network that injects the predicted soft trees520

from the previous iteration to the self-attention lay-521

ers to predict the soft trees of the next iteration,522

so that information of the whole tree is consid-523

ered in parsing. As for transition-based methods, 524

de Lhoneux et al. (2019) explore the impact of 525

the way of subtree composition, Ma et al. (2018); 526

Liu et al. (2019); Fernández-González and Gómez- 527

Rodríguez (2021) incorporate sibling and grandpar- 528

ent information into transition-based parsing with 529

Pointer Networks. 530

Span-based constituency parsing: Span-based 531

parsing is originally proposed in continuous con- 532

stituency parsing (Stern et al., 2017; Kitaev and 533

Klein, 2018; Zhang et al., 2020c; Xin et al., 2021). 534

Span-based constituency parsers decompose the 535

score of a constituency tree into the scores of its 536

constituents. Recovering the highest-scoring tree 537

can be done via the exact CYK algorithm or greedy 538

top-down approximate inference algorithm (Stern 539

et al., 2017). Kitaev and Klein (2018) propose a 540

self-attentive network to improve the parsing ac- 541

curacy. They separate content and positional at- 542

tentions and show the improvement. Zhang et al. 543

(2020c) use a two-stage bracketing-then-labeling 544

framework and replace the max-margin loss with 545

the TreeCRF loss (Finkel et al., 2008). Xin et al. 546

(2021) recently propose a recursive semi-Markov 547

model, incorporating sibling factor scores into the 548

score of a tree to explicitly model n-ary branching 549

structures. Corro (2020) adapts span-based parsing 550

to discontinuous constituency parsing and obtains 551

the state-of-the-art result. 552

6 Conclusion 553

In this work, we have presented a headed-span- 554

based method for projective dependency parsing. 555

Our proposed method can utilize more subtree in- 556

formation and meanwhile enjoy global training and 557

exact inference. Experiments show that our pro- 558

posed method has a high parsing accuracy in PTB, 559

CTB, and twelve languages in UD v2.2. In addi- 560

tion to its empirical competitiveness, we believe our 561

work provides a novel perspective of projective de- 562

pendency parsing and could lay the foundation for 563

further theoretical and algorithmic advancements 564

in the future. 565

References 566

Emanuele Bugliarello and Naoaki Okazaki. 2020. En- 567
hancing machine translation with dependency-aware 568
self-attention. In Proceedings of the 58th Annual 569
Meeting of the Association for Computational Lin- 570
guistics, pages 1618–1627, Online. Association for 571
Computational Linguistics. 572

8

https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147
https://doi.org/10.18653/v1/2020.acl-main.147

Xavier Carreras. 2007. Experiments with a higher-573
order projective dependency parser. In Proceed-574
ings of the 2007 Joint Conference on Empirical575
Methods in Natural Language Processing and Com-576
putational Natural Language Learning (EMNLP-577
CoNLL), pages 957–961, Prague, Czech Republic.578
Association for Computational Linguistics.579

Danqi Chen and Christopher Manning. 2014. A fast580
and accurate dependency parser using neural net-581
works. In Proceedings of the 2014 Conference on582
Empirical Methods in Natural Language Processing583
(EMNLP), pages 740–750, Doha, Qatar. Association584
for Computational Linguistics.585

J. Cocke. 1969. Programming languages and their com-586
pilers: Preliminary notes.587

Caio Corro. 2020. Span-based discontinuous con-588
stituency parsing: a family of exact chart-based al-589
gorithms with time complexities from O(nˆ6) down590
to O(nˆ3). In Proceedings of the 2020 Conference591
on Empirical Methods in Natural Language Process-592
ing (EMNLP), pages 2753–2764, Online. Associa-593
tion for Computational Linguistics.594

Miryam de Lhoneux, Miguel Ballesteros, and Joakim595
Nivre. 2019. Recursive subtree composition in596
LSTM-based dependency parsing. In Proceedings597
of the 2019 Conference of the North American Chap-598
ter of the Association for Computational Linguistics:599
Human Language Technologies, Volume 1 (Long600
and Short Papers), pages 1566–1576, Minneapolis,601
Minnesota. Association for Computational Linguis-602
tics.603

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and604
Kristina Toutanova. 2019. BERT: Pre-training of605
deep bidirectional transformers for language under-606
standing. In Proceedings of the 2019 Conference607
of the North American Chapter of the Association608
for Computational Linguistics: Human Language609
Technologies, Volume 1 (Long and Short Papers),610
pages 4171–4186, Minneapolis, Minnesota. Associ-611
ation for Computational Linguistics.612

Timothy Dozat and Christopher D. Manning. 2017.613
Deep biaffine attention for neural dependency pars-614
ing. In 5th International Conference on Learning615
Representations, ICLR 2017, Toulon, France, April616
24-26, 2017, Conference Track Proceedings. Open-617
Review.net.618

Jason M. Eisner. 1996. Three new probabilistic models619
for dependency parsing: An exploration. In COL-620
ING 1996 Volume 1: The 16th International Confer-621
ence on Computational Linguistics.622

Agnieszka Falenska and Jonas Kuhn. 2019. The (non-623
)utility of structural features in BiLSTM-based de-624
pendency parsers. In Proceedings of the 57th An-625
nual Meeting of the Association for Computational626
Linguistics, pages 117–128, Florence, Italy. Associ-627
ation for Computational Linguistics.628

Daniel Fernández-González and Carlos Gómez- 629
Rodríguez. 2019. Left-to-right dependency parsing 630
with pointer networks. In Proceedings of the 2019 631
Conference of the North American Chapter of the 632
Association for Computational Linguistics: Human 633
Language Technologies, Volume 1 (Long and Short 634
Papers), pages 710–716, Minneapolis, Minnesota. 635
Association for Computational Linguistics. 636

Daniel Fernández-González and Carlos Gómez- 637
Rodríguez. 2021. Dependency parsing with 638
bottom-up hierarchical pointer networks. CoRR, 639
abs/2105.09611. 640

Jenny Rose Finkel, Alex Kleeman, and Christopher D. 641
Manning. 2008. Efficient, feature-based, condi- 642
tional random field parsing. In Proceedings of ACL- 643
08: HLT, pages 959–967, Columbus, Ohio. Associa- 644
tion for Computational Linguistics. 645

Erick Fonseca and André F. T. Martins. 2020. Re- 646
visiting higher-order dependency parsers. In Pro- 647
ceedings of the 58th Annual Meeting of the Asso- 648
ciation for Computational Linguistics, pages 8795– 649
8800, Online. Association for Computational Lin- 650
guistics. 651

Matthew R. Gormley, Mark Dredze, and Jason Eisner. 652
2015. Approximation-aware dependency parsing by 653
belief propagation. Transactions of the Association 654
for Computational Linguistics, 3:489–501. 655

Sepp Hochreiter and Jürgen Schmidhuber. 1997. 656
Long short-term memory. Neural computation, 657
9(8):1735–1780. 658

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph- 659
based dependency parsing with graph neural net- 660
works. In Proceedings of the 57th Annual Meet- 661
ing of the Association for Computational Linguis- 662
tics, pages 2475–2485, Florence, Italy. Association 663
for Computational Linguistics. 664

Zhanming Jie and Wei Lu. 2019. Dependency-guided 665
LSTM-CRF for named entity recognition. In Pro- 666
ceedings of the 2019 Conference on Empirical Meth- 667
ods in Natural Language Processing and the 9th In- 668
ternational Joint Conference on Natural Language 669
Processing (EMNLP-IJCNLP), pages 3862–3872, 670
Hong Kong, China. Association for Computational 671
Linguistics. 672

Lifeng Jin, Linfeng Song, Yue Zhang, Kun Xu, Wei- 673
Yun Ma, and Dong Yu. 2020. Relation extraction 674
exploiting full dependency forests. In The Thirty- 675
Fourth AAAI Conference on Artificial Intelligence, 676
AAAI 2020, The Thirty-Second Innovative Appli- 677
cations of Artificial Intelligence Conference, IAAI 678
2020, The Tenth AAAI Symposium on Educational 679
Advances in Artificial Intelligence, EAAI 2020, New 680
York, NY, USA, February 7-12, 2020, pages 8034– 681
8041. AAAI Press. 682

T. Kasami. 1965. An efficient recognition and syntax- 683
analysis algorithm for context-free languages. 684

9

https://aclanthology.org/D07-1101
https://aclanthology.org/D07-1101
https://aclanthology.org/D07-1101
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/2020.emnlp-main.219
https://doi.org/10.18653/v1/N19-1159
https://doi.org/10.18653/v1/N19-1159
https://doi.org/10.18653/v1/N19-1159
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
http://arxiv.org/abs/2105.09611
http://arxiv.org/abs/2105.09611
http://arxiv.org/abs/2105.09611
https://aclanthology.org/P08-1109
https://aclanthology.org/P08-1109
https://aclanthology.org/P08-1109
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.18653/v1/2020.acl-main.776
https://doi.org/10.1162/tacl_a_00153
https://doi.org/10.1162/tacl_a_00153
https://doi.org/10.1162/tacl_a_00153
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/D19-1399
https://doi.org/10.18653/v1/D19-1399
https://doi.org/10.18653/v1/D19-1399
https://aaai.org/ojs/index.php/AAAI/article/view/6313
https://aaai.org/ojs/index.php/AAAI/article/view/6313
https://aaai.org/ojs/index.php/AAAI/article/view/6313

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A685
method for stochastic optimization. In 3rd Inter-686
national Conference on Learning Representations,687
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,688
Conference Track Proceedings.689

Nikita Kitaev and Dan Klein. 2018. Constituency pars-690
ing with a self-attentive encoder. In Proceedings691
of the 56th Annual Meeting of the Association for692
Computational Linguistics (Volume 1: Long Papers),693
pages 2676–2686, Melbourne, Australia. Associa-694
tion for Computational Linguistics.695

Terry Koo and Michael Collins. 2010. Efficient third-696
order dependency parsers. In Proceedings of the697
48th Annual Meeting of the Association for Compu-698
tational Linguistics, pages 1–11, Uppsala, Sweden.699
Association for Computational Linguistics.700

Linlin Liu, Xiang Lin, Shafiq Joty, Simeng Han, and701
Lidong Bing. 2019. Hierarchical pointer net parsing.702
In Proceedings of the 2019 Conference on Empirical703
Methods in Natural Language Processing and the704
9th International Joint Conference on Natural Lan-705
guage Processing (EMNLP-IJCNLP), pages 1007–706
1017, Hong Kong, China. Association for Computa-707
tional Linguistics.708

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,709
Graham Neubig, and Eduard Hovy. 2018. Stack-710
pointer networks for dependency parsing. In Pro-711
ceedings of the 56th Annual Meeting of the Associa-712
tion for Computational Linguistics (Volume 1: Long713
Papers), pages 1403–1414, Melbourne, Australia.714
Association for Computational Linguistics.715

Xuezhe Ma and Hai Zhao. 2012. Fourth-order depen-716
dency parsing. In Proceedings of COLING 2012:717
Posters, pages 785–796, Mumbai, India. The COL-718
ING 2012 Organizing Committee.719

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann720
Marcinkiewicz. 1993. Building a large annotated721
corpus of English: The Penn Treebank. Computa-722
tional Linguistics, 19(2):313–330.723

André Martins, Miguel Almeida, and Noah A. Smith.724
2013. Turning on the turbo: Fast third-order non-725
projective turbo parsers. In Proceedings of the 51st726
Annual Meeting of the Association for Computa-727
tional Linguistics (Volume 2: Short Papers), pages728
617–622, Sofia, Bulgaria. Association for Computa-729
tional Linguistics.730

André Martins, Noah Smith, Mário Figueiredo, and Pe-731
dro Aguiar. 2011. Dual decomposition with many732
overlapping components. In Proceedings of the733
2011 Conference on Empirical Methods in Natural734
Language Processing, pages 238–249, Edinburgh,735
Scotland, UK. Association for Computational Lin-736
guistics.737

Ryan McDonald, Koby Crammer, and Fernando738
Pereira. 2005. Online large-margin training of de-739
pendency parsers. In Proceedings of the 43rd740

Annual Meeting of the Association for Computa- 741
tional Linguistics (ACL’05), pages 91–98, Ann Ar- 742
bor, Michigan. Association for Computational Lin- 743
guistics. 744

Ryan McDonald and Joakim Nivre. 2011. Analyzing 745
and integrating dependency parsers. Computational 746
Linguistics, 37(1):197–230. 747

Ryan McDonald and Fernando Pereira. 2006. Online 748
learning of approximate dependency parsing algo- 749
rithms. In 11th Conference of the European Chap- 750
ter of the Association for Computational Linguis- 751
tics, Trento, Italy. Association for Computational 752
Linguistics. 753

Alireza Mohammadshahi and James Henderson. 2021. 754
Recursive non-autoregressive graph-to-graph trans- 755
former for dependency parsing with iterative refine- 756
ment. Trans. Assoc. Comput. Linguistics, 9:120– 757
138. 758

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran, 759
Trung Bui, Walter Chang, and Ndapa Nakashole. 760
2020. Rethinking self-attention: Towards inter- 761
pretability in neural parsing. In Findings of the As- 762
sociation for Computational Linguistics: EMNLP 763
2020, pages 731–742, Online. Association for Com- 764
putational Linguistics. 765

Joakim Nivre and Jens Nilsson. 2005. Pseudo- 766
projective dependency parsing. In Proceedings of 767
the 43rd Annual Meeting of the Association for Com- 768
putational Linguistics (ACL’05), pages 99–106, Ann 769
Arbor, Michigan. Association for Computational 770
Linguistics. 771

Joakim Nivre and Mario Scholz. 2004. Deterministic 772
dependency parsing of English text. In COLING 773
2004: Proceedings of the 20th International Con- 774
ference on Computational Linguistics, pages 64–70, 775
Geneva, Switzerland. COLING. 776

Carl Pollard and Ivan A. Sag. 1994. Head-Driven 777
Phrase Structure Grammar. The University of 778
Chicago Press, Chicago. 779

Alexander Rush. 2020. Torch-struct: Deep structured 780
prediction library. In Proceedings of the 58th An- 781
nual Meeting of the Association for Computational 782
Linguistics: System Demonstrations, pages 335– 783
342, Online. Association for Computational Linguis- 784
tics. 785

Sunita Sarawagi and William W. Cohen. 2004. Semi- 786
markov conditional random fields for information 787
extraction. In Advances in Neural Information Pro- 788
cessing Systems 17 [Neural Information Processing 789
Systems, NIPS 2004, December 13-18, 2004, Van- 790
couver, British Columbia, Canada], pages 1185– 791
1192. 792

David Smith and Jason Eisner. 2008. Dependency 793
parsing by belief propagation. In Proceedings of 794
the 2008 Conference on Empirical Methods in Natu- 795
ral Language Processing, pages 145–156, Honolulu, 796
Hawaii. Association for Computational Linguistics. 797

10

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://aclanthology.org/P10-1001
https://aclanthology.org/P10-1001
https://aclanthology.org/P10-1001
https://doi.org/10.18653/v1/D19-1093
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://aclanthology.org/C12-2077
https://aclanthology.org/C12-2077
https://aclanthology.org/C12-2077
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://aclanthology.org/D11-1022
https://aclanthology.org/D11-1022
https://aclanthology.org/D11-1022
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.3115/1219840.1219852
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1162/coli_a_00039
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://transacl.org/ojs/index.php/tacl/article/view/2297
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://aclanthology.org/C04-1010
https://aclanthology.org/C04-1010
https://aclanthology.org/C04-1010
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://proceedings.neurips.cc/paper/2004/hash/eb06b9db06012a7a4179b8f3cb5384d3-Abstract.html
https://aclanthology.org/D08-1016
https://aclanthology.org/D08-1016
https://aclanthology.org/D08-1016

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A798
minimal span-based neural constituency parser. In799
Proceedings of the 55th Annual Meeting of the As-800
sociation for Computational Linguistics (Volume 1:801
Long Papers), pages 818–827, Vancouver, Canada.802
Association for Computational Linguistics.803

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller,804
and Christopher Manning. 2004. Max-margin pars-805
ing. In Proceedings of the 2004 Conference on Em-806
pirical Methods in Natural Language Processing,807
pages 1–8, Barcelona, Spain. Association for Com-808
putational Linguistics.809

Benjamin Taskar, Vassil Chatalbashev, Daphne Koller,810
and Carlos Guestrin. 2005. Learning structured pre-811
diction models: a large margin approach. In Ma-812
chine Learning, Proceedings of the Twenty-Second813
International Conference (ICML 2005), Bonn, Ger-814
many, August 7-11, 2005, volume 119 of ACM Inter-815
national Conference Proceeding Series, pages 896–816
903. ACM.817

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob818
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz819
Kaiser, and Illia Polosukhin. 2017. Attention is all820
you need. In Advances in Neural Information Pro-821
cessing Systems 30: Annual Conference on Neural822
Information Processing Systems 2017, December 4-823
9, 2017, Long Beach, CA, USA, pages 5998–6008.824

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.825
2015. Pointer networks. In Advances in Neural826
Information Processing Systems 28: Annual Con-827
ference on Neural Information Processing Systems828
2015, December 7-12, 2015, Montreal, Quebec,829
Canada, pages 2692–2700.830

Xinyu Wang and Kewei Tu. 2020. Second-order neural831
dependency parsing with message passing and end-832
to-end training. In Proceedings of the 1st Confer-833
ence of the Asia-Pacific Chapter of the Association834
for Computational Linguistics and the 10th Interna-835
tional Joint Conference on Natural Language Pro-836
cessing, pages 93–99, Suzhou, China. Association837
for Computational Linguistics.838

Xin Xin, Jinlong Li, and Zeqi Tan. 2021. N-ary839
constituent tree parsing with recursive semi-Markov840
model. In Proceedings of the 59th Annual Meet-841
ing of the Association for Computational Linguistics842
and the 11th International Joint Conference on Nat-843
ural Language Processing (Volume 1: Long Papers),844
pages 2631–2642, Online. Association for Computa-845
tional Linguistics.846

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha847
Palmer. 2005. The penn chinese treebank: Phrase848
structure annotation of a large corpus. Nat. Lang.849
Eng., 11(2):207–238.850

D. Younger. 1967. Recognition and parsing of context-
free languages in time n3. Inf. Control., 10 : 189 −
−208.

Bo Zhang, Yue Zhang, Rui Wang, Zhenghua Li, and Min 851
Zhang. 2020a. Syntax-aware opinion role labeling with 852
dependency graph convolutional networks. In Proceed- 853
ings of the 58th Annual Meeting of the Association for 854
Computational Linguistics, pages 3249–3258, Online. 855
Association for Computational Linguistics. 856

Yu Zhang, Zhenghua Li, and Min Zhang. 2020b. Efficient 857
second-order TreeCRF for neural dependency parsing. 858
In Proceedings of the 58th Annual Meeting of the As- 859
sociation for Computational Linguistics, pages 3295– 860
3305, Online. Association for Computational Linguis- 861
tics. 862

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020c. Fast 863
and accurate neural CRF constituency parsing. In Pro- 864
ceedings of the Twenty-Ninth International Joint Con- 865
ference on Artificial Intelligence, IJCAI 2020, pages 866
4046–4053. ijcai.org. 867

Yue Zhang and Stephen Clark. 2008. A tale of two 868
parsers: Investigating and combining graph-based and 869
transition-based dependency parsing. In Proceedings 870
of the 2008 Conference on Empirical Methods in Nat- 871
ural Language Processing, pages 562–571, Honolulu, 872
Hawaii. Association for Computational Linguistics. 873

Xiaoqing Zheng. 2017. Incremental graph-based neural 874
dependency parsing. In Proceedings of the 2017 Con- 875
ference on Empirical Methods in Natural Language 876
Processing, pages 1655–1665, Copenhagen, Denmark. 877
Association for Computational Linguistics. 878

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase 879
Structure Grammar parsing on Penn Treebank. In Pro- 880
ceedings of the 57th Annual Meeting of the Associa- 881
tion for Computational Linguistics, pages 2396–2408, 882
Florence, Italy. Association for Computational Linguis- 883
tics. 884

11

https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://aclanthology.org/W04-3201
https://aclanthology.org/W04-3201
https://aclanthology.org/W04-3201
https://doi.org/10.1145/1102351.1102464
https://doi.org/10.1145/1102351.1102464
https://doi.org/10.1145/1102351.1102464
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/2020.acl-main.297
https://doi.org/10.18653/v1/2020.acl-main.297
https://doi.org/10.18653/v1/2020.acl-main.297
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://doi.org/10.18653/v1/D17-1173
https://doi.org/10.18653/v1/D17-1173
https://doi.org/10.18653/v1/D17-1173
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

