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ABSTRACT

With the rapid advancement of test-time compute search strategies to improve
the mathematical problem-solving capabilities of large language models (LLMs),
the need for building robust verifiers has become increasingly important. How-
ever, all these inference strategies rely on existing verifiers originally designed for
Best-of-N search, which makes them sub-optimal for tree search techniques at test
time. During tree search, existing verifiers can only offer indirect and implicit as-
sessments of partial solutions or under-value prospective intermediate steps, thus
resulting in the premature pruning of promising intermediate steps. To overcome
these limitations, we propose token-supervised value models (TVMs) – a new
class of verifiers that assign each token a probability that reflects the likelihood
of reaching the correct final answer. This new token-level supervision enables
TVMs to directly and explicitly evaluate partial solutions, effectively distinguish-
ing between promising and incorrect intermediate steps during tree search at test
time. Experimental results demonstrate that combining tree-search-based infer-
ence strategies with TVMs significantly improves the accuracy of LLMs in math-
ematical problem-solving tasks, surpassing the performance of existing verifiers.

1 INTRODUCTION

Although recent large language models (LLMs) (Jiang et al., 2023; Dubey et al., 2024) have show-
cased extensive capabilities across various domains, they still face challenges with complex multi-
step reasoning tasks such as mathematical problem-solving. Considering that existing reasoning
problems can often be solved by drawing inferences from pre-trained knowledge (Snell et al., 2024),
recent studies have focused on inference techniques that invest additional computational effort at test
time to better elicit the appropriate knowledge from these models. The simplest and most conven-
tional inference strategy to scale up test-time compute is Best-of-N search (Lightman et al., 2023),
which selects one of the N generated solutions based on a specific criterion. For solving math word
problems, since no automated tools exist to verify the exact correctness of a candidate solution at
test time (as the ground truth answer is unavailable by definition), researchers have introduced the
use of neural verifiers trained to assess the correctness of the candidate solution in Best-of-N search.

Existing verifiers for Best-of-N search in mathematical problem-solving tasks can be categorized
into two types: outcome-supervised reward models (ORMs) and process-supervised reward models
(PRMs). ORMs (Cobbe et al., 2021; Uesato et al., 2022) are trained to assess the correctness of a
solution by labeling every token in a solution as either correct or incorrect based solely on whether
the final answer in the solution is correct. In contrast, PRMs (Uesato et al., 2022; Lightman et al.,
2023; Wang et al., 2024b;c; Chen et al., 2024; Luo et al., 2024) are trained with step-level labels to
assess the correctness of each intermediate solution step. Thanks to their finer-grained assessment,
PRMs are better equipped to diagnose errors even when only a few intermediate steps are incor-
rect, thereby resulting in a lower false positive error (Lightman et al., 2023). As a result, PRMs
are generally considered more robust and preferable as verifiers than ORMs when using Best-of-
N search. Nonetheless, the accuracy of Best-of-N search typically plateaus once N exceeds a few
hundred (Brown et al., 2024).
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<GSM8K TEST PROBLEM>: Jon runs a triathlon. It takes him 40 
minutes for the swim, an hour and 20 minutes for the bike ride and 
50 minutes for the run. Compared to Jon, James finishes the swim 
10% faster but takes 5 minutes longer on the bike. If Jon won by 
10 minutes, how long did it take James to do the run? (Answer: 59)

160 – 121 = Answer: 39

... takes 170+10=180 minutes … (Score: 0.175)

… the race in 170+10=180 minutes. (Score: 0.160)

... time was 170-10=160 minutes. (Score: 0.914)

… he finished in 170-10=160 minutes (Score: 0.906)

80+90=170

…

80+90=170

…

…

60+20=80

60+20=80

…

…

…

…

36+85=121

160 – 121 = Answer: 39

… total time is 10 minutes longer … (Score: 0.648)

... total time is 170-10=160 minutes. (Score: 0.661)

… James took 170-10=160 minutes …(Score: 0.710)

… total time is 10 minutes longer … (Score: 0.657)

80+90=170

…

80+90=170

…

60+20=80

…

60+20=80

…

36+85=121

…

…

…

… then he took 170+10=180 minutes

… finished in 170-10=160 minutes

… finished in 170-10=160 minutes

... have finished in 170-10=160 …

180 – 121 = Answer: 59

(Score: 0.777)

(Score: 0.448)

(Score: 0.411)

(Score: 0.354)...

80+90=170

80+90=170

…

…

60+20=80

…

36+85=121

…

…

…

TVM

PRM

ORM

WRONG

60+20=80

CORRECT

WRONG

Answer…… …
Step
Partial Solution

Solution

Figure 1: Illustration of ORM’s, PRM’s, and TVM’s (ours) intermediate steps and their corresponding
scores under Step-by-Step Beam Search for a test problem in GSM8K. The ORM incorrectly predicts
wrong intermediate steps (colored red) with excessively high scores (0.914 or 0.906) while assigning very low
scores (0.175 or 0.160) to correct steps (colored blue). Although the PRM predicts correct steps with higher
scores (0.657 or 0.648) than the ORM, it still assigns comparable scores to correct steps with respect to scores
of wrong steps (0.710 or 0.661), causing the premature pruning of promising steps. Yet, the TVM accurately
predicts a correct step with a high score (0.777) and wrong steps with relatively low scores (0.448, 0.411,
0.354), thus improving the performance of tree-search-based inference algorithms over both ORM and PRM.

To more effectively utilize additional test-time computation to enhance the mathematical problem-
solving capabilities of LLMs, tree search algorithms such as Step-by-Step Beam Search and Monte
Carlo Tree Search have been actively explored as alternatives (Yu et al., 2024; Feng et al., 2024; Chen
et al., 2024; Wu et al., 2024; Snell et al., 2024) to the Best-of-N search. While Best-of-N search only
permits neural verifiers to score solutions after they are fully generated, tree-search-based inference
methods enable verifiers to intervene during the solution generation process. This results in improved
performance compared to Best-of-N search while utilizing less inference-time computation. Yet, all
test-time search strategies rely on existing verifiers (i.e., ORMs and PRMs), which were initially
developed for Best-of-N search. As a result, it remains unclear whether both ORMs and PRMs
are suited for tree-search-based inference techniques. For instance, when implementing tree-search-
based inference strategies, Yu et al. (2024) argued that ORMs are more suitable than PRMs while
Wu et al. (2024); Snell et al. (2024) favored PRMs instead of ORMs. In this paper, we will elucidate
our assertion that both ORMs and PRMs have drawbacks in utilizing additional computation at
inference time with tree search algorithms.

One key property to maximize the accuracy of LLMs in solving math word problems through tree
search at inference time is that poor intermediate solution steps must be preemptively filtered out,
while promising ones should be preserved and further explored. In turn, the verifier needs to be
trained to predict which partial solutions are on the right path toward a correct final answer. How-
ever, both ORMs and PRMs possess limitations in achieving this. Specifically, given that ORMs
are trained with every token labeled as either correct or incorrect based merely on whether the final
answer is correct, they can only infer the potential correctness of a partial solution implicitly and
indirectly. Additionally, since PRMs are trained to determine an entire intermediate step as incor-
rect even if only the final few tokens are erroneous, they are prone to under-valuing prospective
intermediate steps by assigning scores comparable to those of incorrect steps as shown in Figure 1.
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In this work, we reveal that PRMs lacking in intra-step supervision systematically exhibit a high
false negative error in evaluating the correctness of intermediate steps. This phenomenon results
in the under-valuing and premature pruning of promising intermediate steps during tree search at
test time (see Figure 1), negatively impacting task accuracy. To equip a verifier with a more direct
and explicit ability to evaluate partial solutions while minimizing false negative errors, we propose
token-supervised value models (TVMs) – a new class of verifiers trained by supervising each token
in a solution with the probability of reaching the correct final answer. As TVMs are designed to di-
rectly and explicitly predict the potential correctness of a partial solution, they are more effective at
evaluating whether a partial solution is on a promising path toward the correct answer than ORMs. In
addition, unlike PRMs, TVMs benefit from token-level supervision with distinct correctness proba-
bility scores. When labeling tokens in an incorrect intermediate step, only the last few tokens can be
labeled as zero (i.e., incorrect) while the rest are assigned with positive values. This enables TVMs
to separate promising intermediate steps from incorrect ones (see Figure 1) and thus attain a lower
false negative error than PRMs, while preserving a false positive error comparable to that of PRMs.
Therefore, TVMs demonstrate improved performance in tree-search-based inference strategies over
both ORMs and PRMs.

Our contribution is threefold:

• To the best of our knowledge, we are the first to disclose that PRMs produce a high false
negative error, which we demonstrate to be detrimental to the performance of tree-search-
based inference algorithms due to premature pruning of promising intermediate steps.

• We propose the Token-supervised Value Model (TVM) – a new type of verifiers that are
trained to directly and explicitly estimate the likelihood of reaching the correct final answer
for each token in a solution. The TVM achieves a lower false negative error than the PRM,
while maintaining a false positive error comparable to that of the PRM, which makes the
TVM particularly suitable for tree-search-based inference methods (see Figure 1).

• We provide a theoretical insight that the value of each token is equivalent to the probability
of reaching the correct final answer given until that token, which leads us to name the
token-supervised value model, not a reward model.

2 TEST-TIME STRATEGIES FOR MATHEMATICAL PROBLEM-SOLVING

This section briefly reviews test-time strategies to enhance the mathematical problem-solving capa-
bilities of large language models (LLMs) by leveraging additional compute at inference time. Here,
we discuss two main test-time search strategies: (i) Best-of-N Search and (ii) Tree Search.

Best-of-N Search. The most basic approach to test-time compute utilization is to sample N solu-
tions in parallel and choose the one most likely to be correct, which is known as Best-of-N search.
For tasks such as code generation and neural theorem proving, each of the N candidate solutions
can be automatically identified as either correct or incorrect using unit tests or proof assistants (e.g.,
Lean 4 (Moura & Ullrich, 2021)), leading to improved pass rates as N increases (Brown et al.,
2024). However, for math word problems, determining the correctness of a solution cannot be auto-
mated without knowing the ground truth answer at inference time. To address this, a neural verifier
is employed to assess the correctness of the N sampled solutions. In this framework, it is critical to
control the false positive error of the verifier, as it has to identify the single most probable solution
and discard the rest.

Tree Search. An advanced method for test-time compute utilization is to alter the reasoning tra-
jectory of an LLM by allowing the verifier to intervene in the intermediate steps of the reasoning
process, which can prevent errors in earlier steps from propagating to subsequent steps. To this end,
researchers have actively explored Tree Search as a more effective alternative to Best-of-N search.
One easy-to-implement and well-studied tree-search-based inference strategy is Step-by-Step Beam
Search (Yu et al., 2024; Chen et al., 2024; Snell et al., 2024). It operates as follows: (i) The LLM
generates K initial reasoning steps in parallel. (ii) The verifier scores the K steps, pruning low-
scoring ones and retaining only b steps in the beam. (iii) For each of these b candidates, the next
K/b steps are generated in parallel, leading to b ×K/b = K new subsequent steps. (iv) This pro-
cess is repeated until a stopping criterion is met. A variation of this technique, known as Reward
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Token NEUTRAL

Reasoning Step 1

Final Answer

CORRECT

Final Answer 
WRONG

Answer

Token NEUTRAL

.corn...bushels8tookTerry

0 (Outcome  WRONG )ORM

0.5 (Process NEUTRAL)PRM

0.50.5...0.50.50.50.5TVM

.corn...bushels8tookTerry

1 (Outcome CORRECT)ORM

0.5 (Process NEUTRAL)PRM

0.50.5...0.50.50.50.5TVM

+cornofears21tookStacy

0 (Outcome  WRONG )ORM

0 (Process WRONG)PRM

0…0.5...0.50.50.50.5TVM

.cornofears21tookStacy

1 (Outcome CORRECT)ORM

1 (Process CORRECT)PRM

1…0.5...0.50.50.50.5TVM

Token NEUTRAL Token CORRECT

Token NEUTRAL Token WRONG

Reasoning Step 4

Path 1

Path 2

Figure 2: Illustrative comparison of token-level supervision (TVM; ours) with outcome supervision
(ORM) and process supervision (PRM). We provide two examples for each correct and wrong reasoning
path. Outcome supervision employs homogeneous labels judged by the correctness of an entire reasoning path,
uniformly labeling all tokens in every reasoning step as either correct or wrong. While process supervision uses
a percentage score (i.e., 0.5) before the reasoning step 4, it assigns the reasoning step 4 to zero due to the incor-
rectness of only the final few tokens (see the bold box), which causes a high false negative error. On the other
hand, token-level supervision (ours) allows for labeling only the last few tokens as zero while giving positive
values to the remaining tokens of the reasoning step 4, thus achieving a lower false negative error than process
supervision and distinguishing promising intermediate steps from incorrect ones as demonstrated in Figure 1.

Balanced Search (REBASE), introduced by Wu et al. (2024), balances the pruning and expansion
width of the K steps at each depth. Additionally, Monte Carlo Tree Search and its variants have been
explored, but multiple studies (Yu et al., 2024; Chen et al., 2024; Snell et al., 2024; Wu et al., 2024)
indicate that they generally underperform compared to Step-by-Step Beam Search and REBASE.

3 PITFALLS OF OUTCOME AND PROCESS SUPERVISION

In Section 3.1, we outline the limitations of outcome-supervised reward models (ORMs) and
process-supervised reward models (PRMs) for tree search strategies at test time by using illustra-
tive examples presented in Figure 1. Section 3.2 provides a brief overview of the preliminary setup
for training a neural verifier to enhance the mathematical problem-solving capabilities of large lan-
guage models (LLMs). In Sections 3.3 and 3.4, we then analyze the issues arising from outcome
supervision and process supervision, respectively.

3.1 PROBLEM STATEMENT

To maximize LLMs’ problem-solving accuracy with tree search at test time, it is crucial to effec-
tively prune poor intermediate steps while exploiting prospective ones. This requires a verifier that
can accurately predict which partial solutions are on the right track toward the correct final answer.
However, we hypothesize that existing supervision approaches (i.e., outcome and process supervi-
sion) have their own inherent limitation when implementing tree search strategies at test time.

Figure 1 illustrates that ORMs assign excessively high scores (e.g., 0.914 or 0.906) to incorrect
intermediate solution steps while giving totally low scores (e.g., 0.175 or 0.160) to correct ones.
Although PRMs score correct intermediate steps (e.g., 0.657 or 0.648) higher than ORMs, PRMs
still assign comparable scores to correct steps with respect to scores of incorrect steps (e.g., 0.710
or 0.661), leading to the premature pruning of promising steps. In Sections 3.3 and 3.4, we further
validate our hypothesis by demonstrating that ORMs generate less accurate value estimates, while
PRMs under-value promising steps due to high false negative errors.

3.2 TRAINING A NEURAL VERIFIER FOR MATHEMATICAL PROBLEM-SOLVING

Since LLMs are autoregressive models based on next-token prediction, they are incapable of retract-
ing or modifying previously generated outputs. For mathematical problem-solving, reward models
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Table 1: Root mean squared error (RMSE) between true value and a verifier’s value estimation at the
token level on the test set of GSM8K for Mistral 7B and Mistral 7B MetaMath, where a verifier is
either ORM or TVM. We approximate true value of a token as Eq. 6 by sampling 256 reasoning paths
per test problem, because it is intractable to obtain the ground truth of value due to the infeasibility
of calculating the expected returns analytically for all possible paths.

Method Mistral 7B Mistral 7B MetaMath

ORM 0.2813 0.2471
TVM 0.2575 0.2406

can be employed as verifiers to evaluate the correctness of the generated outputs. A verifier is trained
via supervised learning on a dataset obtained by sampling multiple solutions per training problem
qtr using the LLM. Given a training math word problem qtr as an input, the LLM first generates Ntr

solutions (or reasoning paths), where the n-th reasoning path consists of reasoning steps {sn,j}Sn
j=1

and a final answer an for n = 1, · · ·, Ntr. In token-level notation, the n-th reasoning path can also be
expressed as a sequence of tokens, denoted by {tn,k}Tn

k=1. The final answer a is correct if it is equal
to the ground truth answer â, and incorrect otherwise. To train a verifier, supervision is traditionally
given in two ways with respect to its granularity: (i) outcome supervision in ORMs (Cobbe et al.,
2021; Uesato et al., 2022) and (ii) process supervision in PRMs (Uesato et al., 2022; Lightman et al.,
2023; Wang et al., 2024b;c; Chen et al., 2024; Luo et al., 2024).

3.3 OUTCOME SUPERVISION

An ORM (Cobbe et al., 2021; Uesato et al., 2022), fORM is a verifier trained to model the outcome
reward function ro(·), which is the correctness of a final answer:

ro(a) =

{
1 if a = â
0 if a ̸= â.

(1)

To train fORM , outcome supervision is employed. Given Ntr reasoning paths generated for a train-
ing problem qtr, as described in Figure 2, outcome supervision labels every token in each reasoning
path as correct if its final answer is correct, which is precisely the outcome reward (Eq. 1). In turn,
the ORM loss for a LORM is defined as:

LORM=

Ntr∑
n

Tn∑
k

ℓ (ro(an), fORM (qtr, tn,1, tn,2, · · ·, tn,k)) , (2)

where the mean squared error is typically used as the loss function ℓ(·). Note Cobbe et al. (2021)
demonstrated that a token-level verifier trained to judge the correctness for every token in a solution
improves over a solution-level verifier trained to determine the correctness only for the final token.

Albeit designed as a reward model for Best-of-N search, ORMs can be alternatively described
as modeling the cumulative reward for each token, where all intermediate rewards are zero (i.e.,
r(tn,k) = 0 for every n and k) and the discount factor γ is set to 1 (Yu et al., 2024). The cumulative
reward following an intermediate token tn,k, R(tn,k)=

∑∞
l=1 γ

l−1r(tn,k+l) is calculated as

R(tn,k) = r(tn,k+1) + · · ·+ r(tn,Tn
) + ro(an) =

{
0 + · · ·+ 0 + 1 = 1 if an = â

0 + · · ·+ 0 + 0 = 0 if an ̸= â,
(3)

which is equivalent to ro(an) in Eq. 1. This implies that an intermediate reasoning path is labeled as
correct if the final answer is correct, and vice versa. In this sense, Yu et al. (2024) showed that ORMs
can indirectly and implicitly learn the potential correctness of an intermediate reasoning path.

However, such implicit supervision through homogeneous token labeling renders ORMs to still fall
short in precisely evaluating whether an intermediate reasoning path is on a promising track towards
the correct final answer. This can be corroborated by not just Figure 1 but also Table 1, which shows
that the ORM yields less accurate value estimates compared to the TVM.
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(a) Precision-Recall Curve (b) Verifier’s Scores Histogram for Correct Sampled Solutions/Steps

Figure 3: Comparative analysis of PRM and TVM (ours) by sampling 256 solutions per test problem in
GSM8K and gathering all sampled solutions (i.e., 256×1319= 337664 solutions). (a) The precision-recall
curve of PRM and TVM by adjusting the classification threshold between 0.4 and 0.6 in increments of 0.05.
(b) Histogram of a verifier’s scores for correct sampled solutions (left) and their corresponding steps (right).

3.4 PROCESS SUPERVISION

To outperform outcome supervision for Best-of-N search, process supervision enables step-wise
assessments of a reasoning path through explicit training on the correctness of each individual rea-
soning step, which is finer-grained supervision than outcome supervision. The correctness of each
step is either labeled via human annotation (Uesato et al., 2022; Lightman et al., 2023) or automa-
tion (Wang et al., 2024b;c; Chen et al., 2024; Luo et al., 2024). Since acquiring human annotations
is labor-intensive and costly, we mainly focus on process supervision without human annotations.

Following Wang et al. (2024b), sn,j is annotated by sampling a fixed number of reasoning paths con-
ditioned on a sequence of intermediate reasoning steps sn,1, · · ·, sn,j . If all of the sampled reasoning
paths reach wrong final answers, sn,j is labeled as incorrect with the process reward rp(sn,j) = 0.
Otherwise, sn,j can be labeled as either rp(sn,j) = 1 (i.e., correct) or the probability of the sam-
pled reasoning paths reaching the correct final answer. Using the per-step labels obtained through
automation, a PRM is trained to provide a step-level assessment by minimizing the following loss:

LPRM=

Ntr∑
n

Sn∑
j

ℓ (rp(sn,j), fPRM (qtr, sn,1, sn,2, · · ·, sn,j)) , (4)

where ℓ denotes the binary cross entropy loss.

This form of step-level supervision improves the identification of errors even when only a few in-
termediate steps are erroneous, leading PRMs to have low false positive errors (i.e., high precision),
as discussed in Lightman et al. (2023). However, we observe that PRMs without human annotations
suffer from high false negative errors (i.e., low recall), because process supervision labels an entire
intermediate step as incorrect even if only the final few tokens are wrong (see Figure 2). As a result,
as shown in Figure 3(a), PRMs without human annotations exhibit significantly lower recall com-
pared to our proposed verifier, the TVM. Hereafter, we refer to PRMs without human annotations
simply as PRMs to keep the expression concise.

To further investigate the PRM’s recall, we compare the scores assigned by the PRM and TVM to
correct sampled solutions (the left side of Figure 3(b)) and their corresponding steps (the right side
of Figure 3(b)). Due to the PRM’s significantly lower recall, its overall solution scores are naturally
lower than those of the TVM. Surprisingly, the PRM also assigns lower scores to individual correct
steps compared to the TVM, resulting in a smaller proportion of steps being scored close to one. This
supports that the PRM tends to under-value promising intermediate solution steps, thus resulting in
premature pruning during tree search at inference time.

4 METHOD

This section introduces our proposed verifier, the Token-supervised Value Model (TVM), which is
based on a new token-level supervision approach to directly and explicitly estimate the probability of
reaching the final answer for each token along a reasoning path. We first outline how to empirically

6
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Figure 4: Illustration of token-level supervision with correctness probability scores using Eq. 6. For a
single training problem qtr , Ntr reasoning-answer pairs are sampled using an LLM. Here, let Ntr = 3 for
convenience. (1) All three sentences begin with the same tokens {t1,k}a−1

k=1, and only one of them reaches the
correct final answer (357). Accordingly, every token of {t1,k}a−1

k=1 is labeled as 1/3 = 0.33. (2) At the a-th
position, however, only one sentence starts with t1,a, which reaches an incorrect final answer (656). Thus,
all tokens after t1,a are labeled as 0/1 = 0. (3) The remaining two sentences continue with the same tokens
{t2,k}b−1

k=a, only one of which is correct. Hence, every token of {t2,k}b−1
k=a is labeled as 1/2 = 0.5. (4) Finally,

at the b-th position, which one is correct is pre-determined. As a result, all tokens after t2,b are labeled as
0/1 = 0, whereas all tokens after t3,b as 1/1 = 1.

compute per-token correctness probability scores from the Ntr generated reasoning paths for token-
level supervision. Then, we provide a theoretical insight into our proposed verifier as a value model.

4.1 TOKEN-LEVEL SUPERVISION WITH CORRECTNESS PROBABILITY SCORES

To supervise each token in a reasoning path according to its potential in deducing the correct final
answer, we label each token as the probability of reaching the correct final answer conditioned on
until that token. To be more concrete, we label an intermediate token tn,k as

P(the final answer will be â|qtr, tn,1, · · · , tn,k)=
P(tn,1, · · ·, tn,k ∩ the final answer will be â|qtr)

P(tn,1, · · ·, tn,k|qtr)
(5)

for k = 1, · · · , Tn and n = 1, · · · , Ntr. Let {tn,1, · · ·, tn,k} be {tn,k′}kk′=1 interchangeably. In
practice, from Ntr generated reasoning paths, Eq. 5 can be empirically computed as the ratio of
correct reasoning paths starting from {tn,k′}kk′=1 among Ntr to total reasoning paths starting from
{tn,k′}kk′=1 among Ntr, respectively. Hence, the label of each token tn,k can be assigned with

P(the final answer will be â|qtr, {tn,k′}kk′=1)=

∑Ntr

n′=1 I({tn,k′}kk′=1={tn′,k′}kk′=1 ∩ an′ = â)/Ntr∑Ntr

n′=1 I({tn,k′}kk′=1={tn′,k′}kk′=1)/Ntr

,

(6)
where I(·) is the indicator function and Ntr cancels out in the right hand side. Finally, the token-
supervised value model (TVM), fTVM is trained by minimizing the following loss using Eq. 6:

LTVM=

Ntr∑
n

Tn∑
k

ℓ (P(the final answer will be â|qtr, tn,1, · · ·, tn,k), fTVM (qtr, tn,1, · · ·, tn,k)) , (7)

where ℓ is the mean squared error.

Thanks to this new token-level supervision with Eq. 5, the TVM is trained to directly and explicitly
evaluate whether an intermediate reasoning path (i.e., {tn,k′}kk′=1) is on a promising track toward
the correct final answer, thereby producing more accurate value estimates than the ORM as shown in
Table 1. Not only that, as illustrated in Figure 3(a), the TVM can also achieve a lower false negative
error than the PRM with a reduction ranging from 8 to 14%p, while maintaining a comparable false
positive error (within 1%p of the PRM). The overall procedure and algorithm of calculating Eq. 6
are outlined in Figure 4 and detailed in Appendix B, respectively.

Although Eq. 5 can be computed by sampling multiple roll-outs given qtr and {tn,k′}kk′=1 like
Wang et al. (2024b;c); Chen et al. (2024); Luo et al. (2024) do for training PRMs, the multiple roll-
out process per token requires O(

∑Ntr

n=1

∑Tn

k=1 Tn−k) = O(
∑Ntr

n=1 T
2
n) token generation, as Tn−k

tokens need to be generated per roll-out for each n and k. However, notice that Eq. 6 can be easily
calculated once Ntr reasoning paths are sampled, requiring only O(

∑Ntr

n=1 Tn) token generation.
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4.2 THEORETICAL INSIGHT: PROBABILITY SCORING AS VALUE MODELING

For a token tn,k in an intermediate reasoning path {tn,1, · · ·, tn,k}={tn,k′}kk′=1, the expected cumu-
lative reward (i.e., value) is written as

V (tn,k) = E
[ ∞∑
l=1

γl−1r(tn,k+l)
∣∣qtr, tn,1, · · ·, tn,k], (8)

where r(·) and γ denote a reward function and the discount factor, respectively. For conventional
settings of reinforcement learning with LLMs (Wang et al., 2024a) (γ = 1 and no intermediate
rewards), under the specific outcome reward formulation of Eq. 1, the expected cumulative reward
(i.e., value in Eq. 8) can reduce to the probability of reaching the correct final answer conditioned
on the question qtr and intermediate reasoning path {tn,k′}kk′=1, which can be straightforwardly
computed from generated reasoning paths (Section 4.1).
Proposition 4.1. Let the reward function r(tn,k) be defined as Eq. 1, which includes only the out-
come reward and no intermediate reward (i.e., r(tn,k) = 0 except the final answer). Then, with the
discount factor γ = 1, the expected cumulative reward (i.e., value in Eq. 8) is equivalent to the prob-
ability of reaching the correct final answer conditioned on qtr and {tn,1, · · ·, tn,k}={tn,k′}kk′=1:

E
[ ∞∑
l=1

γl−1r(tn,k+l)
∣∣qtr, tn,1, · · ·, tn,k] = P(the final answer will be â|qtr, tn,1, · · ·, tn,k). (9)

In light of Proposition 4.1, we coin our proposed verifier as the token-supervised value model
(TVM), not a reward model. Not only that, given that tree search is fundamentally intended to be
guided by value rather than reward, Proposition 4.1 is important, as Proposition 4.1 guarantees that
TVMs allow tree search algorithms to be value-guided.

5 EXPERIMENTS

To demonstrate the effectiveness of our proposed verifier, the token-supervised value model (TVM),
in solving math word problems, we conduct experiments on the GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) benchmarks. To perform tree search at test time, we use two differ-
ent tree search methods, Step-by-Step Beam Search and REward BAlanced SEarch (REBASE) (Wu
et al., 2024), which generally outperform other strategies such as Monte Carlo Tree Search or its
variants, as observed in Yu et al. (2024); Chen et al. (2024); Snell et al. (2024); Wu et al. (2024).
Unless otherwise specified, we set K=40 for Step-by-Step Beam Search and REBASE, and N=256
for self-consistency (Wang et al., 2023) and Best-of-N search following Wang et al. (2024b). Re-
gardless of which search strategy to use, we choose the single solution ranked highest by a verifier
as our final solution.

Our experiments are based on the following LLMs: (1) Mistral 7B (Jiang et al., 2023), Llama 3
8B (AI@Meta, 2024) and (2) those fine-tuned on MetaMATH (Yu et al., 2023). We opt for LLMs
under 10B parameters which is a more interesting setting for experimental research considering
the observation that using more test-time compute with smaller language models can surpass using
less test-time compute with larger language models (Wu et al., 2024; Snell et al., 2024). For all
experiments, a verifier is of the same size and architecture as the LLM. In the case of ORMs and
TVMs, following Cobbe et al. (2021), a verifier is extended with a scalar head composed of a single
gain parameter and a single bias parameter. For PRMs without human annotations, we employ Math-
Shepherd (Wang et al., 2024b). As all experimental results in Wang et al. (2024b) are only based
on LLMs fine-tuned on MetaMATH, we compare TVM with Math-Shepherd only for Mistral 7B
MetaMath and Llama 3 8B MetaMath. For convenience, we call Math-Shepherd PRM hereafter.
More experimental details are deferred to Appendix C.

5.1 GRADE SCHOOL MATHEMATICS (GSM8K)

Table 2 displays the comparison of TVM with both ORM and PRM under self-consistency, Best-
of-N search, Step-by-Step Beam Search, and REBASE on the GSM8K benchmark for Mistral 7B,
Mistral 7B MetaMath, Llama 3 8B, and Llama 3 8B MetaMath. For Step-by-Step Beam Search
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Table 2: Accuracy of Mistral 7B, Mistral 7B MetaMath, Llama 3 8B, and Llama 3 8B MetaMath
on the GSM8K benchmark under self-consistency (N = 256), Best-of-N search (N = 256), Step-
by-Step Beam Search (K = 40, b = 10), and REBASE (K = 40). A verifier shares the same
model size and architecture as the LLM. A bold number means the best accuracy under the same
test-time search strategy. A boxed number and an underlined number represent the best accuracy
and the second best accuracy respectively, irrespective of the choice of a test-time search strategy.
Three random trials are conducted to compute the mean accuracy and standard deviation of TVM.

Search Strategy Method Mistral 7B Mistral 7B MetaMath Llama 3 8B Llama 3 8B MetaMath

Self-Consistency 79.23 83.90 80.97 85.44

Best-of-N
Search

ORM 85.52 87.41 87.79 89.77
PRM - 88.55 - 90.30

TVM (Ours) 88.17 89.01 88.70 90.37

Step-level
Beam Search

ORM 86.73 87.79 88.10 89.69
PRM − 86.66 − 88.93

TVM (Ours) 87.69±0.22 88.70±0.16 89.06±0.07 90.35±0.19
ORM 86.81 88.40 87.49 89.39

REBASE PRM − 86.28 − 88.70

TVM (Ours) 87.97±0.16 89.21±0.14 88.60±0.09 89.84±0.21

Table 3: Accuracy of Mistral 7B MetaMath, and Llama 3 8B MetaMath on the MATH benchmark
under self-consistency (N = 256), Best-of-N search (N = 256), Step-by-Step Beam Search (K =
40, b = 10), and REBASE (K = 40). A verifier shares the same model size and architecture
as the LLM. A bold number means the best accuracy under the same test-time search strategy. A
boxed number and an underlined number represent the best accuracy and the second best accuracy
respectively, irrespective of the choice of a test-time search strategy.

Search Strategy Method Mistral 7B MetaMath Llama 3 8B MetaMath

Self-Consistency 35.10 42.40

Best-of-N
Search

ORM 36.40 43.80
PRM 37.30 44.40
TVM (Ours) 37.40 43.40

Step-level
Beam Search

ORM 36.80 42.40
PRM 36.80 42.20

TVM (Ours) 39.20 45.20
ORM 37.20 42.20

REBASE PRM 37.60 41.80
TVM (Ours) 38.80 44.00

and REBASE, TVM consistently outperforms other baseline verifiers. Notably, TVM considerably
outperforms PRM, which implies that using the PRM negatively affects the performance of tree
search at inference time. Surprisingly, TVM also improves over ORMs an PRMs even for Best-of-N
search. It is worth noticing that using Step-by-Step Beam Search or REBASE with the TVM can
perform closely or even surpass to the level of using Best-of-N search with TVM while spending
about 6× less FLOPs and 2× less execution time as indicated in Table 5.

5.2 ADVANCED MATHEMATICS (MATH)

Following Lightman et al. (2023); Wang et al. (2024b), we also use 500 test MATH problems for
evaluation, which is the same test dataset of Lightman et al. (2023), incorporating the remaining
4500 test problems into the training dataset of MATH.

In Table 3, the experimental results of TVM are compared with those of ORM and PRM under self-
consistency, Best-of-N search, Step-by-Step Beam Search, and REBASE on the MATH benchmark
for Mistral 7B MetaMath and Llama 3 8B MetaMath. Although the PRM surpasses the TVM by
1.0%p under Best-of-N search for Llama 3 8B MetaMath, it is noteworthy that using Step-by-Step
Beam Search with the TVM outperforms the best accuracy under Best-of-N search for both Mistral

9
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Table 4: FLOPs and execution time of sampling Ntr reasoning paths to train TVMs on the GSM8K
(Ntr = 100) and MATH (Ntr = 25) benchmarks for Mistral 7B MetaMath without and with vLLM.

GSM8K FLOPs GSM8K Time MATH FLOPs MATH Time

Sampling w/o vLLM 130.4× 1013 8.2 hours 204.1× 1013 20.3 hours
Sampling w/ vLLM 130.4× 1013 4.6 hours 204.1× 1013 5.7 hours

Table 5: FLOPs and execution time of Best-of-N search (N = 256) without and with vLLM, Step-
by-Step Beam Search (K = 40, b = 10), and REBASE (K = 40) on the GSM8K and MATH
benchmarks for Mistral 7B MetaMath.

Search Strategy GSM8K FLOPs GSM8K Time MATH FLOPs MATH Time

Best-of-N search w/o vLLM 589.3× 1012 6.5 hours 871.0× 1012 22.0 hours
Best-of-N search w/ vLLM 589.3× 1012 2.1 hours 871.0× 1012 2.4 hours
Step-by-Step Beam Search 94.3× 1012 0.9 hours 142.9× 1012 1.1 hours

REBASE 94.3× 1012 1.3 hours 142.9× 1012 2.6 hours

7B MetaMath and Llama 3 8B MetaMath even with approximately 6× less FLOPs and 2× less
execution time as seen in Table 5.

5.3 COMPUTE ANALYSIS

Training Compute Analysis. To illustrate the computational cost for training TVMs, we estimate
floating point operations (FLOPs) and measure the execution time required to sample Ntr reasoning
paths. These measurements were conducted using 8×NVIDIA A100-80GB GPUs for Mistral 7B
MetaMath on GSM8K (Ntr = 100) and MATH (Ntr = 25), as reported in Table 4. Since sampling
Ntr reasoning paths has a linear complexity as explained in Section 4.1, the sampling process takes
at most less than a day even without LLM serving engines such as vLLM (Kwon et al., 2023). With
vLLM, the sampling process can be accelerated by at least a factor of two.

Inference Compute Analysis. To compare the inference computation between Best-of-N search,
Step-by-Step Beam Search, and REBASE, for Mistral 7B MetaMath, we estimate floating point op-
erations (FLOPs) following Wu et al. (2024); Snell et al. (2024) and measure the execution time
when using 8×NVIDIA A100-80GB GPUs on GSM8K and MATH in Table 5. Since N=256 is
much larger than K=40, Best-of-N search consumes much more FLOPs than Step-by-Step Beam
Search and REBASE. As Step-by-Step Beam Search uses the same K=40 as REBASE, the esti-
mated FLOPs are the same for both Step-by-Step Beam Search and REBASE. Nonetheless, Step-
by-Step Beam Search spends less execution time than REBASE due to the fact that the b steps are
uniformly expanded in parallel with K/b children as delineated in Section 2.

6 CONCLUSION

In this work, we reveal inherent limitations in existing neural verifiers for mathematical problem-
solving, namely outcome-supervised reward models (ORMs) and process-supervised reward models
(PRMs), when applied to tree search algorithms at inference time. This is because both ORMs
and PRMs were originally designed for Best-of-N search. Consequently, ORMs can only infer the
correctness of partial solutions indirectly and implicitly, while PRMs suffer from high false negative
errors, leading them to under-value promising intermediate steps. To overcome these issues, we
propose token-supervised value models (TVMs), a new class of verifiers trained with token-level
supervision, where each token is assigned a probability reflecting the likelihood of reaching the
correct final answer. This new token-level supervision approach enables TVMs to more accurately
assess which partial solutions are on a right track than ORMs, and to attain lower false negative errors
than PRMs while maintaining comparable false positive errors. As a result, TVMs significantly
enhance the performance of tree search algorithms at test time over both ORMs and PRMs.
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A PROOF OF PROPOSITION 4.1

Let the reward function r(tn,k) be defined as Eq. 1, which includes only the outcome reward and
no intermediate reward (i.e., r(tn,k) = 0 except the final answer). Then, with the discount factor
γ = 1,

∑∞
l=1 γ

l−1r(tn,k+l) =
∑∞

l=1 r(tn,k+l) becomes either one or zero, depending on whether
the resulting final answer will be â or not, respectively. As a result, the expected cumulative reward
(value in Eq. 8) can be written as

E
[ ∞∑
l=1

γl−1r(tn,k+l)
∣∣qtr, tn,1, · · ·, tn,k]

= E
[ ∞∑
l=1

r(tn,k+l)
∣∣qtr, tn,1, · · ·, tn,k] (∵ γ = 1)

=

1∑
r=0

r ∗ P
( ∞∑

l=1

r(tn,k+l) = r
∣∣qtr, tn,1, · · ·, tn,k) (∵

∞∑
l=1

r(tn,k+l) = 0 or 1)

= P
( ∞∑

l=1

r(tn,k+l) = 1
∣∣qtr, tn,1, · · ·, tn,k)

= P(the final answer will be â|qtr, tn,1, · · ·, tn,k),

because
∑∞

l=1 r(tn,k+l) = 1 only if the resulting final answer will be â.
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B ALGORITHM FOR TOKEN-LEVEL SUPERVISION WITH CORRECTNESS
PROBABILITY SCORES

Algorithm 1 Token-level Supervision with Correctness Probability Scores
Require: For a question qtr , Ntr reasoning paths, each consisting of {tn,k}Tn

k=1 and a final answer an, the
ground truth answer â, and the outcome reward function ro(an) in Eq. 1 for n = 1, · · ·, Ntr .

Ensure:
H← dict()
for n = 1, · · ·, Ntr do

for k = 1, · · ·, Tn do
if not H .containsKey[tn,1, · · ·, tn,k] then

H .insert([tn,1, · · ·, tn,k], (ro(an), 1))
else

(c, t)←H .get[tn,1, · · ·, tn,k]
H .insert([tn,1, · · ·, tn,k], (c+ ro(an), t+ 1))

end if
end for

end for
for n = 1, · · ·, Ntr do

for k = 1, · · ·, Tn do
(c, t)←H .get[tn,1, · · ·, tn,k]
// c means the number of correct reasoning paths starting from tn,1, · · ·, tn,k

// t indicates the number of total reasoning paths starting from tn,1, · · ·, tn,k

V (tn,k) =
c
t

▷ Eq. 6
end for

end for
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C IMPLEMENTATION DETAILS

In Section 5.1, following Cobbe et al. (2021), an LLM is fine-tuned on the training dataset of
GSM8K for two epochs with a batch size of 128 and a learning rate of 1e-5. Then, we sample
Ntr = 100 reasoning paths per training problem. In Section 5.2, an LLM fine-tuned on MetaMath
generates Ntr = 25 reasoning paths for each training problem. We generate Ntr reasoning paths
with a temperature of 0.7, a top-k of 50, and a top-p of 1.0.

We employ the same architecture as Cobbe et al. (2021), a language model extended with a scalar
head composed of a single gain parameter and a single bias parameter, to output a score for each
token in a reasoning path. In addition, following Cobbe et al. (2021), we use both a language mod-
eling objective and the verification objective, with 20% dropout (Srivastava et al., 2014). We use
the AdamW optimizer (Loshchilov & Hutter, 2019) with a linear scheduler to train a verifier. Note
that in all experiments, a verifier shares the same model size and architecture as the LLM used to
generate the Ntr reasoning paths.

Table 6: Learning rate and batch size for training the TVM (ours) when using Mistral 7B, Mistral
7B MetaMath, Llama 3 8B, and Llama 3 8B MetaMath to generate Ntr = 100 reasoning paths per
training problem in GSM8K in Section 5.1.

Mistral-7B Mistral-7B-MetaMath Llama3-8B Llama3-8B-MetaMath

Learning rate 2e-6 2e-6 1e-5 2e-6
Batch size 512 512 512 512

Table 7: Learning rate and batch size for training the TVM (ours) when using Mistral 7B MetaMath
and Llama 3 8B MetaMath to generate Ntr = 25 reasoning paths per training problem in MATH in
Section 5.2.

Mistral-7B-MetaMath Llama3-8B-MetaMath

Learning rate 2e-6 2e-6
Batch size 512 512

For Best-of-N search, Step-by-Step Beam Search, and REBASE, we use a temperature of 0.7, a
top-k of 50, and a top-p of 1.0. The maximum new token length is set to 400 for GSM8K and 1024
for MATH, respectively.
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D DISCUSSION ABOUT THE TOKEN-SUPERVISED SIGNAL IN TVMS FOR THE
LATTER PART OF REASONING PATHS

If reasoning paths were sampled with a small Ntr, the likelihood of reasoning paths overlapping after
the first couple of dozen (e.g., 15–20) tokens could be low. In such a case, the token-supervision sig-
nal for the latter part of each reasoning path would be labeled uniformly as either 1 or 0, depending
on whether the final answer is correct.

However, with a large enough Ntr (e.g., Ntr = 100 for GSM8K as in Cobbe et al. (2021)), we can
obtain reasoning paths that overlap significantly beyond the first 15-20 tokens, up to the later steps of
reasoning. As demonstrated in Figure 2, reasoning paths can overlap up to the middle of the fourth
step - which consists of the first 93 tokens in terms of token count. Below, we provide the complete
version of the two overlapping reasoning paths that were illustrated in Figure 2. Bold text indicates
the overlapped part between two reasoning paths in Figure 2, which is 93 tokens in total.

“‘Reasoning path 1 in Figure 2”’

Terry took 8 bushels * 14 ears of corn per bushel = 112 ears of corn.

Jerry took 3 bushels * 14 ears of corn per bushel = 42 ears of corn.

Linda took 12 bushels * 14 ears of corn per bushel = 168 ears of corn.

Stacy took 21 ears of corn.

Altogether, Bob’s friends took 112 + 42 + 168 + 21 = 343 ears of corn.

Thus, Bob is left with 50 bushels * 14 ears of corn per bushel - 343 ears
of corn = 357 ears of corn.

“‘Reasoning path 2 in Figure 2“‘

Terry took 8 bushels * 14 ears of corn per bushel = 112 ears of corn.

Jerry took 3 bushels * 14 ears of corn per bushel = 42 ears of corn.

Linda took 12 bushels * 14 ears of corn per bushel = 168 ears of corn.

Stacy took 21 ears of corn + 168 ears of corn = 189 ears of corn.

Bob had 50 bushels * 14 ears of corn per bushel = 700 ears of corn to
start with.

So, Bob has 700 ears of corn { 112 ears of corn { 42 ears of corn { 168
ears of corn { 189 ears of corn = 189 ears of corn remaining.
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Additionally, two complete reasoning paths for MATH are also provided below. The overlapping
section between these two reasoning paths, totaling 129 tokens, is highlighted in bold.

“‘Reasoning path 1 on MATH”’

$(x+1)ˆ2+2(x+1)(3-x)+(3-x)ˆ2$

$= (xˆ2+2x+1)+2(3-x)(x+1)+(9-6x+xˆ2)$

$= xˆ2+2x+1+2(3x+3-xˆ2-x)+(9-6x+xˆ2)$

$= xˆ2+2x+1+6x+6-2xˆ2-2x+9-6x+xˆ2$

$= (xˆ2-2xˆ2+xˆ2)+(2x-2x+6x-6x)+(1+6+9)$

$= 0+0+16$

$= \boxed{16}$.

“‘Reasoning path 2 on MATH”’

$(x+1)ˆ2+2(x+1)(3-x)+(3-x)ˆ2$

$= (xˆ2+2x+1)+2(3-x)(x+1)+(9-6x+xˆ2)$

$= xˆ2+2x+1+2(3x+3-xˆ2-x)+(9-6x+xˆ2)$

$= xˆ2+2x+1+6x+6-2xˆ2-2x+9-6x+xˆ2$

$= xˆ2-2xˆ2+xˆ2+2x-2x-6x+6+9-6$

$= \boxed{14}$.
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E ABLATION STUDY

Table 8: Mean accuracy and standard deviation for Mistral 7B and Mistral 7B MetaMath on the
GSM8K benchmark according to varying sizes of K and b when utilizing Step-by-Step Beam Search
with the TVM. Three random trials are carried out.

K, b FLOPs Mistral 7B Mistral 7B MetaMath

20, 5 47.1× 1012 86.05 ±0.37 88.12 ±0.25
40, 10 94.3× 1012 87.69 ±0.22 88.70 ±0.16
80, 20 188.5× 1012 87.89 ±0.35 88.75 ±0.20
100, 25 235.6× 1012 87.92 ±0.13 88.80 ±0.07

Beam size study. To investigate whether the accuracy of using the TVM improves with larger
values of K and b in Step-by-Step Beam Search, we conduct experiments using the TVM with
varying sizes of K and b for Mistral 7B and Mistral 7B MetaMath on the GSM8K benchmark. Table
8 shows that the accuracy of using the TVM on GSM8K increases as both K and b grow from 20
and 5 to 40 and 10. However, the accuracy of using the TVM remains relatively stable with the rise
in K and b from 40 and 10 to 100 and 25, while the inference computation (i.e., FLOPs) increases by
2.5 times. Hence, 40 and 10 would be an appropriate choice for K and b, considering the trade-off
between FLOPs and the improved performance.
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