
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING WITH REAL-TIME IMPROVING PREDIC-
TIONS IN ONLINE MDPS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce the Decoupling Optimistic Online Mirror Descent
(DOOMD) algorithm, a novel online learning approach designed for episodic
Markov Decision Processes with real-time improving predictions. Unlike con-
ventional methods that employ a fixed policy throughout each episode, our ap-
proach allows for continuous updates of both predictions and policies within an
episode. To achieve this, the DOOMD algorithm decomposes decision-making
across states, enabling each state to execute an individual sub-algorithm that con-
siders both immediate and long-term effects on future decisions. We theoretically
establish a sub-linear regret bound for the algorithm, providing a guarantee on the
worst-case performance.

1 INTRODUCTION

In this paper, we study the problem of online episodic Markov decision processes (MDPs) with
real-time improving predictions. A learner interacts with an environment over T episodes, each of
a finite length. During each episode, the learner operates within an MDP – selects actions based on
observed states, incurs a cost 1, and transitions to subsequent states. Before making each action, the
learner has access to external predictions for future steps. These predictions, while imperfect, can
facilitate decision-making and are dynamically updated in real time as the learner interacts with the
environment. Importantly, these predictions are expected to become more accurate as the episode
progresses.

Consider the example of routing, where over 93% of travelers rely on GPS navigation like Google
Maps (CarPro, 2022). These tools use historical data and machine learning algorithms to forecast
future traffic conditions and estimate travel time, updating predictions in real-time as one progresses
along a route (Derrow-Pinion et al., 2021). Typically, predictions tend to become more accurate as
the destination approaches, since there is less need for forecasting distant events. Due to this trend,
trivially trusting initial predictions may not be a good strategy. For instance, consider a traveler
moving from Node 1 to Node 4 in Figure 1. The traveler initially selects the route 1 → 2 → 3 based
on an early prediction. However, upon arriving at Node 2, a more accurate prediction indicates that
the chosen route is always the worst no matter what decision is made here.

Figure 1: A motivating example for decisions under predictions

Real-time improving predictions are becoming increasingly prevalent, especially in an era where
predictive capabilities are rapidly advancing due to machine learning breakthroughs (Agrawal et al.,

1We use costs throughout the paper, which is equivalent to negative rewards

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2022) and the development of Large Language Models (Wang et al., 2023; Jablonka et al., 2024).
Examples range from self-driving cars, which rely on predictions of other vehicles’ trajectories (Cao
et al., 2023), to resource allocation strategies that depend on forecasts of future demand (Lei et al.,
2020). A common pattern across these applications is that predictions for distant events tend to be
less accurate than those for the near future, with predictions improving as the learner approaches the
end of an episode.

Despite the trend, improving predictions do not guarantee better outcomes, as demonstrated in the
earlier routing example. The traveler, following a greedy policy, fails to benefit from the updated
predictions. Indeed, we need a decision framework to exploit the increasing accuracy, which raises
fundamental questions: How much trust should we place in each prediction? How can we leverage
predictions to update policies dynamically? Can we still maintain a performance guarantee?

Conventional online learning algorithms in episodic MDPs (Neu et al., 2012; Dick et al., 2014;
Rosenberg & Mansour, 2019a;b; Jin et al., 2020; Shani et al., 2020; Neu & Pike-Burke, 2020; Cai
et al., 2020; Rosenberg et al., 2020; Mao et al., 2021; Neu & Olkhovskaya, 2021; Jin et al., 2021)
fail short in addressing these questions. These algorithms typically treat the policy within each
episode as fixed, and only update it between episodes. While a few works (Cai et al., 2020; Neu &
Olkhovskaya, 2021) explore updating policies within episodes, these updates are usually done for
computational convenience and can be reformulated into an equivalent approach with only between-
episode updates. Existing approaches to leveraging predictions in episodic MDPs have generally
assumed that the learner updates their policy based on predictions at the start of each episode, with
no further changes made during the episode (Rakhlin & Sridharan, 2013; Steinhardt & Liang, 2014;
Guan, 2015; Fei et al., 2020). However, leveraging real-time improving predictions requires the
learner to continuously update the policy during episode, which goes beyond the existing frame-
works.

To handle these dynamic updates effectively, policies need to be decomposed into meaningful deci-
sion components. This decomposition enables the learner to update future components of the policy
while executing the current decisions. Intuitively, it helps the learner focus more on the present, and
defer later decisions until more accurate information becomes available. For instance, in Figure 1,
when the travel is at Node 1, the decision should focus only on choosing between Node 2 and 3,
without considering decisions afterward. However, quantifying the contribution of each decision to
the overall performance is not straightforward. Each decision not only has immediate effects but
also influences the long-term trajectory by shaping the remaining decision space. In the motivating
example, the poor decision at Node 1 restricts the available options at Node 2, leaving the traveler
with only suboptimal routes. Our goal is to systematically decompose the decision and develop
algorithms that can update each decision based on real-time predictions.

Contribution. In this paper, we propose a novel framework that allows a more general and flexible
interaction between the learner and the environment in online episodic MDPs. Unlike conventional
approaches that employ a fixed policy per episode, our approach allows for continuous updates of
both predictions and policies within an episode. To achieve this, we decompose the policy to every
state and introduce a concept of cumulative cost, which accounts for both immediate costs and the
long-term impact on future decisions. Using this concept, we propose the Decoupling Optimistic
Online Mirror Descent (DOOMD) algorithm, which implements sub-algorithms at each state, aim-
ing to control its total cumulative cost over time.

This paper makes the following contributions. (1) We provide a systematic model for online MDPs
that allows dynamic policy updates within an episode to accommodate improving predictions. To
the best of our knowledge, this problem has never been explored in the literature. (2) By utilizing
cumulative costs, we prove that the total regret can be decomposed to reflect each decision’s ac-
tual contribution to the overall performance. (3) We prove that the DOOMD algorithm achieves a
sublinear regret bound of O(

√
T), both for fixed and dynamically updating learning rates.

Organization. The remainder of this paper is structured as follows. Section 2 discusses related
works. Section 3 introduces the model. Section 4 presents the online algorithm and Section 5
analyzes its regret bound. Lastly, Section 6 concludes the paper.

Notations. For a positive integer n, denote [n] = {0, 1, .., n}. For n sets, X 1, ...,Xn, denote X 1:n =
∪n
k=1X k. The inner product of two vectors a, b is denoted as ⟨a, b⟩ = aT b. A comprehensive table

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of notations is provided in Appendix A. Throughout the paper, unless otherwise specified, proofs
are provided in Appendix E.

2 RELATED WORKS

2.1 ONLINE LEARNING IN MDPS

Many real-world optimization and control problems can be modeled using online episodic MDPs,
including routing (Choudhury et al., 2019; Wu et al., 2022), finance (Hambly et al., 2023), schedul-
ing (Yin et al., 2020), and self-driving (Cao et al., 2023). Given the unknown nature of future steps
or episodes, the learner needs to learn while interacting with the environment. The objective is typ-
ically to minimize the regret, which is defined as the difference between the learner’s cumulative
cost and that of an optimal policy, denoted as RT =

∑T
t=1 Ct(πt) −

∑T
t=1 Ct(π

∗
t), where Ct(πt)

represents the expected cost under policy πt in episode t, and π∗
t refers to a hindsight optimal policy.

Prior research has extensively explored online learning algorithms for episodic MDPs, with various
settings for rewards and transitions (stochastic or adversarial) and information states (full or bandit
feedback), including Neu et al. (2012); Dick et al. (2014); Rosenberg & Mansour (2019a;b); Jin
et al. (2020); Mao et al. (2021); Neu & Olkhovskaya (2021); Jin et al. (2021); Shani et al. (2020);
Neu & Pike-Burke (2020); Cai et al. (2020); Rosenberg et al. (2020), among others.

As noted earlier, most existing approaches often treat the policy within each episode as fixed and
static. Viewing online learning in episodic MDPs through this lens connects the problem to a broader
class of online optimization methods, where each episode is akin to making a single decision (Chiang
et al., 2012; Wei & Zhang, 2020; Bhaskara et al., 2020; Jiang et al., 2023). We refer the readers to
Orabona (2019) for a comprehensive introduction to online optimization. In fact, using occupancy
measures to represent policies, online episodic MDPSs can be transformed into an equivalent online
linear optimization problem (Zimin & Neu, 2013).

Another closely related research direction is online learning in non-stationary MDPs. In such sce-
narios, the learner interacts with the environment continuously for T steps rather than in episodic
structures. Starting from the pioneering works by Even-Dar et al. (2004; 2009), this problem has
been extensively studied under various settings (Joulani et al., 2013; Neu et al., 2010; Neu & Gómez,
2017; Li et al., 2019b; Lecarpentier & Rachelson, 2019; Rivera Cardoso et al., 2019; Cheung et al.,
2020; Chandak et al., 2020; Cheung et al., 2023). These studies focus on adapting policies to account
for shifts in the non-stationary environment over time.

2.2 UTILIZATION OF PREDICTIONS

From the theoretical perspective, predictions can act as a form of regularity assumption, similar
to conditions like Lipscitz continuity (Lecarpentier & Rachelson, 2019) or total variation (Cheung
et al., 2020; 2023). Such assumptions can mitigate the conservativeness of the algorithms designed
for adversarial MDPs. As online learning algorithms utilizing predictions in episodic MDPs still
assume the learner carries out a fixed policy per episode (Rakhlin & Sridharan, 2013; Steinhardt &
Liang, 2014; Guan, 2015; Fei et al., 2020), these approaches can be linked to online optimization
under predictions (Chen, 2018; Purohit et al., 2018; Li et al., 2019a; Li & Li, 2020; Christianson
et al., 2022) in a similar way.

Other relevant frameworks to utilize predictions are the predict-then-optimize (Wang et al., 2021;
Elmachtoub & Grigas, 2022) and performative prediction (Perdomo et al., 2020) which integrates
the training of predictive models with decision optimization. However, these approaches differ
fundamentally from ours, as we focus on leveraging exogenous predictions. This is especially useful
in real-world applications, as generating accurate in-house predictions may be impractical due to
constraints on time and resources. For instance, in routing, most users rely on external systems
like Google Maps to predict travel times rather than generating their own predictions. Additionally,
another line of research explores whether and when to stop updating predictions (Lee et al., 2024),
which also pursues a distinct objective from ours.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 MODEL

3.1 ONLINE MDP

The episodic MDP is defined by the tuple {X ,A, P, c}, where X denotes the state space, A denotes
the action space, P : X×A×X → R and c : X×A → R represent the transition and cost functions,
respectively. We consider a fixed and known transition function P , while the cost function may vary
across episodes. The cost function for episode t is denoted as ct, and for simplicity, it is normalized
to [0, 1]. We also denote the set of all episodes as T = {1, ..., T}.

Without losing generality, we assume the state space X follows a layered structure, forming a loop-
free episodic MDP. Specifically, the state space is partitioned into L + 1 layers X = ∪l∈LX l, with
L = {0, ..., L}, and the initial layer X 0 only contains a single state x0. This assumption is not
restrictive as any episodic MDP can be reconstructed as an equivalent loop-free structure (Maran
et al., 2023).

In addition, we simplify the transition function P for clarity to a deterministic function where
P (x′|x, a) = 1 if and only if x′ = a. This assumption is not fundamental to our analysis and can be
easily generalized to stochastic transitions, which is detailed in Appendix C. Under this setup, the
action space for state xl ∈ X l links directly to the states on the subsequent layer, i.e. A(xl) ⊆ X l+1.
We define the state-action pairs on layer l as U l =

{
(x, a) : x ∈ X l, a ∈ A(x)

}
, and the set of all

state-action pairs as U = U0:L−1. Consequently, the cost function in any episode t can be viewed as
ct : U → [0, 1].

The interaction between the learner and the environment follows the protocol outlined as follows.
For each episode t, after reaching layer l, the learner receives an updated cost prediction for state-
action pairs in all subsequent layers, denoted as M l

t : U l:L−1 → [0, 1]. For each state-action pair
u ∈ Uk (with k ≥ l), the predicted cost is denoted as M l

t(u). The accuracy of the prediction is
characterized by the error bound ϵl, such that |M l

t(u) − ct(u)| ≤ ϵl,∀t ∈ T , k ≥ l, u ∈ Uk.
These real-time predictions enable the learner to update their policy at each layer dynamically. Let
πl
t : X l ×A(Xl) → [0, 1] denote the policy used at layer l in episode t. At the end of each episode,

the learner receives full information regarding the cost function ct.

In addition, we assume that as the learner continues interacting with the environment, the uncertainty
decreases, resulting in gradually improving predictions. Otherwise, it makes no sense to update
the policy based on predictions. Given an exogenous prediction sequence M =

{
M l

t

}
t∈T ,l∈L, a

learning algorithm generates a set of policies π =
{
πl
t

}
t∈T ,l∈L, which induces an expected total

cost CT (π) = E
[∑T

t=1

∑L−1
l=0 ct(x

l
t, a

l
t)
∣∣∣M ,π

]
, where E [·|M ,π] indicates that the state and

action on each layer (xl
t and alt) are generated by policy π under predictions M . By selecting

the optimal stationary policy in hindsight as the baseline, the regret of the algorithm is defined as
RT = CT (π) − minπ∗ CT (π

∗), where the minimum is taken over all the stationary policies, i.e.,
πt(a|x) = πt′(a|x) for all t, t′ ∈ T , x ∈ X and a ∈ A(x), which captures the opportunity loss
from not employing the optimal strategy (Taherkhani et al., 2021). This concept of static regret is
commonly adopted in the literature, as in Zimin & Neu (2013); Dick et al. (2014), etc. Our goal is
to design a robust algorithm that guarantees a sublinear regret bound (e.g. O(log T), O(

√
T)), so

that, on average, the algorithm performs as well as the best stationary policy when T is large.

3.2 ONLINE LINEAR OPTIMIZATION

Building on existing studies that employ occupancy measures to design algorithms for online MDPs
(Zimin & Neu, 2013; Dick et al., 2014; Zhao et al., 2022), we adopt a similar approach to streamline
our framework. The occupancy measure induced by a policy in an episode π =

{
πl
}
l∈L is denoted

as wπ ∈ K ⊆ [0, 1]|U|, which represents the probability of executing each state-action pair under
the policy π. The domain of occupancy measure is defined by the set:

K =

w :
∑
u∈Ul

w(u) = 1,
∑

a∈A(x)

w(x, a) =
∑

x′∈A−1(x)

w(x′, x),∀l ∈ [L− 1], x ∈ X l+1

 , (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where the first condition ensures the occupancy measure on each layer forms a valid distribution and
the second corresponds to the flow conservation equation between layers. A−1(x) represents the set
of preceding states {x′ ∈ X : x ∈ A(x′)}.

Occupancy measures effectively translate MDP policies into an equivalent but more tractable form.
Given policy π, we can recursively compute its induced occupancy measure starting from layer
0. Conversely, a policy for each layer can be reconstructed from an occupancy measure w by
πw(a|x) = w(x,a)∑

a′∈A(x) w(x,a′) a ∈ A(x). Therefore, finding the optimal policy is equivalent to
finding the optimal occupancy measure. With slight abuse of notation, express the cost as a vector
c ∈ [0, 1]|U|, then the expected total cost introduced by policy πt in episode t is ⟨ct, wπt⟩. Hence,
the cumulative regret over T episodes becomes RT =

∑T
t=1⟨ct, wπt⟩ −minw∈K

∑T
t=1⟨ct, w⟩.

4 ALGORITHM

We now introduce an algorithm specifically designed to exploit the layered structure, accommodat-
ing dynamic predictions while aiming to achieve a sub-linear regret bound.

4.1 AN ILLUSTRATIVE EXAMPLE

To better present the algorithm, let us start with a motivating example involving five states distributed
across three layers, as shown in Figure 2. The technical insight is that the total algorithm regret can
be decomposed into contributions from individual states, each of which can be effectively managed.

Decision decomposition. In our setup, decision-making is decentralized to individual states. For
instance, as indicated by the colors in the figure, at the initial state x0, decisions are only con-
cerned with transitions (x0, x1) and (x0, x2), without considering subsequent states. This lo-
calized approach results in maintaining three distinct occupancy measures: w0

t for U0, and w1
t ,

w2
t for U1(x1) and U1(x2) respectively, where U l(x) = {(x, a) : a ∈ A(x)} for x ∈ X l. For

simplicity, write the state-action pair as uij = (xi, xj). These occupancy measures satisfy that
w0

t (u01) + w0
t (u02) = w1

t (u13) + w1
t (u14) = w2

t (u23) + w2
t (u24) = 1.

Figure 2: An example with three layers

Regret decomposition. Each occupancy measure, such as w1
t , can be interpreted as a conditional

probability distribution, depending on reaching x1. Consequently, the actual probability of executing
state-action pair u13 is the product w0

t (u01)w
1
t (u13). Compared with any occupancy measure w ∈

Kδ = {w ∈ K : w(u) > δ, ∀u ∈ U}, where each state-action pair has a minimum visit probability
δ > 0, the cost difference for u13 in episode t is:

ct(u13)[w
0
t (u01)w

1
t (u13)− w(u13)]

=w1
t (u13)ct(u13)[w

0
t (u01)− w(u01)] + [w(u13) + w(u14)]ct(u13)

(
w1

t (u13)− w̃(u13)
) (2)

due to the flow conservation of w, where w̃(u13) :=
w(u13)

w(u13)+w(u14)
.

This equation divides the cost difference into two components: one directly resulting from decisions
on state x1 (the latter) and the other influenced by prior choices at layer 0 (the former). Therefore,
decisions made on state x1 should focus on minimizing the second component in Equation (2), which
can be achieved by implementing optimistic online mirror descent (OOMD) (Rakhlin & Sridharan,
2013) at state x1 as a sub-algorithm, which will be detailed in the next section.

Cumulative costs. The first component in the regret equation above and a similar component for
the regret on state-action pair u14 are associated with the decision on layer 0. Thus, the contribution

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of decisions on u01 to the overall regret is:
ct(u01)[w

0
t (u01)− w(u01)] +

[
w1

t (u13)ct(u13) + w2
t (u14)ct(u14)

]
[w0

t (u01)− w(u01)]

= c̃t(u01)[w
0
t (u01)− w(u01)],

(3)

where the cumulative cost is defined as c̃t(u01) := ct(u01)+w1
t (u13)ct(u13)+w2

t (u14)ct(u14). This
concept reflects the influence of decisions at earlier layers on the overall performance. Constructing
a prediction for c̃t(u01) and analyzing its accuracy is not trivial, as w1

t remains undetermined until
the next layer. This will be addressed in the next section.

Regret bound adjustment. We are missing the last component in the regret, as the optimal occu-
pancy measure w∗ should be selected from the entire domain K rather than the restricted one Kδ .
To address this discrepancy, the regret associated with state-action pair u13 can be bounded by:

ct(u13)[w
0
t (u01)w

1(u13)− w∗(u13)] ≤ ct(u13)[w
0
t (u01)w

1(u13)− w(u13)] + δ, (4)

with w ∈ Kδ . By setting δ to a sufficiently small value (e.g. 1/T), the additional term negligibly
affects the overall regret order.

4.2 GENERAL CASES

Building on the foundational concept introduced earlier, our algorithm, termed Decoupling Opti-
mistic Online Mirror Descent or DOOMD, systematically decomposes decision-making across var-
ious layers. This approach ensures that each state independently manages an occupancy measure for
its respective state-action pairs.

Notations. For convenience, let us first clarify the notations used in the algorithm.

• Costs and predictions: For cost ct, denote the cost for state-action pairs related to state x as
a vector ct(x) = {ct(x, a) : a ∈ A(x)}. The overall prediction received on layer l M l

t and
the prediction related to state x ∈ X l, M l

t(x), follow a similar structure. The cumulative
cost and prediction on each layer l are denoted as c̃lt, M̃

l
t ∈ [0, 1]|U

l|, respectively.
• Decoupled occupancy measures: For each state x, two occupancy measures, glt(x) and
wl

t(x), are defined over U(x) – The former is recursively maintained based on prior ex-
periences; the latter is updated using predictions, which will be implemented. For any
occupancy measure such as wl

t(x), denote the probability of choosing action a at state
x as wl

t(x, a) = wl
t(x)(a). Denote the overall occupancy measures for episode t as

wt =
{
wl

t(x)
}
l=0,...,L−1,x∈X l , and gt follows a similar definition.

Algorithm overview. As detailed in Algorithm 1, DOOMD operates in two phases: preparation
(line 5 to line 10) and execution (line 11 to line 20). During the preparation phase, the algorithm
first summarizes previous experiences by computing the cumulative cost c̃lt−1 of all layer l, which
is subsequently used in the first-step OOMD update to compute gt. In the execution phase, upon
observing the realized state and receiving the update prediction M l

t , the algorithm constructs the
cumulative predictions M̃ l

t and performs a second-step OOMD update to calculate the occupancy
measure wl

t, which is subsequently implemented.

Cumulative costs and their prediction. This procedure generalizes the method used to calculate
the cumulative costs presented in Equation (3) for the illustrative example. Specifically, cumulative
costs are computed using a backward iteration process outlined in Algorithm 2 in Appendix B. This
algorithm progresses from the terminal layer to the initial layer, where each cumulative cost consists
of two components: the direct cost and a weighted average of the costs associated with all state-
action pairs in the subsequent layer. The weights for this averaging process are determined by the
occupancy measures.

Similarly, Algorithm 3 in Appendix B recursively calculates cumulative predictions from layer L−1
to some given layer l. Since the occupancy measure wk

t (with k > l) will be updated in the future
layer k, it is underdetermined at the current layer. Therefore, the other occupancy measure gt, which
is already computed based on prior experiences, is used in these calculations

One-step OOMD update. A key component of the DOOMD algorithm is the one-step update in
each OOMD sub-algorithm (Rakhlin & Sridharan, 2013), which is detailed in Algorithm 4 in Ap-
pendix B. This update adjusts the occupancy measure to minimize the incurred costs (either actual

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Decoupling Optimistic Online Mirror Descent
1: Input: Learning rate η, initial occupancy measure g1 = w1

2: Implement the policy reconstructed from w1 on each layer
3: Receive the full information on c1
4: for t = 2, ...T do
5: Run Algorithm 2 with costs ct−1 and wt−1 to compute cumulative cost

{
c̃lt−1

}
l=0,...,L−1

6: for l = 0, ..., L− 1 do
7: for x ∈ X l do
8: Run Algorithm 4 with c̃lt−1(x), g

l
t−1(x) and η to compute glt(x)

9: end for
10: end for
11: for l = 0, ..., L− 1 do
12: Receive the realized state xl

t
13: Receive the prediction from layer l to layer L, M l

t
14: Run Algorithm 3 with M l

t ,
{
gkt (x)

}
k=l,...,L−1,x∈Xk to compute cumulative prediction

M̃ l
t

15: for x ∈ X l do
16: Run Algorithm 4 with M̃ l

t(x), g
l
t(x) and η to compute wl

t(x)
17: end for
18: Implement the policy reconstructed from wl

t(x
l
t)

19: end for
20: Receive the full information on ct
21: end for

or predicted), while maintaining proximity to the previous occupancy measure to ensure robustness.
Specifically, we choose R as the unnormalized negative entropy regularizer — for occupancy mea-
sure g defined on space Ũ , R(g) =

∑
u∈Ũ g(u) log g(u) −

∑
u∈Ũ g(u). Under this selection of

Legendre, we have DR(w, g) =
∑

u∈Ũ w(u) log w(u)
g(u) −

∑
u∈Ũ [w(u) − g(u)], which corresponds

to the unnormalized K-L divergence between w and g.

5 REGRET ANALYSIS

In this section, we analyze the regret bound of the DOOMD algorithm, focusing on how each sub-
algorithm contributes to the overall performance. We start with the case where all sub-algorithms
utilize time-invariant learning rates throughout the T episodes.

5.1 FIXED LEARNING RATE

As previously demonstrated, wl
t(x) is a probability distribution condition on reaching state x. There-

fore, the probability pt(x
l, al) of executing state-action pair (xl, al) at layer l ≥ 1 in episode t is:

pt(x
l, al) =

 ∑
x∈A−1(xl)

pt(x, x
l)

wl
t(x

l, al). (5)

As pt forms a valid occupancy measure, i.e.
∑

u∈Ul pt(u) = 1 holds for all layer l, the algorithm’s
regret can be expressed as RT =

∑T
t=1⟨ct, pt − p∗⟩, where p∗ ∈ argminp∈K

∑T
t=1⟨ct, p⟩. By

restricting the region from K to Kδ , the regret can be bounded by:

RT ≤
T∑

t=1

⟨ct, pt − p′⟩+

∣∣∣∣∣
T∑

t=1

⟨ct, p′ − p∗⟩

∣∣∣∣∣ ≤
T∑

t=1

⟨ct, pt − p′⟩+ (L− 1)δT, (6)

where p′ ∈ argminp∈Kδ⟨ct, p⟩.
Regret decomposition. As before, setting δ sufficiently small controls the second term in Equation
(6). Therefore, we primarily focus on bounding the first term, which can be equivalently decom-
posed to each sub-algorithm, as detailed in the following proposition:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Proposition 5.1 For all p ∈ Kδ , we have:
T∑

t=1

⟨ct, pt − p⟩ =
L−1∑
l=0

∑
x∈Ul

 ∑
a∈A(x)

p(x, a)

 T∑
t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩ (7)

where c̃t is the cumulative costs computed by Algorithm 2, and w(x, a) = p(x,a)∑
a∈A(x) p(x,a)

.

As each component
∑T

t=1⟨c̃lt(x), wl
t(x) − w(x)⟩ in Proposition 5.1 corresponds to the regret of a

sub-algorithm, a critical insight here is that the total regret is bounded if each sub-algorithm performs
effectively.

Prediction accuracy. As each sub-algorithm is based on the OOMD algorithm, the accuracy of pre-
diction significantly impacts the algorithm’s performance. Proposition 5.2 quantifies the precision
of cumulative predictions on each layer. Intuitively, besides accumulating errors through layers, the
prediction has to make extra sacrifices to handle currently unknown occupancy measures.

Proposition 5.2 If the prediction error received on layer l (0 ≤ l ≤ L − 1) is bounded by ϵl, the
prediction error of the cumulative cost is upper bounded by:

∥M̃ l
t(x)− c̃lt(x)∥∞ ≤ (L− l)ϵl + 2η

L−l−1∑
m=1

m2 ∀x ∈ X l. (8)

For simplicity, denote Zl =
∑L−l−1

m=1 m2. Despite this additional error term that may hamper the
prediction accuracy, it is already the best prediction we can make given the uncertainty of future
decisions. Fortunately, as we are dealing with long horizon T , the learning rate η is typically very

small, such as η = maxl=0,...,L−1

√
log |Ul||Ul+1|

T in Zimin & Neu (2013). Therefore, the additional

term is in the order of O
(

L3
√
T

)
.

Algorithm performance. The following lemma bridges the gap between prediction accuracy and
the sub-algorithm’s performance, affirming that tighter control over prediction errors directly con-
tributes to minimizing regret. We skip the proof as it can be easily proved using Proposition 5.2 and
Lemma 3 in Rakhlin & Sridharan (2013).

Lemma 5.3 (Sub-algorithm’s regret bound) For any l = 0, ..., L− 1 and state x ∈ X l, we have:
T∑

t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩ ≤ η

2

[
(L− l)ϵl + 2ηZl

]2
T +

ln |X l+1|
η

. (9)

If the prediction error bound ϵl is explicitly known for every layer, an optimal learning rate can be
selected, resulting in the following regret bound. To see why this achieves a sublinear regret bound,
as shown in Zimin & Neu (2013); Dick et al. (2014), the parameter δ can be set to a sufficiently
small value, such as δ = 1√

T
. This results in a regret bound of the order O(

√
T), guaranteeing the

algorithm’s performance in the worst-case scenario.

Theorem 5.4 The algorithm with η =

√
2
∑L−1

l=0 ln |X l+1|
T

∑L−1
l=0 [(L−l)ϵl]2

obtains the following regret bound:

RT ≤ O


√√√√2

(
L−1∑
l=0

ln |X l+1|

)(
L−1∑
l=0

[(L− l)ϵl]2

)
T + δ(L− 1)T

 . (10)

Flexible learning rates. To further enhance flexibility, each sub-algorithm on different layers can
employ different learning rates. While this variation does not affect the regret decomposition in
Proposition 5.1, it influences the accumulation of prediction errors in Proposition 5.2. Denote the
learning rate of the sub-algorithm on state x ∈ X l as ηl. The prediction error bounds follow a
similar structure, which is detailed in the following proposition. The proof is omitted as it follows a
similar process used in Proposition 5.2. It is evident that if the same learning rate is utilized on each
sub-algorithm (i.e., ηl = η for all l), the result reduces to Proposition 5.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Proposition 5.5 If the prediction error received on layer l (0 ≤ l ≤ L − 1) is bounded by ϵl, the
prediction error of the cumulative cost is upper bounded by:

∥M̃ l
t(x)− c̃lt(x)∥∞ ≤ (L− l)ϵl + 2

L−1∑
m=l+1

ηm(L−m)2 ∀x ∈ X l. (11)

With different learning rates per layer, each sub-algorithm can select its own optimal learning rate,
resulting in the following regret bound. Intuitively, utilizing different learning rates across layers
introduces more flexibility, enabling the algorithm to perform better. Proposition 5.7 confirms this
improvement.

Theorem 5.6 The algorithm with ηl = 1
(L−l)ϵl

√
2 ln |X l+1|

T at layer l obtains the following regret
bound:

RT ≤ O

(
L−1∑
l=0

(L− l)ϵl
√
2 ln |X l+1|T + δ(L− 1)T

)
. (12)

Proposition 5.7 The algorithm with flexible learning rates (Theorem 5.6) has a lower regret bound
compared to one with a uniform learning rate (Theorem 5.4).

5.2 DYNAMICALLY UPDATED LEARNING RATES

The doubling trick. It is worth pointing out that in many realistic cases, the prediction accuracy
ϵl may not be explicitly known, making it challenging to determine the optimal learning rate. To
address this issue, we employ the doubling trick (Rakhlin & Sridharan, 2013), a common technique
in online learning algorithms. It offers a dynamic approach to adjust the learning rate, further im-
proving the adaptability of the algorithm. Specifically, the doubling trick records the accumulated
prediction errors, and when the error exceeds a certain threshold, the learning rate is halved, and the
accumulated error is reset.

Algorithm performance. Denote the learning rate used by the sub-algorithm at state x ∈ X l as
ηl(x), which is initialized at ηl0 and dynamically updated over time. The DOOMD algorithm with
dynamically updated learning rates is detailed in Algorithm 5 in Appendix B. By leveraging the
doubling trick, the following theorem establishes the algorithm’s regret bound.

Theorem 5.8 The algorithm with in initial learning rate ηl0 = 1
2
√
2(L−l)

√
ln |X l+1|

T at layer l obtains
the following regret bound:

RT ≤ O

(
L−1∑
l=0

8
√
2(L− l)ϵl

√
ln |X l+1|T + δ(L− 1)T

)
. (13)

Comparison. As before, setting δ to a fairly small value (e.g. 1√
T

) results in a sublinear regret
bound. Compared to the regret bound in Theorem 5.6, the theorem above incurs an additional term
due to the lack of knowledge about prediction accuracy. However, the algorithm still achieves a
sub-linear regret bound of O(

√
T) even without explicit knowledge of the prediction error.

6 NUMERICAL EXAMPLES

Experiment setting. This section provides an empirical verification of the theoretical results. We
consider a routing scenario using the METR-LA dataset, a comprehensive record of loop detec-
tor data (Jagadish et al., 2014). We evaluate our algorithm in two types of environments: 1) The
naturalistic environment that simulates real-world conditions by directly using instantaneous travel
time as the prediction; and 2) The adversarial environment that introduces contaminated predictions
to test the robustness of our algorithm. The algorithm’s performance is compared against three
benchmarks: 1) Static benchmark that represents the static optimal policy in hindsight; 2) Greedy
benchmark that greedily chooses the outgoing link corresponding to the best route based solely on

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

predictions; 3) OOMD algorithm that only utilizes the initial prediction without further updates
(Rakhlin & Sridharan, 2013). For space reasons, we defer detailed problem descriptions, algorithm
setups, and analysis to Appendix D.

Experiment results. The performance of the DOOMD algorithm is depicted in Figure 3. The
horizontal axis refers to the time scale, and the vertical axis represents the cost difference between
the proposed DOOMD algorithm and the three benchmarks, with lower values showcasing our al-
gorithm’s superiority. Figure 3(a)-(c) corresponding to the naturalistic environment under different
fixed learning rates. The results indicate that with an appropriate learning rate, the DOOMD algo-
rithm outperforms the benchmarks. However, the performance gap is modest due to the reliability of
naturalistic predictions. Under the adversarial environment shown in Figure 3(d)-(e), the DOOMD
algorithm demonstrates remarkable robustness. For these tests, we fix the learning rate at 5 and vary
the attack intensity (described in detail in Appendix D) from 1 to 5. Although increasing attack in-
tensity affects the DOOMD algorithm’s performance, its impact is notably milder compared to that
of the other benchmarks. Remarkably, even with a moderate attack level, our algorithm substantially
outperforms the greedy benchmark.

Figure 3: Performance comparison under naturalistic and adversarial environments

7 CONCLUSION

In this paper, we have introduced the Decoupled Optimistic Online Mirror Descent (DOOMD) algo-
rithm, a novel online learning approach for episodic MDPs with dynamically updated and improving
predictions. The algorithm effectively decomposes decisions across different layers and states, with
each state executing a sub-algorithm that accounts for both immediate and long-term effects. We
have theoretically analyzed the prediction accuracy and established a sublinear regret bound of the
DOOMD algorithm, underscoring the algorithm’s robustness in worst-case scenarios.

For future work, an interesting direction is to extend our model to a bandit feedback setting, where
the learner only observes the true costs of the selected state-action pairs. This transition poses signif-
icant challenges in accurately estimating costs from limited information but could greatly enhance
the algorithm’s practical applicability. Additionally, analyzing dynamic regret would be valuable to
further understand and quantify the algorithm’s performance over time.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ajay Agrawal, Joshua Gans, and Avi Goldfarb. Prediction Machines, Updated and Expanded: The
Simple Economics of Artificial Intelligence. Harvard Business Press, 2022.

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with imperfect
hints. In International Conference on Machine Learning, pp. 822–831. PMLR, 2020.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy opti-
mization. In International Conference on Machine Learning, pp. 1283–1294. PMLR, 2020.

Zhong Cao, Kun Jiang, Weitao Zhou, Shaobing Xu, Huei Peng, and Diange Yang. Continuous
improvement of self-driving cars using dynamic confidence-aware reinforcement learning. Nature
Machine Intelligence, 5(2):145–158, 2023.

CarPro. Where Drivers Are Most Dependent On GPS Systems, 2022. URL https://www.
carpro.com/blog/where-drivers-are-most-dependent-on-gps-systems.

Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, and Philip
Thomas. Optimizing for the future in non-stationary mdps. In International Conference on Ma-
chine Learning, pp. 1414–1425. PMLR, 2020.

Niangjun Chen. Online Algorithms: From Prediction to Decision. California Institute of Technol-
ogy, 2018.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism. In International conference on
machine learning, pp. 1843–1854. PMLR, 2020.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Nonstationary reinforcement learning:
The blessing of (more) optimism. Management Science, 69(10):5722–5739, 2023.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
Shenghuo Zhu. Online optimization with gradual variations. In Conference on Learning Theory,
pp. 6–1. JMLR Workshop and Conference Proceedings, 2012.

Shushman Choudhury, Jacob P Knickerbocker, and Mykel J Kochenderfer. Dynamic real-time mul-
timodal routing with hierarchical hybrid planning. In 2019 IEEE Intelligent Vehicles Symposium
(IV), pp. 2397–2404. IEEE, 2019.

Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies and functions
with black-box advice. In Conference on Learning Theory, pp. 867–908. PMLR, 2022.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with graph neural
networks in google maps. In Proceedings of the 30th ACM International Conference on Informa-
tion & Knowledge Management, pp. 3767–3776, 2021.

Travis Dick, Andras Gyorgy, and Csaba Szepesvari. Online learning in markov decision processes
with changing cost sequences. In International Conference on Machine Learning, pp. 512–520.
PMLR, 2014.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Experts in a markov decision process.
Advances in neural information processing systems, 17, 2004.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes. Mathe-
matics of Operations Research, 34(3):726–736, 2009.

Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy optimization
in non-stationary environments. Advances in Neural Information Processing Systems, 33:6743–
6754, 2020.

11

https://www.carpro.com/blog/where-drivers-are-most-dependent-on-gps-systems
https://www.carpro.com/blog/where-drivers-are-most-dependent-on-gps-systems

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Peng Guan. Topics in Online Markov Decision Processes. PhD thesis, Duke University, 2015.

Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in finance.
Mathematical Finance, 33(3):437–503, 2023.

Kevin Maik Jablonka, Philippe Schwaller, Andres Ortega-Guerrero, and Berend Smit. Leverag-
ing large language models for predictive chemistry. Nature Machine Intelligence, 6(2):161–169,
2024.

Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jig-
nesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical challenges.
Communications of the ACM, 57(7):86–94, 2014.

Jiyan Jiang, Wenpeng Zhang, Shiji Zhou, Lihong Gu, Xiaodong Zeng, and Wenwu Zhu. Multi-
objective online learning. In The Eleventh International Conference on Learning Representations,
2023.

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial markov
decision processes with bandit feedback and unknown transition. In International Conference on
Machine Learning, pp. 4860–4869. PMLR, 2020.

Tiancheng Jin, Longbo Huang, and Haipeng Luo. The best of both worlds: stochastic and adversarial
episodic mdps with unknown transition. Advances in Neural Information Processing Systems, 34:
20491–20502, 2021.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Online learning under delayed feedback. In
International conference on machine learning, pp. 1453–1461. PMLR, 2013.

Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-
case approach using model-based reinforcement learning. Advances in neural information pro-
cessing systems, 32, 2019.

Hyunin Lee, Ming Jin, Javad Lavaei, and Somayeh Sojoudi. Pausing policy learning in non-
stationary reinforcement learning. arXiv preprint arXiv:2405.16053, 2024.

Zengxiang Lei, Xinwu Qian, and Satish V Ukkusuri. Efficient proactive vehicle relocation for
on-demand mobility service with recurrent neural networks. Transportation Research Part C:
Emerging Technologies, 117:102678, 2020.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Yingying Li and Na Li. Leveraging predictions in smoothed online convex optimization via gradient-
based algorithms. Advances in Neural Information Processing Systems, 33:14520–14531, 2020.

Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics and predictions:
Algorithms and regret analysis. Advances in Neural Information Processing Systems, 32, 2019a.

Yingying Li, Aoxiao Zhong, Guannan Qu, and Na Li. Online markov decision processes with
time-varying transition probabilities and rewards. In ICML workshop on Real-world Sequential
Decision Making, volume 3, 2019b.

Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar. Near-optimal
model-free reinforcement learning in non-stationary episodic mdps. In International Conference
on Machine Learning, pp. 7447–7458. PMLR, 2021.

Davide Maran, Pierriccardo Olivieri, Francesco Emanuele Stradi, Giuseppe Urso, Nicola Gatti, and
Marcello Restelli. Online configuration in continuous decision space. In Sixteenth European
Workshop on Reinforcement Learning, 2023.

Gergely Neu and Vicenç Gómez. Fast rates for online learning in linearly solvable markov decision
processes. In Conference on Learning Theory, pp. 1567–1588. PMLR, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation
and bandit feedback. Advances in Neural Information Processing Systems, 34:10407–10417,
2021.

Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning.
Advances in Neural Information Processing Systems, 33:1392–1403, 2020.

Gergely Neu, Andras Antos, András György, and Csaba Szepesvári. Online markov decision pro-
cesses under bandit feedback. Advances in Neural Information Processing Systems, 23, 2010.

Gergely Neu, Andras Gyorgy, and Csaba Szepesvári. The adversarial stochastic shortest path prob-
lem with unknown transition probabilities. In Artificial Intelligence and Statistics, pp. 805–813.
PMLR, 2012.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative prediction.
In International Conference on Machine Learning, pp. 7599–7609. PMLR, 2020.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
Advances in Neural Information Processing Systems, 31, 2018.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Confer-
ence on Learning Theory, pp. 993–1019. PMLR, 2013.

Adrian Rivera Cardoso, He Wang, and Huan Xu. Large scale markov decision processes with
changing rewards. Advances in Neural Information Processing Systems, 32, 2019.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
processes. In International Conference on Machine Learning, pp. 5478–5486. PMLR, 2019a.

Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit feedback and
unknown transition function. Advances in Neural Information Processing Systems, 32, 2019b.

Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds
for stochastic shortest path. In International Conference on Machine Learning, pp. 8210–8219.
PMLR, 2020.

Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization
with bandit feedback. In International Conference on Machine Learning, pp. 8604–8613. PMLR,
2020.

Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated gradient
algorithm. In International conference on machine learning, pp. 1593–1601. PMLR, 2014.

Gita Taherkhani, Sibel A Alumur, and Mojtaba Hosseini. Robust stochastic models for profit-
maximizing hub location problems. Transportation science, 55(6):1322–1350, 2021.

Kai Wang, Sanket Shah, Haipeng Chen, Andrew Perrault, Finale Doshi-Velez, and Milind Tambe.
Learning mdps from features: Predict-then-optimize for sequential decision making by reinforce-
ment learning. Advances in Neural Information Processing Systems, 34:8795–8806, 2021.

Xinglei Wang, Meng Fang, Zichao Zeng, and Tao Cheng. Where would i go next? large language
models as human mobility predictors. arXiv preprint arXiv:2308.15197, 2023.

Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented
online algorithms. Advances in Neural Information Processing Systems, 33:8042–8053, 2020.

Minghui Wu, Yafeng Yin, and Jerome P Lynch. Multiday user equilibrium with strategic commuters.
arXiv preprint arXiv:2212.12583, 2022.

Bo Yin, Shuai Zhang, and Yu Cheng. Application-oriented scheduling for optimizing the age of
correlated information: A deep-reinforcement-learning-based approach. IEEE Internet of Things
Journal, 7(9):8748–8759, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Peng Zhao, Long-Fei Li, and Zhi-Hua Zhou. Dynamic regret of online markov decision processes.
In International Conference on Machine Learning, pp. 26865–26894. PMLR, 2022.

Alexander Zimin and Gergely Neu. Online learning in episodic markovian decision processes by
relative entropy policy search. Advances in neural information processing systems, 26, 2013.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX A. NOTATION TABLE

Sets
T Time horizon
S Path set
L Layers
X State space
X l States on layer l
U State-action pairs
U l State-action pairs on layer l

U l:k State-action pairs from layer l to k
A(x) Accessible actions for state x

A−1(x) States with x as an accessible action
K Definition domain for occupancy measures
Kδ Restricted definition domain for occupancy measures

U l(x) State-action pairs for state x on layer l
Variables

xl
t State at layer l on day t

alt Action at layer l on day t
wt, gt Occupancy measures on day t

wl
t(x), g

l
t(x) Occupancy measures at state x ∈ X l on day t

pt(x, a) Probability of executing (x, a) on day t
Paramters

ϵl Error bound of prediction received on layer l
Zl A constant term in regret for layer l

Functions
p(x′|x, a) Transition kernel
ct(x, a) Cost function on day t

M l
t(x, a) Cost prediction received at layer l on day t
πl
t(a|x) Policy implemented at layer l on day t

RT Total regret
c̃lt(x, a) cumulative cost at layer l on day t
ct(x) Cost of state-action pairs for state x on day t

M l
t(x) Cost predictions received on layer l for state-action pairs at state x on

day t

M̃ l
t(x, a) cumulative prediction at layer l on day t

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B APPENDIX B. ALGORITHM

Algorithm 2 Computation of cumulative costs

1: Input: Cost c ∈ [0, 1]|U
0:L−1|, occupancy measure

{
wl(x)

}
l=0,...,L−1,x∈X l

2: Output: The cumulative cost
{
c̃l
}
l=0,...,L−1

3: for l = L− 1, ..., 0 do
4: for x ∈ X l do
5: for a ∈ A(x) do
6: Compute the cumulative cost:

7: c̃l(x, a) =

{
c(x, a) + ⟨wl+1(a), c̃l+1(a)⟩ if l ̸= L− 1

c(x, a) otherwise
8: end for
9: end for

10: end for

Algorithm 3 Compute predictions of the cumulative cost

1: Input: Prediction M ∈ [0, 1]|U
l:L−1|, occupancy measure

{
gk(x)

}
k=l,...,L−1,x∈Xk

2: Output: Prediction of the cumulative cost M̃ l

3: for k = L− 1, ..., l do
4: for x ∈ X k do
5: for a ∈ A(x) do
6: Compute the cumulative prediction:

7: M̃k(x, a) =

{
M(x, a) + ⟨gk+1(a), M̃k+1(a)⟩ if k ̸= L− 1

M(x, a) otherwise
8: end for
9: end for

10: end for

Algorithm 4 One-step update based on OOMD

1: Input: Occupancy measure g on some space Ũ , cost c ∈ [0, 1]|Ũ|, learning rate η

2: Output: Occupancy measure g+ on Ũ
3: Compute g+ = argminw {η⟨c, w⟩+DR(w, g)}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 5 Decoupling Optimistic Online Mirror Descent with the doubling trick
1: Input: Learning rate ηl(x) = ηl0 for each sub-algorithm on state x ∈ X l, initial occupancy

measure g1 = w1, initial prediction error El
1(x) = 0 for every layer l and x ∈ X l

2: Implement the policy reconstructed from w1 and run Algorithm 3 to compute M̃ l
1 on each layer

3: Receive the full information on c1
4: for t = 2, ...T do
5: for l = L− 1, ..., 0 do
6: for x ∈ X l do
7: for a ∈ A(x) do
8: Compute the accumulated cost:

9: c̃lt−1(x, a) =

{
ct−1(x, a) + ⟨wl+1

t−1(a), c̃
l+1
t−1(a)⟩ if k ̸= L− 1

ct−1(x, a) otherwise
10: end for
11: Update the accumulated prediction error El

t(x) = El
t−1(x) + ∥M̃ l

t−1(x) −
c̃lt−1(x)∥∞

12: if ηl(x)
2 El

t(x) >
1

ηl(x)
then

13: ηl(x) = ηl(x)/2
14: El

t(x) = 0
15: end if
16: Compute one-step update:
17: glt(x) = argminw

{
ηl(x)⟨c̃lt−1(x), w⟩+DR(w, g

l
t−1(x))

}
18: end for
19: end for
20: for l = 0, ..., L− 1 do
21: Receive the realized state xl

t
22: Receive the prediction from layer l to layer L, M l

t
23: Run Algorithm 3 with M l

t ,
{
gkt (x)

}
k=l,...,L−1,x∈Xk to compute cumulative prediction

M̃ l
t

24: for x ∈ X l do
25: Compute the second update:
26: wl

t(x) = argminw

{
ηl(x)⟨M̃ l

t , w⟩+DR(w, g
l
t(x))

}
27: end for
28: Implement the policy reconstructed from wl

t(x
l
t)

29: end for
30: Receive the full information ct
31: end for

C APPENDIX C. STOCHASTIC TRANSITION

So far, we have focused on deterministic transitions to better convey the main ideas. This section
extends the analysis to a general stochastic transition function P . In this case, if action a ∈ A(x) is
taken at the current state x, the state will transition to x′ with probability P (x′|x, a). To maintain
the layered structure, for x ∈ X l, l = 0, ..., L − 1, we require that if P (x′|x, a) > 0, it must hold
that x′ ∈ X l. For state-action pair u = (x, a), for simplicity, we sometimes write the transition
function as P (x′|u) = P (x′|x, a).
With stochastic transitions, the domain of occupancy measure is redefined as:

K =

w :
∑
u∈Ul

w(u) = 1,
∑

a∈A(x)

w(x, a) =
∑
u∈Ul

w(u)P (x′|u),∀l ∈ [L− 1], x ∈ X l+1

 , (14)

While the primary algorithm (Algorithm 1) remains unchanged, sub-algorithms for constructing
cumulative costs and predictions must be adjusted. These adjustments are detailed in Algorithm 6
and Algorithm 7, respectively.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 6 Computation of cumulative costs with stochastic transitions

1: Input: Cost c ∈ [0, 1]|U
0:L−1|, occupancy measure

{
wl(x)

}
l=0,...,L−1,x∈X l

2: Output: The cumulative cost
{
c̃l
}
l=0,...,L−1

3: for l = L− 1, ..., 0 do
4: for x ∈ X l do
5: for a ∈ A(x) do
6: Compute the cumulative cost:

7: c̃l(x, a) =

c(x, a) +
∑

s∈X l+1

P (s|x, a)⟨wl+1(s), c̃l+1(s)⟩ if l ̸= L− 1

c(x, a) otherwise
8: end for
9: end for

10: end for

Algorithm 7 Compute predictions of the cumulative cost with stochastic transitions

1: Input: Prediction M ∈ [0, 1]|U
l:L−1|, occupancy measure

{
gk(x)

}
k=l,...,L−1,x∈Xk

2: Output: Prediction of the cumulative cost M̃ l

3: for k = L− 1, ..., l do
4: for x ∈ X k do
5: for a ∈ A(x) do
6: Compute the cumulative prediction:

7: M̃k(x, a) =

M(x, a) +
∑

s∈X l+1

P (s|x, a)⟨gk+1(s), M̃k+1(s)⟩ if k ̸= L− 1

M(x, a) otherwise
8: end for
9: end for

10: end for

Compared with the deterministic transition case, the primary adjustment is in Line 7, where all pos-
sible transitions for each state-action pair (x, a) are now considered. In the deterministic transition
case (i.e., P (s|x, a) = 1 if and only if s = a), these algorithms reduce to their previous formulations.

Building on Equation (6), we can decompose the first component in a similar manner. The result is
summarized in the following proposition:

Proposition C.1 For all p ∈ Kδ , we have:

T∑
t=1

⟨ct, pt − p⟩ =
L−1∑
l=0

∑
x∈Ul

 ∑
a∈A(x)

p(x, a)

 T∑
t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩ (15)

where c̃t is the cumulative costs computed by Algorithm 6, and w(x, a) = p(x,a)∑
a∈A(x) p(x,a)

.

Note that the decomposition does not have fundamental changes despite the new formulation of
cumulative costs by Algorithm 6. The following proposition bounds the error of the cumulative
predictions constructed by Algorithm 7.

Proposition C.2 If the prediction error received on layer l (0 ≤ l ≤ L − 1) is bounded by ϵl, the
prediction error of the cumulative cost is upper bounded by:

∥M̃ l
t(x)− c̃lt(x)∥∞ ≤ (L− l)ϵl + 2η

L−l−1∑
m=1

m2 ∀x ∈ X l. (16)

Note that each sub-algorithm in Algorithm 1 maintains control over cumulative costs despite the re-
formulated computations. Therefore, transitioning from deterministic to stochastic transitions does
not fundamentally alter the regret analysis. We skip the proof because it is identical to Theorem 5.4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Theorem C.3 The algorithm with η =

√
2
∑L−1

l=0 ln |X l+1|
T

∑L−1
l=0 [(L−l)ϵl]2

obtains the following regret bound:

RT ≤ O


√√√√2

(
L−1∑
l=0

ln |X l+1|

)(
L−1∑
l=0

[(L− l)ϵl]2

)
T + δ(L− 1)T

 . (17)

For dynamically updated learning rates, the regret bounds can similarly be extended as before, which
is omitted in this paper.

D APPENDIX D. NUMERICAL EXAMPLES

D.1 EXPERIMENT SETTING

In this experiment, we utilize the METR-LA dataset, a comprehensive record of loop detector data
in the highway of Los Angeles County (Jagadish et al., 2014) to simulate real-world conditions. We
utilize traffic speed data recorded every 5 minutes by 13 selected loop detectors, labeled A to M .
These detectors, viewed as nodes, are interconnected in a simplified network consisting of 14 links,
as shown in Figure 4. The speed recorded at the start of each link serves as the constant travel speed
on the entire level. For instance, the speed recorded by detector B at 8:10 am dictates the travel
speed on link 2 from 8:10 to 8:15 am. Additionally, to accommodate nodes with multiple exiting
links, speeds from five auxiliary detectors (labeled v to z) are used to determine the speed on each
distinct outgoing link. Specifically, the speed recorded at node w, x, y, v, and z is used for link 1, 3,
8, 10, and 14, respectively.

By integrating the location data of each loop detector (Li et al., 2017), we calculate the distance
between each node, thereby deriving the link travel time for every timestep. The dataset spans 4
months from March 1st, 2012 to June 30th, 2012. After preprocessing, there are 57 days with valid
data, establishing our experiment’s temporal scope.

Figure 4: A simplified network in Los Angeles

This experiment focuses on a virtual vehicle routing from node A to H at 8:00 am daily, navigating
through three potential paths. Following our modeling approach, the routing problem is simplified to
a layered structure in Figure 5. Here, node L is added to complete the layered structure. Specifically,
state-action pairs C −H and C −H ′ represent paths C −D−E−F −G−H or C − I −G−H ,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

respectively. The cost of each state-action pair refers to the corresponding travel time, which can be
calculated recursively from the travel times on the respective links.

Figure 5: Equivalent layered structure for the path-planning scenario

D.2 SCENARIOS AND BENCHMARKS

Experiment scenarios. This experiment evaluates the proposed algorithm under two distinct sce-
narios:

• Naturalistic environment: The instantaneous travel time, which displays the current travel
time on each link, is directly used as the prediction.

• Adversarial environment: Incorporates a simple attack strategy designed to contaminate
the predictions and make the environment more adversarial. The predictions between the
two best actions at each decision point are skewed: The attack adds β to the prediction
of the best-anticipated action, and minus β to the second-best one, where β represents the
attack level.

Benchmarks. For the greedy benchmark, at every decision point, the algorithm calculates the pre-
dicted travel time on all the potential route choices and selects the first link in the optimal predicted
route. For the OOMD benchmark, it implements a single OOMD algorithm (Rakhlin & Sridharan,
2013), which can be seen as a pre-trip routing strategy that only utilizes the initial prediction at the
origin.

D.3 EXPERIMENT RESULTS

Naturalistic environment. In Figure 3(a)-(c), a fixed learning rate is applied across all sub-
algorithms. The DOOMD and OOMD algorithms are executed five times for each experiment to
eliminate the influence of the stochastic policy, with each solid curve representing the mean cost
difference and the shaded region indicating the standard deviation.

The blue and orange curves highlight a preference for higher learning rates, which can be attributed
to the reliable nature of naturalistic predictions. While these predictions may not always precisely
match the true costs, they reliably indicate the relative magnitudes, generally guiding the selection
toward the optimal decisions. A higher learning rate enhances the algorithm’s dependency on these
predictions, thus improving performance. Notably, at a learning rate of 5, DOOMD outperforms
the greedy benchmark, indicating its capability to handle naturalistic prediction errors. Further fine-
tuning, such as adjusting learning rates for different layers, might enhance performance, but it is
beyond this paper’s scope. Figure 3 also reveals that our algorithm greatly outperforms the static
benchmark. Note that it does not mean the sublinear bound we obtained in Theorem 5.8 is mean-
ingless as the naturalistic predictions do not represent the worst-case scenario. Additionally, the
real-time information contained in the updated predictions benefits the DOOMD algorithm, leading
to superior performance compared to the OOMD benchmark, as shown by the red curves.

Adversarial environment For these tests, we fix the learning rate at 5 while varying attack level
β from 1 to 5. Although increasing attack intensity affects the algorithm’s performance, its impact
is notably milder compared to that on the greedy benchmark. Remarkably, even with a moderate
attack level (β = 2), our algorithm substantially outperforms the greedy benchmark, highlighting
its robustness in adversarial settings. Another interesting observation emerges at the highest attack
level, where the OOMD benchmark momentarily outperforms DOOMD. It is because under heavy

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

perturbations, leveraging updated prediction on Node C is counterproductive. This suggests that in
highly compromised environments, a strategy that reduces reliance on incoming predictions could
be more effective, suggesting a potential shift in algorithm design when facing severely adversarial
environments.

APPENDIX E. PROOFS

PROOF FOR PROPOSITION 5.1

We prove this proposition by induction on L. Let us start with an MDP with 2 layers, i.e. L = 1.
In this special case, c̃0t = ct for all t = 1, ..., T , and wl

t(x0) = pt(x0). Thus, the equivalency
immediately holds.

Assume that the proposition holds for all MDPs with L = K (K ≥ 1). Consider any MDP with
L = K + 1, the expected cost difference at state x ∈ XK on day t can be expressed as:∑

aK∈A(x)

ct(x, a
K)
[
pt(x, a

K)− p(x, aK)
]

=
∑

aK∈A(x)

ct(x, a
K)

pt(x, aK)− wK
t (x, aK)

∑
a∈A(x)

p(x, a)


+

∑
aK∈A(x)

ct(x, a
K)

wK
t (x, aK)

∑
a∈A(x)

p(x, a)− p(x, aK)

 .

(18)

The second component is equivalent to: ∑
a∈A(x)

p(x, a)

 ∑
aK∈A(x)

ct(x, a
K)

[
wK

t (x, aK)− p(x, aK)∑
a∈A(x) p(x, a)

]

=

 ∑
a∈A(x)

p(x, a)

 ⟨ct(x), wK
t (x)− w(x)⟩,

(19)

which reflects the contribution of the sub-algorithm on state x. Note that w(x) is always well-defined
as p ∈ Kδ . Meanwhile, by leveraging definition and the flow conservation of p, the first component
is equivalent to:

∑
aK∈A(x)

ct(x, a
K)

 ∑
s∈A−1(x)

pt(s, x)

wK
t (x, aK)− wK

t (x, aK)

 ∑
s∈A−1(x)

p(s, x)


=

 ∑
s∈A−1(x)

(pt(s, x)− p(s, x))

 ⟨ct(x), wK
t (x)⟩,

(20)

which is equivalently credited to sub-algorithms on earlier layers. In this sense, ev-
ery state-action pair (s, x) ∈ UK−1 shares (pt(s, x)− p(s, x)) ⟨ct(x), wK

t (x)⟩ from layer
K. Combining with its immediate contribution, the total cost difference on this pair
is (pt(s, x)− p(s, x))

(
ct(s, x) + ⟨ct(x), wK

t (x)⟩
)
, which exactly matches the cumulative cost

c̃K−1
t (s, x) computed by Algorithm 2.

Let us treat layer K as the final layer by neglecting layer K + 1, and take c̃K−1
t as the actual cost

on UK−1, which does not influence any further previous layer. Due to the induction assumption, the
cost difference on the remaining K − 1 layers can be expressed as:

K−1∑
l=0

∑
x∈Ul

 ∑
a∈A(x)

p(x, a)

 T∑
t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩. (21)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Moreover, as ct(x) = c̃Kt (x) holds for all x ∈ XK by definition, adding Equation (19) yields the
total cost difference as

K∑
l=0

∑
x∈Ul

 ∑
a∈A(x)

p(x, a)

 T∑
t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩. (22)

Thus, the proposition also holds for MDPs with L = K+1. By induction, the proposition is proved.
□

PROOF FOR PROPOSITION 5.2

To compute M̃ l
t , Algorithm 3 recursively calculates the cumulative predictions M̃k

t from k = L− 1
to k = l. Similarly, Algorithm 2 recursively computes c̃kt from k = L− 1 to k = l. Let us prove the
following result by induction:

∥M̃k
t (x)− c̃kt (x)∥∞ ≤ (L− k)ϵl + 2η

L−k−1∑
m=1

m2, l ≤ k ≤ L− 1,∀x ∈ X k. (23)

First, in the case when k = L− 1, we have M̃L−1
t (x, a) = M l

t(x, a) and c̃L−1
t (x, a) = ct(x, a) for

all (x, a) ∈ UL−1 by definition, thus the proposition immediately holds. Assume the proposition
holds when k = K + 1 (l ≤ K ≤ L− 2), that is |M̃K+1

t (x, a)− c̃K+1
t (x, a)| ≤ (L−K − 1)ϵl +

2η
∑L−K−2

m=1 m2 holds for all (x, a) ∈ UK+1.

Then, for x ∈ XK , recall that
c̃Kt (x, a) = ct(x, a) + ⟨c̃K+1

t (a), wK+1
t (a)⟩, (24)

M̃K
t (x, a) = M l

t(x, a) + ⟨M̃K+1
t (a), gK+1

t (a)⟩, (25)
which yields the following results for x ∈ XK and s ∈ A(x):

|M̃K
t (x, s)− c̃Kt (x, s)|

= |M l
t(x, s) + ⟨M̃K+1

t (s), gK+1
t (s)⟩ − ct(x, s)− ⟨c̃K+1

t (s), wK+1
t (s)⟩|

≤ ϵl +
∑

a∈A(s)

wK+1
t (s, a)

∣∣∣M̃K+1
t (s, a)− c̃K+1

t (s, a)
∣∣∣+

+
∑

a∈A(s)

M̃K+1
t (s, a)

∣∣gK+1
t (s, a)− wK+1

t (s, a)
∣∣

≤ (L− k)ϵl + 2η

L−K−2∑
m=1

m2 + ∥M̃K+1
t (s)∥∞∥gK+1

t (s)− wK+1
t (s)∥1

(26)

where the last inequality is due to Hölder’s inequality. Note that wK+1
t (s) minimizes

η⟨M̃K+1
t (s), w⟩+DR(w, g

K+1
t (s)), hence

η⟨M̃K+1
t (s), wK+1

t (s)⟩+DR(w
K+1
t (s), gk+1

t (s)) ≤ η⟨M̃K+1
t (s), gK+1

t (s)⟩, (27)
which leads to:

η⟨M̃K+1
t (s), gK+1

t (s)− wK+1
t (s)⟩ ≥ DR(w

K+1
t (s), gK+1

t (s)). (28)
Leveraging Hölder’s inequality and the strong convexity of R, we further have:

2η∥M̃K+1
t (s)∥∞ ≥ ∥gK+1

t (s)− wK+1
t (s)∥1. (29)

Hence, the prediction error is:

|M̃K
t (x, s)− c̃Kt (x, s)| ≤ (L− k)ϵl + 2η

L−K−2∑
m=1

m2 + 2η∥M̃K+1
t (s)∥2∞

≤ (L− k)ϵl + 2η

L−K−2∑
m=1

m2 + 2η(L−K − 1)2.

(30)

where the last inequality is due to the upper bound of the cumulative predictions. Therefore, the
proposition holds for layer K. By induction, the proposition is proved. □

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

PROOF FOR THEOREM 5.4

For simplicity, denote Ξ =
2
∑L−1

l=0 ln |X l+1|∑L−1
l=0 [(L−l)ϵl]2

, thus η =
√

Ξ
T . According to Equation (6) and Proposi-

tion 5.1, the algorithm’s regret can be written as:

RT ≤η

L−1∑
l=0

1

2

[
(L− l)ϵl

]2
T +

1

η

L−1∑
l=0

ln |X l+1|

+

L−1∑
l=0

[
2η3(Zl)2 + 2η2(L− l)ϵlZl

]
T + δ(L− 1)T

=

√√√√2

(
L−1∑
l=1

ln |X l+1|

)(
L−1∑
l=0

[(L− l)ϵl]2

)
T

+

L−1∑
l=0

[
2Ξ

√
Ξ(Zl)2

1√
T

+ 2Ξ(L− l)ϵlZl

]
+ δ(L− 1)T

(31)

As the middle term appears in the order of O(1), which does not affect the order of the regret bound,
the theorem is proved. □

PROOF OF THEOREM 5.6

When different learning rates are employed across layers, Lemma 5.3 should be revised accordingly:
T∑

t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩ ≤ ηl

2

T∑
t=1

∥M̃ l
t − c̃lt∥2∞ +

ln |X l+1|
ηl

. (32)

For simplicity, denote Ξl = 2
∑L−1

m=l+1 η
m(L −m)2 = 2

∑L−1
m=l+1

L−m
ϵm

√
2 ln |Xm+1|

T , which is in

the order of O
(√

1
T

)
. According to Equation (6) and Proposition 5.1, the algorithm’s regret can be

written as:

RT ≤
L−1∑
l=0

{
ηl

2

[
(L− l)ϵl

]2
T +

ln |X l+1|
ηl

}
+

L−1∑
l=0

[
ηl

2
Ξ2
l + ηl(L− l)ϵlΞl

]
T, (33)

where the last term is in the order of O(1). Substituting the value of ηl yields the regret bound in
the theorem. □

PROOF FOR PROPOSITION 5.7

The proposition can be proved by applying the Cauchy-Schiwtz inequality on Equation (10) and
Equation (12). □

PROOF FOR THEOREM 5.8

As the doubling trick only decreases or maintains the learning rate, the prediction error of the cu-
mulative cost for any day t can be upper bounded by:

∥M̃ l
t(x)− c̃lt(x)∥∞ ≤ (L− l)ϵl + 2

L−1∑
m=l+1

ηm0 (L−m)2 ∀x ∈ X l. (34)

For each sub-algorithm on each layer l, as shown by Lemma 12 in Rakhlin & Sridharan (2013), if
its learning rate is never updated in the process, the regret is bounded by:

T∑
t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩ ≤ 4 ln |X l+1|

ηl0

≤ 8
√
2(L− l)

√
ln |X l+1|T ;

(35)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

otherwise, the regret is upper bounded by:

T∑
t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩ ≤ 8

√
2

√√√√E

[
T∑

t=1

∥M̃ l
t − c̃lt∥2∞

]
ln |X l+1|

≤ 8
√
2 ln |X l+1|T

[
(L− l)ϵl + 2

L−1∑
m=l+1

ηm0 (L−m)2

]
.

(36)

As the cost is normalized to [0, 1], the prediction error naturally should satisfy ϵl ≤ 1. Therefore,
combining the two cases yields:

T∑
t=1

⟨c̃lt(x), wl
t(x)− w(x)⟩

≤ 8
√
2(L− l)ϵl

√
ln |X l+1|T + 16

√
2 ln |X l+1|T

[
L−1∑

m=l+1

ηm0 (L−m)2

]
.

(37)

According to Equation (6) and Proposition 5.1, the algorithm’s regret can be written as:

RT ≤
L−1∑
l=1

{
8
√
2(L− l)ϵl

√
ln |X l+1|T + 16

√
2 ln |X l+1|T

[
L−1∑

m=l+1

ηm0 (L−m)2

]}
+δ(L−1)T.

(38)
Omitting the middle term, which appears in the order of O(1) and does not influence the overall
order of the regret bound, we prove the theorem. □

PROOF FOR PROPOSITION C.1

We prove this proposition by induction on L. Let us start with an MDP with 2 layers, i.e. L = 1.
In this special case, c̃0t = ct for all t = 1, ..., T , and wl

t(x0) = pt(x0). Thus, the equivalency
immediately holds.

Assume that the proposition holds for all MDPs with L = K (K ≥ 1). Consider any MDP with
L = K + 1, the expected cost difference at state x ∈ XK on day t can be splitter into the same two
components as in Equation (18), and the latter can be rewritten as Equation (19).

Due to the flow conservation
∑

u∈UK−1 p(u)P (x|u) =
∑

a∈A(x) p(x, a), the former part can be
rewritten as:∑

aK∈A(x)

ct(x, a
K)

[(∑
u∈UK−1

pt(u)P (x|u)

)
wK

t (x, aK)− wK
t (x, aK)

(∑
u∈UK−1

p(u)P (x|u)

)]

=

[∑
u∈UK−1

P (x|u) (pt(u)− p(u))

]
⟨ct(x), wK

t (x)⟩,

(39)

In this sense, every state-action pair (s, a) ∈ UK−1 shares

P (x|s, a)⟨ct(x), wK
t (x)⟩ (pt(s, a)− p(s, a)) . (40)

from state x in layer K. Therefore, combining with all other states in layer K and its immediate
contribution, the total cost difference on this pair is:(

ct(s, a) +
∑

x∈XK

P (x|s, a)⟨ct(x), wK
t (x)⟩

)
(pt(s, a)− p(s, a)) , (41)

which exactly matches the cumulative cost c̃K−1
t (s, x) computed by Algorithm 6.

The subsequent analysis is the same as the proof for Proposition 5.1, which shows that the proposi-
tion also holds for MDPs with L = K + 1. By induction, the proposition is proved. □

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

PROOF FOR PROPOSITION C.2

Similar to the proof for Proposition 5.2, let us prove the following result by induction:

∥M̃k
t (x)− c̃kt (x)∥∞ ≤ (L− k)ϵl + 2η

L−k−1∑
m=1

m2, l ≤ k ≤ L− 1,∀x ∈ X k. (42)

First, in the case when k = L−1, the proposition immediately holds. Assume the proposition holds
when k = K + 1 (l ≤ K ≤ L − 2), that is |M̃K+1

t (x, a) − c̃K+1
t (x, a)| ≤ (L − K − 1)ϵl +

2η
∑L−K−2

m=1 m2 holds for all (x, a) ∈ UK+1.

Then, for x ∈ XK , recall that

c̃Kt (x, a) = ct(x, a) +
∑

s∈XK+1

P (s|x, a)⟨c̃K+1
t (s), wK+1

t (s)⟩, (43)

M̃K
t (x, a) = M l

t(x, a) +
∑

s∈XK+1

P (s|x, a)⟨M̃K+1
t (s), gK+1

t (s)⟩, (44)

which yields the following results for x ∈ XK and a ∈ A(x):

|M̃K
t (x, a)− c̃Kt (x, a)|

≤ ϵl +
∑

s∈XK+1

P (s|x, a)

 ∑
b∈A(s)

wK+1
t (s, b)

∣∣∣M̃K+1
t (s, b)− c̃K+1

t (s, b)
∣∣∣
+

+
∑

s∈XK+1

P (s|x, a)

 ∑
b∈A(s)

M̃K+1
t (s, b)

∣∣gK+1
t (s, b)− wK+1

t (s, b)
∣∣

≤ (L− k)ϵl + 2η

L−K−2∑
m=1

m2 +
∑

s∈XK+1

P (s|x, a)∥M̃K+1
t (s)∥∞∥gK+1

t (s)− wK+1
t (s)∥1,

(45)

where the last inequality is due to Hölder’s inequality. As in the proof for Proposition 5.2, we have:

2η∥M̃K+1
t (s)∥∞ ≥ ∥gK+1

t (s)− wK+1
t (s)∥1. (46)

Hence, the prediction error is:

|M̃K
t (x, s)− c̃Kt (x, s)| ≤ (L− k)ϵl + 2η

L−K−2∑
m=1

m2 + 2η
∑

s∈XK+1

P (s|x, a)∥M̃K+1
t (s)∥2∞

≤ (L− k)ϵl + 2η

L−K−2∑
m=1

m2 + 2η(L−K − 1)2,

(47)

where the last inequality is due to the upper bound of the cumulative predictions. Therefore, the
proposition holds for layer K. By induction, the proposition is proved. □

25

	Introduction
	Related Works
	Online learning in MDPs
	Utilization of predictions

	Model
	Online MDP
	Online Linear Optimization

	Algorithm
	An Illustrative Example
	General Cases

	Regret Analysis
	Fixed learning rate
	Dynamically updated learning rates

	Numerical Examples
	Conclusion
	Appendix A. Notation Table
	Appendix B. Algorithm
	Appendix C. Stochastic Transition
	Appendix D. Numerical Examples
	Experiment setting
	Scenarios and benchmarks
	Experiment results

