Under review as a conference paper at ICLR 2025

LEARNING WITH REAL-TIME IMPROVING PREDIC-
TIONS IN ONLINE MDPS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce the Decoupling Optimistic Online Mirror Descent
(DOOMD) algorithm, a novel online learning approach designed for episodic
Markov Decision Processes with real-time improving predictions. Unlike con-
ventional methods that employ a fixed policy throughout each episode, our ap-
proach allows for continuous updates of both predictions and policies within an
episode. To achieve this, the DOOMD algorithm decomposes decision-making
across states, enabling each state to execute an individual sub-algorithm that con-
siders both immediate and long-term effects on future decisions. We theoretically
establish a sub-linear regret bound for the algorithm, providing a guarantee on the
worst-case performance.

1 INTRODUCTION

In this paper, we study the problem of online episodic Markov decision processes (MDPs) with
real-time improving predictions. A learner interacts with an environment over 1" episodes, each of
a finite length. During each episode, the learner operates within an MDP — selects actions based on
observed states, incurs a costﬁ and transitions to subsequent states. Before making each action, the
learner has access to external predictions for future steps. These predictions, while imperfect, can
facilitate decision-making and are dynamically updated in real time as the learner interacts with the
environment. Importantly, these predictions are expected to become more accurate as the episode
progresses.

Consider the example of routing, where over 93% of travelers rely on GPS navigation like Google
Maps (CarProl [2022)). These tools use historical data and machine learning algorithms to forecast
future traffic conditions and estimate travel time, updating predictions in real-time as one progresses
along a route (Derrow-Pinion et al., 2021). Typically, predictions tend to become more accurate as
the destination approaches, since there is less need for forecasting distant events. Due to this trend,
trivially trusting initial predictions may not be a good strategy. For instance, consider a traveler
moving from Node 1 to Node 4 in Figure[I] The traveler initially selects the route 1 — 2 — 3 based
on an early prediction. However, upon arriving at Node 2, a more accurate prediction indicates that
the chosen route is always the worst no matter what decision is made here.

Good

Good Good Good

(a) Original prediction (b) Updated prediction
Figure 1: A motivating example for decisions under predictions

Real-time improving predictions are becoming increasingly prevalent, especially in an era where
predictive capabilities are rapidly advancing due to machine learning breakthroughs (Agrawal et al.|

"We use costs throughout the paper, which is equivalent to negative rewards

Under review as a conference paper at ICLR 2025

2022) and the development of Large Language Models (Wang et al.| 2023} Jablonka et al., [2024).
Examples range from self-driving cars, which rely on predictions of other vehicles’ trajectories (Cao
et al., 2023), to resource allocation strategies that depend on forecasts of future demand (Lei et al.}
2020). A common pattern across these applications is that predictions for distant events tend to be
less accurate than those for the near future, with predictions improving as the learner approaches the
end of an episode.

Despite the trend, improving predictions do not guarantee better outcomes, as demonstrated in the
earlier routing example. The traveler, following a greedy policy, fails to benefit from the updated
predictions. Indeed, we need a decision framework to exploit the increasing accuracy, which raises
fundamental questions: How much trust should we place in each prediction? How can we leverage
predictions to update policies dynamically? Can we still maintain a performance guarantee?

Conventional online learning algorithms in episodic MDPs (Neu et al., 2012} [Dick et al.| 2014
Rosenberg & Mansour, 2019a3b; Jin et al., 2020; Shani et al., [2020; Neu & Pike-Burkel [2020; (Cai
et al., [2020; Rosenberg et al.| [2020; Mao et al.| 2021} Neu & Olkhovskayal, 2021} Jin et al.l [2021])
fail short in addressing these questions. These algorithms typically treat the policy within each
episode as fixed, and only update it between episodes. While a few works (Cai et al.| 2020; Neu &
Olkhovskayal |2021) explore updating policies within episodes, these updates are usually done for
computational convenience and can be reformulated into an equivalent approach with only between-
episode updates. Existing approaches to leveraging predictions in episodic MDPs have generally
assumed that the learner updates their policy based on predictions at the start of each episode, with
no further changes made during the episode (Rakhlin & Sridharan| 2013} |Steinhardt & Liang} 2014
Guan, 2015; |Fe1 et al., 2020). However, leveraging real-time improving predictions requires the
learner to continuously update the policy during episode, which goes beyond the existing frame-
works.

To handle these dynamic updates effectively, policies need to be decomposed into meaningful deci-
sion components. This decomposition enables the learner to update future components of the policy
while executing the current decisions. Intuitively, it helps the learner focus more on the present, and
defer later decisions until more accurate information becomes available. For instance, in Figure
when the travel is at Node 1, the decision should focus only on choosing between Node 2 and 3,
without considering decisions afterward. However, quantifying the contribution of each decision to
the overall performance is not straightforward. Each decision not only has immediate effects but
also influences the long-term trajectory by shaping the remaining decision space. In the motivating
example, the poor decision at Node 1 restricts the available options at Node 2, leaving the traveler
with only suboptimal routes. Our goal is to systematically decompose the decision and develop
algorithms that can update each decision based on real-time predictions.

Contribution. In this paper, we propose a novel framework that allows a more general and flexible
interaction between the learner and the environment in online episodic MDPs. Unlike conventional
approaches that employ a fixed policy per episode, our approach allows for continuous updates of
both predictions and policies within an episode. To achieve this, we decompose the policy to every
state and introduce a concept of cumulative cost, which accounts for both immediate costs and the
long-term impact on future decisions. Using this concept, we propose the Decoupling Optimistic
Online Mirror Descent (DOOMD) algorithm, which implements sub-algorithms at each state, aim-
ing to control its total cumulative cost over time.

This paper makes the following contributions. (1) We provide a systematic model for online MDPs
that allows dynamic policy updates within an episode to accommodate improving predictions. To
the best of our knowledge, this problem has never been explored in the literature. (2) By utilizing
cumulative costs, we prove that the total regret can be decomposed to reflect each decision’s ac-
tual contribution to the overall performance. (3) We prove that the DOOMD algorithm achieves a

sublinear regret bound of O(+/T'), both for fixed and dynamically updating learning rates.

Organization. The remainder of this paper is structured as follows. Section 2 discusses related
works. Section 3 introduces the model. Section 4 presents the online algorithm and Section 5
analyzes its regret bound. Lastly, Section 6 concludes the paper.

Notations. For a positive integer n, denote [n] = {0, 1, ..,n}. Forn sets, X!, ..., X", denote X" =
ur_, X*. The inner product of two vectors a, b is denoted as (a, b) = a’b. A comprehensive table

Under review as a conference paper at ICLR 2025

of notations is provided in Appendix A. Throughout the paper, unless otherwise specified, proofs
are provided in Appendix E.

2 RELATED WORKS

2.1 ONLINE LEARNING IN MDPSs

Many real-world optimization and control problems can be modeled using online episodic MDPs,
including routing (Choudhury et al., [2019; |Wu et al 2022)), finance (Hambly et al., 2023)), schedul-
ing (Yin et al., |2020), and self-driving (Cao et al., 2023). Given the unknown nature of future steps
or episodes, the learner needs to learn while interacting with the environment. The objective is typ-
ically to minimize the regret, which is defined as the difference between the learner’s cumulative
cost and that of an optimal policy, denoted as Ry = Zthl Cy(my) — Zle Cy(my), where Cy(m)
represents the expected cost under policy 7; in episode ¢, and 7} refers to a hindsight optimal policy.
Prior research has extensively explored online learning algorithms for episodic MDPs, with various
settings for rewards and transitions (stochastic or adversarial) and information states (full or bandit
feedback), including Neu et al.| (2012); Dick et al.| (2014); Rosenberg & Mansour| (2019azb)); Jin
et al.| (2020); Mao et al.| (2021); Neu & Olkhovskayal (2021); Jin et al.| (2021); |Shani et al.| (2020);
Neu & Pike-Burke|(2020);|Cai et al.| (2020); Rosenberg et al.| (2020), among others.

As noted earlier, most existing approaches often treat the policy within each episode as fixed and
static. Viewing online learning in episodic MDPs through this lens connects the problem to a broader
class of online optimization methods, where each episode is akin to making a single decision (Chiang
et al., 2012; Wei & Zhang, 2020; Bhaskara et al.| [2020; Jiang et al., [2023)). We refer the readers to
Orabonal (2019) for a comprehensive introduction to online optimization. In fact, using occupancy
measures to represent policies, online episodic MDPSs can be transformed into an equivalent online
linear optimization problem (Zimin & Neu, |[2013)).

Another closely related research direction is online learning in non-stationary MDPs. In such sce-
narios, the learner interacts with the environment continuously for 7" steps rather than in episodic
structures. Starting from the pioneering works by Even-Dar et al.| (2004; |2009), this problem has
been extensively studied under various settings (Joulani et al.,|2013;|Neu et al.,2010; Neu & Goémez,
2017;|L1 et al., [2019b; [Lecarpentier & Rachelson, [2019; Rivera Cardoso et al.,[2019;|Cheung et al.,
2020;/Chandak et al.}[2020; Cheung et al.,[2023)). These studies focus on adapting policies to account
for shifts in the non-stationary environment over time.

2.2 UTILIZATION OF PREDICTIONS

From the theoretical perspective, predictions can act as a form of regularity assumption, similar
to conditions like Lipscitz continuity (Lecarpentier & Rachelsonl [2019)) or total variation (Cheung
et al.l2020; 2023). Such assumptions can mitigate the conservativeness of the algorithms designed
for adversarial MDPs. As online learning algorithms utilizing predictions in episodic MDPs still
assume the learner carries out a fixed policy per episode (Rakhlin & Sridharan, 2013} |Steinhardt &
Liang| |2014; |Guan, 2015} [Fei et al., 2020), these approaches can be linked to online optimization
under predictions (Chenl 2018} [Purohit et al., [2018; |Li et al., 2019a; [Li & Lil, 2020} (Christianson
et al.,[2022)) in a similar way.

Other relevant frameworks to utilize predictions are the predict-then-optimize (Wang et al., 2021}
Elmachtoub & Grigas) |2022) and performative prediction (Perdomo et al., [2020) which integrates
the training of predictive models with decision optimization. However, these approaches differ
fundamentally from ours, as we focus on leveraging exogenous predictions. This is especially useful
in real-world applications, as generating accurate in-house predictions may be impractical due to
constraints on time and resources. For instance, in routing, most users rely on external systems
like Google Maps to predict travel times rather than generating their own predictions. Additionally,
another line of research explores whether and when to stop updating predictions (Lee et al., |2024),
which also pursues a distinct objective from ours.

Under review as a conference paper at ICLR 2025

3 MODEL

3.1 ONLINE MDP

The episodic MDP is defined by the tuple {X, A, P, ¢}, where X denotes the state space, A denotes
the action space, P : X x Ax X — Rand ¢ : X x. A — R represent the transition and cost functions,
respectively. We consider a fixed and known transition function P, while the cost function may vary
across episodes. The cost function for episode ¢ is denoted as c;, and for simplicity, it is normalized
to [0, 1]. We also denote the set of all episodes as T = {1,...,T'}.

Without losing generality, we assume the state space X" follows a layered structure, forming a loop-
free episodic MDP. Specifically, the state space is partitioned into L + 1 layers X = U;c, X', with
L = {0,...,L}, and the initial layer X° only contains a single state x°. This assumption is not
restrictive as any episodic MDP can be reconstructed as an equivalent loop-free structure (Maran
et al., [2023).

In addition, we simplify the transition function P for clarity to a deterministic function where
P(z'|z,a) = 1if and only if 2’ = a. This assumption is not fundamental to our analysis and can be
easily generalized to stochastic transitions, which is detailed in Appendix C. Under this setup, the
action space for state 2! € X" links directly to the states on the subsequent layer, i.e. A(z!) C X1,
We define the state-action pairs on layer [as ' = {(z,a) : v € X',a € A(x)}, and the set of all

state-action pairs as I/ = U% L1, Consequently, the cost function in any episode ¢ can be viewed as
c U — [O, 1] .

The interaction between the learner and the environment follows the protocol outlined as follows.
For each episode t, after reaching layer [, the learner receives an updated cost prediction for state-
action pairs in all subsequent layers, denoted as M : 4"~ — [0, 1]. For each state-action pair
u € U* (with k > 1), the predicted cost is denoted as M} (u). The accuracy of the prediction is
characterized by the error bound €', such that |M}(u) — c;(u)| < €Vt € T,k > l,u € U*.
These real-time predictions enable the learner to update their policy at each layer dynamically. Let
7l X x A(X;) — [0,1] denote the policy used at layer [in episode ¢. At the end of each episode,
the learner receives full information regarding the cost function c;.

In addition, we assume that as the learner continues interacting with the environment, the uncertainty
decreases, resulting in gradually improving predictions. Otherwise, it makes no sense to update

the policy based on predictions. Given an exogenous prediction sequence M = {Mtl} vericr @

learning algorithm generates a set of policies w = {wi which induces an expected total

cost Cr(m) = B[S, Y1 enlat. af)
action on each layer (2!} and a!) are generated by policy 7 under predictions M. By selecting
the optimal stationary policy in hindsight as the baseline, the regret of the algorithm is defined as
Ry = Cr(w) — ming~ Cp(7*), where the minimum is taken over all the stationary policies, i.e.,
mi(alz) = mp(a|z) forall t,t’ € T,z € X and a € A(x), which captures the opportunity loss
from not employing the optimal strategy (Taherkhani et al.l 2021). This concept of static regret is
commonly adopted in the literature, as in Zimin & Neu| (2013); [Dick et al.| (2014), etc. Our goal is
to design a robust algorithm that guarantees a sublinear regret bound (e.g. O(logT), O(\/T)), so
that, on average, the algorithm performs as well as the best stationary policy when 7' is large.

}tET Jel’
M, 71'} , where E [-| M,] indicates that the state and

3.2 ONLINE LINEAR OPTIMIZATION

Building on existing studies that employ occupancy measures to design algorithms for online MDPs
(Zimin & Neu, 2013;|Dick et al., 2014} Zhao et al.|[2022)), we adopt a similar approach to streamline

our framework. The occupancy measure induced by a policy in an episode m = {7rl } et is denoted

as w™ € K C [0,1]l, which represents the probability of executing each state-action pair under
the policy 7. The domain of occupancy measure is defined by the set:

K=<w: Zw(u)zl, Z w(z,a) = Z w(z',x),Vl € [L—1],z € X*1 5 (1)

uey! acA(x) ' €A (z)

Under review as a conference paper at ICLR 2025

where the first condition ensures the occupancy measure on each layer forms a valid distribution and
the second corresponds to the flow conservation equation between layers. A~!(x) represents the set
of preceding states {2z’ € X : z € A(z')}.

Occupancy measures effectively translate MDP policies into an equivalent but more tractable form.
Given policy 7, we can recursively compute its induced occupancy measure starting from layer
0. Conversely, a policy for each layer can be reconstructed from an occupancy measure w by

7 (alx) = SR N—— A(x). Therefore, finding the optimal policy is equivalent to

al € A(w) w(z,a’)
finding the optimal occupancy measure. With slight abuse of notation, express the cost as a vector
c € [0,1]“1, then the expected total cost introduced by policy 7; in episode ¢ is (c;,w™). Hence,

. : T . T
the cumulative regret over 1" episodes becomes Ry = >, (¢¢, w™) — mingex >, (s, w).

4 ALGORITHM

We now introduce an algorithm specifically designed to exploit the layered structure, accommodat-
ing dynamic predictions while aiming to achieve a sub-linear regret bound.

4.1 AN ILLUSTRATIVE EXAMPLE

To better present the algorithm, let us start with a motivating example involving five states distributed
across three layers, as shown in Figure[2] The technical insight is that the total algorithm regret can
be decomposed into contributions from individual states, each of which can be effectively managed.

Decision decomposition. In our setup, decision-making is decentralized to individual states. For
instance, as indicated by the colors in the figure, at the initial state x(, decisions are only con-
cerned with transitions (xg,x1) and (xg,x2), without considering subsequent states. This lo-
calized approach results in maintaining three distinct occupancy measures: wy for 4°, and w},
w? for U'(x1) and U (z3) respectively, where U!(x) = {(v,a):a € A(z)} for z € X'. For
simplicity, write the state-action pair as u;; = (z;, ;). These occupancy measures satisfy that
wy (wo1) + wf (uo2) = wi (u13) + wy (u14) = wi(uzs) + wi(uza) = 1.

Figure 2: An example with three layers

Regret decomposition. Each occupancy measure, such as wj, can be interpreted as a conditional
probability distribution, depending on reaching ;. Consequently, the actual probability of executing
state-action pair w13 is the product w?(ug1)w; (u13). Compared with any occupancy measure w €
K°® = {w € K : w(u) > §,Yu € U}, where each state-action pair has a minimum visit probability
0 > 0, the cost difference for 13 in episode ¢ is:

ce(ur3)[wy (uor)wi (urs) — w(us)]

- 2)
=w; (urg) et (urz)[wy (uor) — w(uor)] + [w(urz) + w(ura)ler(urs) (w; (uiz) — (u1s))
due to the flow conservation of w, where w(uy3) := #ﬂuu)

This equation divides the cost difference into two components: one directly resulting from decisions
on state x; (the latter) and the other influenced by prior choices at layer O (the former). Therefore,
decisions made on state z; should focus on minimizing the second component in Equation (2)), which
can be achieved by implementing optimistic online mirror descent (OOMD) (Rakhlin & Sridharan)
2013)) at state ;1 as a sub-algorithm, which will be detailed in the next section.

Cumulative costs. The first component in the regret equation above and a similar component for
the regret on state-action pair w14 are associated with the decision on layer 0. Thus, the contribution

Under review as a conference paper at ICLR 2025

of decisions on ug; to the overall regret is:
ee(uon) [wf (uor) — w(uor)] + [wy (urz)er(ura) +wi (ura)er(ua)] [we (uor) — w(uor)]
= & (uor)[w (uo1) — wluon)],
where the cumulative cost is defined as & (uo1) := ¢t (ug1)+w; (u13)ce(uis)+w? (u14)cs (u14). This
concept reflects the influence of decisions at earlier layers on the overall performance. Constructing
a prediction for ¢ (ug1) and analyzing its accuracy is not trivial, as w; remains undetermined until

the next layer. This will be addressed in the next section.

3)

Regret bound adjustment. We are missing the last component in the regret, as the optimal occu-
pancy measure w* should be selected from the entire domain K rather than the restricted one K°.
To address this discrepancy, the regret associated with state-action pair ;3 can be bounded by:

ce(urs)[wy (uor)w' (urs) — w*(us)] < co(wrg)[wf (uor)w' (urs) — w(us)] + 6,)

with w € K. By setting ¢ to a sufficiently small value (e.g. 1/T’), the additional term negligibly
affects the overall regret order.

4.2 GENERAL CASES

Building on the foundational concept introduced earlier, our algorithm, termed Decoupling Opti-
mistic Online Mirror Descent or DOOMD, systematically decomposes decision-making across var-
ious layers. This approach ensures that each state independently manages an occupancy measure for
its respective state-action pairs.

Notations. For convenience, let us first clarify the notations used in the algorithm.

* Costs and predictions: For cost c;, denote the cost for state-action pairs related to state = as
a vector ¢;(z) = {c¢;(r,a) : a € A(z)}. The overall prediction received on layer [M/ and
the prediction related to state z € X', M} (z), follow a similar structure. The cumulative

cost and prediction on each layer [are denoted as ¢!, Mé € [0,1] 'l , respectively.

s Decoupled occupancy measures: For each state x, two occupancy measures, g!(z) and
w!(x), are defined over U(x) — The former is recursively maintained based on prior ex-
periences; the latter is updated using predictions, which will be implemented. For any
occupancy measure such as w!(z), denote the probability of choosing action a at state
x as wi(x,a) = w!l(r)(a). Denote the overall occupancy measures for episode ¢ as
wy = {w;(x) I=0....—1.ze x> and g¢ follows a similar definition.
Algorithm overview. As detailed in Algorithm [I] DOOMD operates in two phases: preparation
(line 5 to line 10) and execution (line 11 to line 20). During the preparation phase, the algorithm
first summarizes previous experiences by computing the cumulative cost & _; of all layer [, which
is subsequently used in the first-step OOMD update to compute g;. In the execution phase, upon
observing the realized state and receiving the update prediction M/, the algorithm constructs the

cumulative predictions Mtl and performs a second-step OOMD update to calculate the occupancy
measure w!, which is subsequently implemented.

Cumulative costs and their prediction. This procedure generalizes the method used to calculate
the cumulative costs presented in Equation (3)) for the illustrative example. Specifically, cumulative
costs are computed using a backward iteration process outlined in Algorithm [2]in Appendix B. This
algorithm progresses from the terminal layer to the initial layer, where each cumulative cost consists
of two components: the direct cost and a weighted average of the costs associated with all state-
action pairs in the subsequent layer. The weights for this averaging process are determined by the
occupancy measures.

Similarly, Algorithm[3]in Appendix B recursively calculates cumulative predictions from layer L —1
to some given layer [. Since the occupancy measure wr (with k¥ > [) will be updated in the future
layer k, it is underdetermined at the current layer. Therefore, the other occupancy measure g;, which
is already computed based on prior experiences, is used in these calculations

One-step OOMD update. A key component of the DOOMD algorithm is the one-step update in
each OOMD sub-algorithm (Rakhlin & Sridharan, [2013), which is detailed in Algorithm E] in Ap-
pendix B. This update adjusts the occupancy measure to minimize the incurred costs (either actual

Under review as a conference paper at ICLR 2025

Algorithm 1 Decoupling Optimistic Online Mirror Descent

1: Input: Learning rate 7, initial occupancy measure g; = w;

2: Implement the policy reconstructed from w; on each layer
3: Receive the full information on ¢
4: fort =2,.. T do
5: Run Algor1thmlw1th costs ¢,y and w;_ to compute cumulative cost {&_, },_ 0L
6: for!=0,..,L —1do
7: for 6 X “do
8: Run Algorithm | with & _, (z), g!_, () and to compute g} ()
9: end for
10: end for
11: for/=0,..,L—1do
12: Receive the realized state !
13: Receive the prediction from layer [to layer L, M}
14: Run Algorithm [3| with M}, { gr (x)} k=l....[—1.zeak O COMpUte cumulative prediction
M
15: for z € X' do 5
16: Run Algorithm@with M](x), gt(x) and 1) to compute w!(x)
17: end for
18: Implement the policy reconstructed from w!(x!)
19: end for
20: Receive the full information on ¢;
21: end for

or predicted), while maintaining proximity to the previous occupancy measure to ensure robustness.

Specifically, we choose R as the unnormalized negative entropy regularizer — for occupancy mea-

sure g defined on space U, R(g) = >, 7 9(u)logg(u) — >, 7 9(u). Under this selection of
w(u)

Legendre, we have Dr(w, g) =), 5 w(u)log In) — > weilw(u) — g(u)], which corresponds
to the unnormalized K-L divergence between w and g.

5 REGRET ANALYSIS

In this section, we analyze the regret bound of the DOOMD algorithm, focusing on how each sub-
algorithm contributes to the overall performance. We start with the case where all sub-algorithms
utilize time-invariant learning rates throughout the 7' episodes.

5.1 FIXED LEARNING RATE

As previously demonstrated, wt() is a probability distribution condltlon on reachlng state x. There-
fore, the probability p; (2!, a') of executing state-action pair (x, a') at layer > 1 in episode is:

pe(ata)y=| > pilx,ah)| wia!,ah). 5)

z€EA~1(zl)
As p; forms a valid occupancy measure, i.e. Y, ;. p¢(u) = 1 holds for all layer [, the algorithm’s

regret can be expressed as Ry = ZZ:1<ct,pt — p*), where p* € argmin,cx Z?:1<ct,p>. By
restricting the region from K to K°, the regret can be bounded by:

Z Ct, Pt —

where p’ € argmin, ¢ rs (¢t p).

T

Z(cta

t=1

Z (ct,pe — ') + (L = 1)dT, 6)

Regret decomposition. As before, setting ¢ sufficiently small controls the second term in Equation
(6). Therefore, we primarily focus on bounding the first term, which can be equivalently decom-
posed to each sub-algorithm, as detailed in the following proposition:

Under review as a conference paper at ICLR 2025

Proposition 5.1 For all p € K°, we have:
T

T
S ewpi—p Z S S paa) | S @), wha) — w(a) 7)
t=1 1=0 zeu! \ac€A(z) t=1

where ¢, is the cumulative costs computed by Algorithm and w(z,a) = %.
a€A(x ’

As each component Z;F:l(d(a:), wl(z) — w(z)) in Proposition [5.1| corresponds to the regret of a
sub-algorithm, a critical insight here is that the total regret is bounded if each sub-algorithm performs
effectively.

Prediction accuracy. As each sub-algorithm is based on the OOMD algorithm, the accuracy of pre-
diction significantly impacts the algorithm’s performance. Proposition quantifies the precision
of cumulative predictions on each layer. Intuitively, besides accumulating errors through layers, the
prediction has to make extra sacrifices to handle currently unknown occupancy measures.

Proposition 5.2 If the prediction error received on layer | (0 < 1 < L — 1) is bounded by ¢, the
prediction error of the cumulative cost is upper bounded by:

L—i—-1
1M} (z) — & (@)llo < (L -1 +2n Y m® Voe Xl (8)
m=1
For simplicity, denote Z; = Zf@_ll 'm?2 . Despite this additional error term that may hamper the

prediction accuracy, it is already the best prediction we can make given the uncertamty of future
decisions. Fortunately, as we are dealing with long horizon T, the learning rate 7 is typically very

.....

L3
term is in the order of O (ﬁ) .
Algorithm performance. The following lemma bridges the gap between prediction accuracy and
the sub-algorithm’s performance, affirming that tighter control over prediction errors directly con-
tributes to minimizing regret. We skip the proof as it can be easily proved using Proposition[5.2]and
Lemma 3 in[Rakhlin & Sridharan|(2013)).

Lemma 5.3 (Sub-algorithm’s regret bound) Foranyl =0,..., L — 1 and state x € X', we have:

- 2 In | XY
> (@ (@), wi(z) — w(x)) < UL—04+%T]T+—ﬁTf.
t=1

BN

€))

If the prediction error bound €’ is explicitly known for every layer, an optimal learning rate can be
selected, resulting in the following regret bound. To see why this achieves a sublinear regret bound,
as shown in [Zimin & Neu (2013) Dick et al.| (2014), the parameter § can be set to a sufficiently

small value, such as § = ﬁ' This results in a regret bound of the order O(+/T)), guaranteeing the
algorithm’s performance in the worst-case scenario.

230 In A+
T, (L=D)el]?

Rr <O (Z 1n|Xl+1|> (LZI[(z)d]?) T+6(L—1T|. (10)

=0

Theorem 5.4 The algorithm with n = obtains the following regret bound:

Flexible learning rates. To further enhance flexibility, each sub-algorithm on different layers can
employ different learning rates. While this variation does not affect the regret decomposition in
Proposition [5.1] it influences the accumulation of predlctlon errors in Proposition [5.2] Denote the
learning rate of the sub-algorithm on state 2 € X' as n!. The prediction error bounds follow a
similar structure, which is detailed in the following proposition. The proof is omitted as it follows a
similar process used i m Proposition[5.2] It is evident that if the same learmng rate is utilized on each
sub-algorithm (i.e., ' = 7 for all 1), the result reduces to Proposmon

Under review as a conference paper at ICLR 2025

Proposition 5.5 If the prediction error received on layer | (0 < 1 < L — 1) is bounded by €', the
prediction error of the cumulative cost is upper bounded by:

L—1
1M () = & (2)lloo < (L =D +2 > p™L—-m)* VoeX’ (11)
m=Il+1

With different learning rates per layer, each sub-algorithm can select its own optimal learning rate,
resulting in the following regret bound. Intuitively, utilizing different learning rates across layers
introduces more flexibility, enabling the algorithm to perform better. Proposition confirms this
improvement.

Theorem 5.6 The algorithm with n' = (L—ll)el /21n \j{“rl' at layer | obtains the following regret

bound: L
Ry <O (Z(L—l)el\/21n|Xl+1|T+5(L—1)T>. (12)

=0

Proposition 5.7 The algorithm with flexible learning rates (Theorem[5.6) has a lower regret bound
compared to one with a uniform learning rate (Theorem[5.4).

5.2 DYNAMICALLY UPDATED LEARNING RATES

The doubling trick. It is worth pointing out that in many realistic cases, the prediction accuracy
¢! may not be explicitly known, making it challenging to determine the optimal learning rate. To
address this issue, we employ the doubling trick (Rakhlin & Sridharan|,|[2013), a common technique
in online learning algorithms. It offers a dynamic approach to adjust the learning rate, further im-
proving the adaptability of the algorithm. Specifically, the doubling trick records the accumulated
prediction errors, and when the error exceeds a certain threshold, the learning rate is halved, and the
accumulated error is reset.

Algorithm performance. Denote the learning rate used by the sub-algorithm at state € X" as
n'(x), which is initialized at i}, and dynamically updated over time. The DOOMD algorithm with
dynamically updated learning rates is detailed in Algorithm [5]in Appendix B. By leveraging the
doubling trick, the following theorem establishes the algorithm’s regret bound.

Theorem 5.8 The algorithm with in initial learning rate n}) = 2\/5(1L_l) A/ In |/¥+1‘ at layer [obtains

the following regret bound:
L—1
Ry <O (Z 8V2(L — 1)el\/In | X!+ T + (L — 1)T> . (13)
1=0

Comparison. As before, setting ¢ to a fairly small value (e.g. ﬁ) results in a sublinear regret

bound. Compared to the regret bound in Theorem [5.6] the theorem above incurs an additional term
due to the lack of knowledge about prediction accuracy. However, the algorithm still achieves a
sub-linear regret bound of O(\/T) even without explicit knowledge of the prediction error.

6 NUMERICAL EXAMPLES

Experiment setting. This section provides an empirical verification of the theoretical results. We
consider a routing scenario using the METR-LA dataset, a comprehensive record of loop detec-
tor data (Jagadish et al, 2014). We evaluate our algorithm in two types of environments: 1) The
naturalistic environment that simulates real-world conditions by directly using instantaneous travel
time as the prediction; and 2) The adversarial environment that introduces contaminated predictions
to test the robustness of our algorithm. The algorithm’s performance is compared against three
benchmarks: 1) Static benchmark that represents the static optimal policy in hindsight; 2) Greedy
benchmark that greedily chooses the outgoing link corresponding to the best route based solely on

Under review as a conference paper at ICLR 2025

predictions; 3) OOMD algorithm that only utilizes the initial prediction without further updates
(Rakhlin & Sridharan, [2013). For space reasons, we defer detailed problem descriptions, algorithm
setups, and analysis to Appendix D.

Experiment results. The performance of the DOOMD algorithm is depicted in Figure 3} The
horizontal axis refers to the time scale, and the vertical axis represents the cost difference between
the proposed DOOMD algorithm and the three benchmarks, with lower values showcasing our al-
gorithm’s superiority. Figure [3[a)-(c) corresponding to the naturalistic environment under different
fixed learning rates. The results indicate that with an appropriate learning rate, the DOOMD algo-
rithm outperforms the benchmarks. However, the performance gap is modest due to the reliability of
naturalistic predictions. Under the adversarial environment shown in Figure 3(d)-(e), the DOOMD
algorithm demonstrates remarkable robustness. For these tests, we fix the learning rate at 5 and vary
the attack intensity (described in detail in Appendix D) from 1 to 5. Although increasing attack in-
tensity affects the DOOMD algorithm’s performance, its impact is notably milder compared to that
of the other benchmarks. Remarkably, even with a moderate attack level, our algorithm substantially
outperforms the greedy benchmark.

(a) Learning rate = 1

(b) Learning rate = 3 (c) Learning rate = 5

=50

=751

Cost difference

—— DOOMD - Static —— DOOMD - Static —100F —— DOOMD - Static
=501 DOOMD - Greedy 1-100¢ DOOMD - Greedy 1955 DOOMD - Greedy
—— DOOMD - OOMD _1o5F T DOOMD - OOMD] —— DOOMD - OOMD
) . A . . . 150 bs . ‘
0 20 40 0 20 40 0 20 40
Horizon length Horizon length Horizon length
(d) Attack level = 1 (e) Attack level = 2 (f) Attack level =5
oF 1 oF m 1 9l]
95 1 20} 1 ol _\J_/_/\—_f 1
50F 1 —40p] //_"\—\
5 \//\
120} o\

—60F
—75F]

Cost difference

1 —a0f

—— DOOMD - Static
DOOMD - Greedy
—— DOOMD - OOMD

—— DOOMD - Static
DOOMD - Greedy
—— DOOMD - OOMD

1 “80f — DOOMD - Static
DOOMD - Greedy
1 —— DOOMD - OOMD
s s —120 b s s s ‘ s
0 20 40 0 20 40 0 20 40
Horizon length Horizon length Horizon length

—100

100} 1 6ol

—125

Figure 3: Performance comparison under naturalistic and adversarial environments

7 CONCLUSION

In this paper, we have introduced the Decoupled Optimistic Online Mirror Descent (DOOMD) algo-
rithm, a novel online learning approach for episodic MDPs with dynamically updated and improving
predictions. The algorithm effectively decomposes decisions across different layers and states, with
each state executing a sub-algorithm that accounts for both immediate and long-term effects. We
have theoretically analyzed the prediction accuracy and established a sublinear regret bound of the
DOOMD algorithm, underscoring the algorithm’s robustness in worst-case scenarios.

For future work, an interesting direction is to extend our model to a bandit feedback setting, where
the learner only observes the true costs of the selected state-action pairs. This transition poses signif-
icant challenges in accurately estimating costs from limited information but could greatly enhance
the algorithm’s practical applicability. Additionally, analyzing dynamic regret would be valuable to
further understand and quantify the algorithm’s performance over time.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ajay Agrawal, Joshua Gans, and Avi Goldfarb. Prediction Machines, Updated and Expanded: The
Simple Economics of Artificial Intelligence. Harvard Business Press, 2022.

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with imperfect
hints. In International Conference on Machine Learning, pp. 822-831. PMLR, 2020.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy opti-
mization. In International Conference on Machine Learning, pp. 1283—-1294. PMLR, 2020.

Zhong Cao, Kun Jiang, Weitao Zhou, Shaobing Xu, Huei Peng, and Diange Yang. Continuous
improvement of self-driving cars using dynamic confidence-aware reinforcement learning. Nature
Machine Intelligence, 5(2):145-158, 2023.

CarPro. Where Drivers Are Most Dependent On GPS Systems, 2022. URL https://www.
carpro.com/blog/where-drivers—are-most—-dependent—-on—-gps—systems.

Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, and Philip
Thomas. Optimizing for the future in non-stationary mdps. In International Conference on Ma-
chine Learning, pp. 1414-1425. PMLR, 2020.

Niangjun Chen. Online Algorithms: From Prediction to Decision. California Institute of Technol-
ogy, 2018.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary
markov decision processes: The blessing of (more) optimism. In International conference on
machine learning, pp. 1843—1854. PMLR, 2020.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Nonstationary reinforcement learning:
The blessing of (more) optimism. Management Science, 69(10):5722-5739, 2023.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
Shenghuo Zhu. Online optimization with gradual variations. In Conference on Learning Theory,
pp. 6-1. IMLR Workshop and Conference Proceedings, 2012.

Shushman Choudhury, Jacob P Knickerbocker, and Mykel J Kochenderfer. Dynamic real-time mul-
timodal routing with hierarchical hybrid planning. In 2019 IEEE Intelligent Vehicles Symposium
(1V), pp. 2397-2404. IEEE, 2019.

Nicolas Christianson, Tinashe Handina, and Adam Wierman. Chasing convex bodies and functions
with black-box advice. In Conference on Learning Theory, pp. 867-908. PMLR, 2022.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with graph neural
networks in google maps. In Proceedings of the 30th ACM International Conference on Informa-
tion & Knowledge Management, pp. 3767-3776, 2021.

Travis Dick, Andras Gyorgy, and Csaba Szepesvari. Online learning in markov decision processes
with changing cost sequences. In International Conference on Machine Learning, pp. 512-520.
PMLR, 2014.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9-26, 2022.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Experts in a markov decision process.
Advances in neural information processing systems, 17, 2004.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes. Mathe-
matics of Operations Research, 34(3):726-736, 2009.

Yingjie Fei, Zhuoran Yang, Zhaoran Wang, and Qiaomin Xie. Dynamic regret of policy optimization
in non-stationary environments. Advances in Neural Information Processing Systems, 33:6743—
6754, 2020.

11

https://www.carpro.com/blog/where-drivers-are-most-dependent-on-gps-systems
https://www.carpro.com/blog/where-drivers-are-most-dependent-on-gps-systems

Under review as a conference paper at ICLR 2025

Peng Guan. Topics in Online Markov Decision Processes. PhD thesis, Duke University, 2015.

Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in finance.
Mathematical Finance, 33(3):437-503, 2023.

Kevin Maik Jablonka, Philippe Schwaller, Andres Ortega-Guerrero, and Berend Smit. Leverag-
ing large language models for predictive chemistry. Nature Machine Intelligence, 6(2):161-169,
2024.

Hosagrahar V Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jig-
nesh M Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical challenges.
Communications of the ACM, 57(7):86-94, 2014.

Jiyan Jiang, Wenpeng Zhang, Shiji Zhou, Lihong Gu, Xiaodong Zeng, and Wenwu Zhu. Multi-
objective online learning. In The Eleventh International Conference on Learning Representations,
2023.

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial markov
decision processes with bandit feedback and unknown transition. In International Conference on
Machine Learning, pp. 4860—4869. PMLR, 2020.

Tiancheng Jin, Longbo Huang, and Haipeng Luo. The best of both worlds: stochastic and adversarial
episodic mdps with unknown transition. Advances in Neural Information Processing Systems, 34:
20491-20502, 2021.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvari. Online learning under delayed feedback. In
International conference on machine learning, pp. 1453-1461. PMLR, 2013.

Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-
case approach using model-based reinforcement learning. Advances in neural information pro-
cessing systems, 32, 2019.

Hyunin Lee, Ming Jin, Javad Lavaei, and Somayeh Sojoudi. Pausing policy learning in non-
stationary reinforcement learning. arXiv preprint arXiv:2405.16053, 2024.

Zengxiang Lei, Xinwu Qian, and Satish V Ukkusuri. Efficient proactive vehicle relocation for
on-demand mobility service with recurrent neural networks. Transportation Research Part C:
Emerging Technologies, 117:102678, 2020.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Yingying Li and Na Li. Leveraging predictions in smoothed online convex optimization via gradient-
based algorithms. Advances in Neural Information Processing Systems, 33:14520-14531, 2020.

Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics and predictions:
Algorithms and regret analysis. Advances in Neural Information Processing Systems, 32, 2019a.

Yingying Li, Aoxiao Zhong, Guannan Qu, and Na Li. Online markov decision processes with
time-varying transition probabilities and rewards. In ICML workshop on Real-world Sequential
Decision Making, volume 3, 2019b.

Weichao Mao, Kaiqing Zhang, Ruihao Zhu, David Simchi-Levi, and Tamer Basar. Near-optimal
model-free reinforcement learning in non-stationary episodic mdps. In International Conference
on Machine Learning, pp. 7447-7458. PMLR, 2021.

Davide Maran, Pierriccardo Olivieri, Francesco Emanuele Stradi, Giuseppe Urso, Nicola Gatti, and
Marcello Restelli. Online configuration in continuous decision space. In Sixteenth European
Workshop on Reinforcement Learning, 2023.

Gergely Neu and Viceng Gémez. Fast rates for online learning in linearly solvable markov decision
processes. In Conference on Learning Theory, pp. 1567-1588. PMLR, 2017.

12

Under review as a conference paper at ICLR 2025

Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation
and bandit feedback. Advances in Neural Information Processing Systems, 34:10407-10417,
2021.

Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning.
Advances in Neural Information Processing Systems, 33:1392-1403, 2020.

Gergely Neu, Andras Antos, Andras Gyorgy, and Csaba Szepesvari. Online markov decision pro-
cesses under bandit feedback. Advances in Neural Information Processing Systems, 23, 2010.

Gergely Neu, Andras Gyorgy, and Csaba Szepesvari. The adversarial stochastic shortest path prob-
lem with unknown transition probabilities. In Artificial Intelligence and Statistics, pp. 805-813.
PMLR, 2012.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Juan Perdomo, Tijana Zrnic, Celestine Mendler-Diinner, and Moritz Hardt. Performative prediction.
In International Conference on Machine Learning, pp. 7599-7609. PMLR, 2020.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
Advances in Neural Information Processing Systems, 31, 2018.

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Confer-
ence on Learning Theory, pp. 993-1019. PMLR, 2013.

Adrian Rivera Cardoso, He Wang, and Huan Xu. Large scale markov decision processes with
changing rewards. Advances in Neural Information Processing Systems, 32, 2019.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
processes. In International Conference on Machine Learning, pp. 5478-5486. PMLR, 2019a.

Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit feedback and
unknown transition function. Advances in Neural Information Processing Systems, 32, 2019b.

Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds
for stochastic shortest path. In International Conference on Machine Learning, pp. 8210-8219.
PMLR, 2020.

Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization
with bandit feedback. In International Conference on Machine Learning, pp. 8604—8613. PMLR,
2020.

Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated gradient
algorithm. In International conference on machine learning, pp. 1593-1601. PMLR, 2014.

Gita Taherkhani, Sibel A Alumur, and Mojtaba Hosseini. Robust stochastic models for profit-
maximizing hub location problems. Transportation science, 55(6):1322—-1350, 2021.

Kai Wang, Sanket Shah, Haipeng Chen, Andrew Perrault, Finale Doshi-Velez, and Milind Tambe.
Learning mdps from features: Predict-then-optimize for sequential decision making by reinforce-
ment learning. Advances in Neural Information Processing Systems, 34:8795-8806, 2021.

Xinglei Wang, Meng Fang, Zichao Zeng, and Tao Cheng. Where would i go next? large language
models as human mobility predictors. arXiv preprint arXiv:2308.15197, 2023.

Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented
online algorithms. Advances in Neural Information Processing Systems, 33:8042-8053, 2020.

Minghui Wu, Yafeng Yin, and Jerome P Lynch. Multiday user equilibrium with strategic commuters.
arXiv preprint arXiv:2212.12583, 2022.

Bo Yin, Shuai Zhang, and Yu Cheng. Application-oriented scheduling for optimizing the age of
correlated information: A deep-reinforcement-learning-based approach. IEEE Internet of Things
Journal, 7(9):8748-8759, 2020.

13

Under review as a conference paper at ICLR 2025

Peng Zhao, Long-Fei Li, and Zhi-Hua Zhou. Dynamic regret of online markov decision processes.
In International Conference on Machine Learning, pp. 26865-26894. PMLR, 2022.

Alexander Zimin and Gergely Neu. Online learning in episodic markovian decision processes by
relative entropy policy search. Advances in neural information processing systems, 26, 2013.

14

Under review as a conference paper at ICLR 2025

A APPENDIX A. NOTATION TABLE

Sets
T Time horizon
S Path set
L Layers
X State space
X! States on layer [
u State-action pairs
u' State-action pairs on layer
Utk State-action pairs from layer [to k&
Al(zx) Accessible actions for state
A~ (z) States with x as an accessible action
K Definition domain for occupancy measures
K’ Restricted definition domain for occupancy measures
U(z) State-action pairs for state x on layer [
Variables
z! State at layer [on day ¢
al Action at layer [on day ¢
Wi, Gt Occupancy measures on day ¢
wh(z), gl(z) Occupancy measures at state € X' on day ¢
pe(x,a) Probability of executing (z, a) on day ¢
Paramters
e Error bound of prediction received on layer [
A A constant term in regret for layer [
Functions
p(' |z, a) Transition kernel
ct(x,a) Cost function on day ¢
Ml(x,a) Cost prediction received at layer [on day ¢
it (alz) Policy implemented at layer [on day ¢
Ry Total regret
é(z,a) cumulative cost at layer / on day ¢
ce(x) Cost of state-action pairs for state x on day ¢
M(x) Cost predictions received on layer [for state-action pairs at state on
day ¢
M (z,a) cumulative prediction at layer [on day ¢

15

Under review as a conference paper at ICLR 2025

B APPENDIX B. ALGORITHM

Algorithm 2 Computation of cumulative costs

I: Input: Cost c € [0,1]"" "], occupancy measure {w!(z)},_, | | .

2: Qutput: The cumulative cost {6l}z:0 1
3:foril=L~-1,..,0do |

4: forz € X'do

5 for a € A(z) do

6

Compute the cumulative cost:

.. &(z.a) {c(x,a) + (w1 (a), @ a)) ifl#L - 1
c(z,a) otherwise

8: end for

9: end for

10: end for

Algorithm 3 Compute predictions of the cumulative cost

1: Input: Prediction M € [0,1]4"" "I, occupancy measure {o*@)},_, .., R

2: Output: Prediction of the cumulative cost M!
3:fork=L—-1,...,ldo
4: forz € X% do

5 for a € A(z) do
6: Compute the cumulative prediction:
. T (ra) = {M(x, W)+ ("), M @) itk £ L1
M(z,a) otherwise
8: end for
9: end for
10: end for

Algorithm 4 One-step update based on OOMD

1: Input: Occupancy measure g on some space U, cost ¢ € [0,1] lu |, learning rate 7

2: Output: Occupancy measure g™ on I
3: Compute g™ = arg min,, {n{c, w) + Dg(w, g)}

16

Under review as a conference paper at ICLR 2025

Algorithm 5 Decoupling Optimistic Online Mirror Descent with the doubling trick

1: Input: Learning rate n'(x) = n} for each sub-algorithm on state + € X', initial occupancy
measure g; = wy, initial prediction error £ (z) = 0 for every layer [and v € X"

2: Implement the policy reconstructed from w; and run Algorithmto compute M ! on each layer
3: Receive the full information on ¢;
4: fort =2,... T do
5: for/=L—-1,...,0do
6: for z € X' do
7: for a € A(z) do
8: Compute the accumulated cost:
4 {(x 0) + (wii(a), & (@) ik #AL-1
9: Ci1(z,a) = .
ci—1(z,a) otherwise
10: end for _
11 Update the accumulated prediction error El(z) = FE! |(x) + [|[M}_,(z) —
da@le
12: if ~ 5‘1) EY(z) > n‘%x) then
13: n'(z) =n'(x)/
14: El(z)=0
15: end if
16: Compute one-step update:
17: g}(x) = argmin,, {n'(x) (@ _, (), w) + Dr(w, g\, (2))}
18: end for
19: end for
20: for(=0,..,.L —1do
21: Receive the realized state x!
22: Receive the prediction from layer [to layer L, M}
23: Run Algorithm 3 with M/, {gF(z)} het....L—1.pcs 10 cOMpute cumulative prediction
M
24 for z € X' do
25: Compute the second update:
26: wl(z) = argmin,, {nl(m)<Mtl, w) + Dr(w, gi(x))}
27: end for
28: Implement the policy reconstructed from w!(x!)
29: end for
30: Receive the full information ¢
31: end for

C APPENDIX C. STOCHASTIC TRANSITION

So far, we have focused on deterministic transitions to better convey the main ideas. This section
extends the analysis to a general stochastic transition function P. In this case, if action a € A(x) is
taken at the current state z, the state will transition to 2’ with probability P(z'|z,a). To maintain
the layered structure, for z € X', 1 = 0,..., L — 1, we require that if P(2’|z,a) > 0, it must hold
that 2/ € X!. For state-action pair u = (x,a), for simplicity, we sometimes write the transition
function as P(2'|u) = P(a'|z, a).

With stochastic transitions, the domain of occupancy measure is redefined as:

K=<{w: Z wlu) =1, Z w(x,a) = Z w(u)P(z'|u),Vl € [L — 1],z € XT1 L (14)

ueU! acA(x) uelU!

While the primary algorithm (Algorithm [I)) remains unchanged, sub-algorithms for constructing
cumulative costs and predictions must be adjusted. These adjustments are detailed in Algorithm [f]
and Algorithm [7] respectively.

17

Under review as a conference paper at ICLR 2025

Algorithm 6 Computation of cumulative costs with stochastic transitions

I: Input: Cost ¢ € [0, 1]“"" I, occupancy measure {w'(2)},_,

..... L—1,zeX!

2: Output: The cumulative cost {El}l:O I
3: forl=L—1,...0do '
4. forx € X'do
5 for a € A(z) do
6: Compute the cumulative cost:

c(wa)+ Y Pslz,a)(w T (s),d(s)) ifl#AL—1
7: d(z,a) = sEXIHL

c(z, a) otherwise
8: end for
9: end for
10: end for

Algorithm 7 Compute predictions of the cumulative cost with stochastic transitions

1: Input: Prediction M € [0, 1]‘“1:“1', occupancy measure {gk(x)}k:l)

~ LL—1,zeXk

2: Output: Prediction of the cumulative cost M!
3:fork=L—-1,...,ldo
4. forx € XF do
5 for a € A(z) do
6: Compute the cumulative prediction:

. M(z,a)+ Y P(slz,a)(g""(s), M**(s)) ifk#L—1
7: M*(x,a) = seXI+

M(z,a) otherwise
8: end for
9: end for
10: end for

Compared with the deterministic transition case, the primary adjustment is in Line 7, where all pos-
sible transitions for each state-action pair (x, a) are now considered. In the deterministic transition
case (i.e., P(s|z,a) = 1if and only if s = a), these algorithms reduce to their previous formulations.

Building on Equation (6)), we can decompose the first component in a similar manner. The result is
summarized in the following proposition:

Proposition C.1 For all p € K°, we have:
T L1 T
dHeere—p)=>_> | D pl@a)| D (@ @),wi(z) - wx)) (15)

t=1 1=0 zeU! \acA(z) t=1

= ; ; _ p(z.a)
where ¢ is the cumulative costs computed by AlgorlthmE] and w(z,a) = S rcan, PED
Note that the decomposition does not have fundamental changes despite the new formulation of
cumulative costs by Algorithm [6] The following proposition bounds the error of the cumulative
predictions constructed by Algorithm|[7]

Proposition C.2 If the prediction error received on layer | (0 < 1 < L — 1) is bounded by ', the
prediction error of the cumulative cost is upper bounded by:

L—-1-1
1N} (2) = & (2)l|oo < (L= D)t +27 Y m? Vre (16)
m=1

Note that each sub-algorithm in Algorithm [T]maintains control over cumulative costs despite the re-
formulated computations. Therefore, transitioning from deterministic to stochastic transitions does
not fundamentally alter the regret analysis. We skip the proof because it is identical to Theorem[5.4]

18

Under review as a conference paper at ICLR 2025

23 In A+

Theorem C.3 The algOrithm with n= W
1=0 —he

obtains the following regret bound:

Ry <O ,|2 (Z_: ln|Xl+1|> (Z—:[(L — 1)61]2> T+6(L—1T). (17)
1=0 =0

For dynamically updated learning rates, the regret bounds can similarly be extended as before, which
is omitted in this paper.

D APPENDIX D. NUMERICAL EXAMPLES

D.1 EXPERIMENT SETTING

In this experiment, we utilize the METR-LA dataset, a comprehensive record of loop detector data
in the highway of Los Angeles County (Jagadish et al.,|2014) to simulate real-world conditions. We
utilize traffic speed data recorded every 5 minutes by 13 selected loop detectors, labeled A to M.
These detectors, viewed as nodes, are interconnected in a simplified network consisting of 14 links,
as shown in Figure[d The speed recorded at the start of each link serves as the constant travel speed
on the entire level. For instance, the speed recorded by detector B at 8:10 am dictates the travel
speed on link 2 from 8:10 to 8:15 am. Additionally, to accommodate nodes with multiple exiting
links, speeds from five auxiliary detectors (labeled v to z) are used to determine the speed on each
distinct outgoing link. Specifically, the speed recorded at node w, z, y, v, and z is used for link 1, 3,
8, 10, and 14, respectively.

By integrating the location data of each loop detector (Li et al.l 2017), we calculate the distance
between each node, thereby deriving the link travel time for every timestep. The dataset spans 4
months from March 1st, 2012 to June 30th, 2012. After preprocessing, there are 57 days with valid
data, establishing our experiment’s temporal scope.

717583
717492 1 2 S P
i e - - SR = e
A = — (o D B ~.4
Nga90 w PN ~4
N \") B Los Angeldh z& oY Glendale ~< qng
\ Wi 3 ol
\ EAG
\\ - 8 \ g 1
10 ~~ Griffth Park g AdamsSquare |1
& o G '5
\\ ! \ E\ "
\z
\\7 J /f ol F ?*MI
403 y
SN \(|LLAGE 7
N & N 7
~ N\ ’
: G /
1T A TN 9 \\® N 6
N Q!
JEMNE A
Fountain Ave B ~ G%\
West Hollywood ® 5 \\\}\;" IE \7
) HOLAYW00D \
12\ S | / coiH
Al e
H 794453 Lysipf TUSB O
‘rr.r,,F Beverly Blvd é ~ 4 13 14¢/ L]
X Mple o M // 75y
R \7'3?-:5
T

Figure 4: A simplified network in Los Angeles

This experiment focuses on a virtual vehicle routing from node A to H at 8:00 am daily, navigating
through three potential paths. Following our modeling approach, the routing problem is simplified to
a layered structure in Figure[5] Here, node L is added to complete the layered structure. Specifically,
state-action pairs C' — H and C' — H' represent paths C — D —FE—F —-G—-HorC—-1—-G— H,

19

Under review as a conference paper at ICLR 2025

respectively. The cost of each state-action pair refers to the corresponding travel time, which can be
calculated recursively from the travel times on the respective links.

Figure 5: Equivalent layered structure for the path-planning scenario

D.2 SCENARIOS AND BENCHMARKS

Experiment scenarios. This experiment evaluates the proposed algorithm under two distinct sce-
narios:

* Naturalistic environment: The instantaneous travel time, which displays the current travel
time on each link, is directly used as the prediction.

* Adversarial environment: Incorporates a simple attack strategy designed to contaminate
the predictions and make the environment more adversarial. The predictions between the
two best actions at each decision point are skewed: The attack adds f to the prediction
of the best-anticipated action, and minus S to the second-best one, where (3 represents the
attack level.

Benchmarks. For the greedy benchmark, at every decision point, the algorithm calculates the pre-
dicted travel time on all the potential route choices and selects the first link in the optimal predicted
route. For the OOMD benchmark, it implements a single OOMD algorithm (Rakhlin & Sridharan,
2013)), which can be seen as a pre-trip routing strategy that only utilizes the initial prediction at the
origin.

D.3 EXPERIMENT RESULTS

Naturalistic environment. In Figure [3{a)-(c), a fixed learning rate is applied across all sub-
algorithms. The DOOMD and OOMD algorithms are executed five times for each experiment to
eliminate the influence of the stochastic policy, with each solid curve representing the mean cost
difference and the shaded region indicating the standard deviation.

The blue and orange curves highlight a preference for higher learning rates, which can be attributed
to the reliable nature of naturalistic predictions. While these predictions may not always precisely
match the true costs, they reliably indicate the relative magnitudes, generally guiding the selection
toward the optimal decisions. A higher learning rate enhances the algorithm’s dependency on these
predictions, thus improving performance. Notably, at a learning rate of 5, DOOMD outperforms
the greedy benchmark, indicating its capability to handle naturalistic prediction errors. Further fine-
tuning, such as adjusting learning rates for different layers, might enhance performance, but it is
beyond this paper’s scope. Figure [3] also reveals that our algorithm greatly outperforms the static
benchmark. Note that it does not mean the sublinear bound we obtained in Theorem [5.8] is mean-
ingless as the naturalistic predictions do not represent the worst-case scenario. Additionally, the
real-time information contained in the updated predictions benefits the DOOMD algorithm, leading
to superior performance compared to the OOMD benchmark, as shown by the red curves.

Adversarial environment For these tests, we fix the learning rate at 5 while varying attack level
S from 1 to 5. Although increasing attack intensity affects the algorithm’s performance, its impact
is notably milder compared to that on the greedy benchmark. Remarkably, even with a moderate
attack level (8 = 2), our algorithm substantially outperforms the greedy benchmark, highlighting
its robustness in adversarial settings. Another interesting observation emerges at the highest attack
level, where the OOMD benchmark momentarily outperforms DOOMD. It is because under heavy

20

Under review as a conference paper at ICLR 2025

perturbations, leveraging updated prediction on Node C' is counterproductive. This suggests that in
highly compromised environments, a strategy that reduces reliance on incoming predictions could
be more effective, suggesting a potential shift in algorithm design when facing severely adversarial
environments.

APPENDIX E. PROOFS

PROOF FOR PROPOSITION[53.1]

We prove this proposition by induction on L. Let us start with an MDP with 2 layers, i.e. L = 1.
In this special case, &) = ¢; for all t = 1,...,T, and w!(xg) = ps(zo). Thus, the equivalency
immediately holds.

Assume that the proposition holds for all MDPs with L = K (K > 1). Consider any MDP with
L = K + 1, the expected cost difference at state z € X' on day ¢ can be expressed as:

Z ci(z,a™) [pt(;v,aK) —p(;v,aK)]

aKeA(x)
= Z ci(x, a™) | pi(z,a®) — w0l (z,a) Z p(z,a) (18)
aKeA(x) a€A(x)

+ Z ci(x,a®) |wf (z,a’) Z p(x,a) — p(z,a”)

aKeA(x) a€A(x)

The second component is equivalent to:

Z p(z,a) Z Ct(JC,aK) wtK(m,aK)— p(z,a

a€A(x) oK EeA(x) > ac Az P(T; @)

)

(19)
= X paa) | @), wf @) -),

acA(zx)

which reflects the contribution of the sub-algorithm on state x. Note that w(x) is always well-defined
as p € K°. Meanwhile, by leveraging definition and the flow conservation of p, the first component
is equivalent to:

Z ct(m,aK) Z pe(s,) wtK(x,aK)fwtK(x,aK) Z (s, x)

aKeA(x) s€A~1(x) s€ A~ (x)

= Z (pt(s,x)fp(s,x)) <Ct(x)aw1{((‘r)>v
seA-1(z)
(20)

which is equivalently credited to sub-algorithms on earlier layers. In this sense, ev-
ery state-action pair (s,z) € UKL shares (pi(s,z) — p(s,z)) (ci(x),wf(z)) from layer
K. Combining with its immediate contribution, the total cost difference on this pair
is (pe(s,z) — p(s,x)) (cr(s,z) + (cr(x), wf(x))), which exactly matches the cumulative cost
¢K =1 (s, x) computed by Algorithm

Let us treat layer K as the final layer by neglecting layer K + 1, and take 65 ~1 as the actual cost
on UK~ which does not influence any further previous layer. Due to the induction assumption, the
cost difference on the remaining K — 1 layers can be expressed as:

T

K—-1
Yo D pa)] D (@), wix) - w(x). 1)

=0 zelU! \acA(z) t=1

21

Under review as a conference paper at ICLR 2025

Moreover, as ¢;(x) = ¢ (z) holds for all z € XX by definition, adding Equation (19] .) yields the
total cost difference as

K T
Yo DD pl@a) | D (@ (@), wi(x) — w(@)). (22)
=0 zeU! \a€A(z) t=1

Thus, the proposition also holds for MDPs with L = K + 1. By induction, the proposition is proved.
O

PROOF FOR PROPOSITION [5.2]

To compute Mt , Algorlthmlrecurswely calculates the cumulatlve predictions M Ffromk =L -1
to k = [. Similarly, Algonthmrecurswely computes & fromk =L —1tok = l Let us prove the
following result by induction:
L—k—1
| MF(z) — & (@)]|oo < (L — k) + 21 m?, 1<k<L-1Vzexk (23)

m=

—

First, in the case when k = L — 1, we have ML~ (x,a) = M}(x,a) and ¢¥~ (2, a) = ¢;(x, a) for
all (z,a) € U~ by definition, thus the proposition immediately holds. Assume the proposition
holds when k = K + 1 (I < K < L — 2), thatis |M "' (z,a) — ¢X 1 (z,a)| < (L — K — 1)é' +
2 S E 572 2 holds for all (x,a) € UK+,
Then, for z € XX, recall that
&' (1,0) = ci(w, a) + (& (a), wi T (a)), (24)

M{* (x,0) = Mi(z,a) + (M (a), g (), (25)

which yields the following results for € X% and s € A(x):
|MtK(m> S) - E,{((CE, 8)|
= [M{(z,) + (M (s), g1 (5)) — eelz, s) — (& (), wfH (s))]

<ée+ Z wi (s, a) | MET (s, a) - &f(+1(s,a)‘+

acA(s) (26)
+) ME(s,a) [gf T (s,0) — w{T (s, a)]
acA(s)
L-K-2 ~
<(L—ke+2n Y m 1M) o llgt T (s) = wf (9
m=1

where the last inequality is due to Holder’s inequality. Note that w’!(s) minimizes
n(MF(s), w) + Dr(w, g/ (s)), hence

(M (s), w1 () + Dr(w ' (s), g1 (s)) < n(MFH(s), gf (), (27)
which leads to:

(M (s), g/ (5) = w1 (5)) > Dr(wy"(s),97 (). (28)
Leveraging Holder’s inequality and the strong convexity of R, we further have:
20| M (8) |0 2 [lgfH (5) — wiFH (5) - (29)
Hence, the prediction error is:
) L-K—2)
M (2,5) = & (2, 9)| < (L= R)e' + 20 Y m® + 20| M (5)]1%
LT;iQ (30)
<S(L-k)e+2np Y mP+2amL-K-1)>
m=1

where the last inequality is due to the upper bound of the cumulative predictions. Therefore, the
proposition holds for layer K. By induction, the proposition is proved. [

22

Under review as a conference paper at ICLR 2025

PROOF FOR THEOREM [5.4]

. .. 23 F o In At = . . .
For simplicity, denote = W thus n = 4/ %. According to Equation (6) and Proposi-
1=
tion[5.1] the algorithm’s regret can be written as:
L=1,) =
l I+1
Ry 9725 (L —)€ T+5Zm|x |
1=0 1=0
L-1
+) [20*(ZY? + 20 (L - 1)'Z T+ 6(L — 1)T
1=0

3D

2 <z_:1n|Xl+1|> (i[(L - z)d]?) T

L—-1
- Z {2:f 21)2\% 25(L — l)elZl} +0(L-1)T

As the middle term appears in the order of O(1), which does not affect the order of the regret bound,
the theorem is proved. [

PROOF OF THEOREM [3.6]

When different learning rates are employed across layers Lemmal5.3|should be revised accordingly:
T

1 Xl+1
S (@ (@), wh(x) — w ”Z\\Ml &I + M (32)

t=1

For simplicity, denote Z; = 2 Zm 141 (L —m)? =2 Zm 1 Lom, %, which is in
the order of O (\/;) According to Equation (H) and Proposmon the algorithm’s regret can be
written as:
L—1 1 1+1 L—1 1
n 112 In | X M =2
Ry < — (L =1 T+ — —E —e'E| T, 33
T_Z_O{Q[()e'] T+ m +l§:0 5=+ (L= DeZy (33)

where the last term is in the order of O(1). Substituting the value of 7' yields the regret bound in
the theorem. [J

PROOF FOR PROPOSITION

The proposition can be proved by applying the Cauchy-Schiwtz inequality on Equation and
Equation (12). O

PROOF FOR THEOREM [5.§]

As the doubling trick only decreases or maintains the learning rate, the prediction error of the cu-
mulative cost for any day ¢ can be upper bounded by:
L—1
1M} (z) = &(2)lloo < (L =D +2 Y n"(L—m)* Voe X' (34
m=Il+1

For each sub-algorithm on each layer [/, as shown by Lemma 12 in [Rakhlin & Sridharan| (2013)), if
its learning rate is never updated in the process, the regret is bounded by:

d 4ln|Xl+1|

é(x), wh(z) —w(x)) <
;<() (z) —w(@)) < i)

< 8V2(L —1)/In | X+1|T;

23

Under review as a conference paper at ICLR 2025

otherwise, the regret is upper bounded by:

T T
Y (@ (@), wi(w) —w(@) <8V2 | E | Y [|M] - &l|% | In |t
t=1 t=1 (36)
L-1
<82 |XHUT |(L— 1) +2 > ni(L— m)Q]
m=Il+1

As the cost is normalized to [0, 1], the prediction error naturally should satisfy e < 1. Therefore,
combining the two cases yields:

T

S (G (@), wh(@) — wia)
= (37)
L—1
< 8V2(L — e/ |XT 16y /2 [T | 7 (L - m)Z] .
m=Il+1
According to Equation (6 and Proposition[5.1] the algorithm’s regret can be written as:
L—1 L-1
Ry <> {8\/§(L —)\ /In [XHT +161/2In [XHT | Y pg (L — m)® }+6(L—1)T.
=1 m=Il+1
(38)

Omitting the middle term, which appears in the order of O(1) and does not influence the overall
order of the regret bound, we prove the theorem. [J

PROOF FOR PROPOSITION[CT]

We prove this proposition by induction on L. Let us start with an MDP with 2 layers, i.e. L = 1.
In this special case, &) = ¢; forall t = 1,...,T, and w!(xg) = ps(zo). Thus, the equivalency
immediately holds.

Assume that the proposition holds for all MDPs with L = K (K > 1). Consider any MDP with
L = K + 1, the expected cost difference at state x € X' on day ¢ can be splitter into the same two
components as in Equation (I8)), and the latter can be rewritten as Equation (I9).

Due to the flow conservation -, /-1 p(u)P(z|u) = 3, ¢ a¢,) P(@,), the former part can be
rewritten as:

> Ct(xvaK)K > pt(ﬂ)ﬂfﬂlﬂ)) wf(x7aK)—wf{(I7aK)< > p(U)P(IIU)ﬂ

aKeA(x) ucUK-1 weyK-1
= [> Plafu) (pi(u) p(u))] (ce(@), wi (),
weUK—1

(39)
In this sense, every state-action pair (s,a) € U ~! shares

P(a]s, a){ci(x), i (2)) (pi(s,a) = p(s,a)) . (40)

from state x in layer K. Therefore, combining with all other states in layer K and its immediate
contribution, the total cost difference on this pair is:

(Ct(s,a)Jr >, P(iﬂls»a)<ct(fﬂ)7wtK($)>> (pe(s,a) = p(s;a)), 41
zeXK

which exactly matches the cumulative cost Ef(-1 (s,) computed by Algorithm@

The subsequent analysis is the same as the proof for Proposition[5.1] which shows that the proposi-
tion also holds for MDPs with L = K 4 1. By induction, the proposition is proved. [J

24

Under review as a conference paper at ICLR 2025

PROOF FOR PROPOSITION

Similar to the proof for Proposition[5.2] let us prove the following result by induction:

L—k—1
[MF(2) = & (@)]loo < (L—k)e +27 Y m?, I<k<L-1Voex* (42)

m=1

First, in the case when k = L — 1, the proposition immediately holds. Assume the proposition holds
when k = K + 1(<K < L-—2),thatis |MFT(z,a) — e&T(z,0)] < (L - K — 1) +
27 S 52 2 holds for all (x,a) € UK,

Then, for z € XX, recall that

&K (z,a) = ci(z,a) Z P(s|z,a)(eE 1 (s), wET1(s)), (43)
seXK+1L

M (z,a) = M{(z,a) + Y P(slz,a) (M (s), g+ (s)), (44)
sEXK+1

which yields the following results for x € X% and a € A(x):

M (2,a) = & (2, a)]

<é+ Z P(s|x,a) Z wtKH(s,b)’]\;[tKH(s,b)—éf(H(s,b)‘ +

sEXK+1 beA(s)
TrK+1 K+1 K+1 (45)
+ Z P(s|z,a) Z MFH(s,0) |gf ™ (5,0) — w1 (s,b)]
sEXK+1 beA(s)
L—K—-2 _
< (L —k)e +2n Z m? + Z P(s|a, a) | M (8) oo g (5) — wi (9)]]1,
m=1 sEXKA+1

where the last inequality is due to Holder’s inequality. As in the proof for Proposition[5.2] we have:
20| M ($) oo 2 MlgfH (5) = wi () (46)

Hence, the prediction error is:
L-K-2
M (2,8) = & (2, 9) < (L—K)e +2n > mP>+2n Y Psle,a)| MI(s)]%
m=1 sEXE+1
L-K-2
< (L-k) +2n Z m? 4 2n(L — K — 1),

m=1

(47)

where the last inequality is due to the upper bound of the cumulative predictions. Therefore, the
proposition holds for layer K. By induction, the proposition is proved. [

25

	Introduction
	Related Works
	Online learning in MDPs
	Utilization of predictions

	Model
	Online MDP
	Online Linear Optimization

	Algorithm
	An Illustrative Example
	General Cases

	Regret Analysis
	Fixed learning rate
	Dynamically updated learning rates

	Numerical Examples
	Conclusion
	Appendix A. Notation Table
	Appendix B. Algorithm
	Appendix C. Stochastic Transition
	Appendix D. Numerical Examples
	Experiment setting
	Scenarios and benchmarks
	Experiment results

