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Abstract

While interpretability research has shed light on some internal algorithms utilized
by transformer-based LLMs, reasoning in natural language, with its deep contex-
tuality and ambiguity, defies easy categorization. As a result, formulating clear
and motivating questions for circuit analysis that rely on well-defined in-domain
and out-of-domain examples required for causal interventions is challenging. Al-
though significant work has investigated circuits for specific tasks, such as indirect
object identification (IOI), deciphering natural language reasoning through circuits
remains difficult due to its inherent complexity. In this work, we take initial steps
to characterize causal reasoning in LLMs by analyzing clear-cut cause-and-effect
sentences like "I opened an umbrella because it started raining," where causal inter-
ventions may be possible through carefully crafted scenarios using GPT-2 small.
Our findings indicate that causal syntax is localized within the first 2-3 layers,
while certain heads in later layers exhibit heightened sensitivity to nonsensical
variations of causal sentences. This suggests that models may infer reasoning by
(1) detecting syntactic cues and (2) isolating distinct heads in the final layers that
focus on semantic relationships.

1 Introduction

As transformer-based large language models (LLMs) scale up, their performance on diverse down-
stream tasks has shown remarkable improvement [Wei et al., 2022a, Srivastava et al., 2022]. These
models demonstrate remarkable capabilities across various tasks, from reasoning tasks such as math
problem solving and commonsense reasoning to question-answering that require knowledge synthesis
Kojima et al. [2022], Zellers et al. [2018], Wei et al. [2022b], Brown et al. [2020]. Understanding and
benchmarking these capabilities has become a prolific research area, as both technical communities
and the general public uncover new ways to harness LLMs. Despite these impressive abilities,
however, the mechanisms driving these capabilities remain largely opaque.

As model scales increase, interpreting their associated capabilities becomes increasingly challenging.
Nevertheless, notable advancements in interpretability have improved our understanding of these
models. Recent work in mechanistic interpretability takes a microscopic approach to analyze
models [Olah et al., 2020]. Many studies derive interpretable features and behaviors from attention
mechanisms using simplified toy models of transformers, revealing concepts like induction heads
and in-context learning [Olsson et al., 2022, Elhage et al., 2021]. Although these insights shed light
on interpretable, microscopic mechanisms like feature recognition and copying, they fall short in
explaining complex, high-level behaviors in realistic tasks. A major reason for this is that circuits
rely on causal interventions, which require clear distinctions between in-domain and out-of-domain
examples. However, many natural language tasks are complex and inherently ambiguous; for instance,
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the distinction between reasoning and non-reasoning text is often murky. This ambiguity complicates
the scaling of interpretability efforts to such macroscopic behaviors.

To begin to understand macroscopic reasoning behaviors of LLMs and link them to underlying
representations, we focus on the simplest cases of reasoning by breaking them down into components
like cause-and-effect relations. Specifically, we examine clear-cut causal phrases connected by
markers such as "because" and "so." We design scenarios that allow for causal interventions and
investigate whether model responses—such as patterns observed in attention maps and logit shifts in
the residual stream—can be traced to these semantic perturbations.

(a) Attention Analysis

(b) Activation patching with an example causal trace highlighted in orange

Figure 1: Overview of methods.

In this work, We analyze GPT-2’s ability to comprehend causal relationships in sentences with
clear, unambiguous causal connections. In these cases, we anticipate that introducing nonsensical
perturbations will reveal distinct causal circuits within the model. Our focus is on straightforward
instances where action verbs interact causally with specific settings (e.g., locations) or plausible
objects. We find that GPT-2 primarily captures syntactic structures within its first 2-3 layers. We then
perform causal interventions on the model’s semantic activations to identify which attention heads
contribute to task performance. Our results reveal that a small set of attention heads consistently
activates across subtasks. Future work could explore more complex causal scenarios or sentences
with ambiguous causal relationships and compare these findings with larger models to determine if
similar patterns emerge across different settings.
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2 Overview

We explore how LLMs understand reasoning by examining their responses to sentences with straight-
forward reasoning structures. We conduct our experiments with GPT-2 small, a 12-layer model with
decoder blocks containing self-attention layers with 12 attention heads and multilayer perceptrons
(MLPs) [Radford et al., 2019]. We recognize that humans comprehend reasoning in natural language
in two steps. First, by identifying syntactic cues associated with reasoning, such as phrases connected
by words like "because" and "so", we assess whether a sentence likely contains reasoning relations.
Next, we consider the semantic relationships within cause-and-effect phrases. Our experiments are
designed to reflect this two-step reasoning process. For syntactic analysis, we use a dataset of diverse
sentence structures (see Table 1). For semantic analysis, we modify cause-and-effect phrases in
templated sentences (see Table 2) to make the reasoning relations either coherent or nonsensical.

3 Where Is Syntax in a Transformer?

To locate syntactical knowledge in GPT-2, we analyze the model responses to a curated synthetic
dataset of causal sentences with varying syntax. We generated the dataset by prompting the language
models with multiple templates, as summarized in Table 1. We assess attention patterns based on the
causal phrases and delimiters, following an approach similar to the syntactical analysis performed by
Vig and Belinkov [2019] on BERT.

Setup and Methods The templates used to generate the syntactical dataset in Table 1
show the syntactical structure of the sentences in the form of [e1, · · · , en, d, c1, · · · cm] or
[c1, · · · cm, d, e1, · · · , en] where ci = tokens of a cause phrase, d = causal delimiter token, and
ej = tokens of an effect phrase. Respectively, the first template refers to "because" sentences and the
second template refers to "so" sentences. An example of such causal sentence is “Alice went to the
craft fair because she wants to buy handmade gifts." Then, we specifically analyze the attention maps
by calculating 1) how much attention is paid to the causal delimiters and 2) how much effect token
attends to cause tokens. We calculate 1) as

Pd =

∑m
j=1 αd,j∑n+m+1

i=1

∑n+m+1
j=1 αi,j

, (1)

where αi,j =
[
softmax

(
QKT /

√
dK

)
V
]
i,j

with query Q, key K, and value V matrices calculated
from the input tokens with attention weights with 1/

√
dK as a scaling factor calculated from the

dimension of the key matrix. We then calculate 2) proportion of cause-to-effect or effect-to-cause
attention similarly. As described in Figure 1a, we isolate the cause-to-effect or effect-to-cause
attention patterns by masking. The proportion of causal attention pattern can be expressed as

Pc =

∑n
i=1

∑m
j=1 αi,j∑n+m+1

i=1

∑n+m+1
j=1 αi,j

. (2)

With isolated causal attention map, we perform statistical analyses per head per layers.

3.1 Results

In order to analyze syntactical understanding of GPT-2, we first compute the proportion of attention
paid to causal delimiters, Pd, such as “because" and “so." Figure 4 summarizes the results, which
shows that the heads that pay attention to delimiters are spread across the layers with some concentra-
tions in the earlier layers of a transformer. On the other hand, Figure 2 shows that the heads that pay
particular causal attention, Pc, tend to be most concentrated in the first 2-3 layers.

4 Locating Semantics: Where Does GPT-2 Figure Out a Sandwich Is for
Eating, not Singing?

We also consider logit analysis at each layer of the model to analyze model behavior with causal
sentences. From the residual stream, we calculate the per token loss at each layer, which we define
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(a) Because (b) So (c) Therefore

(d) Resulting (e) Since

Figure 2: Proportion of Effect-to-Cause or Cause-to-Effect Attention.

as per layer loss. We can then hypothesize that the causal relations between two phrases in a
sentence would be reflected in the per-layer logit calculation. An illustrated example of per layer
loss calculation is shown in Figure 5. In this example, we take a causal sentence “we went shopping
because we were bored" and perturb it to make a non-causal sentence. We swap “bored" with “sleepy"
to obscure the causal relations between the two phrases of the sentence. In this work, we focus
on scenarios where semantic perturbations can occur through straightforward word substitutions.
Specifically, we examine sentences that involve an action verb in relation to a specific location or
an action verb acting on a particular object. Because these relationships are causally specific and
syntactically simple, we can easily distort the sentences to render them nonsensical, such as by
replacing a location or object. Our dataset is detailed in Table 2. We see that perturbing a sentence
this way is reflected in the per layer loss calculation. With this overall analysis in mind, we can then
decompose the residual contribution per attention heads, per neurons, and analyze their implications
for finding causal relations.

4.1 Activation Patching Results

We apply activation patching to contrastive pairs of causal sentences. As outlined in 1b, we first run
our model using an original causal sentence. Next, we introduce a semantic perturbation by replacing
the sentence with its contrastive pair and rerun the model. By tracking the activation differences that
result in changes to the final logit predictions, we pinpoint specific model components responsible for
distinguishing causal semantics from random semantics.

As shown in Figure 3, few distinct attention heads in the middle to last few layers contribute most
to the logit difference, especially layer 11 head 2, layer 10 head 0, and layer 8 head 8, light up in
most templates. We also note that in the residual stream, the “PERTUBRED” token significantly
influences predictions in the earlier layers, as shown in Figures 6, 7, 8, 9, and 10.

5 Conclusion

Our investigation suggests that the model demonstrates a syntactic focus in its initial layers, with
attention mechanisms primarily engaging at this stage. As processing deepens, a shift occurs, and
the model begins to handle reasoning tasks in a more semantic manner, particularly in the later
layers. These findings are evident in cases of clear-cut reasoning, where causal relationships can

4



(a) ALS template (b) ALB template (c) AOS template

(d) AOB template (e) AOB template

Figure 3: Attention head out activation patching results over all positions. O = Object, L = location,
S = So, B = Because

be perturbed with word substitutions. However, ambiguity in reasoning presents a more complex
challenge. Future work will aim to explore how the model adapts when faced with ambiguous or less
structured reasoning tasks, as understanding these scenarios could significantly enhance the clarity of
causal inference and model interpretability.

6 Related Work

Reasoning in LLMs LLMs have demonstrated remarkable “emergent" abilities for which they were
not explicitly trained, though mechanisms behind them are not well understood [Wei et al., 2022a,
Schaeffer et al., 2023, Lu et al., 2023]. Among them are LLMs’ ability to reason in many domains
from informal, commonsense reasoning [Kojima et al., 2022, Bhagavatula et al., 2019, Zellers et al.,
2018] to more formal domains such as scientific reasoning [Lu et al., 2022, Birhane et al., 2023]
and mathematical reasoning [Cobbe et al., 2021, Yuan et al., 2023]. Behavioral studies have focused
significant recent efforts in characterizing and benchmarking model capabilities [Srivastava et al.,
2022, Huang et al., 2023], but they are not well connected to the intermediate representations and
internal responses of a model. Our work provides first steps in connecting behavioral observations to
internal and mechanical model responses with curated tasks.

Attention Analysis and Mechanistic Interpretability Attention maps have been used for inter-
preting intermediate representations and behaviors of transformers since the transformer architectures
took off in language modeling [Jain and Wallace, 2019, Wiegreffe and Pinter, 2019, Clark et al., 2019,
Rogers et al., 2020]. Analyzing what the language models pay attention to when making predictions
can elucidate relevant features for particular labels. Recently, work in mechanistic interpretability
largely approximated transformers with simplified attention matrix multiplications to describe “cir-
cuits" [Elhage et al., 2021]. “Circuits" in LLMs can be thought of as information flow through a
transformer that make certain decisions or perform a particular task.
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Causal Tracing (Activation Patching) and Causal Intervention While many recent behavioral
characterizations of LLMs rely on post-hoc benchmarking, some interpretability methods actively
engage with model responses. For instance, counterfactual perturbations on input data have been
used to study subject-verb agreements in BERT by tracing model responses to particular input
representations [Ravfogel et al., 2021, Elazar et al., 2022]. First introduced by Meng et al. [2022],
activation patching causally traces the effect of perturbed input token on the activations throughout
the layers and eventually on the predicted output token. Activation patching has been used to locate
factual information in a transformer in the case of Meng et al. [2022], and it is frequently used for
identifying circuits in LLMs. Wang et al. [2022] used activation patching to identify a circuit that
performs the “indirect object identification task," in which a model predicts the name as object of an
action given the previous context.
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A Dataset

The datasets for syntactical and semantic analysis are generated using templates which are detailed in
Table 1 and in Table 2 respectively.

Template id Template Type

1
Alice went to <location> because she wanted to <verb> <object> B->A
Alice went to <location> and she <verb> <object> non-causal
Alice went to <random> because she <verb> <object> random

2
Alice went to <location> because <location> is a good place for <object> B->A
Alice went to <location> and <location> is <adjective> non-causal
Alice went to <location> because <location> is a good place for <random> random

3
Alice play <object> because she enjoys <verb> <object> B->A
Alice play <object> and <pronoun> is <adjective> non-causal
Alice play <object> because she enjoys <verb> <random> random

4
Bob and Chris made <object> so <pronoun> are <adjective1> and <adjective2> A->B
Bob and Chris made <object> while <pronoun> are <adjective1> and <adjective2> non-causal
Bob and Chris made <object> so <pronoun> are <random> and <adjective2> random

5
Bob and Chris got work to do so they are <adjective> to <verb> A->B
Bob and Chris got work to do but they are <adjective> to <verb> non-causal
Bob and Chris got work to do so they are <random> to <verb> random

6
Alice went to <location> because she wanted to <verb> <object> B->A
Alice went to <location> and she <verb> <object> non-causal
Alice went to <random> because she <verb> <object> random

7
Alice went to <location> because she wanted to <verb> <object> B->A
Alice went to <location> and she <verb> <object> non-causal
Alice went to <random> because she <verb> <object> random

8
Alice went to <location> because she wanted to <verb> <object> B->A
Alice went to <location> and she <verb> <object> non-causal
Alice went to <random> because she <verb> <object> random

9
Alice went to <location> because she wanted to <verb> <object> B->A
Alice went to <location> and she <verb> <object> non-causal
Alice went to <random> because she <verb> <object> random

10
Alice went to <location> because she wanted to <verb> <object> B->A
Alice went to <location> and she <verb> <object> non-causal
Alice went to <random> because she <verb> <object> random

Table 1: Additional Dataset Template for Exploratory Analysis

Id Template Task Type #

ALB John had to [ACTION] because he is going to the [LOCATION]. Action because←−−−− Location 6225

AOB Jane will [ACTION] it because John is getting the [OBJECT]. Action because←−−−− Object 7509

ALS Mary went to the [LOCATION] so she wants to [ACTION]. Location so−→ Action 4843

ALS-2 Nadia will be at the [LOCATION] so she will [ACTION]. Location so−→ Action 5600

AOS Sarah wanted to [ACTION] so Mark decided to get the [OBJECT] Action so−→ Object 6755

Table 2: Dataset Templates for Causal Relation Prediction

B Proportion of Attention Paid to Delimiters

Heatmap of the proportion of attention paid to causal delimiters such as "because" and "so" in GPT-2.
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(a) Because (b) So (c) Therefore

(d) Resulting (e) Since

Figure 4: Proportion of Attention Paid to Causal Delimiters.

C Logit Analysis with Semantic Perturbation

(a) Per layer logit analysis of causal sentence

(b) Per layer logit analysis of causally perturbed sentence

Figure 5: Logit analysis with per layer loss.
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D Activation Patching By Model Components

Figure 6: ALS template

Figure 7: ALB template
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Figure 8: ALS-with template

Figure 9: AOS template

Figure 10: AOB template
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