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Abstract

This paper describes a novel approach to non-parallel many-to-
many voice conversion (VC) that utilizes a variant of the con-
ditional variational autoencoder (VAE) called a perturbation-
resistant VAE (PRVAE). In VAE-based VC, it is commonly as-
sumed that the encoder extracts content from the input speech
while removing source speaker information. Following this ex-
traction, the decoder generates output from the extracted con-
tent and target speaker information. However, in practice,
the encoded features may still retain source speaker informa-
tion, which can lead to a degradation of speech quality during
speaker conversion tasks. To address this issue, we propose
a perturbation-resistant encoder trained to match the encoded
features of the input speech with those of a pseudo-speech gen-
erated through a content-preserving transformation of the input
speech’s fundamental frequency and spectral envelope using a
combination of pure signal processing techniques. Our exper-
imental results demonstrate that this straightforward constraint
significantly enhances the performance in non-parallel many-to-
many speaker conversion tasks. Audio samples can be accessed
at our webpage .

Index Terms: Voice conversion, variational autoencoder, per-
turbation resistance, representation learning, non-parallel

1. Introduction

Voice conversion (VC) is a technique that transforms the speech
of one speaker to sound like that of another while preserving
linguistic content. This technique finds applications in vari-
ous domains, including speaker conversion [1, 2], assistive sys-
tems [3, 4] aimed at overcoming speech and hearing impair-
ments, and pronunciation and accent conversions [5] for lan-
guage learning.

There are two frameworks for learning conversion models:
parallel VC and non-parallel VC. Parallel VC [2, 6] requires
a parallel speech corpus consisting of recordings of the same
text spoken by both the source and target speakers. While col-
lecting such a corpus can be time-consuming and expensive, it
has the potential to produce high-quality results since it allows
for direct optimization based on the target speech. In contrast,
non-parallel VC involves converting the source speech to the
target speech without explicitly aligning the source and target
utterances. This makes the task more challenging, as the model
has to learn the correspondence between the source and target
speech without any guidance from parallel data. However, non-
parallel VC has become an active research area in recent years
due to the availability of a large amount of non-parallel speech
data.

"http://www.kecl.ntt.co.jp/people/tanaka.ko/
projects/prvaevc/

There are two primary methodologies for developing non-
parallel VC: one involving text supervision and the other being
unsupervised. Non-parallel VC using text supervision [7, 8] is
also known as an approach cascading automatic speech recog-
nition (ASR) and text-to-speech synthesis (TTS). It utilizes a
phoneme recognizer to extract phonetic information from the
input speech, which is then fed to TTS to generate the output
speech. While this approach can produce high-quality conver-
sion results if the ASR works well, it requires paired data of
text and speech for training ASR and TTS, which can be a lim-
iting factor. In contrast, non-parallel VC without text supervi-
sion [9-11] typically employs techniques such as autoencoders
(AE) [12], variational autoencoders (VAE) [13], and generative
adversarial networks (GAN) [14]. This work focuses on non-
parallel VC based on a VAE-based system without text super-
vision, as it has the potential to utilize latent space to repre-
sent common hidden features of speech signals among different
speakers.

The VAE-based VC [15] employs a latent space typically
assumed to follow a Gaussian distribution to encode a set of
input acoustic features such as Mel-spectrogram. Then, the
speaker information is added to the encoded latent features in
the generation phase to obtain the output acoustic features. In
the decoder, the source speaker information is used to estimate
the reconstruction of the input acoustic features, while that of
the target speaker is used to estimate the converted acoustic fea-
tures. Although speaker conversion can be achieved by setting
the appropriate hyperparameters, such as the number of dimen-
sions of the model, various improvements have been proposed
to achieve better conversion. An example of such an approach is
cycle consistency [16], which ensures that the converted speech
can be converted back to its original form with the output being
as close to the original speech as possible. Another variation in-
volves incorporating an auxiliary classifier [10], which prevents
the decoder from disregarding the speaker information. Un-
fortunately, according to our initial experiments, these variants
still suffer from hyperparameter tuning of the model. There is a
large difference in conversion performance between small and
large model sizes. One possible reason is that the latent space
is not uniform across all speakers, and as the model size ex-
pands, it forms different distributions for each speaker to match
the training data better.

To address this issue, we propose a variant of the condi-
tional VAE called a perturbation-resistant VAE (PRVAE). In our
approach, a perturbation-resistant encoder is trained to match
the encoded features of the input speech with those of a pseudo-
speech. The pseudo-speech is generated by applying content-
preserving transformations to the input speech using pure signal
processing techniques. This work defines content-preserving
transformations as linear transformations of fundamental fre-
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Figure 1: System overview of VAE-based VCs. Black solid and
dashed arrows in (a)-(e) indicate the reconstruction and con-
version flow. The solid red arrow indicates the loss calculation.

quency and spectral envelope without changing the linguistic
content. Our experimental results demonstrate that introducing
perturbation resistance successfully overcomes the unstable be-
havior caused by changes in model parameters. This finding
proves that increasing the model size can improve performance,
as shown in subjective and objective evaluations.

2. Conventional VAE-Based VC

The system overview is shown in Fig. 1. We only require the
speech waveform and the corresponding speaker ID as the train-
ing data.

As the speech parameters, we extract 80-dimensional Mel-
spectrogram features over a range of 80-7600 Hz from the given
source speech signals sampled at 16 kHz. The requirements for
short-time Fourier transform are the same as reported in [17];
a Hanning window, 64 ms frame length, eight ms frameshift,
and 1024-point fast Fourier transform. Instead of using clas-
sical vocoders such as STRAIGHT [18] or WORLD [19],
which were used in some conventional methods, we used HiFi-
GAN [20], a neural vocoder, to synthesize speech waveforms.
To ensure a fair comparison of all methods, in our experiment,
we 1) extracted the Mel-spectrogram from the speech wave-
form, 2) converted the Mel-spectrogram using each method, and
3) finally generated the speech waveform using HiFiGAN.

2.1. Conditional VAE (CVAE)

A conditional variant [21] of VAE [13] is a neural network
model that includes an encoder network and a decoder network.
The encoder network produces parameters for the conditional
distribution g4 (z|x, ¢) of a latent space variable z, given data
x and the attribute codes c. In contrast, the decoder network
generates parameters for the conditional distribution pg (x| z, ¢)

of the data @, given the latent space variable z and the attribute
codes c. The log marginal distribution of the data x, given the
attribute codes c, is given as:

log ps(z[c) =L£(0, ¢) + KL[gs (2], c)|p(2)], (1)

where KL[:|-] denotes the Kullback-Leibler (KL) divergence.
This implies we can minimize the KL divergence between
ge(z|x, c) and p(z) by maximizing £(0,¢) with respect to
0 and ¢. A typical way of modeling p(z), ¢s(2|z,c), and
po(x|z, €), is to assume Gaussian distributions.

In the conditional VAE (CVAE) based VC [15], the encoder
and decoder networks are designed to generate the sequences of
the means and logarithmic variances of g4 and pg, given the
Mel-spectrogram s and the speaker codes cs of the source
speaker:

(1. ;log a'is] =Encoder(zs, cs), )
[/J,m“;log aiss] :Decoder(uzs + 0., O€cs), 3)

Tss =g, T Oz, OF, (€]

where €, [;], and ® denotes Gaussian noise, concatenation

along the channel dimension, and element-wise manipulation.
In the conversion process at the test time, given the speaker
codes c; of the target speaker, the converted Mel-spectrogram
¢ is generated as follows:

[umst;log aist] =Decoder(u,, +02, ©€,ct), (5)
Tst =g, T Oz, OE€. (6)

Finally, the objective function Lcvae to be minimized is
given as,

Accvac :£Z + £I‘CC7 (7)
L, =FkLp (N(/'Lazss ) o'iss)l'/\/-(07 I))7 ) 3)
Lrec =FaNLL (me(u’zSSleg Uizc.s.e))7 (9)

where N/ (+), Fonww, and Fxrp denote a Gaussian distribution,
a Gaussian negative log-likelihood loss function, and a KL di-
vergence loss function, respectively. As shown in Fig. 1(a),
the well-known KL loss for the latent space variable and re-
construction loss for the data are Egs. (8) and (9).

2.2. Beta variant

Beta-VAE [22] is a variant of the VAE model that emphasizes
the disentanglement of the latent space variables. In a typical
VAE, the latent space variables z follow a multidimensional
Gaussian distribution. However, the constraint may be weak-
ened due to the balance between the KL divergence term £, and
the reconstruction error Lyec in the objective function, Eq (7).
Beta-VAE strengthens the constraint by increasing the weight
AbetaOf the KL term to more than 1, promoting independence
and disentanglement of the latent space variables across dimen-
sions (Fig. 1(b)). However, this weakens the importance of
the reconstruction error, potentially resulting in blurred recon-
structed data. The objective functions of Beta-VAE to be mini-
mized is given as,

£+bcta - )\bctaﬁz + ﬁrec- (10)

Note that [23] uses Beta-VAE to model both speaker and con-
tent information in the encoder. In contrast, we explicitly incor-
porate speaker information using speaker IDs to compare with
other methods under the same conditions.



2.3. Cycle-consistent variant

CycleVAE [16] is a variant of the VAE model that takes into
account not only the reconstruction flow but also the conver-
sion flow in the parameter optimization (Fig. 1(c)). As shown
in Eq. (7), the original CVAE objective function consisted of
flows to reconstruct the input & and did not consider the actual
conversion process. To address this problem, [16] indirectly
optimizes the conversion flow by recycling the converted fea-
tures x,; back into the system to obtain corresponding cyclic
reconstructed features xs:s that can be directly optimized, as
follows:

[qut;log aist] =Encoder(xst, ¢:), (11)
[p,wsts;log o-ist,s] =Decoder(u,,, + 0z, O€,cs). (12)

Since VAE is trained using unaligned speech data, the ground
truth Mel-spectrogram for xs; does not exist in the training
data. However, since s is expected to be the input Mel-
spectrogram s, the losses £, and L., can still be calculated,
as follows:

[/; =FKkLD (N’(umst’aist)L/\/’(O’I))’ (13)
'C:"ec :FGNLL (msv'/\/’(”’zstsvlog aists))~ (14)
This cyclic flow can be continued by using the cyclic recon-
structed features xs:s as input s for the next cycle. The ob-
jective functions L. of CycleVAE to be minimized is given
as,

1
Nee

£+cc = Z([fz + [frec + ﬁlz + ﬁ;ec)' (15)

Nee

where N.. indicates the total number of cycle.

2.4. Auxiliary classifier variant

ACVAE [16] is a variant of the VAE model that considers both
the reconstruction flow and the conversion flow in the parame-
ter optimization process (Fig. 1(d)). Unlike [16], ACVAE em-
ploys information-theoretic regularization during model train-
ing to ensure that the information contained in the attribute class
label is preserved in the conversion process. In a standard Cy-
cleVAE, the encoder and decoder networks can still disregard
the attribute class labels. This results in limited control over
the speech characteristics during testing, potentially leading to
simple reconstruction without conversion.

To address this issue, ACVAE introduces an auxiliary clas-
sifier that takes the Mel-spectrogram x5, &ss, and s; as input
and estimates the logits y, vy, and y, of the speaker posteri-
ors as output, as follows:

y, =Classifier(x,), (16)

Y, Yg =Classifier(xss), Classifier(zse).  (17)

This enables us to optimize the conversion flow directly by

learning the encoder, decoder, and classifier. The objective
functions £, of ACVAE to be minimized is given as,

£+ac :Ecvae + ‘CClSrcal + [fclsmke, (18)

Letsyer =Fer(Ys, hs), (19)

Latsge =0.5% (Fer(Y s bs) + For(yy he)). (20)

where Fcg, hs, and h; denote a cross-entropy loss function,

the index of the source speaker, and that of the target speaker,
respectively.
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Figure 2: Comparison of perturbation resistance losses on con-
ventional VAE-based voice conversions and the proposed. Solid
and dashed lines indicate the results on the small and large
models, respectively.

3. Proposed Method
3.1. Concept

It is a common assumption that the encoder in voice conver-
sion extracts the content from the input speech while eliminat-
ing any information about the source speaker. For example, in
cascading ASR and TTS approaches, ASR, which can be re-
garded as the encoder, extracts context information, a speaker-
independent feature. The conventional VAE-based VCs intro-
ducing speaker codes are also assumed that the latent space vari-
ables, the output of the encoder, are the speaker-independent
features expected to represent phonetic information [16]. After
this extraction, the decoder uses the extracted content and target
speaker information to generate the output Mel-spectrogram.

As a preliminary experiment to confirm the speaker inde-
pendence of latent space variables, we calculated the KL di-
vergence between the conditional distribution obtained when a
certain Mel-spectrogram was given to the encoder and the con-
ditional distribution obtained when a Mel-spectrogram of the
pseudo-speech was given to the encoder, in which the mean of
fundamental frequency (Fp) was randomly changed. Since the
role of the encoder is to remove speaker bias, the KL divergence
mentioned above should be close to zero, as the difference in
the mean of Fp can be considered a form of speaker bias. How-
ever, as shown in Fig. 2, the results of the KL divergence are
quite large, indicating that the encoded features may still retain
source speaker information. This could lead to a degradation of
speech quality during speaker conversion tasks. To address this
issue, we propose a training framework to learn less speaker-
dependent features as the latent space variables without text su-
pervision.

3.2. Perturbation-resistant VAE

To learn a speech representation that is less speaker-dependent
in an unsupervised manner, pseudo-speech that manipulates
speaker biases such as the mean value of Fj and vocal tract
length is created and used for training. Inspired by [24], we use
WOLRD analyzer Fina and synthesizer Fiy, [19] to extract Fy
f .. spectral envelopes e, and aperiodicities as from the origi-
nal speech ws, and generate waveforms of pseudo-speech w,



from manipulated acoustic features, as follows:
.f57637a.s :Fana(ws)7 (21)
Wm :Fsyn(FfO(.fsyaf)aFenv(657ae)aa5)7 (22)

where Fyo, af, Fenv, and a. represent a function that random-
izes the mean of Fy, a target mean value for Fp, a frequency
warping function [25], and a warping factor, respectively.

After generating the pseudo-speech, we extract the Mel-
spectrogram ., from w,, similarly to the extraction of x,
from w,. Unlike the conventional VAE-based VCs, a speaker
encoder is introduced to obtain the speaker codes ¢, from the
Mel-spectrogram of the pseudo-speech. Then, a set of the pa-
rameters, pt, and o, , for the conditional distribution of the
latent space variable z,, is generated, as follow:

¢ = SpeakerEncoder(z, ), (23)
[sz ; log aim] = Encoder(zm, cm). (24)

Our goal is to train the encoder to match the two distributions
of the latent space variables zs and z,,. Hence, we define the
perturbation resistance loss as follows:

Lor = Fxio(N(p,,,05,)IN (1, ,02,.))- (25)

Tm

The final objective function £ of PRVAE is given as,
L= [:Cvae + >\pr£pr, (26)

where Ap, is a regularization parameter, which weighs the im-
portance of the perturbation-resistant regularization.

4. Experiments
4.1. Implementation details

As detailed in Table 1, CVAEs were designed using long short-
term memory (LSTM) [26]. To examine the conversion perfor-
mance for different model sizes, we used two types of CVAEs
in the experiment: Small and Large. Therefore, we evaluated 10
VC systems: CVAE-Small, 4 variants of CVAE-Small (+beta:
beta, +cc: cycle-consistent, +ac: auxiliary classifier, and +pr:
perturbation-resistant), CVAE-Large, and 4 variants of CVAE-
Large (+beta, +cc, +ac, and +pr). In the CVAE-Small, 4-
layer LSTMs with 128 hidden units were used for the encoder
and decoder, respectively. In contrast, CVAE-Large uses a 2-
layer LSTM with 512 hidden units, and the second layer of the
stacked LSTMs has a residual connection. Speaker vectors were
concatenated in all layers.

The model was trained for 100k iterations using the Adam
optimizer [27] with a mini-batch size of 16. The learning rate,
the first and second moments decay rates (31, and B2 were set to
0.001, 0.9, and 0.99, respectively. To train the small-sized mod-
els, we applied the KL term annealing technique [28], which
gradually increases the weight of the KL divergence term in
the objective function during training. This technique has been
shown to improve the quality of generated samples and prevent
the model from ignoring the latent variables. After experiment-
ing with different values (2, 3, 5, and 10), we set A\g to 3. We
also used N, of 3, similar to the setting in [16]. The settings
for the auxiliary classifier are the same as those in [16]. Af-
ter experimenting with different values (1, 10, and 100), we set
Apr to 10. As for the hyperparameters oy and o, we randomly
sampled from uniform distributions of [90, 300] and [0.9, 1.1]
for each training iteration, respectively. As the speaker encoder,
we used 2-layer LSTMs with 128 hidden units, followed by
a 32-dimensional linear projection to obtain a 32-dimensional
speaker vector.

Table 1: Model architecture summary for Small and Large VAE
models.

Small Large
Projection dim. 128 512
layer 4 2
Encoder LSTM dim. 128 512
residual v
Projection dim. 16 x2 32x2
Projection dim. 128 512
layer 4 2
Decoder LSTM dim. 128 512
residual v
Projection dim. 80 x 2
Num. of Params 1.2M 8.8M

4.2. Other experimental conditions

We conducted experimental evaluations using a phonetically
balanced Japanese speech dataset [29] consisting of utterances
by six professional male speakers and four professional female
speakers. The speech was recorded in a quiet room with min-
imal reverberation, and the silent section was removed using
annotation labeled by experts. To train VC models, we used
450 sentences (speech section of around 0.5 hours) per speaker.
To evaluate the performance, we used 53 sentences per speaker.
All models were trained on many-to-many condition, which is
10-speaker input and 10-speaker output.

As the objective evaluation metrics, we used Mel-cepstral
distortion (MCD) [dB] [30], a correlation coefficient of loga-
rithmic Fy (FpCorr), and character error rate (CER) [%]. We
used dynamic time warping [31] to get the alignment between
the converted sample and the reference sample. To calculate
the MCD and FyCorr, we extracted 0-24 order Mel-cepstrum
and Fp from the raw speech and the converted speech synthe-
sized by the neural vocoder. The CER was calculated by the
Transformer-based ASR model trained on the corpus of spon-
taneous Japanese [32], provided by ESPnet [33]. Before calcu-
lating the CER, we converted kanji to hiragana to eliminate any
variation caused by kanji or hiragana.

As the subjective evaluation of sound quality, we conducted
a 5-scaled mean opinion score (MOS): 5 for excellent, 4 for
good, 3 for fair, 2 for poor, and 1 for bad. To confirm speaker
similarity, we also conducted a 4-scaled preference test (PT): 4
for same (sure), 3 for same (not sure), 2 for different (not sure),
and 1 for different (sure). Ten native Japanese speakers partici-
pated in each subjective evaluation. Each system was evaluated
over 270 times.

4.3. Results for generalization of latent space variables

To verify the degree of speaker independence of the latent space
variables, we calculated the differences between the reconstruc-
tion error and the conversion error for each method, which are
shown in the second row of Table 2 (denoted by (-)). If the latent
space features are less speaker-dependent, the difference be-
tween the reconstruction and conversion errors should be small.
Conversely, if the difference is large, the latent space variables
contain speaker information, which may have caused the con-
version error to be larger.

The objective evaluation results show that the proposed



Table 2: Objective evaluation results. The lower the MCD and
CER, the better the performance. The higher the FoCorr, the
better the performance. The values following + indicate con-
fidence intervals. The first terms of the second row for each
method represent the reconstruction errors on the evaluation
dataset. The second terms (represented by (-)) indicate differ-
ences between the reconstruction and conversion errors. The
confidence intervals of the reconstruction error is omitted for
brevity.

System MCD | FoCorr CER |

CVAE-Small 6.76 £0.04 0.73+0.01 7.54+0.27
5.20 (1.56) 0.84 (0.10) 5.3 (2.2)

+beta | 6.624+0.03 0.72+0.01 13.54+0.35
5.81 (0.81) 0.82 (0.10) 104 (3.1)

+cc 6.78£0.04 0.724+0.01 10.6+£0.32
5.40 (1.38) 0.84 (0.12) 7.1 (3.5)

+ac 6.75+0.04 0.72+0.01 7.2+0.26
5.18 (1.57) 0.85 (0.13) 4.9 (2.3)

+pr 6.57 £0.03 0.73+0.01 9.2+0.29
(ours) | 5.79 (0.78) 0.83 (0.10) 79 (1.3)

CVAE-Large 745 +£0.04 0504+0.01 17.6+£0.52
4.58 (2.87) 0.86 (0.36) 3.5 (14.1)

+beta | 6.944+0.04 0.62+001 12.6+0.34
5.50 (1.44) 0.85 (0.23) 6.8 (5.3)

+cc 7244+0.04 059+0.01 143+042
5.02 (2.22) 0.85 (0.26) 4.5 (9.8)

+ac 721 £0.04 0.60+0.01 135+£043
4.79 (2.42) 0.86 (0.26) 3.8 9.7)

+pr 6.52 £0.03 0.73+0.01 6.2+0.23
(ours) | 5.52 (1.00) 0.84 (0.11) 4.8 (1.4)

Re-synthsized

N

N
N

Mean opinion scores
w

CVAE-Small

£+ pr(ours)
(%]
I
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Figure 3: Subjective evaluation results on sound quality. The
higher the value, the better the sound quality. The error bars
denote 95% confidence intervals. Re-synthesized indicates the
speech synthesized from the ground-truth Mel-spectrogram.

method (+pr) has the smallest difference, indicating that the
latent space variables are more generalized. Moreover, when
the model size is increased, the proposed method improves the
reconstruction and conversion errors compared to the case with
a smaller model size. In contrast, the conventional method has a
smaller reconstruction error but a larger conversion error. These
findings support the claim that the proposed method can extract

A Same (sure)
[ Same (not sure)

[ Different (not sure)
1 Different (sure)

100

Percentage [%]

—
©n
=
>
o

CVAE-Small
3 CVAE-Large

Syste

Figure 4: Subjective evaluation results on speaker similarity.
The higher the rate of Same, the better the performance.

less speaker-dependent features as the latent space variables.

4.4. Results of subjective listening tests

Next, the results of the perceptual evaluation were shown in
Fig. 3 and 4. From these results, the proposed method (+pr)
with the large-sized model is the best system for sound quality
and speaker similarity. Similar to the objective experimental re-
sults, the difference between the methods is smaller when the
model size is small. However, as the model size increases, the
conventional method deteriorates while the proposed method
improves. Moreover, while the beta variant (+beta) performs
less well than other methods when the model is compact, it out-
performs other conventional methods when the model is large.
These results suggest that constraints on latent space variables
have a certain effect.

5. Conclusions

This paper described a non-parallel many-to-many voice con-
version method based on a perturbation-resistant variational
autoencoder. We introduced an encoder trained to match the
encoded features of the input speech with those of a pseudo-
speech generated through a content-preserving transformation
of the input speech’s fundamental frequency and spectral enve-
lope. Experimental results showed that the proposed encoder
enabled us to extract less speaker-dependent features, leading
to the best performance in subjective evaluations. We plan to
extend the proposed speech representation technique to other
downstream tasks, such as automatic speech recognition and
source separation.
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