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Abstract

All living languages are continually undergo-001
ing changes, and the mechanisms that under-002
lie language change are still a matter of de-003
bate. In this work, we approach language004
change through the lens of causality in order005
to model not only how various distributional006
factors associate with language change, but007
how they causally affect it. In particular, we008
study slang, which is an informal language009
that is typically restricted to a specific group010
or social setting. We analyze the semantic011
change and frequency shift of slang words and012
compare them to those of standard, nonslang013
words. With causal discovery and causal in-014
ference techniques, we measure the effect that015
word type (slang/nonslang) has on both seman-016
tic change and frequency shift, as well as its017
relationship to frequency, polysemy and part018
of speech. Our analysis provides some new in-019
sights in the study of semantic change, e.g., we020
show that slang words undergo less semantic021
change but tend to have larger frequency shifts022
over time.1023

1 Introduction024

Language is a continuously evolving system, con-025

stantly resculptured by its speakers. The forces that026

drive this evolution are many, ranging from pho-027

netic convenience to sociocultural changes (Blank,028

1999). In particular, the meanings of words and the029

frequencies in which they are used are not static,030

but rather evolve over time.031

Several previous works, in both historical032

and computational linguistics, have described di-033

achronic mechanisms, often suggesting causal re-034

lationships. For example, semantic change, i.e.035

change in the meaning of a word, has both been036

suggested to cause (Wilkins, 1993; Hopper and037

Traugott, 2003) and be caused by (Hamilton et al.,038

2016) polysemy, while also part of speech (POS)039

1Code will be published with the camera-ready version.

Figure 1: We observe very different change dynamics
for the slang word “duckface” and the nonslang word
“inclusive”. “Inclusive” has acquired a new meaning,
reflected in a high semantic change score of 0.77 as
measured by our model. “Duckface” undergoes little
semantic change, scored 0.39 by our model, while its
usage frequency varies greatly.

has been implied to be a causal factor behind se- 040

mantic change (Dubossarsky et al., 2016). How- 041

ever, none of these studies perform a causal anal- 042

ysis to verify these claims of causal relationships. 043

Causality allows us to not only infer causal effects 044

between pairs of variables, but also model their 045

interactions with other related factors. 046

In this work, we focus on the linguistic evolution 047

of slang, defined as colloquial and informal lan- 048

guage commonly associated with particular groups 049

(González, 1998; Bembe and Beukes, 2007), and 050

use a causal framework to compare the change 051

dynamics of slang words to those of standard lan- 052

guage. More specifically, we compare the semantic 053

change as well as the changes in frequency, i.e. 054

frequency shift, over time between slang words 055

and standard, nonslang words. We learn a causal 056

graphical model (Spirtes et al., 2000) to assess how 057

these variables interact with other factors they have 058
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been previously found to correlate with, such as059

frequency, polysemy and part of speech. Having060

discovered a graph, we proceed to use do-calculus061

(Pearl, 1995) to evaluate the causal effects of a062

word’s type (slang/nonslang) on semantic change063

and frequency shift.064

Semantic change is measured using the average065

pairwise distance (APD) (Sagi et al., 2009; Giu-066

lianelli et al., 2020) between time-separated con-067

textualized representations, which were obtained068

from a Twitter corpus via a bi-directional language069

model (Liu et al., 2019). Our metric builds on re-070

cent semantic change literature (Schlechtweg et al.,071

2020), with novel additions of dimensionality re-072

duction and a combined distance function.073

By deploying a causal analysis, we establish that074

there is not just an association, but a direct effect of075

a word’s type on its semantic change and frequency076

shift. We find that a word being slang causes it to077

undergo slower semantic change and more rapid078

decreases in frequency. To illustrate, consider the079

slang word “duckface” and the nonslang word “in-080

clusive” as shown in Figure 1. Our analysis also081

sheds light on a couple of previous findings in the082

diachronic linguistics literature. We find support083

for the S-curve theory (Kroch, 1989), showing a084

causal effect from a word’s polysemy to its fre-085

quency. This relationship is evident in the increase086

in frequency that the word “inclusive” displays in087

Figure 1 after it develops a new meaning (Merriam-088

Webster, 2019). However, similar to Dubossarsky089

et al. (2017), we do not find a causal link to seman-090

tic change from frequency, polysemy or POS as091

suggested in previous works (Hamilton et al., 2016;092

Dubossarsky et al., 2016).093

In summary, our main contributions are three-094

fold: (i) we introduce tools from the causality lit-095

erature in order to analyze change dynamics in096

language; (ii) we propose a semantic change met-097

ric using contextualized word representations and098

(iii) we discover some interesting insights about099

slang words and semantic change – e.g. showing100

that the change dynamics of slang words are dif-101

ferent from those of nonslang words, exhibiting102

both more rapid frequency fluctuations and less103

semantic change.104

2 Related Work105

2.1 Semantic Change106

A typical method for measuring semantic change107

is by comparing word representations across time108

periods (Gulordava and Baroni, 2011; Kim et al., 109

2014; Jatowt and Duh, 2014; Kulkarni et al., 2015; 110

Eger and Mehler, 2016; Schlechtweg et al., 2019). 111

With this approach, previous research has proposed 112

laws relating semantic change to other linguistic 113

properties. For instance, Dubossarsky et al. (2016) 114

find that verbs change faster than nouns, whereas 115

Hamilton et al. (2016) discover that polysemous 116

words change at a faster rate, while frequent words 117

change slower. However, the validity of some of 118

these results has been questioned via methods of 119

case-control matching (Dubossarsky et al., 2017), 120

highlighting the influence of word frequency when 121

modeling change (Hellrich and Hahn, 2016). Such 122

analyses can indeed help give stronger evidence for 123

causal effects. In this work we take a methodologi- 124

cally different approach, considering observational 125

data alone for our causal analysis. 126

The aforementioned approaches rely on fixed 127

word representations. Limited by assigning one 128

vector to each word, fixed embeddings may fail 129

to capture polysemous words properly, as well 130

as certain contextual nuances. More recent ap- 131

proaches (Hu et al., 2019; Giulianelli et al., 2020) 132

have highlighted the limitations of using fixed rep- 133

resentations and proposed semantic change mea- 134

sures based on contextualized word embeddings 135

(Peters et al., 2018; Devlin et al., 2019). This has 136

lead to a further stream of work on semantic change 137

detection with contextualized embeddings (Mart- 138

inc et al., 2020; Kutuzov and Giulianelli, 2020; 139

Schlechtweg et al., 2020; Montariol et al., 2021; 140

Kutuzov et al., 2021; Laicher et al., 2021). We 141

build upon this line of work and extend them using 142

PCA and a combination of distance metrics. 143

2.2 Characterization and Properties of Slang 144

Slang is an informal, unconventional part of the 145

language, often used in connection to a certain 146

setting or societal trend (Dumas and Lighter, 1978). 147

It can reflect and establish a sense of belonging to a 148

group, (González, 1998; Bembe and Beukes, 2007; 149

Carter, 2011) or to a generation (Citera et al., 2020; 150

Earl, 1972; Barbieri, 2008). 151

Mattiello (2005) highlights the role slang plays 152

in enriching the language with neologisms, and 153

claims that it follows unique word formation pro- 154

cesses. Inspired by this, Kulkarni and Wang (2018) 155

propose a data-driven model for emulating the gen- 156

eration process of slang words that Mattiello (2005) 157

describes. Others have described the ephemeral- 158

2



ity of slang words (González, 1998; Carter, 2011),159

although this property has not been previously ver-160

ified by computational approaches.161

3 Causal Methodology for Change162

Dynamics163

Examining change dynamics through a causal lens164

helps to determine the existence of direct causal165

effects, by modeling the interactions between vari-166

ables. In this section, we first give a short overview167

on relevant work on causality, before presenting168

how we apply these concepts to word change dy-169

namics.170

3.1 Overview of Causal Discovery and171

Causal Inference172

A common framework for causal reasoning is173

through causal directed acyclic graphs (DAGs)174

(Pearl, 2009). A causal DAG consists of a pair175

(G,P ) where G = (V,E) is a DAG and P is176

a probability distribution over a set of variables.177

Each variable is represented by a node v ∈ V , and178

the graph’s edges e ∈ E reflect causal relationships.179

There are two main tasks in causality. Causal dis-180

covery is the task of uncovering the causal DAG181

that explains observed data. Assuming a causal182

DAG, the task of causal inference then concerns183

determining the effect that intervening on a vari-184

able, often referred to as treatment, will have on185

another variable, often referred to as outcome.186

The causal DAG is often inferred from domain187

knowledge or intuition. However, in cases where188

we cannot safely assume a known causal struc-189

ture, causal discovery methods come in useful.190

Constraint-based methods (Spirtes et al., 2000)191

form one of the main categories of causal discov-192

ery techniques. These methods use conditional193

independence tests between variables in order to194

uncover the causal structure. To do so, they rely on195

two main assumptions: the global Markov assump-196

tion and the faithfulness assumption. Together they197

state that we observe conditional independence re-198

lations between two variables in the distribution199

if and only if these two variables are d-separated200

(Geiger et al., 1990) in the graphical model. For201

more details, we refer to Appendix D.1.202

Causal inference is commonly approached with203

do-calculus (Pearl, 1995). We denote the interven-204

tion distribution P(Y |do(X = x)) to be the distri-205

bution of the outcome Y conditioned on an inter-206

vention do(X = x) which forces the treatment207

variable X to take on the value x. Note that this 208

is in general not necessarily equal to P(Y |X = x). 209

When they are not equal, we say that there is con- 210

founding. Confounding occurs when there is a third 211

variable Z, which causes both the treatment X and 212

the outcome Y . 213

We say that there is a causal effect of X on Y if 214

there exist x and x′ such that 215

P(Y |do(X = x)) 6= P(Y |do(X = x′)) . (1) 216

One way to quantify the causal effect is with the 217

average causal effect (ACE): 218

E[Y |do(X = x)]− E[Y |do(X = x′)] . (2) 219

To estimate the causal effect using observational 220

data, we need to rewrite the intervention distribu- 221

tion using only conditional distributions. Assuming 222

a causal DAG, this can be done with the truncated 223

factorization formula (Pearl, 2009), 224

P(XV |do(XW = xW )) =

=
∏

i∈V \W

P(Xi|Xpa(i))1{XW=xW } ,
(3) 225

for W ⊂ V . 226

3.2 Causality for Change Dynamics 227

In this work, we estimate the direct causal effect of 228

a word’s type on its semantic change and frequency 229

shift dynamics. In order to establish that such an 230

effect exists, and to know which variables to control 231

for, we turn to causal discovery algorithms. The 232

variables in our causal graph additionally include 233

frequency, polysemy and POS. 234

For learning the causal graph, we choose the 235

constraint-based PC-stable algorithm (Colombo 236

and Maathuis, 2014), an order-independent vari- 237

ant of the well-known PC algorithm (Spirtes et al., 238

2000), discussed in Appendix D.1. We are learning 239

a mixed graphical model (Lauritzen, 1996; Lee and 240

Hastie, 2015), consisting of both continuous (e.g. 241

frequency) and categorical (e.g. type) variables. 242

Having learned the causal graph (Section 6.2), 243

we proceed to estimate the ACE of word type on 244

both semantic change and frequency shift using 245

do-calculus (Section 6.3). 246

4 Slang and Nonslang Word Selection 247

We select 100 slang words and 100 nonslang words 248

for our study, presented in Appendix E. In the trade- 249

off between statistical significance and time spent 250
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on computation and data collection, we found that251

a set of 200 words was enough to get highly signif-252

icant results. However, we note that our method-253

ology is general and can be applied to a larger set254

of words. The slang words are randomly sampled255

from the Online Slang Dictionary,2 which provides256

well-maintained and curated slang word definitions257

as well as a list of 4,828 featured slang words as258

of June 2021. The scope of our study encompasses259

single-word expressions, and as such we filter out260

2,169 multi-word expressions. To further clean the261

data, we also delete words with only one character262

and acronyms. Lastly, we limit the causal analysis263

to words that are exclusively either slang or non-264

slang, excluding “hybrid” words with both slang265

and nonslang meanings, such as “kosher” or “tool”.266

Including words of this type would have interfered267

with the causal analysis by creating a hardcoded268

dependency between word type and polysemy, as269

these words by definition are polysemous. We do270

however perform a separate analysis of the hybrid271

words in Appendix C.272

For the reference set of standard, nonslang,273

words we sample 100 words uniformly at random274

from a list of all English words, supplied by the275

wordfreq library in Python (Speer et al., 2018).276

5 Data Collection277

We curate a Twitter dataset from the years 2010 and278

2020, which we select as our periods of reference,279

and collect the following variables:280

• Word type: Whether a word is slang or not281

• Word frequency: The average number of tweets282

containing the word per day in 2010 and 2020283

(Section 5.2)284

• Frequency Shift: The relative difference in fre-285

quency the word has undergone between 2010286

and 2020 (Section 5.3)287

• Polysemy: The number of senses a word has288

(Section 5.4)289

• Part of speech: A binary variable for each POS290

tag (Section 5.5)291

• Semantic change: The semantic change score292

of the word from 2010 to 2020 (Section 5.6)293

5.1 Twitter Dataset294

As a social media platform, Twitter data is rich295

in both slang and nonslang words. The Twitter296

2http://onlineslangdictionary.com/

dataset we curated comprises 170,135 tweets from 297

2010 and 2020 that contain our selected words. 298

Sampling tweets from two separate time periods 299

allows us to examine the semantic change over a 300

10-year gap. For every slang and nonslang word, 301

and each of the two time periods, we obtain 200- 302

500 random tweets that contain the word and were 303

posted during the corresponding year. We keep 304

each tweet’s text, tweet ID, and date it was posted. 305

As a post-processing step, we remove all URLs and 306

hashtags from the tweets. To protect user privacy, 307

we further replace all user name handles with the 308

word “user.” On average, we have 346 tweets per 309

slang word and 293 tweets per nonslang word. 310

5.2 Word Frequency 311

We approximate a word’s frequency by the average 312

number of times it is tweeted within 24 hours. This 313

average is calculated in practice over 40 randomly 314

sampled 24 hour time frames in a given year, in 315

each of which we retrieve the number of tweets con- 316

taining the word. The frequencies are calculated 317

separately for 2010 and 2020. Due to the growing 318

popularity of social media, the number of tweets 319

has significantly increased over the decade. There- 320

fore, we divide the counts from 2020 by a factor of 321

6.4, which is the ratio between the average word 322

counts in both years in our dataset. The frequencies 323

from both years are then averaged to provide the 324

frequency variable for the causal analysis. 325

5.3 Frequency Shift 326

We are now interested in analyzing the dynamics 327

of frequency shifts. To evaluate the relative change 328

in frequency for a given word w we take 329

FreqShift(w) = log
x2020(w)

x2010(w)
(4) 330

where, xk(w) is the frequency of word w in year k. 331

This has been shown to be the only metric for rela- 332

tive change that is symmetric, additive, and normed 333

(Tornqvist et al., 1985). Importantly, this measure 334

symmetrically reflects both increases and decreases 335

in relative frequency. The mean relative changes in 336

frequency were −0.486(±1.644) for slang words 337

and 0.533(±1.070) for nonslang words, where a 338

positive score corresponds to an increase in fre- 339

quency. As evident in Figure 2, not only did more 340

slang words exhibit a decrease in frequency than 341

nonslang ones, the words that showed the highest 342

frequency increase are also slang. 343
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Figure 2: Relative shift in frequency from 2010 to 2020,
where a positive score corresponds to an increase in fre-
quency. We see that slang words present both the high-
est increases and the highest decreases in frequency.
Moreover, a large frequency decrease is observed ex-
clusively in a set of slang words, indicating these words
faded from usage during the decade.

We also examine the absolute value of Eq. (4)344

to evaluate the degree of change, may it be a de-345

crease or an increase. We find that, as expected,346

slang words have significantly higher changes in347

frequency than nonslang words (p < 0.05). See348

Appendix C for more details.349

5.4 Polysemy350

We define a word’s polysemy score as the number351

of distinct senses it has3. For nonslang words we352

take the number of senses the word has in Merriam353

Webster and for slang words we take the number354

of definitions on the Online Slang Dictionary. We355

use two separate resources as we find that no dictio-356

nary encapsulates both slang and nonslang words.357

The mean polysemy scores are (2.074 ± 2.595)358

for slang words and (3.079± 2.780) for nonslang359

words with a significant difference in distribution360

(p < 0.05) according to a permutation test, im-361

plying that the latter are used with a larger variety362

of meanings. In addition, the slang senses of the363

hybrid words exhibit a distribution similar to those364

of the slang words (Appendix C). More polyse-365

mous words tend to have a higher word frequency366

in our dataset – the log transform of frequency and367

polysemy display a highly significant (p < 0.001)368

linear correlation coefficient of 0.350.369

3Note that this definition also encapsulates potential cases
of homonymy. We choose not to make a distinction between
polysemy and homonymy in this analysis.

5.5 Part of speech 370

For each word, we retrieve four binary variables, in- 371

dicating whether a word can be used as noun, verb, 372

adverb or adjective, which were the four major 373

POS tags observed in our data. To calculate these 374

variables we run the NLTK POS tagger (Loper and 375

Bird, 2002) on the tweets, and collect the distribu- 376

tion of POS tags for each word. Note that a word 377

may have more than one POS tag, depending on 378

the context in which it is used. Each of the binary 379

variables is then set to be 1 if the word had the 380

corresponding POS tag in at least 5% of its tweets 381

and 0 otherwise. 382

5.6 Semantic Change Score 383

In this section we explain the details of how we 384

obtain the semantic change scores. We start by 385

fine-tuning a bi-directional language model on a 386

slang-dense corpus (Section 5.6.1), after which 387

we survey the literature and propose metrics (Sec- 388

tion 5.6.2) that we use to perform an extensive 389

experimentation study to find the most suitable one 390

(Section 5.6.3). Finally, we apply this metric to our 391

sets of slang and nonslang words on the Twitter 392

data (Section 5.6.4). 393

5.6.1 Obtaining Contextualized 394

Representations 395

We familiarize the bi-directional language model 396

with slang words and the contexts in which they are 397

used by fine-tuning it on the masked language mod- 398

eling task. For this purpose we use a web-scraped 399

dataset from the Urban Dictionary, previously col- 400

lected by Wilson et al. (2020). After preprocessing 401

and subsampling, the details of which can be found 402

in Appendix A.1, we are left with a training set of 403

200, 000 slang-dense text sequences. 404

As our bi-directional language model we select 405

RoBERTa (Liu et al., 2019). Beyond performance 406

gains compared to the original BERT (Devlin et al., 407

2019), we select this model since it allows for more 408

subword units. We reason that this could be use- 409

ful in the context of slang words since potentially 410

some of the sub-units used in these words would 411

not have been recognized by BERT. We choose the 412

smaller 125M parameter base version for computa- 413

tional reasons. We train the model using the Adam 414

optimizer (Kingma and Ba, 2015) with different 415

learning rates γ. The lowest loss on the test set 416

was found with γ = 10−6, which we proceed with 417

for scoring semantic change. For more details on 418

training configurations, we refer to Appendix A.2. 419
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5.6.2 Quantifying Semantic Change420

In order to select a change detection metric, we421

evaluate our model on the SemEval-2020 Task 1422

on Unsupervised Lexical Semantic Change Detec-423

tion (Schlechtweg et al., 2020). This task provides424

the first standard evaluation framework for seman-425

tic change detection, using a large-scale labeled426

dataset for four different languages. We restrict427

ourselves to English and focus on subtask 2, which428

concerns ranking a set of 37 target words according429

to their semantic change between two time peri-430

ods. The ranking is evaluated using Spearman’s431

rank-order correlation coefficient ρ.4 Our space of432

configurations includes layer representations, di-433

mensionality reduction techniques and semantic434

change metrics.435

Layer Representations: Previous work (Etha-436

yarajh, 2019) has shown that embeddings re-437

trieved from bi-directional language models are not438

isotropic, but are rather concentrated around a high-439

dimensional cone. Moreover, the level of isotropy440

may vary according to the layer from which the rep-441

resentations are retrieved (Ethayarajh, 2019; Cai442

et al., 2021). This leads us to experiment with443

representations from different layers in our fine-444

tuned RoBERTa model, namely, taking only the445

first layer, only the last layer or summing all layers.446

Dimensionality Reduction: To the best of our447

knowledge, only one previous semantic change448

detection approach (Rother et al., 2020) has in-449

corporated dimensionality reduction, more specifi-450

cally UMAP (McInnes et al., 2018). In addition to451

UMAP, we also experiment with PCA.452

Metrics for Semantic Change: Given represen-453

tations Xt = {x1,t, ...,xnt,t} for a particular word454

in time period t, we define the average pairwise455

distance (APD) between two periods as456

APD(Xt1 ,Xt2) =
1

nt1nt2

∑
xi,t1

∈Xt1
xj,t2

∈Xt2

d(xi,t1 ,xj,t2) ,

(5)

457

for some distance metric d(·, ·), where nt1 , nt2 are458

the number of words in each time period. We459

experiment with Euclidean distance d2(x1,x2),460

cosine distance dcos(x1,x2) and Manhattan dis-461

tance d1(x1,x2). Furthermore, we propose a novel462

4We note the caveat that our model is fine-tuned on Urban
Dictionary text, while the older of the two English datasets of
SemEval consists of text from 1810-1860.

Reduction h APD Score
PCA 100 d2 and dcos 0.489∗∗

PCA 100 dcos 0.464∗∗

PCA 100 d2 0.298
None 768 d2 and dcos 0.345∗

Table 1: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different dimensionality reduction tech-
niques for APD (*: p < 0.05, **: p < 0.01).

combined metric. Note that d2(·, ·) ∈ [0,∞] and 463

dcos(·, ·) ∈ [0, 2]. Further note that 464

||x1 − x2||22 ≤ ||x1||22 + ||x2||22 (6) 465

Normalizing both metrics for a support in [0, 1], we 466

get a combined metric with the same unit support 467

to be the following average: 468

d2,cos(x1,x2) =
0.5 · d2(x1,x2)√
||x1||2 + ||x2||2

+
dcos(x1,x2)

4

(7)

469

We argue that this provides a more complete met- 470

ric, capturing both absolute distance and the angle 471

between vectors. 472

In addition to the APD metrics, we experiment 473

with distribution-based metrics (see Appendix B.1). 474

5.6.3 Evaluating the Semantic Change Scores 475

We first compare the results for the three types of 476

layer representations different APD metrics, and 477

note that summing all layer representations yields 478

the best results. Consequentially, we proceed with 479

the rest of the experiments using only these rep- 480

resentations. For both PCA and UMAP, we ex- 481

periment with projecting the representations down 482

to h ∈ {2, 5, 10, 20, 50, 100} dimensions. These 483

combinations are tested together with the APD met- 484

rics as presented in Section 5.6.2 as well as the 485

distribution-based metrics described in Appendix B. 486

The latter do not however in general display signif- 487

icant (p < 0.05) correlations. 488

We present a small subset of the scores resulting 489

from the APD configurations in Table 1, highlight- 490

ing our finding that both PCA dimensionality reduc- 491

tion and using a combined the metrics and improve 492

the performance. More results and comparisons 493

to baselines are presented in Appendix B.3. We 494

observe that the proposed combined metric consis- 495

tently outperforms both d2 and dcos across values 496
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Figure 3: Semantic change scores between 2010 and
2020. We see that nonslang words typically underwent
larger changes in meaning throughout the decade.

of h for PCA. We also note that UMAP projec-497

tions perform poorly with the APD metrics and498

that projecting down to 50-100 dimensions seems499

to be optimal, which maintains 70-85% of the vari-500

ance as we illustrate in Appendix B.2. In addition,501

both norm-based metrics d1 and d2 perform worse502

with dimensionality reduction. As our final metric,503

we choose the best performing configuration on504

SemEval, with PCA h = 100 and the combined505

metric, as seen in Table 1.506

5.6.4 Semantic Change Scores for Slang and507

Nonslang Words on the Twitter Dataset508

We obtain semantic change scores using the Twitter509

dataset described in Section 5.1. For the seman-510

tic change analysis, we exclude words that have511

less than 150 tweets in each time period within the512

dataset, which leaves us with 80 slang and 81 non-513

slang words. We also normalize the scores accord-514

ing to the sample. The resulting semantic change515

scores are shown in Figure 3. The mean semantic516

change scores are 0.564(±0.114) for slang words517

and 0.648(±0.084) for nonslang words. The dif-518

ference in semantic change score distributions is519

significant (p < 0.001) via a permutation test. The520

word with the highest semantic change score of 1521

is “anticlockwise”, and the word with the lowest522

score of 0 is “whadja”.523

6 Causal Analysis524

6.1 Preparation for Causal Discovery525

PC-stable is constraint-based and thus makes use526

of conditional independence tests. In the case of527

continuous Gaussian variables, we can perform528

partial correlation tests to assess conditional inde- 529

pendence, since zero partial correlation in this case 530

is equivalent to conditional independence (Baba 531

et al., 2004). As word frequency has been sug- 532

gested to follow a lognormal distribution (Baayen, 533

1992), we take the log transform of it. The continu- 534

ous variables semantic change, frequency change 535

and log-frequency are then all assumed to be ap- 536

proximated well by a Gaussian distribution, which 537

is confirmed by diagnostic density and Q-Q plots 538

(displayed in Appendix D.2). 539

We categorize the discrete polysemy variable, 540

experimenting with nine different plausible cate- 541

gorizations for the sake of robustness of the re- 542

sults. Word type and POS are categorical in na- 543

ture. For the categorical variables and for mixes 544

of categorical and continuous variables, we per- 545

form chi-squared mutual information based tests 546

(Edwards, 2000), since the approximate null distri- 547

bution of the mutual information is chi-squared 548

(Brillinger, 2004). For all conditional indepen- 549

dence tests we experiment with significance levels 550

α ∈ {0.01, 0.03, 0.05}. 551

6.2 Resulting Causal Structure 552

In Figure 4 we see the result from the above ap- 553

proach, with dotted lines representing edges that 554

were apparent in most but not all of the configura- 555

tions. See Appendix D.3 for a sensitivity analysis. 556

We first observe that word type has a direct 557

causal effect on both the semantic change score 558

and the frequency shift, without any confounders. 559

We also note that none of the four POS categories, 560

which are all gathered in one node in Figure 4, have 561

a causal link to any of the other variables. We addi- 562

tionally observe a dependency between word type 563

and polysemy. This edge could not be oriented 564

by the PC-stable algorithm, however we manually 565

orient it as outgoing from type and ingoing to pol- 566

ysemy, since an intervention on type should have 567

a causal effect on the number of word senses and 568

not vice versa. It is also interesting to note that 569

polysemy does not seem to have a causal effect 570

on semantic change. Its association with semantic 571

change (p < 0.05, rejecting the null hypothesis 572

of independence between polysemy and semantic 573

change) is instead confounded by word type. 574

6.3 Causal Effects 575

In our case of no confounders, evaluating the 576

ACE of word type on semantic change is straight- 577

forward, as it reduces to the difference between the 578

7



Figure 4: DAG representing the causal relationships in
our dataset.

conditional expectations:579

E[S|do(T = nonslang)]− E[S|do(T = slang)] =

= E[S|T = nonslang]− E[S|T = slang]
(8)

580

See Appendix D.4 for a derivation. The case of581

frequency shift is analogous.582

We estimate the expectations by the sample583

means on the normalized values and get an average584

causal effect of 0.084, which is a highly signifi-585

cant value (p < 0.001) based on a t-test. For the586

observed changes in relative frequency, calculated587

according to Eq. (4), we get an average causal ef-588

fect of 1.017 (p < 0.001 via a t-test).589

7 Discussion590

We analyze the dynamics of frequency shift and se-591

mantic change in slang words, and compare them to592

those of nonslang words. Our analysis shows that593

slang words change slower in semantic mean-594

ing, but adhere to more rapid frequency fluctu-595

ations, and are more likely to greatly decrease596

in frequency. Our study is the first computational597

approach to confirm this property in slang words598

(González, 1998; Carter, 2011).599

To ensure that this is the result of a causal ef-600

fect, and not mediated through another variable or601

subject to confounders, we model the data with a602

causal DAG, by also considering the potential inter-603

acting variables polysemy, frequency and POS. We604

discover that there is no influence of confounders,605

nor are there mediators between a word’s type and606

its semantic change or its frequency shift, which607

confirms a direct causal effect.608

Our results are consistent with those of Du-609

bossarsky et al. (2017), which found that neither610

the law relating semantic change to frequency, pol-611

ysemy (Hamilton et al., 2016) nor prototypicality612

(Dubossarsky et al., 2015) were found to be as613

strong as previously thought after a case-control614

study using a scenario without semantic change. 615

Indeed, there is no directed path from polysemy 616

or frequency to semantic change in our causal 617

graph, but they are both influenced by word type. 618

We leave for future research to explore whether 619

other categorizations of words sustain this result. 620

In addition, our analysis does not support the 621

claim that POS could underlie semantic change 622

(Dubossarsky et al., 2016). We note however that 623

as our vocabulary contains 50% slang words, the 624

results need not be consistent with results obtained 625

with a word sample drawn from standard language. 626

Moreover, in the causal structure we discover 627

that word polysemy has a direct effect on word 628

frequency, which is in line with previous linguis- 629

tic studies showing that a word’s frequency grows 630

in an S-shaped curve when it acquires new mean- 631

ings (Kroch, 1989; Feltgen et al., 2017), as well 632

as a known positive correlation between polysemy 633

and frequency (Lee, 1990; Casas et al., 2019). We 634

emphasize that this relationship is not merely an ar- 635

tifact of contextualized word representations being 636

affected by frequency (Zhou et al., 2021), since our 637

polysemy score does not rely on word representa- 638

tions as in Hamilton et al. (2016). Our approach 639

is however not without drawbacks – the polysemy 640

variable is collected from dictionaries, which may 641

be subjective in their assignments of word senses. 642

Limitations: Our study, along with previous work 643

on the dynamics of semantic change, are all lim- 644

ited by only considering distributional factors. For 645

instance, linguists have suggested that sociocul- 646

tural, psychological and political factors (Blank, 647

1999; Bochkarev et al., 2014) all drive word change 648

dynamics, and slang words are not an exception. 649

Returning to our example “duckface”, it may be 650

that its rapid decrease in frequency is also due to 651

social factors (Miller, 2011). Phrased differently, 652

our causal analysis is not immune to issues with 653

missing variables. Nonetheless, we do believe that 654

such a causal analysis provides a useful tool to un- 655

derstand the underlying mechanisms of language. 656

8 Conclusion 657

In this work, we have analyzed the diachronic 658

mechanisms of slang language with a causal 659

methodology. This allowed us to establish that 660

a word’s type has a direct effect on its semantic 661

change and frequency shift, without mediating ef- 662

fects from other distributional factors. 663
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Ethical Considerations664

Our dataset is comprised solely of English text,665

and our analysis therefore applies uniquely to the666

English language, and results may differ in other667

languages. Moreover, for the purpose of this study,668

we curated a dataset of 170, 135 tweets. To protect669

the anonymity of users, we remove author IDs from670

the data, and replace all usernames with the general671

token “user.” In the Urban Dictionary dataset we672

received from Wilson et al. (2020), we similarly673

remove the author IDs and only consider the entry674

text.675
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Figure 5: Frequency counts over years in Urban Dictio-
nary data

A Appendix – Fine-tuning with Urban 1010

Dictionary data 1011

A.1 Preprocessing 1012

The full Urban Dictionary data contains 3, 534, 966 1013

word definitions. In the dataset provided by Wil- 1014

son et al. (2020), each entry contains a definition, 1015

examples in which the word occurs, number of up- 1016

votes & downvotes from website visitors, username 1017

of the submitter and a timestamp. As the data is 1018

crowd-sourced, many of these entries are noisy and 1019

of low quality, and we therefore decided to filter 1020

these out and fine-tune RoBERTa only on the best 1021

quality definitions. After performing data explo- 1022

ration, we came up with two criteria that we found 1023

the most indicative of a definition’s quality: the 1024

number of upvotes it got, and its upvote/downvote 1025

ratio. The distribution of upvotes, downvotes and 1026

the upvote/downvote ratios in the dataset can be 1027

seen in Figure 6 below. We also note that the num- 1028

ber of submissions to Urban Dictionary is relatively 1029

well-spread, see Figure 5. This implies that we do 1030

not have a strong bias towards more recently pop- 1031

ularized slang terms in the dataset, and that we 1032

do have representation of the entire time span of 1033

interest; 2010− 2020. 1034

We keep the entries having more than 20 up- 1035

votes and an upvote/downvote ratio of at least 2. 1036

This leaves us with 488, 010 Urban Dictionary en- 1037

tries, out of which we randomly sample 100, 000 1038

to reduce the computation time in the fine-tuning 1039

process. We use both the definitions and the word 1040

usage examples for fine-tuning, producing a final 1041

dataset of 200, 000 sequences. 1042

A.2 Training 1043

We randomly split the data into 80% train and 20% 1044

test, before training for 10 epochs with an early 1045

stopping with patience 3. The batch size was set to 1046
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Figure 6: The distributions of (a) upvote/downvote ra-
tio, (b) number of upvotes and number of downvotes
among definitions in the dataset in log-scale.

1 in the interest of memory constraints. Following1047

the setup from the pre-training stage as explained1048

in Liu et al. (2019), we use the Adam optimizer1049

(Kingma and Ba, 2015) with ε = 10−6, β1 = 0.91050

& β2 = 0.98 and a linear learning rate decay. For1051

the learning rate, we argue that since the initial-1052

ized parameters should provide a solution which1053

is already close to the optimum when evaluating1054

on our dataset (our fine-tuning being the very same1055

masked language modeling task as RoBERTa has1056

already been trained on), the learning rate should be1057

smaller. Thus, instead of picking the learning rate1058

γ = 6 · 10−4 as was done by Liu et al. (2019), we1059

experiment with γ ∈ {10−4, 10−5, 10−6, 10−7}.1060

Training was done using an NVIDIA GeForce GTX1061

1080 8GB GPU and took around 1 to 1.5 days per1062

model.1063

B Appendix – Experiments on 1064

SemEval-2020 1065

B.1 Distribution-based Metrics 1066

Method: In addition to the distance-based APD 1067

metrics, we experiment with two distribution-based 1068

ones, namely entropy difference (ED) & Jensen- 1069

Shannon Divergence (JSD) (Giulianelli et al., 1070

2020). 1071

We assume a categorical distribution over a set 1072

of Kw word senses for word w and time period t. 1073

The word sense swi of an occurrence i is then given 1074

by: 1075

swt
i ∼ Cat(αwt

1 , ..., αwt
Kw

) =: Pwt 1076

Given two time periods of word sense distributions, 1077

we define the ED metric as 1078

|H(swt2)−H(swt1)| 1079

with entropy H(·). The JSD is given as: 1080

1

2
KL(Pwt1 ||M) +

1

2
KL(Pwt2 ||M) 1081

with M = Pwt1+Pwt2

2 and KL(·||·) being the KL- 1082

divergence. 1083

We obtain the word sense distributions via a clus- 1084

tering of the representations from both time periods. 1085

We experiment with K-Means and Gaussian Mix- 1086

ture Models (GMMs), the latter proposed due to 1087

its ability to find more general cluster shapes. We 1088

also experiment briefly with Affinity Propagation, 1089

which has been used in previous semantic change 1090

detection work (Martinc et al., 2020; Kutuzov and 1091

Giulianelli, 2020; Montariol et al., 2021). How- 1092

ever, we find it to be ill-suited for our purposes 1093

since it results in an excessive amount of clusters in 1094

comparison to how a human would classify word 1095

senses. 1096

For both K-means and GMM, we experiment 1097

with selecting the optimal Kw ∈ [1, 10] through 1098

two different procedures. The first one is a slight ex- 1099

tension of the method from Giulianelli et al. (2020) 1100

– we select the Kw which optimizes the silhouette 1101

score (Rousseeuw, 1987) for a set of different ini- 1102

tializations. Their approach does not consider the 1103

single cluster case however, so we extend it by 1104

setting Kw = 1 when the best silhouette score is 1105

below a threshold of 0.1. For K-Means, we further 1106

experiment with an automatic elbow method5 for 1107

5See https://kneed.readthedocs.io/en/stable/index.html
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Figure 7: Clusters found with GMM from 2-
dimensional PCA representations of the word gag.

the sum of squared distances to the cluster cen-1108

troids, which decreases monotonically with the1109

number of clusters. We again select the cluster1110

assignments with the largest silhouette score for1111

multiple random initalizations. For GMM, we fur-1112

ther experiment with taking the model which corre-1113

sponds to the best Bayesian Information Criterion1114

(Schwarz, 1978).1115

Clustering examples: In Figure 7 we see three1116

clusters found for “gag.” They do not seem to1117

correspond to word senses however: An example1118

from the first cluster is “user i need a pic of you1119

begging if i ’ m boiling these because boiled eggs1120

make me gag . :d,” an example from the second1121

cluster is “lmao rt user user user so i tried that tuna1122

with cheese and my gag reflexes were in full affect1123

!” and an example from the third cluster is “gag1124

me with a spoon” – all seemingly referring to the1125

sensation of being about to vomit.1126

We show another example in Figure 8 of the1127

word “gnarly,” this time reduced to 2 dimensions1128

using UMAP. Gnarly has three meanings according1129

to the Online Slang Dictionary: It can either mean1130

very good / excellent / cool, gross / disgusting or1131

painful / dangerous. These three word senses are1132

not separated by UMAP and GMM, for instance1133

both “its a good thing one of my roomies is a dude1134

, who else would kill gnarly spiders in my room1135

when i start to hyperventilate” and “rt user bro my1136

wreck on the scooter was so gnarly like it was fun1137

i love shit like that . i wish i could’ve been on1138

jackass” are put in the first cluster.1139

Figure 8: Clusters found with GMM from 2-
dimensional UMAP representations of the word
gnarly.

Baseline Score
Combined APD PCA100 0.489

Kutuzov and Giulianelli (2020) 0.605
Kaiser et al. (2020) 0.461
Rother et al. (2020) 0.440

Table 2: Comparison to the three highest performing
previous works on the SemEval-2020 Task 1 subtask 2
for the English dataset.

B.2 Variance Explained by PCA components 1140

Consider Figure 9 for example plots of how much 1141

variance is preserved with PCA on the contextual- 1142

ized representations. 1143

B.3 Results 1144

We further present more results of the experimen- 1145

tation on the SemEval-2020 Task 1 Subtask 2. All 1146

tables show the Spearman’s rank-order correlation 1147

between the change metrics and the ground truths. 1148

In Table 2 we compare our best performing setup 1149

to the three best performing previous approaches on 1150

SemEval-2020 Task 1 Subtask 2. We see that only 1151

Kutuzov and Giulianelli (2020) display a higher 1152

score, which might be partially explained by the 1153

fact that they fine-tune their model on the SemEval 1154

test corpora. We do not do this since our main goal 1155

is not to beat state-of-the-art on the shared task, 1156

but rather to find a good enough model to detect 1157

semantic change in slang. 1158

The results comparing the layer representations 1159

can be observed in Table 3. As a side observation 1160

we also note that the less isotropic first layer rep- 1161

resentations seem to perform better than the more 1162

isotropic last layer representations. 1163
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Figure 9: Explained variance by number of compo-
nents used in PCA for the slang words bromance and
whadja

In Table 4 we present a comparison across differ-1164

ent layer representations for both APD-based and1165

distribution-based metrics. We observe that none1166

of the distribution-based metrics give significant1167

(p < 0.05) results, which dimensionality reduction1168

techniques do not manage to improve. While a few1169

of them do have a slight positive correlation, we1170

omit this approach altogether. The APD results on1171

the other hand show a high correlation for many1172

of the configurations, providing an indication of1173

the APD’s robustness in detecting semantic change.1174

We show a selection of these in Table 6.1175

d2 APD dcos APD
First layer 0.22 0.234
Last layer 0.07 0.2

Sum of all layers 0.336∗ 0.332∗

Table 3: Spearman’s rank-order correlation coefficients
between our semantic change scores and the ground
truth across different layer representations (p < 0.05).

Reps Clustering Metric Score p

First - APD d2 0.220 0.190
First - APD dcos 0.234 0.164
First K-Means ED −0.079 0.644
First K-Means JSD 0.059 0.73
First GMM ED 0.051 0.764
First GMM JSD 0.072 0.67

Last - APD d2 0.007 0.966
Last - APD dcos 0.20 0.236
Last K-Means ED −0.001 0.955
Last K-Means JSD 0.202 0.231
Last GMM ED −0.067 0.695
Last GMM JSD −0.096 0.571

All - APD d2 0.336 0.042
All - APD dcos 0.332 0.045
All K-Means ED 0.033 0.846
All K-Means JSD 0.089 0.599
All GMM ED −0.133 0.433
All GMM JSD 0.0 0.999

Table 4: Comparison across different layer represen-
tations with APDs and distribution metrics, with Kw

selected through silhouette scores.

C Appendix – Hybrid Words 1176

We define hybrid words as words that have both 1177

a slang and nonslang meaning, i.e. occurring in 1178

both Online Slang Dictionary (OSD) and Merriam 1179

Webster (MW). In this section, we compare the 1180

polysemy, semantic change, frequency shift as well 1181

as the absolute frequency change patterns of hybrid 1182

words to slang and nonslangs. 1183

Polysemy is collected for hybrid words from 1184

OSD and MW separately. Since the MW dictio- 1185

nary may also contain slang meanings, we filter 1186

out definitions labeled as slang, informal or vul- 1187

gar from these scores. The mean polysemy scores 1188

of the slang words are (2.074 ± 2.568) and the 1189

mean OSD polysemy scores of the hybrid words 1190

are (2.580± 2.178), with a non-significant differ- 1191

ence (p > 0.05) in distribution according a permu- 1192

tation test. This tells us that we are not biasing the 1193
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APD Score p

d2 0.336 0.042
dcos 0.332 0.045
d1 0.409 0.012

d2 and dcos 0.345 0.037
d2, dcos and d1 0.398 0.015

Table 5: Comparison across APD metrics for original
representations. Representations are sums across all
layers.

Dim APD Score p

PCA2 d2 −0.153 0.367
UMAP2 dcos −0.136 0.424
PCA5 dcos 0.209 0.215
PCA5 d2 and dcos 0.268 0.109

UMAP5 d2, dcos and d1 −0.146 0.39
PCA20 d2 and dcos 0.42 0.010
PCA50 d2, dcos and d1 0.344 0.037

UMAP50 d2 −0.158 0.35
PCA100 d1 0.297 0.074
PCA100 d2 and dcos 0.489 0.002

UMAP100 dcos −0.133 0.433

Table 6: Comparison across different dimensions with
PCA and UMAP for APD metrics. Representations are
sums across all layers.

polysemy scores of the slang words by excluding1194

hybrid words.1195

As for the nonslang meanings of the hybrid1196

words, we get a mean polysemy score of (6.880±1197

6.080) which is significantly different (p < 0.001)1198

from those of the nonslang words (3.079± 2.780).1199

This is an interesting observation, implying that1200

had we included nonslang words with hybrid mean-1201

ing in our nonslang words sample, the difference1202

in polysemy between slang and nonslang words1203

would have been larger. Some example words of1204

this category with high MW polysemy scores in-1205

clude “split”, “down” and “walk”.1206

For the relative frequency changes, we present1207

the results as histograms in Figure 10. The fre-1208

quency change in hybrid words seems to fall be-1209

tween those of the slang words and the nonslang1210

words. We observe a mean and standard deviation1211

of −0.154 and 0.608 respectively.1212

In addition, we compare the absolute relative fre-1213

quency changes as described in Section 5.3 across1214

slang, nonslang and hybrid words. The histograms1215

are presented in Figure 11. We observe, respec-1216

tively, a mean and standard deviation of 1.246 &1217

Figure 10: Relative difference in frequency between
2020 and 2010, for slang, nonslang and hybrid words,
where a positive score corresponds to an increase in fre-
quency.

Figure 11: Absolute value of relative difference in fre-
quency between 2020 and 2010, for slang, nonslang
and hybrid words, where a larger score corresponds to
a larger absolute increase in frequency.

1.180 for the slang words, 0.950 & 0.724 for the 1218

nonslang words and 0.482 & 0.402 for the hybrid 1219

words. The difference in mean is significant be- 1220

tween the slang and nonslang words (p < 0.05), 1221

indicating that slang words have undergone a larger 1222

absolute change in frequency. Furthermore, we 1223

note a highly significant difference (p < 0.001) in 1224

the mean of the hybrid words compared to both the 1225

slang and nonslang word means. 1226

We compare the normalized semantic change 1227

scores between the slang, nonslang and hybrid 1228

words. Histograms over the semantic change scores 1229

are shown in Figure 12. We observe that the dis- 1230

tribution over hybrid change scores seem again to 1231

be centered between the slang and nonslang dis- 1232
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Figure 12: Difference in semantic change score be-
tween 2010 and 2020 for slang, nonslang and hybrid
words, where a larger score corresponds to a more pro-
nounced semantic change.

tributions, with mean 0.621 ± 0.073. Both the1233

difference in mean compared to slang words and1234

to nonslang words are significant according to per-1235

mutation tests (p < 0.001 for difference to slang1236

words and p < 0.05 for difference to nonslang1237

words).1238

D Appendix – Causal Analysis 1239

D.1 Preliminary on Constraint-based Causal 1240

Discovery 1241

Assumptions The constraint-based causal dis- 1242

covery algorithms make use of two main assump- 1243

tions, namely the global Markov assumption and 1244

the faithfulness assumption. The global Markov 1245

assumption (Peters et al., 2017) states that all d- 1246

separations (defined below) encoded in the causal 1247

graph imply conditional independencies in the dis- 1248

tribution over the variables contained in the graph. 1249

More formally, for a graph G = (V,E) and distri- 1250

bution P over the variables XV it holds that for any 1251

disjoint subsets A,B and C of V 1252

XA ⊥d XB|XC , in G 1253

1254
⇒ XA ⊥⊥ XB|XC , in P 1255

The faithfulness assumption states the converse 1256

of the global Markov assumption: All conditional 1257

independencies in the distribution are encoded by 1258

d-separations in the graph. 1259

d-separation Two nodes A,B ∈ V are said to 1260

be d-separated (Geiger et al., 1990) by a set of 1261

nodes Z ⊂ V if for all paths between A and B, at 1262

least one of the following holds: 1263

• The path contains a directed 1264

chain A · ·· → C → · · ·B or 1265

A · ·· ← C ← · · ·B such that C ∈ Z 1266

• The path contains a forkA · ·· ← C → · · ·B 1267

such that C ∈ Z 1268

• The path contains a collider 1269

A · ·· → C ← · · ·B such that C /∈ Z 1270

or C ′ /∈ Z ∀C ′ ∈ desc(C) (i.e. neither C 1271

nor any of its descendants is in Z) 1272

Markov Equivalence Constraint-based algo- 1273

rithms use conditional independency tests in order 1274

to identify a Markov equivalence class of DAGs. 1275

Two DAGs are defined to be Markov equivalent 1276

if they have the same skeleton (edges omitting di- 1277

rection) and v-structures. The three vertices A,B 1278

and C form a v-structure if A → B ← C and A 1279

and C are not directly connected by an edge. Alter- 1280

natively, two DAGs are Markov equivalent if they 1281

describe the same set of d-separation relationships. 1282

A Markov equivalence class is the set of all Markov 1283

equivalent DAGs. 1284
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Figure 13: Diagnostic plots for continuous variables,
displaying approximate Gaussian shape.

PC Algorithm One common constraint-based al-1285

gorithm is the PC algorithm (Spirtes et al., 2000).1286

Starting with a full DAG, it eliminates an edge be-1287

tween adjacent vertices i and j if Xi and Xj are1288

conditionally independent given some subset of the1289

remaining variables. This process, including the1290

conditional independence tests, is conducted itera-1291

tively starting from a conditioning set of k = 0 to1292

k = |V | − 2. In addition to the global Markov and1293

faithfulness assumptions, the PC algorithm also1294

assumes causal sufficiency, namely the absence1295

of unobserved confounders. With these assump-1296

tions satisfied and access to correct conditional in-1297

dependence relations, it is guaranteed to be sound,1298

complete and uniformly consistent (Kalisch and1299

Bühlmann, 2007).1300

PC-stable PC-stable is an order-independent ex-1301

tension with the same guarantees as the original1302

(Colombo and Maathuis, 2014).1303

D.2 Diagnostic Plots1304

In Figure 13 we present the density and Q-Q plots1305

for semantic change score, log of word frequency1306

and log of frequency change.1307

D.3 Sensitivity Analysis on Polysemy1308

Polysemy is a discrete variable which we treat as1309

an ordered factor in the analysis by splitting it into1310

categories. Since polysmey can be plausibly cate-1311

gorized in different ways, we experiment with 9 dif-1312

ferent categorizations of it and examine the stabil-1313

ity of the resulting graphs. For each categorization,1314

Figure 14: DAG of causal relationships, with the per-
centage of experiments that found each edge, across
different configurations of α and different categoriza-
tions of the polysemy score. Solid edges appeared in
100% of the output graphs.

we run PC-stable with the three significance levels 1315

α ∈ {0.05, 0.03, 0.01}. In Figure 14 we present 1316

the results of this sensitivity analysis. We see that 1317

the edges Between word type and polysemy, from 1318

word type to frequency change, as well as the edge 1319

from polysemy to frequency, are apparent in all of 1320

the configurations. The edge from word type to 1321

semantic change is apparent in 21/27 (77.8%) of 1322

the configurations. We also observe a few edges 1323

very rarely, and therefore label them as noise and 1324

do not take them into account for the causal analy- 1325

sis. These consist of an edge from the POS Noun 1326

to semantic change in 3/27 (11.1%) of the config- 1327

urations, and edges from polysemy to frequency 1328

shift and from polysemy to semantic change each 1329

apparent in 1/27 (3.7%) of the configurations. 1330

By inferring the causal graph from a set of cate- 1331

gorizations, we make up for the possible noise in 1332

the polysemy variable and ensure that the graph 1333

isn’t sensitive to small variations in the words’ pol- 1334

ysemy scores. 1335

D.4 Causal Inference 1336

Given the causal DAG in Figure 4, we derive the 1337

expression for the average causal effect of word 1338

type on semantic change. Define the following ran- 1339

dom variables: T = word type, X = polysemy, 1340

Y = frequency, Z = frequency change and S = 1341

semantic change, with respective probability mass 1342

functions PT & PX and probability density func- 1343

tions fY , fZ & fS . 1344
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Note that t′ ∈ {slang, nonslang}. By the trun-1345

cated factorization for the connected component of1346

the causal DAG (i.e. excluding POS), we have that1347

P(s, t, x, y, z|do(T = t′)) =1348

1349

fY |X(y|x)fZ|T (z|t)fS|T (s|t)PX|T (x|t)1{t=t′}1350

Marginalizing over T , we get1351

P(s, x, y, z|do(T = t′)) =1352

1353

= fY |X(y|x)fZ|T (z|t′)fS|T (s|t′)PX|T (x|t′)1354

Next, marginalize over the continuous random vari-1355

ables Y and Z to get1356

P(s, x|do(T = t′)) =1357

1358 ∫
y

∫
z
fY |X(y|x)fZ|T (z|t′)fS|T (s|t′)PX|T (x|t′)dzdy =1359

1360 ∫
y
fY |X(y|x)fS|T (s|t′)PX|T (x|t′)

(∫
z
fZ|T (z|t′)dz

)
︸ ︷︷ ︸

=1

dy =1361

1362

fS|T (s|t′)PX|T (x|t′)
∫
y
fY |X(y|x)dy︸ ︷︷ ︸

=1

=1363

1364

fS|T (s|t′)PX|T (x|t′)1365

Finally1366

P(s|do(T = t′)) =1367

1368 ∑
x

fS|T (s|t′)PX|T (x|t′) = fS|T (s|t′)1369

Taking the expectation, we get1370

E[S|do(T = t′)] = ES|T [S|t′]1371

E Appendix – Selected Words1372

In Appendix E we list all the slang and nonslang1373

words used in this study.1374

Slang Nonslang
a-list admitting

badass adulterous
blankie agenda
bling allotted

blowjob anticlockwise
blumpkin avoiders
bonehead awesome

bro banzai
bromance bright
bumfuck butane
bupkis calorie
chillax chug
chones committeeman
colitas competencies
compo contenders

conniption conventionally
crappy copyediting
dang deathblow
dis decomposition

dogg despoil
duckface didot
dudette doubleheader
fanboy echo

fap enhancements
gangsta epilator
glitterati estimated

gorp fiddled
gotsta galavant
gunt glutton

hasbian greeting
horribad grisly
jabroni groans
jalopy haircut

jerkwad heaviest
lame-o humblest
lemme ignites
lowkey inclusive

mcdreamy intimidator
meme jugglers
mosey jute

motherfucking lawlessness
mozzie legalist
netizen milepost
nuker mistreatment
pedo moldovan
peeps morphology

plastered mushroom
poopy nonskid

preemie outlawing
pregos pantsuit

prettyful peppy
rapey performative

1375

19



Slang Nonslang
rehab postural
relly protocol
roofie repentant

roshambo rump
sesh sabertooth
shart sailor

shiesty scallywag
shtick scheme
sicc sculptured
sinse scummiest

skeevy shield
skyrocket shylock

slore snug
snitch squall
soused steeple
spam strap
spec superabundance

spec-ops sympathizer
sucky telogen
tenner terrifies

thingamabob trampolining
trisexual underpainting
tweeker underrated

twit unicorn
whadja unlike

workaround unmatched
wut upgrade

zooted vanadium

1376
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