ToolScope: Enhancing LLLM Agent Tool Use through Tool Merging and
Context-Aware Filtering

Anonymous ACL submission

Abstract

Large language model (LLM) agents rely on
external tools to solve complex tasks. How-
ever, real-world toolsets often include tools
with overlapping names and descriptions, lead-
ing to ambiguity in tool selection and degrada-
tion in reasoning performance. Furthermore,
the limited input context available to LLM
agents constrains their ability to effectively
utilize information from a large number of
tools. To address these challenges, we pro-
pose ToolScope, a two-part workflow which
contains: (1) ToolScopeMerger, an automated
tool-merging framework that reduces semantic
redundancy on tools and offers observability
to users to refine their toolset. (2) ToolScope-
Filter, which mitigates the limitations imposed
by LLMs’ context length by retrieving the top-
k relevant tools for a given query. This se-
lective filtering reduces input length, enabling
more efficient tool usage without compromis-
ing selection accuracy. Experimental results
on open-source benchmarks demonstrate that
ToolScope significantly improves tool selection
accuracy, achieving a 34.5% improvement on
Seal-Tools and a 18.3% improvement on BFCL
compared to baseline methods.

1 Introduction

Tool learning (Qu et al., 2025), which refers to
LLMs being proficient in using tools to solve com-
plex problems (Qin et al., 2023), has emerged as
a key research topic. It is divided into four stages:
task planning, tool selection, tool calling, and re-
sponse generation (Qu et al., 2025). Within these
stages, tool selection, where the model identifies
the most appropriate tool from a set to address a
given query, is a critical yet underdeveloped sub-
task (Yang et al., 2023; Qin et al., 2023). Pre-
vious work in tuning-free tool selection methods
(Qu et al., 2025) has focused on systematically
improving tool documentation with frameworks
such as DRAFT (Qu et al., 2024) and EASYTOOL

————

/7 N\

(1B =

| =) E=E |

I I Translate "

I @1 I to Spanish {

\ temy)/ \
\\___/ & .....

Toolset User Query Top-k Tools
—_———

/
[ [ s %
=) i 8 w9

(a) ToolScopeMerger 0\ // (b) ToolScopeFilter uses hybrid
consolidates tools with e e s retrieval methods to select the
top-k tools for a given query

N o Refined Toolset
overlapping functionality

Figure 1: A simplified overview of using ToolScope for
a tool selection task. A toolset is fed into ToolScope-
Merger (a) creating a refined toolset that is passed to
ToolScopeFilter (b). The retrieved best tools for a query
are then passed to an LLM agent for selection.

(Yuan et al., 2024). Furthermore, work on retrieval-
based tool selection explored “term-based” (e.g.
BM25) (Robertson et al., 2009) and “semantic-
based” methods such as CRAFT (Yuan et al., 2023)
or off-the-shelf embeddings (Qu et al., 2025) as the
retrieval technique to improve tool selection. The
key challenge in tool selection is that LLMs often
fail to choose the most appropriate tools. Two ma-
jor factors which contribute to this are: (1) overlap-
ping tool descriptions which introduce ambiguity
that reduces both retrieval and tool selection accu-
racy (OpenAl, 2024; Lumer et al., 2024; Huang
et al., 2023), (2) the limited input context of LLMs
constrains their ability to reason effectively over
large toolsets (Huang et al., 2023). As toolsets
grow in size and complexity, these issues become
more pronounced. Therefore, addressing both tool
overlap and context limitations is essential for im-
proving tool selection performance.

We propose ToolScope, a two-part solution that
automatically merges tools through ToolScope-
Merger and retrieve most relevant tools using
ToolScopeFilter. This addresses two main chal-



lenges: overlapping tool descriptions and context
length limitations.

ToolScopeMerger helps improve toolset qual-
ity by identifying and merging overlapping tools.
It begins by forming tool pairs based on their se-
mantic similarity. An LLM determines whether
tool pairs are functionally similar enough to be
combined. These relationships are used to build a
graph that defines the mapping between the tools
to keep, and the tools to prune. Finally, we use
another LLM to guide the merging, and we fur-
ther update the toolset and the ground truth in the
dataset. ToolScopeMerger also offers the option
for users to manually review and adjust the results,
ensuring flexibility and transparency.

ToolScopeFilter is a retrieval system that han-
dles single and multi-tool queries by retrieving can-
didate tools using a hybrid strategy that combines
dense and sparse search. The extracted tools are
then reranked based on contextual relevance, with
score normalization applied to ensure fair compar-
ison between all candidates. ToolScopeFilter en-
hances the relevance of retrieved tools by capturing
both semantic and exact matches, and improves
results for retrieval and tool selection accuracy.

In summary, our contribution is as follows: (1)
ToolScopeMerger, a novel graph-based frame-
work that merges semantically similar tools to ad-
dress tool overlap issues, improving toolset clarity.
(2) ToolScopeFilter, a hybrid retrieval system that
integrates both sparse and dense scores to reduce
context length. (3) We demonstrate that combining
ToolScopeMerger with ToolScopeFilter leads to
significant improvements in both retrieval and se-
lection accuracy across open-source benchmarks.
Together, these methods improve tool selection per-
formance, increasing tool selection accuracy on
Seal-Tools by 34.5% and on BFCL by 18.3%, as
reported in Table 1.

2 Related Work

2.1 Tool Learning

Tool-augmented large language model (LLM)
agents enhance reasoning via external tools such
as calculators, APIs, and search engines (Yehudai
et al., 2025; Qin et al., 2024; Chen et al., 2023; Qin
et al., 2023; Xu et al., 2023; Jin et al., 2025). These
agents consistently outperform baseline models on
complex benchmarks and real-world tasks (Nakano
et al., 2021; Qin et al., 2023; Winston and Just).
Tool learning (Qu et al., 2025), which refers

to LLM as being proficient in using tools to solve
complex problems as humans (Qin et al., 2023), can
be broken down into four stages of learning: task
planning, tool selection, tool calling, and response
generation (Qu et al., 2025).

Advancements in tool learning can be divided
into two categories: tuning-based and tuning-free
methods (Qu et al., 2025). Tuning-based ap-
proaches encompass supervised fine-tuning (Yang
et al., 2023; Liu et al., 2024a; Shen, 2024; Acikgoz
et al., 2025), contrastive learning (Wu et al., 2024b),
and reinforcement learning (Wang et al., 2025;
Qian et al., 2025). However, these approaches
are computationally expensive. Tuning-free ap-
proaches include chain-of-thought prompting (In-
aba et al., 2023; Liu et al., 2024a), data augmenta-
tion (Liu et al., 2024a), and response-reasoning
strategies (Liu et al., 2024a). Tuning-free ap-
proaches present advantages that can be explored,
such as working well on both open- and closed-
source models (Qu et al., 2025). While recent work
has improved tool use by enhancing individual tool
descriptions (Huang et al., 2023; Qu et al., 2024), it
overlooks cross-tool semantic relationships, limit-
ing its ability to resolve redundancy and ambiguity
in large toolsets.

2.2 Tool Overlap

Several prior works have acknowledged the issue
of tool overlap, which is defined as a query that can
be solved by multiple tools (Huang et al., 2023),
but fail to provide a concrete, autonomous solu-
tion. OpenAl’s guide to LLM Agents highlights
tool overlap as one of the possible causes of LLM
agents consistently select incorrect tools and sug-
gests user keep tools distinct (OpenAl, 2024). Tool-
Shed (Lumer et al., 2024) identifies this issue of
tool overlap in several notable tool selection bench-
marks such as ToolBench (Qin et al., 2023) and
ToolAlpaca (Tang et al., 2023). Furthermore, Meta-
Tool (Huang et al., 2023) attempts to resolve the
overlapped tool issue through clustering and man-
ual curation, but did not address the problem at
scale through automated merging solution.

2.3 Retrieval-Based Tool Selection

As tool libraries expand, selecting the appropriate
tool increasingly resembles a retrieval task. Prior
work has examined lexical methods like BM25
(Robertson et al., 2009) and semantic methods such
as CRAFT (Yuan et al., 2023). Recent retrieval
approaches, including RAG-Tool Fusion (Lumer



et al., 2024), ScaleMCP (Lumer et al., 2025) in-
corporate Retrieval Augmented Generation (RAG)
strategies through pre-retrieval, intra-retrieval, and
post-retrieval phases. Those approaches lever-
age query reformulation, re-ranking, and retrieval-
based planning to improve retrieval accuracy. How-
ever, limited studies have evaluated hybrid retrieval
combining lexical and semantic methods or the
benefits of integrating enhanced toolsets (Lumer
et al., 2025). Finally, no study has combined tool
overlap solutions and hybrid retrieval methods to
tackle improvement of LLM agent tool selection.

3 Methods

3.1 Overview of ToolScope

ToolScope is a comprehensive framework designed
to optimize the performance of LLM agents by ad-
dressing the two key challenges identified in tool
selection: tool overlap and tool selection accuracy.
ToolScopeMerger simplifies a toolset by systemat-
ically consolidating overlapping tools. Then, this
updated toolset is used in ToolScopeFilter to re-
trieve relevant tools. ToolScope combines the ap-
proaches to further improve tool selection accuracy.

3.2 ToolScopeMerger

ToolScopeMerger is a graph-based, auto-merging
framework designed to address the problem of tool
overlap in large-scale toolsets used by LLM agents.
A simplified overview can be seen in Figure 2.
Overlapping tools have become an increasingly
common issue in both production and benchmark
toolsets, especially those designed to cover multi-
ple domains and handle thousands of queries. Tool
overlap introduces ambiguity during tool selection,
negatively impacting retrieval and tool selection
accuracy, as LLM agents struggle to select between
two tools with very similar descriptions and func-
tionality. ToolScopeMerger resolves these issues
by merging semantically similar tools into a sin-
gle tool that covers the functionality of all tools
to merge. ToolScopeMerger can alternatively be
used in a manual form for observability, where se-
mantically overlapping tools will be identified and
presented to the user.

ToolScopeMerger workflow is structured into
five key phases: (1) Tool Indexing - similar tool
pairing, (2) Tool Relationship Classification - iden-
tify overlap tool pairs, (3) Graph Construction -
structure global pruning pairs, (4) Tool Pruning
- unify functions to merge, and (5) Toolset and

o ~
|/ def translateText():

o o

\ " def trainClassifier(): ~\

| 1

1 Translate a given text from 1 1 Irain a classification model |

\ one language to another. '| \,
t'd

-

def interpret():
Interpret a conversation from
one language to another

i —— =
i def getLan(_:|uageTranslation()z\I
) o H
| Translate a given text to 1 Key
Ifcaciegionoiecs } [¥] Pruned Tool
Cluster A \: ) i
Kept Tool

def fitModel():

Fit a statistical learning
model to a given dataset.

Cluster B

Figure 2: ToolScopeMerger uses an undirected, graph-
based approach to identify and then prune overlapping
tools. To ensure observability, the proposed merges are
provided to tool developers for merge auditing.

Dataset Update. Each phase is described in the
following.

Tool Indexing. Let the toolset be defined as
T = {t1,ta,...,t,}. For each tool ¢;, its signature
and natural language description d; are encoded us-
ing an embedding model f to produce a dense vec-
tor representation: v; = f(d;),Vi € {1,...,n}.
Let V = [v1,...,v,] € R4 denote the matrix
of all embedded tools, where d is the embedding
dimension. For each ¢;, we retrieve its top-k most
similar tools based on cosine similarity, forming the
candidate set: Ti(k) = {tiy, ... i}, wheret;, €
T\ {t;}. This set Ti(k) contains the candidates for
potential merging with ¢;.

Tool Relationship Classification. We define an
LLM-based binary classifier M¢ : T'xT — {0,1}
to detect semantic overlap between tools. Given
a tool pair, the model determines whether the two
serve sufficiently similar functions to justify merg-
ing. The input format and prompting strategy for
this classification are described in Appendix C. For
each pair (¢;,¢;) where t; € Ti(k) , the classifier out-
puts a binary label indicating whether the tools are
semantically equivalent, as defined in Equation 1.

1 ift, ~t
Mc(ta,tw:{ @ (1)

0 otherwise

where ~ indicates semantic equivalence.

Graph Construction. Inspired from the Tool
Graph which utilizes graph to represent relation-
ships and dependencies between tools (Shen et al.,
2024; Liu et al., 2024b), we define an undirected
pruning graph G = (T, E), where each node repre-
sents a tool ¢; € T, and an edge (t4, %) € E exists
if Mc(tq,tp) = 1. We then extract the set of con-
nected components in G, C = {C,Cy,...,C.},



where each component C, C T contains tools that
are considered semantically equivalent and there-
fore overlapping.

Tool Pruning. For each connected compo-
nent Cj,, one representative tool t; € Cj is
selected to serve as the canonical tool for the
component. Currently, our implementation se-
lects the tool that minimizes function name string
length. We define the pruned toolset as: T =
{t1,t5,...,t;}, where k& < n. We also maintain a
mapping: ¢ : T — T", where ¢(t) = t}, Vt € Cj.

Toolset and Dataset Update. For each clus-
ter Cp, an LLM Mp is prompted to synthesize a
new tool signature and description d* such that
Mp(Cp) = d*. The new signature and tool de-
scription d* unifies the functionality of the tools in
Cp. See Appendix D for prompt details. This forms
a new merged tool based around the representative
tool t;, = d*. Given our mapping ¢, we update
our original benchmark dataset 3 by relabeling our
gold responses, as shown by the Equation 2:

V(g,1) € B, t = ¢(t) 2

where (q,l) is a query-response pair, and [ can
be multiple tools. This final step ensures the new
Toolset T” is still compatible with the evaluation
benchmark and leads to fair and accurate testing.

ToolScopeMerger also allows users to perform
reviews after merging, helping refine and identify
edge cases in the toolset. To complement auto-
mated merging, in our experiments, we also man-
ually inspect selected clusters, pruning decisions,
and failure cases in our experiments. These in-
clude similar tools that were not merged due to
vague descriptions, and incorrect merges based on
surface-level similarity.

3.3 ToolScopeFilter

Effective tool selection is essential for enhancing
the capabilities of large language models (LLMs)
when solving complex tasks involving external
tools. Inspired by recent work (Chen et al., 2024;
Qu et al., 2024), we adopt a hybrid approach to
tool selection that integrates both local and global
reranking strategies, supporting both single-tool
and multi-tool use cases.

Single-tool selection. Given a query ¢ and a set
of candidate tools 7", we compute a hybrid retrieval
score for each tool ¢ € T' by combining sparse and
dense similarity scores through a weighted average,

denoted as:

S(Qa t) = Sdense(‘]a t) + (1 - Oé) : Ssparse(Q> t) (3)

The top M candidates based on s(g,t) are then
reranked using a cross-encoder that scores each
pair (g, t). The tool with the highest reranker score
is selected as the final output.

Multi-tool selection. In the multi-tool setting,
each query q is associated with multiple subqueries.
For each subquery, we apply the same hybrid re-
trieval and reranking procedure, selecting the top-1
tool t() with the highest reranker score. The re-
maining tools t@) for j = 2,..., M are normalized
using min-max normalization:

S(t('j)) — Smin

Snorm(t(j)) - S — Smin T €
max min

“

This normalization rescales scores across sub-
queries, since raw reranker scores may not be di-
rectly comparable due to varying query-to-tool sim-
ilarity distributions. It enables a fair global rank-
ing of tools from different subqueries. The top-k
toolset is assembled by first including all top-1 se-
lections, then iteratively adding tools with the high-
est normalized scores until k tools are selected.

4 Experiments

4.1 Experiment Setup

Datasets. Prior work has introduced datasets such
as ToolACE (Liu et al., 2024a), ToolE (Huang
et al., 2023), Berkeley Function Calling Leader-
board (BFCL) (Patil et al., 2024), NexusRaven
(Nexusflow, 2023), ToolBench (Qin et al., 2023),
RestBench (Song et al., 2023), and SealTools (Wu
et al., 2024a). Despite covering a range of tool-use
tasks, existing benchmarks have key limitations:
(1) some tool descriptions were lacking high qual-
ity tool documentation; (2) missing parameters or
type hints in ground truth; (3) insufficient count of
tools in toolset to correctly evaluate the retrieval
system. For our study, we selected SealTools and
BFCL as primary datasets. SealTools (Wu et al.,
2024a) includes out-of-domain test examples that
calls single and multiple tools over a large toolset
with 4076 tools. BFCL (Patil et al., 2024) has a sim-
ple single-turn tool calling dataset which contains
400 queries and 400 tools with one to one query to
tool mappings that allow us to test our tool merging
strategy efficiently. Together, these datasets support
evaluation across different retrieval challenges.



Benchmarks  Configuration CSR
k=1 k=5 k=10 k=15 k=20 k=25 k=30
BM25 0.544 0.593 0.646 0.666 0.702 0.727
Seal-Tools Dense 0.548 0.603 0.631 0.657 0.676 0.694
ToolScope 0.889 0.908 0.919 0.921 0.919 0.926
BM25 0.695 0.850 0.875 0.870 0.868 0.878 0.883
BFCL Dense 0.780 0.888 0.900 0.915 0.912 0.912 0.915
ToolScope 0.878 0.912 0.915 0.915 0.912 0.912 0.915

Table 1: Correct Selection Rate (CSR) of top k tools across Seal-Tools and BFCL datasets. DPR and ToolShed do
not have CSR results since the implementation code is not available.

Evaluation Metrics. We follow prior work
(Lumer et al., 2024; Wu et al., 2024a) and use
standard tool selection and retrieval-based metrics.
Correct Selection Rate (CSR), adapted from Meta-
Tool (Huang et al., 2023), measures the percent-
age of queries for which the predicted toolset ex-
actly matches the ground-truth set, as shown in
Equation 5. Recall @k quantifies the proportion of
ground-truth tools correctly retrieved among the
top-k predictions (see Equation 6 in Appendix A).

1 ~
> T, =Ty (5)

CSR = —:
19l &2

Here, Q is the set of all evaluation queries, T;

is the ground-truth toolset for query g, Tq is the
predicted toolset, and I[] is the indicator function.
Baselines. We benchmarked our methods
against established baselines on tool selection and
retrieval including: (1) BM25 (Robertson et al.,
2009), a term based retrieval method that scores
query-tool relevance using term frequency and in-
verse document frequency (TF-IDF). (2) Dense
embeddings (Qu et al., 2025), which encodes both
queries and tool descriptions into dense vector rep-
resentations using a pretrained embedding model.
For retrieval performance on Seal-Tools, we also
report performance from DPR (Wu et al., 2024a)
and ToolShed (Lumer et al., 2024). All baselines
operate over the original, unmodified toolsets. Fur-
thermore, for multi-tool queries, we retrieve the
top-k tools from the original query, then later use
query decomposition at tool selection.
Implementation Details. For main experi-
ments of ToolScopeMerger, we use thenlper/gte-
large embedding (Li et al., 2023), FAISS index
(Douze et al., 2024), GPT-40 (OpenAl, 2024) as
the backbone model. For main experiments of
ToolScopeFilter, we use BM25 as sparse retrieval
method, thenlper/gte-large (Li et al., 2023) as
the dense embedding, ms-marco-MiniLM-L6-v2

(Cross-Encoder, 2024) as the cross encoder and
GPT-40 (OpenAl, 2024) as the backbone model.

4.2 Experimental Results

We present our experimental results on LLM agent
tool selection in Table 1. Based on the results,
we have the followng observations: ToolScope
consistently outperforms baselines in Correct Se-
lection Rate (CSR) across both Seal-Tools (Wu
et al., 2024a) and BFCL (Patil et al., 2024) bench-
marks. As seen in Table 3, even when applied inde-
pendently, ToolScopeFilter substantially improves
CSR, and combining it with ToolScopeMerger fur-
ther boosts performance by reducing the toolset
semantic redundancy and aligning better with the
LLM’s reasoning behavior. By jointly optimizing
the tool index and toolset granularity, ToolScope
enables more accurate and scalable function selec-
tion for LLM agents.

The improvements in CSR are robust across all
evaluated values of k, suggesting that ToolScope
streamlines the retrieval process while reducing
functional overlap. As the value of of k increases,
we observe a higher performance difference in Seal-
Tools. This could be attributed to the fact that as we
increase the value of k, there is a higher percentage
of overlap tools in the original dataset compared
with the merged dataset.

4.3 Result Analysis

Based on the experiment results, we have the fol-
lowing observations:

ToolScope improves both retrieval and selec-
tion performance. ToolScopeMerger increases
retrieval accuracy by reducing semantic overlap in
the toolset and making the retrieval space clearer,
as reported in Table 2. Recall@10 improves signif-
icantly from 0.550 to 0.935 on the SealTools (Wu
et al., 2024a) benchmark and from 0.945 to 0.985
on BFCL (Patil et al., 2024), highlighting the bene-



BM25
Dense
ToolScope

o ~ © ©
=] =) =] =]

Correct Selection Rate (%)
@
o

IS
S

GPT-40 LLaMA-3.3-70B Cohere-R-08-2024 GPT-40

LLaMA-3.3-70B Cohere-R-08-2024

GPT-40 LLaMA-3.3-70B Cohere-R-08-2024

Figure 3: Analysis of cross model generalization on ToolScope with top k tools across Seal-Tool.

fit of refining the toolset. ToolScopeFilter applies
a hybrid retrieval strategy that combines sparse
(BM25) and dense embeddings. The weighting
parameter « balances the contribution of lexical
and semantic similarity, while the cross-encoder
reranker evaluates retrieved candidates using con-
textual information. However, retrieval accuracy
does not consistently improve with hybrid search.
The highest Recall@k scores are obtained when
a = 1, indicating that dense retrieval alone per-
forms best for retrieval, as seen in Figure 4. Ac-
cordingly, the ToolScope results reported in Table 2
use dense-only retrieval, where our method outper-
forms all baselines across all k£ values on BFCL
and at kK = 5 on SealTools.

Benchmark / Recall@k
Configuration
k=1 k=5 k=10

Seal-Tools / BM25 - 0.490 0.540
Seal-Tools / Dense - 0.589 0.649
Seal-Tools / DPR' - 0480  0.680
Seal-Tools / ToolShed” - 0.876 0.965
Seal-Tools / ToolScope - 0.884 0.935
BFCL / BM25 0.693 0.913 0.945
BFCL / Dense 0.818 0.973 0.985
BFCL / ToolScope 0.880 0.973 0.985

! DPR results are from (Wu et al., 2024a)
2 ToolShed results are from (Lumer et al., 2024)

Table 2: Recall@k scores for selected configurations on
Seal-Tools and BFCL benchmarks

ToolScope has demonstrated cross model gen-
eralization in improving CSR. We compared
ToolScope to the baselines which use BM25
and Dense retrieval techniques. We evaluated
three foundation models: GPT-40 (OpenAl, 2024),
Cohere-Command-R-08-2024 (Cohere, 2024), and
LLaMA-3.3-70B (Meta Platforms, Inc., 2024). As

shown in Figure 3, ToolScope consistently outper-
forms both baselines across all k values (5, 10, and
15) in CSR. These results highlight ToolScope’s
strong generalization capability across different
LLMs. Among the models evaluated, GPT-40 ex-
hibits the highest CSR, indicating that ToolScope
can benefit from continuous advancements in foun-
dation models.

0.95+ Recall@K

—&— Recall@l
0.94- —&— Recall@5
—&— Recall@10

Mean Recall@K

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

Figure 4: Recall@k for different values of « on the
Seal-Tools dataset.

Ablation Study. We conduct ablation studies on
both BFCL and Seal-Tools to evaluate the contri-
butions of the two core components in ToolScope:
ToolScopeMerger and ToolScopeFilter. As shown
in Table 3, ToolScope consistently achieves the
highest CSR across all top-k values, demonstrating
the effectiveness of combining tool pruning and
targeted retrieval.

In BFCL, where each query corresponds to ex-
actly one gold tool, CSR is particularly sensi-
tive to the quality of the tool input. We observe
that ToolScopeMerger alone achieves compara-
ble performance to ToolScopeFilter, and the full
ToolScope system achieves the best CSR, particu-
larly at lower k. This highlights the importance of



Methods CSR for BFCL

k=1 k=5 k=10
ToolScope 0.878 0.912 0.915
ToolScopeFilter only 0.820 0.882 0.888
ToolScopeMerger only 0.825 0.902 0.915
Methods CSR for Seal-Tools

k=10 k=20 k=30
ToolScope 0.908 0.921 0.926
ToolScopeFilter only 0.895 0.906 0.912
ToolScopeMerger only 0.613 0.701 0.732

Table 3: Ablation Study of ToolScope on BFCL and
Seal-Tools. ToolScopeFilter only uses original data with
retrieval improvement, while ToolScopeMerger only
uses merged data without retrieval improvement.

ensuring high-quality, non-redundant tools, as even
slight ambiguity in tool definitions can negatively
affect retrieval and selection in tool settings like
BFCL.

For Seal-Tools, removing ToolScopeMerger
leads to a moderate CSR drop. This can be ex-
plained by the fact that only 20% of queries need
to invoke tools were either modified or merged.
This indicates that pruning semantically overlap-
ping tools improves the diversity and coverage of
top-k candidates. Excluding ToolScopeFilter re-
sults in a more significant CSR decline, highlight-
ing the necessity of an effective retrieval mecha-
nism as Seal-Tool has a large original toolset (4076
tools).

Reranking enables high CSR with smaller re-
trieval sizes of ToolScopeFilter. As shown in Fig-
ure 6, enabling the reranker significantly improves
CSR (Correct Selection Rate), at smaller retrieval
sizes, such as k = 5 or 10. As k increases, the per-
formance gap between reranked and non-reranked
configurations narrows, suggesting diminishing re-
turns from retrieving larger toolsets. Overall, k = 5
or k = 10 with reranking provide a good balance
between performance and retrieval efficiency.

ToolScopeMerger effectively reduces func-
tional overlap. ToolScopeMerger removes seman-
tically similar tools, improving the distribution in
embedding space. We reduced the toolset in BFCL
(Patil et al., 2024) from 400 to 344 tools by re-
moving tools with similar names and descriptions.
SealTools (Wu et al., 2024a), which started with
4,076 tools, also showed overlap: we merged 84
tools despite earlier claims of minimal redundancy.
We evaluated the impact using the silhouette co-

Updated BFCL Toolset (Using ToolScopeMerger)
20 5

Original BFCL Toolset

Cluster ID
Cluster ID

Dimension 2

Dimension 2

|
H
S

|
N
S

-30 -20 -10 © 10 20 30
Dimension 1

-30 -20 -10 0 0 20 30
Dimension 1

Figure 5: T-SNE visualization of original BFCL tool
embedding and merged BFCL tool embedding

0.950 OO O—O—O—O—C—O—O—O—O—C—0—O—C— 00—
0.925
0.900
0.875
0.850

0.825

Correct Selection Rate

0.800 Reranker

—e— off
0.775 ol

0 20 40 60 80 100 120 140
Top-K

Figure 6: The CSR results (%) of top k tools with/with-
out Reranker

efficient (Rousseeuw, 1987), where lower values
indicate less overlap. We also used t-SNE plots
(Van der Maaten and Hinton, 2008) to visualize
tool distribution. As shown in Figure 5 and Ap-
pendix E.2, both datasets exhibit sparser distribu-
tions. As seen in Appendix E.1, both datasets also
have lower silhouette scores after merging, con-
firming that ToolScopeMerger reduces semantic
redundancy.

ToolScopeMerger increases observability
for tool developers. We provide outputs that
enable tool developers to audit merge decisions,
as illustrated in Figure 2. This allows them to
verify correct merges, such as translateText and
getLanguageTranslation as shown in Listing 1, and
spot incorrect ones caused by unclear documenta-
tion. For example, in SealTools, getGeologyData
and getGeologylnfo seen in Listing 2 were merged
despite lacking enough detail to confirm they serve
the same function. By making similarity-driven
merges transparent, tool developers can confirm or
override merge decisions with minimal overhead
and improve tool descriptions to better reflect
functionality.

Correct merge:



Listing 1: Function definition for translateText and
getlLanguageTranslation

translateText:

translateText(text: str, source_language: str,
target_language: str)

Translate a given text from one language to
another

Args:
text (str): The text to be translated (e.g.,
Hello, how are you?)
source_language (str): The source language
of the text (e.g., English, Spanish)
target_language (str): The target language
for translation (e.g., Spanish, French)

getlanguageTranslation:

getLanguageTranslation(text: str,
source_language: str, target_language: str)

Translate a given text to another language

Args:

text (str): The text to be translated

source_language (str): The source language
of the text (e.g., English, Spanish,
French)

target_language (str): The target language
for translation (e.g., English,
Spanish, French)

Incorrect merge due to Poor Documentation

Listing 2: Function definition for textttgetGeologyData
and textttgetGeologylInfo

getGeologyData:
getGeologyData(location: str)
Retrieve geological data for a specific location

Args:
location (str): The location for which you
want to retrieve geological data (e.g.,
mountain range, river, city)

getGeologyInfo:
getGeologyInfo(location: str)
Retrieve geological information

Args:
location (str): The location for which you
want to retrieve geological information
(e.g., mountains, lakes, caves)

The absence of query decomposition signif-
icantly impacts performance in multi-tool sce-
narios. In our baseline methods, which do not
incorporate query decomposition, we observe a
sharp decline in CSR and Recall@k on multi-tool
queries. Without breaking down complex queries
into atomic sub-queries for the LLLM agent, the re-
trieval and selection process struggles to identify
all necessary tools in the top-k. This results in par-
tial matches, where only a subset of the necessary
tools are retrieved for a given query, reducing CSR
since the necessary tools are not available in the

LLM agent’s perspective. These findings suggest
that query decomposition is a critical component
for effective tool selection in multi-tool scenarios.

Tool overlap remains a prevalent and often
unaddressed issue across open-source bench-
marks. For example, although Toolshed (Lumer
et al., 2024) reports that the SealTools benchmark
contains few overlapping tools, we found multiple
instances of semantically redundant tools that can
hinder retrieval and selection accuracy without a
solution like ToolScopeMerger.

Similarly, BFCL-simple (Patil et al., 2024), by
design, includes overlapping tools with highly sim-
ilar functionality and descriptions. While this may
serve other evaluation purposes, it poses challenges
for experiments focused on tool selection accu-
racy, such as ours. These inconsistencies high-
light a critical limitation in current benchmarks:
the prevelance of overlapping tools. As our results
demonstrate, tool overlap introduces ambiguity that
can distort retrieval metrics and, more importantly,
cause selection errors. For future research in tool
learning and tool selection, it is essential to address
this issue. Benchmark designers should strive for
clearer manual distinction between tools or provide
annotations of overlapping to ensure more accurate
performance reporting.

5 Conclusion

In this paper, we present ToolScope, a two-part
framework aimed at addressing key challenges
in LLM agent tool selection: tool overlap and
limitations of long context length. ToolScope-
Merger consolidates overlapping tools using an
automated framework and increases observabil-
ity for tool developers to audit merge decisions,
while ToolScopeFilter improves retrieval accuracy
through query decomposition, hybrid retrieval and
reranker and robust score ranking logic for tool
retrieval. Together, our results show that these
components significantly improve tool selection
accuracy across standard benchmarks Seal-Tools
(Wu et al., 2024a) and BFCL (Patil et al., 2024),
increasing CSR on Seal-Tools by 34.5% and CSR
on BFCL by 18.3% when compared to baselines.
We also identify a persistent tool overlap issue in
currently available open-source public benchmarks,
which calls for a higher quality toolset curation.
Overall, ToolScope provides a scalable solution for
improving LLM-agent tool selection in real-world
settings.



Limitations

ToolScope currently focuses on reducing tool over-
lap and increasing retrieval performance. The qual-
ity of the tool documentations can be further im-
proved using automatic documentation refinement
framework such as DRAFT (Qu et al., 2024). This
may bring additional improvements to LLM agent
tool selection accuracy.

Future Work

We expect additional improvements for the future
work. First, adopting additional advanced retrieval
methods, such as multi-index frameworks that may
improve scalability and relevance in large tool
repositories. Second, given the limitation to the
overlap issues identified in existing benchmarks
we evaluated, it is crucial to expand on additional
benchmarks of diverse toolset. It is crucial to evalu-
ate whether it is better to modify the existing toolset
and update single-label ground truth or introducing
multi-label ground truth so that we can have a more
comprehensive and accurate benchmark to evaluate
LLM agent system. Finally, expanding the scope
of the evaluation to analyze ToolScope’s impact on
tool calling and response generation would help
establish a clear picture on holistic improvements
to LLM agent tool learning.

Ethical Considerations

While ToolScope improves LLM agent perfor-
mance in tool selection tasks, it is not yet suitable
for deployment in environments where errors in
tool selection could result in significant harm or
consequences such as those in medical, legal, or
financial fields. ToolScope relies on LLM gener-
ated tool merging and retrieval mechanisms which
are inherently probabilistic. As with many LLM
solutions, this is subject to hallucination, bias, and
misclassifications of overlapped tools.

References

Emre Can Acikgoz, Jeremiah Greer, Akul Datta,
Ze Yang, William Zeng, Oussama Elachqar, Em-
manouil Koukoumidis, Dilek Hakkani-Tiir, and
Gokhan Tur. 2025. Can a single model master both
multi-turn conversations and tool use? calm: A uni-
fied conversational agentic language model. arXiv
preprint arXiv:2502.08820.

Nuo Chen, Hongguang Li, Baoyuan Wang, and Jia Li.
2023. From good to great: Improving math reason-

ing with tool-augmented interleaf prompting. arXiv
preprint arXiv:2401.05384.

Yanfei Chen, Jinsung Yoon, Devendra Singh Sachan,
Qingze Wang, Vincent Cohen-Addad, Mohammad-
hossein Bateni, Chen-Yu Lee, and Tomas Pfister.
2024. Re-invoke: Tool invocation rewriting for zero-
shot tool retrieval. arXiv preprint arXiv:2408.01875.

Cohere. 2024. Command models get an august refresh.
Accessed: 2025-05-18.

Cross-Encoder. 2024. cross-encoder/ms-marco-minilm-
16-v2. Accessed: 2025-05-18.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. 2024. The faiss library. arXiv preprint
arXiv:2401.08281.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhengiang Gong, and 1 others. 2023. Meta-
tool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Tatsuro Inaba, Hirokazu Kiyomaru, Fei Cheng, and
Sadao Kurohashi. 2023. Multitool-cot: Gpt-3 can use
multiple external tools with chain of thought prompt-
ing. arXiv preprint arXiv:2305.16896.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-rl: Training llms to reason and
leverage search engines with reinforcement learning.
arXiv preprint arXiv:2503.09516.

Yixin Li and 1 others. 2023. Gte-large model card.
https://huggingface.co/thenlper/gte-large.
Accessed: 2025-05-18.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, and 1 others. 2024a.
Toolace: Winning the points of 1lm function calling.
arXiv preprint arXiv:2409.00920.

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie,
Lirong Xiang, Yuchen Liu, and Dongkuan Xu.
2024b. Toolnet: Connecting large language mod-
els with massive tools via tool graph. arXiv preprint
arXiv:2403.00839.

Elias Lumer, Anmol Gulati, Vamse Kumar Subbiah,
Pradeep Honaganahalli Basavaraju, and James A
Burke. 2025.  Scalemcp: Dynamic and auto-
synchronizing model context protocol tools for llm
agents. arXiv preprint arXiv:2505.06416.

Elias Lumer, Vamse Kumar Subbiah, James A Burke,
Pradeep Honaganahalli Basavaraju, and Austin Hu-
ber. 2024. Toolshed: Scale tool-equipped agents with
advanced rag-tool fusion and tool knowledge bases.
arXiv preprint arXiv:2410.14594.


https://docs.cohere.com/v2/changelog/command-gets-refreshed
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2
https://huggingface.co/thenlper/gte-large

Meta Platforms, Inc. 2024. Model cards and prompt
formats — llama 3.3. Accessed: 2025-05-18.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
and 1 others. 2021. Webgpt: Browser-assisted
question-answering with human feedback. arXiv
preprint arXiv:2112.09332.

Nexusflow. 2023. Nexusraven-v2: Surpassing gpt-4
for zero-shot function calling. https://nexusflow.
ai/blogs/ravenv2. Accessed: 2025-05-04.

OpenAl. 2024. Hello gpt-4o. Accessed: 2025-05-18.

OpenAl.  2024. A practical guide to
building  agents. https://cdn.openai.
com/business-guides-and-resources/
a-practical-guide-to-building-agents.pdf.
Accessed: 2025-05-16.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2024. Gorilla: Large language model
connected with massive apis. Advances in Neural
Information Processing Systems, 37:126544—126565.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang,
Xiusi Chen, Dilek Hakkani-Tiir, Gokhan Tur, and
Heng Ji. 2025. Toolrl: Reward is all tool learning
needs. arXiv preprint arXiv:2504.13958.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, and 1 others. 2024. Tool
learning with foundation models. ACM Computing
Surveys, 57(4):1-40.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. From exploration to mastery: enabling
Ilms to master tools via self-driven interactions.
arXiv preprint arXiv:2410.08197.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2025. Tool learning with large language mod-
els: A survey. Frontiers of Computer Science,
19(8):198343.

Stephen Robertson, Hugo Zaragoza, and 1 others. 2009.
The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information
Retrieval, 3(4):333-389.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53-65.

10

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2024. Taskbench: Benchmark-
ing large language models for task automation. Ad-
vances in Neural Information Processing Systems,
37:4540-4574.

Zhuocheng Shen. 2024. Llm with tools: A survey.
arXiv preprint arXiv:2409.18807.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng Li,
Ke Wang, Rong Yao, and 1 others. 2023. Restgpt:
Connecting large language models with real-world
restful apis. arXiv preprint arXiv:2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen,
Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang,
Kam-Fai Wong, and Heng Ji. 2025. Otc: Optimal
tool calls via reinforcement learning. arXiv preprint
arXiv:2504.14870.

Cailin Winston and René Just. A taxonomy of failures
in tool-augmented llms.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan,
Xiang Zhang, and Wenliang Chen. 2024a. Seal-tools:
Self-instruct tool learning dataset for agent tuning
and detailed benchmark. In CCF International Con-
ference on Natural Language Processing and Chi-
nese Computing, pages 372-384. Springer.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,
Michihiro Yasunaga, Kaidi Cao, Vassilis loannidis,
Karthik Subbian, Jure Leskovec, and James Y Zou.
2024b. Avatar: Optimizing llm agents for tool us-
age via contrastive reasoning. Advances in Neural
Information Processing Systems, 37:25981-26010.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models. arXiv preprint arXiv:2305.16504.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Advances in Neural Information Processing Systems,

36:71995-72007.

Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun
Zhao, Roy Bar-Haim, Arman Cohan, and Michal
Shmueli-Scheuer. 2025. Survey on evaluation of llm-
based agents. arXiv preprint arXiv:2503.16416.


https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://nexusflow.ai/blogs/ravenv2
https://nexusflow.ai/blogs/ravenv2
https://nexusflow.ai/blogs/ravenv2
https://openai.com/index/hello-gpt-4o/
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung,
Hao Peng, and Heng Ji. 2023. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets. arXiv preprint arXiv:2309.17428.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based

agents with concise tool instruction. arXiv preprint
arXiv:2401.06201.

11



A Metrics Definition

Recall @k measures the proportion of ground-truth
tools that are correctly retrieved within the top-k
predictions. It is defined as:

Recall @ K = (6)

where Q is the set of queries, 7T} is the ground-truth
toolset, and qu is the top-k predicted tools.

B Dataset Licensing

B.1 Seal-Tools Dataset License

The Seal-Tools dataset and associated
code are licensed wunder the Apache
License 2.0. Details can be found at:
https://github.com/fairyshine/Seal-Tools?
tab=Apache-2.0-1-ov-file

B.2 BFCL Dataset License

The BFCL dataset and associated code are
licensed under the Apache License 2.0.
Details can be found at: https://github.
com/ShishirPatil/gorilla/blob/main/LICENSE

C Prompt for LLM Merging Classifier
Mc

You are an expert in software
tool design and resolving
function overlap issues.

Goal: Determine whether any
candidate functions are
semantically equivalent to a
given target function - in the
strictest sense - and recommend
one for merging only if true
equivalence is detected.

An overlapped issue arises when
a user query can be handled by
multiple similar functions. This
ambiguity can reduce LLM
accuracy in selecting the
correct function to call.

Merging should only be suggested
if the functions are equivalent:

Equivalent: Two functions are
considered equivalent only if:
They perform exactly the same
core operation. They are fully

12

interchangeable in real-world
usage - i.e., replacing one with
the other does not alter the
behavior, side effects, or
required inputs. Their parameter
lists match exactly - in both
name and count (or have
trivially renamable arguments
with the same semantics).

Examples of equivalence:
trainClassifier(data) and
predictModel (data) (if both
imply model training despite
different names) fetchUserInfo()
and getUserDetails()

Do not consider two functions
equivalent if: They differ by a
fixed value (e.g.,
translateToHebrew vs
translateTolItalian) One modifies
the input while the other checks
it (e.g., sanitizelnput vs
validateInput) One function is a
logical generalization or
specialization of the other
(e.g, addCrop vs. addCropToFarm,
translateText vs.
translateSpanish)

If none of the candidate
functions provide semantically
similar capabilities with the
target function, return None.
Think about this from the
perspective of how an LLM might
confuse or suggest the function
to prune based on natural
language queries.

Target function:
{target_tool_docstring}

Candidate functions:
{candidate_output_str}

Instructions: Compare each
candidate function to the target
function. If any of the
candidate functions are
sufficiently overlapping or
logically mergeable with the
target function, return the
candidate function based on the
rules below: The candidate


https://github.com/fairyshine/Seal-Tools?tab=Apache-2.0-1-ov-file
https://github.com/fairyshine/Seal-Tools?tab=Apache-2.0-1-ov-file
https://github.com/ShishirPatil/gorilla/blob/main/LICENSE
https://github.com/ShishirPatil/gorilla/blob/main/LICENSE

function selected and target
function should have exact same
list of parameters. If the
function names are semantically
equivalent or fixed-value
variants (e.g., hardcoded
languages), return the name of
the candidate function to prune
(as equivalent). If no functions
meet the merge criteria, return
None.

Output only two lines:

- The chosen candidate function
from the list of candidate
functions. Only return the
function name - do not return
parameters or signature.

- A short reasoning using
chain-of-thought that explains
the relationship, and why this
choice was made.

Prompt for LLM Description Merger
Mp

You are given multiple Python
function definitions, each with
a signature and docstring.

Your task is to merge all of
them into a **single function*x
using the name {keep_tool}".

Instructions:

- The function to merge into is
listed first.

- The other functions may
include additional or
overlapping parameters and
docstring details.

- Your goal is to:

- Combine all **unique
arguments*x

- Prefer parameter types,
defaults, and naming from the
canonical function {keep_tool}:
Additional parameters added
could be added as optional
parameter. Do not hallucinate
extra parameters not present in
the function to merge into and
functions to merge from.

13

- Carefully integrate all
relevant docstring content

- The final result must include:

- One complete *xfunction
signature**

- One consolidated **docstringxx,
insert all descriptions about
the function first, make sure
descriptions are well summarized
and concise. Then insert the
argument explaination.

- Do **not** include
implementation code.

- Do **not** include markdown,
explanation, or commentary.

- Only output the final
**signature and docstring*x,
nothing else.

{keep_block}{prune_block}

E ToolScopeMerger Results

E.1 Silhouette Scores on Seal-Tools and BFCL

Embedding
—e— Original

0.0341 —o— New

0.032

o
o
@
S

Silhouette Score

0.028

0.026

0.024

10 12 14 16 18 20
Number of Clusters (k)

Embedding
—e— Original
—o— New

0.09

Silhouette Score

e
o
<

0.06

2.5 5.0 7.5 10.0 125

Number of Clusters (k)

15.0 17.5

Figure 7: Seal-Tools (top) and BFCL (bottom) silhou-

ette scores comparison

20.0



E.2 ToolScopeMerger Result on Seal-Tools

Updated SealTool Toolset (Using ToolScopeMerger)

° s 2
8 g B ] g 2 8

Zuauodwod

Original SealTool Toolset

80
60
40
2

-20

-40
6
8

2 uauodwod

Component 1

Component 1

Figure 8: T-SNE visualization of original Seal-Tools

tool embedding and merged Seal-Tools tool embedding

14



	Introduction
	Related Work
	Tool Learning
	Tool Overlap
	Retrieval-Based Tool Selection

	Methods
	Overview of ToolScope
	ToolScopeMerger
	ToolScopeFilter

	Experiments
	Experiment Setup
	Experimental Results
	Result Analysis

	Conclusion
	Metrics Definition
	Dataset Licensing
	Seal-Tools Dataset License
	BFCL Dataset License

	Prompt for LLM Merging Classifier MC
	Prompt for LLM Description Merger MD
	ToolScopeMerger Results
	Silhouette Scores on Seal-Tools and BFCL
	ToolScopeMerger Result on Seal-Tools


