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Abstract001

Large language model (LLM) agents rely on002
external tools to solve complex tasks. How-003
ever, real-world toolsets often include tools004
with overlapping names and descriptions, lead-005
ing to ambiguity in tool selection and degrada-006
tion in reasoning performance. Furthermore,007
the limited input context available to LLM008
agents constrains their ability to effectively009
utilize information from a large number of010
tools. To address these challenges, we pro-011
pose ToolScope, a two-part workflow which012
contains: (1) ToolScopeMerger, an automated013
tool-merging framework that reduces semantic014
redundancy on tools and offers observability015
to users to refine their toolset. (2) ToolScope-016
Filter, which mitigates the limitations imposed017
by LLMs’ context length by retrieving the top-018
k relevant tools for a given query. This se-019
lective filtering reduces input length, enabling020
more efficient tool usage without compromis-021
ing selection accuracy. Experimental results022
on open-source benchmarks demonstrate that023
ToolScope significantly improves tool selection024
accuracy, achieving a 34.5% improvement on025
Seal-Tools and a 18.3% improvement on BFCL026
compared to baseline methods.027

1 Introduction028

Tool learning (Qu et al., 2025), which refers to029

LLMs being proficient in using tools to solve com-030

plex problems (Qin et al., 2023), has emerged as031

a key research topic. It is divided into four stages:032

task planning, tool selection, tool calling, and re-033

sponse generation (Qu et al., 2025). Within these034

stages, tool selection, where the model identifies035

the most appropriate tool from a set to address a036

given query, is a critical yet underdeveloped sub-037

task (Yang et al., 2023; Qin et al., 2023). Pre-038

vious work in tuning-free tool selection methods039

(Qu et al., 2025) has focused on systematically040

improving tool documentation with frameworks041

such as DRAFT (Qu et al., 2024) and EASYTOOL042

Figure 1: A simplified overview of using ToolScope for
a tool selection task. A toolset is fed into ToolScope-
Merger (a) creating a refined toolset that is passed to
ToolScopeFilter (b). The retrieved best tools for a query
are then passed to an LLM agent for selection.

(Yuan et al., 2024). Furthermore, work on retrieval- 043

based tool selection explored “term-based” (e.g. 044

BM25) (Robertson et al., 2009) and “semantic- 045

based” methods such as CRAFT (Yuan et al., 2023) 046

or off-the-shelf embeddings (Qu et al., 2025) as the 047

retrieval technique to improve tool selection. The 048

key challenge in tool selection is that LLMs often 049

fail to choose the most appropriate tools. Two ma- 050

jor factors which contribute to this are: (1) overlap- 051

ping tool descriptions which introduce ambiguity 052

that reduces both retrieval and tool selection accu- 053

racy (OpenAI, 2024; Lumer et al., 2024; Huang 054

et al., 2023), (2) the limited input context of LLMs 055

constrains their ability to reason effectively over 056

large toolsets (Huang et al., 2023). As toolsets 057

grow in size and complexity, these issues become 058

more pronounced. Therefore, addressing both tool 059

overlap and context limitations is essential for im- 060

proving tool selection performance. 061

We propose ToolScope, a two-part solution that 062

automatically merges tools through ToolScope- 063

Merger and retrieve most relevant tools using 064

ToolScopeFilter. This addresses two main chal- 065
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lenges: overlapping tool descriptions and context066

length limitations.067

ToolScopeMerger helps improve toolset qual-068

ity by identifying and merging overlapping tools.069

It begins by forming tool pairs based on their se-070

mantic similarity. An LLM determines whether071

tool pairs are functionally similar enough to be072

combined. These relationships are used to build a073

graph that defines the mapping between the tools074

to keep, and the tools to prune. Finally, we use075

another LLM to guide the merging, and we fur-076

ther update the toolset and the ground truth in the077

dataset. ToolScopeMerger also offers the option078

for users to manually review and adjust the results,079

ensuring flexibility and transparency.080

ToolScopeFilter is a retrieval system that han-081

dles single and multi-tool queries by retrieving can-082

didate tools using a hybrid strategy that combines083

dense and sparse search. The extracted tools are084

then reranked based on contextual relevance, with085

score normalization applied to ensure fair compar-086

ison between all candidates. ToolScopeFilter en-087

hances the relevance of retrieved tools by capturing088

both semantic and exact matches, and improves089

results for retrieval and tool selection accuracy.090

In summary, our contribution is as follows: (1)091

ToolScopeMerger, a novel graph-based frame-092

work that merges semantically similar tools to ad-093

dress tool overlap issues, improving toolset clarity.094

(2) ToolScopeFilter, a hybrid retrieval system that095

integrates both sparse and dense scores to reduce096

context length. (3) We demonstrate that combining097

ToolScopeMerger with ToolScopeFilter leads to098

significant improvements in both retrieval and se-099

lection accuracy across open-source benchmarks.100

Together, these methods improve tool selection per-101

formance, increasing tool selection accuracy on102

Seal-Tools by 34.5% and on BFCL by 18.3%, as103

reported in Table 1.104

2 Related Work105

2.1 Tool Learning106

Tool-augmented large language model (LLM)107

agents enhance reasoning via external tools such108

as calculators, APIs, and search engines (Yehudai109

et al., 2025; Qin et al., 2024; Chen et al., 2023; Qin110

et al., 2023; Xu et al., 2023; Jin et al., 2025). These111

agents consistently outperform baseline models on112

complex benchmarks and real-world tasks (Nakano113

et al., 2021; Qin et al., 2023; Winston and Just).114

Tool learning (Qu et al., 2025), which refers115

to LLM as being proficient in using tools to solve 116

complex problems as humans (Qin et al., 2023), can 117

be broken down into four stages of learning: task 118

planning, tool selection, tool calling, and response 119

generation (Qu et al., 2025). 120

Advancements in tool learning can be divided 121

into two categories: tuning-based and tuning-free 122

methods (Qu et al., 2025). Tuning-based ap- 123

proaches encompass supervised fine-tuning (Yang 124

et al., 2023; Liu et al., 2024a; Shen, 2024; Acikgoz 125

et al., 2025), contrastive learning (Wu et al., 2024b), 126

and reinforcement learning (Wang et al., 2025; 127

Qian et al., 2025). However, these approaches 128

are computationally expensive. Tuning-free ap- 129

proaches include chain-of-thought prompting (In- 130

aba et al., 2023; Liu et al., 2024a), data augmenta- 131

tion (Liu et al., 2024a), and response-reasoning 132

strategies (Liu et al., 2024a). Tuning-free ap- 133

proaches present advantages that can be explored, 134

such as working well on both open- and closed- 135

source models (Qu et al., 2025). While recent work 136

has improved tool use by enhancing individual tool 137

descriptions (Huang et al., 2023; Qu et al., 2024), it 138

overlooks cross-tool semantic relationships, limit- 139

ing its ability to resolve redundancy and ambiguity 140

in large toolsets. 141

2.2 Tool Overlap 142

Several prior works have acknowledged the issue 143

of tool overlap, which is defined as a query that can 144

be solved by multiple tools (Huang et al., 2023), 145

but fail to provide a concrete, autonomous solu- 146

tion. OpenAI’s guide to LLM Agents highlights 147

tool overlap as one of the possible causes of LLM 148

agents consistently select incorrect tools and sug- 149

gests user keep tools distinct (OpenAI, 2024). Tool- 150

Shed (Lumer et al., 2024) identifies this issue of 151

tool overlap in several notable tool selection bench- 152

marks such as ToolBench (Qin et al., 2023) and 153

ToolAlpaca (Tang et al., 2023). Furthermore, Meta- 154

Tool (Huang et al., 2023) attempts to resolve the 155

overlapped tool issue through clustering and man- 156

ual curation, but did not address the problem at 157

scale through automated merging solution. 158

2.3 Retrieval-Based Tool Selection 159

As tool libraries expand, selecting the appropriate 160

tool increasingly resembles a retrieval task. Prior 161

work has examined lexical methods like BM25 162

(Robertson et al., 2009) and semantic methods such 163

as CRAFT (Yuan et al., 2023). Recent retrieval 164

approaches, including RAG-Tool Fusion (Lumer 165
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et al., 2024), ScaleMCP (Lumer et al., 2025) in-166

corporate Retrieval Augmented Generation (RAG)167

strategies through pre-retrieval, intra-retrieval, and168

post-retrieval phases. Those approaches lever-169

age query reformulation, re-ranking, and retrieval-170

based planning to improve retrieval accuracy. How-171

ever, limited studies have evaluated hybrid retrieval172

combining lexical and semantic methods or the173

benefits of integrating enhanced toolsets (Lumer174

et al., 2025). Finally, no study has combined tool175

overlap solutions and hybrid retrieval methods to176

tackle improvement of LLM agent tool selection.177

3 Methods178

3.1 Overview of ToolScope179

ToolScope is a comprehensive framework designed180

to optimize the performance of LLM agents by ad-181

dressing the two key challenges identified in tool182

selection: tool overlap and tool selection accuracy.183

ToolScopeMerger simplifies a toolset by systemat-184

ically consolidating overlapping tools. Then, this185

updated toolset is used in ToolScopeFilter to re-186

trieve relevant tools. ToolScope combines the ap-187

proaches to further improve tool selection accuracy.188

3.2 ToolScopeMerger189

ToolScopeMerger is a graph-based, auto-merging190

framework designed to address the problem of tool191

overlap in large-scale toolsets used by LLM agents.192

A simplified overview can be seen in Figure 2.193

Overlapping tools have become an increasingly194

common issue in both production and benchmark195

toolsets, especially those designed to cover multi-196

ple domains and handle thousands of queries. Tool197

overlap introduces ambiguity during tool selection,198

negatively impacting retrieval and tool selection199

accuracy, as LLM agents struggle to select between200

two tools with very similar descriptions and func-201

tionality. ToolScopeMerger resolves these issues202

by merging semantically similar tools into a sin-203

gle tool that covers the functionality of all tools204

to merge. ToolScopeMerger can alternatively be205

used in a manual form for observability, where se-206

mantically overlapping tools will be identified and207

presented to the user.208

ToolScopeMerger workflow is structured into209

five key phases: (1) Tool Indexing - similar tool210

pairing, (2) Tool Relationship Classification - iden-211

tify overlap tool pairs, (3) Graph Construction -212

structure global pruning pairs, (4) Tool Pruning213

- unify functions to merge, and (5) Toolset and214

Figure 2: ToolScopeMerger uses an undirected, graph-
based approach to identify and then prune overlapping
tools. To ensure observability, the proposed merges are
provided to tool developers for merge auditing.

Dataset Update. Each phase is described in the 215

following. 216

Tool Indexing. Let the toolset be defined as 217

T = {t1, t2, . . . , tn}. For each tool ti, its signature 218

and natural language description di are encoded us- 219

ing an embedding model f to produce a dense vec- 220

tor representation: vi = f(di), ∀i ∈ {1, . . . , n}. 221

Let V = [v1, . . . , vn] ∈ Rn×d denote the matrix 222

of all embedded tools, where d is the embedding 223

dimension. For each ti, we retrieve its top-k most 224

similar tools based on cosine similarity, forming the 225

candidate set: T (k)
i = {ti1 , . . . , tik}, where tij ∈ 226

T \ {ti}. This set T (k)
i contains the candidates for 227

potential merging with ti. 228

Tool Relationship Classification. We define an 229

LLM-based binary classifier MC : T×T → {0, 1} 230

to detect semantic overlap between tools. Given 231

a tool pair, the model determines whether the two 232

serve sufficiently similar functions to justify merg- 233

ing. The input format and prompting strategy for 234

this classification are described in Appendix C. For 235

each pair (ti, tj) where tj ∈ T
(k)
i , the classifier out- 236

puts a binary label indicating whether the tools are 237

semantically equivalent, as defined in Equation 1. 238

MC(ta, tb) =

{
1 if ta ∼ tb

0 otherwise
(1) 239

where ∼ indicates semantic equivalence. 240

Graph Construction. Inspired from the Tool 241

Graph which utilizes graph to represent relation- 242

ships and dependencies between tools (Shen et al., 243

2024; Liu et al., 2024b), we define an undirected 244

pruning graph G = (T,E), where each node repre- 245

sents a tool ti ∈ T , and an edge (ta, tb) ∈ E exists 246

if MC(ta, tb) = 1. We then extract the set of con- 247

nected components in G, C = {C1, C2, ..., Ca}, 248
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where each component Cb ⊆ T contains tools that249

are considered semantically equivalent and there-250

fore overlapping.251

Tool Pruning. For each connected compo-252

nent Cb, one representative tool t∗b ∈ Cb is253

selected to serve as the canonical tool for the254

component. Currently, our implementation se-255

lects the tool that minimizes function name string256

length. We define the pruned toolset as: T ′ =257

{t∗1, t∗2, . . . , t∗k},where k ≤ n. We also maintain a258

mapping: ϕ : T → T ′,where ϕ(t) = t∗j , ∀t ∈ Cb.259

Toolset and Dataset Update. For each clus-260

ter Cb, an LLM MD is prompted to synthesize a261

new tool signature and description d∗ such that262

MD(Cb) = d∗. The new signature and tool de-263

scription d∗ unifies the functionality of the tools in264

Cb. See Appendix D for prompt details. This forms265

a new merged tool based around the representative266

tool t∗
′

j = d∗. Given our mapping ϕ, we update267

our original benchmark dataset β by relabeling our268

gold responses, as shown by the Equation 2:269

∀(q, l) ∈ β, t =⇒ ϕ(t) (2)270

where (q, l) is a query-response pair, and l can271

be multiple tools. This final step ensures the new272

Toolset T ′ is still compatible with the evaluation273

benchmark and leads to fair and accurate testing.274

ToolScopeMerger also allows users to perform275

reviews after merging, helping refine and identify276

edge cases in the toolset. To complement auto-277

mated merging, in our experiments, we also man-278

ually inspect selected clusters, pruning decisions,279

and failure cases in our experiments. These in-280

clude similar tools that were not merged due to281

vague descriptions, and incorrect merges based on282

surface-level similarity.283

3.3 ToolScopeFilter284

Effective tool selection is essential for enhancing285

the capabilities of large language models (LLMs)286

when solving complex tasks involving external287

tools. Inspired by recent work (Chen et al., 2024;288

Qu et al., 2024), we adopt a hybrid approach to289

tool selection that integrates both local and global290

reranking strategies, supporting both single-tool291

and multi-tool use cases.292

Single-tool selection. Given a query q and a set293

of candidate tools T , we compute a hybrid retrieval294

score for each tool t ∈ T by combining sparse and295

dense similarity scores through a weighted average,296

denoted as: 297

s(q, t) = α ·sdense(q, t)+(1−α) ·ssparse(q, t) (3) 298

The top M candidates based on s(q, t) are then 299

reranked using a cross-encoder that scores each 300

pair (q, t). The tool with the highest reranker score 301

is selected as the final output. 302

Multi-tool selection. In the multi-tool setting, 303

each query q is associated with multiple subqueries. 304

For each subquery, we apply the same hybrid re- 305

trieval and reranking procedure, selecting the top-1 306

tool t(1) with the highest reranker score. The re- 307

maining tools t(j) for j = 2, . . . ,M are normalized 308

using min-max normalization: 309

snorm(t
(j)) =

s(t(j))− smin

smax − smin + ε
(4) 310

This normalization rescales scores across sub- 311

queries, since raw reranker scores may not be di- 312

rectly comparable due to varying query-to-tool sim- 313

ilarity distributions. It enables a fair global rank- 314

ing of tools from different subqueries. The top-k 315

toolset is assembled by first including all top-1 se- 316

lections, then iteratively adding tools with the high- 317

est normalized scores until k tools are selected. 318

4 Experiments 319

4.1 Experiment Setup 320

Datasets. Prior work has introduced datasets such 321

as ToolACE (Liu et al., 2024a), ToolE (Huang 322

et al., 2023), Berkeley Function Calling Leader- 323

board (BFCL) (Patil et al., 2024), NexusRaven 324

(Nexusflow, 2023), ToolBench (Qin et al., 2023), 325

RestBench (Song et al., 2023), and SealTools (Wu 326

et al., 2024a). Despite covering a range of tool-use 327

tasks, existing benchmarks have key limitations: 328

(1) some tool descriptions were lacking high qual- 329

ity tool documentation; (2) missing parameters or 330

type hints in ground truth; (3) insufficient count of 331

tools in toolset to correctly evaluate the retrieval 332

system. For our study, we selected SealTools and 333

BFCL as primary datasets. SealTools (Wu et al., 334

2024a) includes out-of-domain test examples that 335

calls single and multiple tools over a large toolset 336

with 4076 tools. BFCL (Patil et al., 2024) has a sim- 337

ple single-turn tool calling dataset which contains 338

400 queries and 400 tools with one to one query to 339

tool mappings that allow us to test our tool merging 340

strategy efficiently. Together, these datasets support 341

evaluation across different retrieval challenges. 342
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Benchmarks Configuration CSR

k = 1 k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

Seal-Tools
BM25 - 0.544 0.593 0.646 0.666 0.702 0.727
Dense - 0.548 0.603 0.631 0.657 0.676 0.694
ToolScope - 0.889 0.908 0.919 0.921 0.919 0.926

BFCL
BM25 0.695 0.850 0.875 0.870 0.868 0.878 0.883
Dense 0.780 0.888 0.900 0.915 0.912 0.912 0.915
ToolScope 0.878 0.912 0.915 0.915 0.912 0.912 0.915

Table 1: Correct Selection Rate (CSR) of top k tools across Seal-Tools and BFCL datasets. DPR and ToolShed do
not have CSR results since the implementation code is not available.

Evaluation Metrics. We follow prior work343

(Lumer et al., 2024; Wu et al., 2024a) and use344

standard tool selection and retrieval-based metrics.345

Correct Selection Rate (CSR), adapted from Meta-346

Tool (Huang et al., 2023), measures the percent-347

age of queries for which the predicted toolset ex-348

actly matches the ground-truth set, as shown in349

Equation 5. Recall@k quantifies the proportion of350

ground-truth tools correctly retrieved among the351

top-k predictions (see Equation 6 in Appendix A).352

CSR =
1

|Q|
∑
q∈Q

I[T̂q = T ∗
q ] (5)353

Here, Q is the set of all evaluation queries, T ∗
q354

is the ground-truth toolset for query q, T̂q is the355

predicted toolset, and I[·] is the indicator function.356

Baselines. We benchmarked our methods357

against established baselines on tool selection and358

retrieval including: (1) BM25 (Robertson et al.,359

2009), a term based retrieval method that scores360

query-tool relevance using term frequency and in-361

verse document frequency (TF-IDF). (2) Dense362

embeddings (Qu et al., 2025), which encodes both363

queries and tool descriptions into dense vector rep-364

resentations using a pretrained embedding model.365

For retrieval performance on Seal-Tools, we also366

report performance from DPR (Wu et al., 2024a)367

and ToolShed (Lumer et al., 2024). All baselines368

operate over the original, unmodified toolsets. Fur-369

thermore, for multi-tool queries, we retrieve the370

top-k tools from the original query, then later use371

query decomposition at tool selection.372

Implementation Details. For main experi-373

ments of ToolScopeMerger, we use thenlper/gte-374

large embedding (Li et al., 2023), FAISS index375

(Douze et al., 2024), GPT-4o (OpenAI, 2024) as376

the backbone model. For main experiments of377

ToolScopeFilter, we use BM25 as sparse retrieval378

method, thenlper/gte-large (Li et al., 2023) as379

the dense embedding, ms-marco-MiniLM-L6-v2380

(Cross-Encoder, 2024) as the cross encoder and 381

GPT-4o (OpenAI, 2024) as the backbone model. 382

4.2 Experimental Results 383

We present our experimental results on LLM agent 384

tool selection in Table 1. Based on the results, 385

we have the followng observations: ToolScope 386

consistently outperforms baselines in Correct Se- 387

lection Rate (CSR) across both Seal-Tools (Wu 388

et al., 2024a) and BFCL (Patil et al., 2024) bench- 389

marks. As seen in Table 3, even when applied inde- 390

pendently, ToolScopeFilter substantially improves 391

CSR, and combining it with ToolScopeMerger fur- 392

ther boosts performance by reducing the toolset 393

semantic redundancy and aligning better with the 394

LLM’s reasoning behavior. By jointly optimizing 395

the tool index and toolset granularity, ToolScope 396

enables more accurate and scalable function selec- 397

tion for LLM agents. 398

The improvements in CSR are robust across all 399

evaluated values of k, suggesting that ToolScope 400

streamlines the retrieval process while reducing 401

functional overlap. As the value of of k increases, 402

we observe a higher performance difference in Seal- 403

Tools. This could be attributed to the fact that as we 404

increase the value of k, there is a higher percentage 405

of overlap tools in the original dataset compared 406

with the merged dataset. 407

4.3 Result Analysis 408

Based on the experiment results, we have the fol- 409

lowing observations: 410

ToolScope improves both retrieval and selec- 411

tion performance. ToolScopeMerger increases 412

retrieval accuracy by reducing semantic overlap in 413

the toolset and making the retrieval space clearer, 414

as reported in Table 2. Recall@10 improves signif- 415

icantly from 0.550 to 0.935 on the SealTools (Wu 416

et al., 2024a) benchmark and from 0.945 to 0.985 417

on BFCL (Patil et al., 2024), highlighting the bene- 418
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Figure 3: Analysis of cross model generalization on ToolScope with top k tools across Seal-Tool.

fit of refining the toolset. ToolScopeFilter applies419

a hybrid retrieval strategy that combines sparse420

(BM25) and dense embeddings. The weighting421

parameter α balances the contribution of lexical422

and semantic similarity, while the cross-encoder423

reranker evaluates retrieved candidates using con-424

textual information. However, retrieval accuracy425

does not consistently improve with hybrid search.426

The highest Recall@k scores are obtained when427

α = 1, indicating that dense retrieval alone per-428

forms best for retrieval, as seen in Figure 4. Ac-429

cordingly, the ToolScope results reported in Table 2430

use dense-only retrieval, where our method outper-431

forms all baselines across all k values on BFCL432

and at k = 5 on SealTools.433

Benchmark /
Configuration

Recall@k

k = 1 k = 5 k = 10

Seal-Tools / BM25 - 0.490 0.540
Seal-Tools / Dense - 0.589 0.649
Seal-Tools / DPR

1
- 0.480 0.680

Seal-Tools / ToolShed
2

- 0.876 0.965
Seal-Tools / ToolScope - 0.884 0.935

BFCL / BM25 0.693 0.913 0.945
BFCL / Dense 0.818 0.973 0.985
BFCL / ToolScope 0.880 0.973 0.985
1 DPR results are from (Wu et al., 2024a)
2 ToolShed results are from (Lumer et al., 2024)

Table 2: Recall@k scores for selected configurations on
Seal-Tools and BFCL benchmarks

ToolScope has demonstrated cross model gen-434

eralization in improving CSR. We compared435

ToolScope to the baselines which use BM25436

and Dense retrieval techniques. We evaluated437

three foundation models: GPT-4o (OpenAI, 2024),438

Cohere-Command-R-08-2024 (Cohere, 2024), and439

LLaMA-3.3-70B (Meta Platforms, Inc., 2024). As440

shown in Figure 3, ToolScope consistently outper- 441

forms both baselines across all k values (5, 10, and 442

15) in CSR. These results highlight ToolScope’s 443

strong generalization capability across different 444

LLMs. Among the models evaluated, GPT-4o ex- 445

hibits the highest CSR, indicating that ToolScope 446

can benefit from continuous advancements in foun- 447

dation models. 448

Figure 4: Recall@k for different values of α on the
Seal-Tools dataset.

Ablation Study. We conduct ablation studies on 449

both BFCL and Seal-Tools to evaluate the contri- 450

butions of the two core components in ToolScope: 451

ToolScopeMerger and ToolScopeFilter. As shown 452

in Table 3, ToolScope consistently achieves the 453

highest CSR across all top-k values, demonstrating 454

the effectiveness of combining tool pruning and 455

targeted retrieval. 456

In BFCL, where each query corresponds to ex- 457

actly one gold tool, CSR is particularly sensi- 458

tive to the quality of the tool input. We observe 459

that ToolScopeMerger alone achieves compara- 460

ble performance to ToolScopeFilter, and the full 461

ToolScope system achieves the best CSR, particu- 462

larly at lower k. This highlights the importance of 463
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Methods CSR for BFCL

k = 1 k = 5 k = 10

ToolScope 0.878 0.912 0.915
ToolScopeFilter only 0.820 0.882 0.888
ToolScopeMerger only 0.825 0.902 0.915

Methods CSR for Seal-Tools

k = 10 k = 20 k = 30

ToolScope 0.908 0.921 0.926
ToolScopeFilter only 0.895 0.906 0.912
ToolScopeMerger only 0.613 0.701 0.732

Table 3: Ablation Study of ToolScope on BFCL and
Seal-Tools. ToolScopeFilter only uses original data with
retrieval improvement, while ToolScopeMerger only
uses merged data without retrieval improvement.

ensuring high-quality, non-redundant tools, as even464

slight ambiguity in tool definitions can negatively465

affect retrieval and selection in tool settings like466

BFCL.467

For Seal-Tools, removing ToolScopeMerger468

leads to a moderate CSR drop. This can be ex-469

plained by the fact that only 20% of queries need470

to invoke tools were either modified or merged.471

This indicates that pruning semantically overlap-472

ping tools improves the diversity and coverage of473

top-k candidates. Excluding ToolScopeFilter re-474

sults in a more significant CSR decline, highlight-475

ing the necessity of an effective retrieval mecha-476

nism as Seal-Tool has a large original toolset (4076477

tools).478

Reranking enables high CSR with smaller re-479

trieval sizes of ToolScopeFilter. As shown in Fig-480

ure 6, enabling the reranker significantly improves481

CSR (Correct Selection Rate), at smaller retrieval482

sizes, such as k = 5 or 10. As k increases, the per-483

formance gap between reranked and non-reranked484

configurations narrows, suggesting diminishing re-485

turns from retrieving larger toolsets. Overall, k = 5486

or k = 10 with reranking provide a good balance487

between performance and retrieval efficiency.488

ToolScopeMerger effectively reduces func-489

tional overlap. ToolScopeMerger removes seman-490

tically similar tools, improving the distribution in491

embedding space. We reduced the toolset in BFCL492

(Patil et al., 2024) from 400 to 344 tools by re-493

moving tools with similar names and descriptions.494

SealTools (Wu et al., 2024a), which started with495

4,076 tools, also showed overlap: we merged 84496

tools despite earlier claims of minimal redundancy.497

We evaluated the impact using the silhouette co-498

Figure 5: T-SNE visualization of original BFCL tool
embedding and merged BFCL tool embedding

Figure 6: The CSR results (%) of top k tools with/with-
out Reranker

efficient (Rousseeuw, 1987), where lower values 499

indicate less overlap. We also used t-SNE plots 500

(Van der Maaten and Hinton, 2008) to visualize 501

tool distribution. As shown in Figure 5 and Ap- 502

pendix E.2, both datasets exhibit sparser distribu- 503

tions. As seen in Appendix E.1, both datasets also 504

have lower silhouette scores after merging, con- 505

firming that ToolScopeMerger reduces semantic 506

redundancy. 507

ToolScopeMerger increases observability 508

for tool developers. We provide outputs that 509

enable tool developers to audit merge decisions, 510

as illustrated in Figure 2. This allows them to 511

verify correct merges, such as translateText and 512

getLanguageTranslation as shown in Listing 1, and 513

spot incorrect ones caused by unclear documenta- 514

tion. For example, in SealTools, getGeologyData 515

and getGeologyInfo seen in Listing 2 were merged 516

despite lacking enough detail to confirm they serve 517

the same function. By making similarity-driven 518

merges transparent, tool developers can confirm or 519

override merge decisions with minimal overhead 520

and improve tool descriptions to better reflect 521

functionality. 522

523

Correct merge: 524

7



Listing 1: Function definition for translateText and
getLanguageTranslation

525
translateText:526
translateText(text: str, source_language: str,527

target_language: str)528
Translate a given text from one language to529

another530
531

Args:532
text (str): The text to be translated (e.g.,533

Hello, how are you?)534
source_language (str): The source language535

of the text (e.g., English, Spanish)536
target_language (str): The target language537

for translation (e.g., Spanish, French)538539

540
getLanguageTranslation:541
getLanguageTranslation(text: str,542

source_language: str, target_language: str)543
Translate a given text to another language544

545
Args:546

text (str): The text to be translated547
source_language (str): The source language548

of the text (e.g., English, Spanish,549
French)550

target_language (str): The target language551
for translation (e.g., English,552
Spanish, French)553554

Incorrect merge due to Poor Documentation555

Listing 2: Function definition for textttgetGeologyData
and textttgetGeologyInfo

556
getGeologyData:557
getGeologyData(location: str)558
Retrieve geological data for a specific location559

560
Args:561

location (str): The location for which you562
want to retrieve geological data (e.g.,563
mountain range, river, city)564565

566
getGeologyInfo:567
getGeologyInfo(location: str)568
Retrieve geological information569

570
Args:571

location (str): The location for which you572
want to retrieve geological information573
(e.g., mountains, lakes, caves)574575

The absence of query decomposition signif-576

icantly impacts performance in multi-tool sce-577

narios. In our baseline methods, which do not578

incorporate query decomposition, we observe a579

sharp decline in CSR and Recall@k on multi-tool580

queries. Without breaking down complex queries581

into atomic sub-queries for the LLM agent, the re-582

trieval and selection process struggles to identify583

all necessary tools in the top-k. This results in par-584

tial matches, where only a subset of the necessary585

tools are retrieved for a given query, reducing CSR586

since the necessary tools are not available in the587

LLM agent’s perspective. These findings suggest 588

that query decomposition is a critical component 589

for effective tool selection in multi-tool scenarios. 590

Tool overlap remains a prevalent and often 591

unaddressed issue across open-source bench- 592

marks. For example, although Toolshed (Lumer 593

et al., 2024) reports that the SealTools benchmark 594

contains few overlapping tools, we found multiple 595

instances of semantically redundant tools that can 596

hinder retrieval and selection accuracy without a 597

solution like ToolScopeMerger. 598

Similarly, BFCL-simple (Patil et al., 2024), by 599

design, includes overlapping tools with highly sim- 600

ilar functionality and descriptions. While this may 601

serve other evaluation purposes, it poses challenges 602

for experiments focused on tool selection accu- 603

racy, such as ours. These inconsistencies high- 604

light a critical limitation in current benchmarks: 605

the prevelance of overlapping tools. As our results 606

demonstrate, tool overlap introduces ambiguity that 607

can distort retrieval metrics and, more importantly, 608

cause selection errors. For future research in tool 609

learning and tool selection, it is essential to address 610

this issue. Benchmark designers should strive for 611

clearer manual distinction between tools or provide 612

annotations of overlapping to ensure more accurate 613

performance reporting. 614

5 Conclusion 615

In this paper, we present ToolScope, a two-part 616

framework aimed at addressing key challenges 617

in LLM agent tool selection: tool overlap and 618

limitations of long context length. ToolScope- 619

Merger consolidates overlapping tools using an 620

automated framework and increases observabil- 621

ity for tool developers to audit merge decisions, 622

while ToolScopeFilter improves retrieval accuracy 623

through query decomposition, hybrid retrieval and 624

reranker and robust score ranking logic for tool 625

retrieval. Together, our results show that these 626

components significantly improve tool selection 627

accuracy across standard benchmarks Seal-Tools 628

(Wu et al., 2024a) and BFCL (Patil et al., 2024), 629

increasing CSR on Seal-Tools by 34.5% and CSR 630

on BFCL by 18.3% when compared to baselines. 631

We also identify a persistent tool overlap issue in 632

currently available open-source public benchmarks, 633

which calls for a higher quality toolset curation. 634

Overall, ToolScope provides a scalable solution for 635

improving LLM-agent tool selection in real-world 636

settings. 637
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Limitations638

ToolScope currently focuses on reducing tool over-639

lap and increasing retrieval performance. The qual-640

ity of the tool documentations can be further im-641

proved using automatic documentation refinement642

framework such as DRAFT (Qu et al., 2024). This643

may bring additional improvements to LLM agent644

tool selection accuracy.645

Future Work646

We expect additional improvements for the future647

work. First, adopting additional advanced retrieval648

methods, such as multi-index frameworks that may649

improve scalability and relevance in large tool650

repositories. Second, given the limitation to the651

overlap issues identified in existing benchmarks652

we evaluated, it is crucial to expand on additional653

benchmarks of diverse toolset. It is crucial to evalu-654

ate whether it is better to modify the existing toolset655

and update single-label ground truth or introducing656

multi-label ground truth so that we can have a more657

comprehensive and accurate benchmark to evaluate658

LLM agent system. Finally, expanding the scope659

of the evaluation to analyze ToolScope’s impact on660

tool calling and response generation would help661

establish a clear picture on holistic improvements662

to LLM agent tool learning.663

Ethical Considerations664

While ToolScope improves LLM agent perfor-665

mance in tool selection tasks, it is not yet suitable666

for deployment in environments where errors in667

tool selection could result in significant harm or668

consequences such as those in medical, legal, or669

financial fields. ToolScope relies on LLM gener-670

ated tool merging and retrieval mechanisms which671

are inherently probabilistic. As with many LLM672

solutions, this is subject to hallucination, bias, and673

misclassifications of overlapped tools.674
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A Metrics Definition854

Recall@k measures the proportion of ground-truth855

tools that are correctly retrieved within the top-k856

predictions. It is defined as:857

Recall@K =
1

|Q|

|Q|∑
q=1

|TK
q ∩ T ∗

q |
|T ∗

q |
(6)858

where Q is the set of queries, T ∗
q is the ground-truth859

toolset, and T k
q is the top-k predicted tools.860

B Dataset Licensing861

B.1 Seal-Tools Dataset License862

The Seal-Tools dataset and associated
code are licensed under the Apache
License 2.0. Details can be found at:
https://github.com/fairyshine/Seal-Tools?
tab=Apache-2.0-1-ov-file

863

B.2 BFCL Dataset License864

The BFCL dataset and associated code are
licensed under the Apache License 2.0.
Details can be found at: https://github.
com/ShishirPatil/gorilla/blob/main/LICENSE

865

C Prompt for LLM Merging Classifier866

MC867

You are an expert in software868

tool design and resolving869

function overlap issues.870

Goal: Determine whether any871

candidate functions are872

semantically equivalent to a873

given target function - in the874

strictest sense - and recommend875

one for merging only if true876

equivalence is detected.877

An overlapped issue arises when878

a user query can be handled by879

multiple similar functions. This880

ambiguity can reduce LLM881

accuracy in selecting the882

correct function to call.883

Merging should only be suggested884

if the functions are equivalent:885

Equivalent: Two functions are886

considered equivalent only if:887

They perform exactly the same888

core operation. They are fully889

interchangeable in real-world 890

usage - i.e., replacing one with 891

the other does not alter the 892

behavior, side effects, or 893

required inputs. Their parameter 894

lists match exactly - in both 895

name and count (or have 896

trivially renamable arguments 897

with the same semantics). 898

Examples of equivalence: 899

trainClassifier(data) and 900

predictModel(data) (if both 901

imply model training despite 902

different names) fetchUserInfo() 903

and getUserDetails() 904

Do not consider two functions 905

equivalent if: They differ by a 906

fixed value (e.g., 907

translateToHebrew vs 908

translateToItalian) One modifies 909

the input while the other checks 910

it (e.g., sanitizeInput vs 911

validateInput) One function is a 912

logical generalization or 913

specialization of the other 914

(e.g, addCrop vs. addCropToFarm, 915

translateText vs. 916

translateSpanish) 917

If none of the candidate 918

functions provide semantically 919

similar capabilities with the 920

target function, return None. 921

Think about this from the 922

perspective of how an LLM might 923

confuse or suggest the function 924

to prune based on natural 925

language queries. 926

Target function: 927

{target_tool_docstring} 928

Candidate functions: 929

{candidate_output_str} 930

Instructions: Compare each 931

candidate function to the target 932

function. If any of the 933

candidate functions are 934

sufficiently overlapping or 935

logically mergeable with the 936

target function, return the 937

candidate function based on the 938

rules below: The candidate 939
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function selected and target940

function should have exact same941

list of parameters. If the942

function names are semantically943

equivalent or fixed-value944

variants (e.g., hardcoded945

languages), return the name of946

the candidate function to prune947

(as equivalent). If no functions948

meet the merge criteria, return949

None.950

Output only two lines:951

- The chosen candidate function952

from the list of candidate953

functions. Only return the954

function name - do not return955

parameters or signature.956

- A short reasoning using957

chain-of-thought that explains958

the relationship, and why this959

choice was made.960

D Prompt for LLM Description Merger961

MD962

You are given multiple Python963

function definitions, each with964

a signature and docstring.965

Your task is to merge all of966

them into a **single function**967

using the name {́keep_tool}´.968

Instructions:969

- The function to merge into is970

listed first.971

- The other functions may972

include additional or973

overlapping parameters and974

docstring details.975

- Your goal is to:976

- Combine all **unique977

arguments**978

- Prefer parameter types,979

defaults, and naming from the980

canonical function {́keep_tool}.́981

Additional parameters added982

could be added as optional983

parameter. Do not hallucinate984

extra parameters not present in985

the function to merge into and986

functions to merge from.987

- Carefully integrate all 988

relevant docstring content 989

- The final result must include: 990

- One complete **function 991

signature** 992

- One consolidated **docstring**, 993

insert all descriptions about 994

the function first, make sure 995

descriptions are well summarized 996

and concise. Then insert the 997

argument explaination. 998

- Do **not** include 999

implementation code. 1000

- Do **not** include markdown, 1001

explanation, or commentary. 1002

- Only output the final 1003

**signature and docstring**, 1004

nothing else. 1005

{keep_block}{prune_block} 1006

E ToolScopeMerger Results 1007

E.1 Silhouette Scores on Seal-Tools and BFCL 1008

Figure 7: Seal-Tools (top) and BFCL (bottom) silhou-
ette scores comparison
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E.2 ToolScopeMerger Result on Seal-Tools1009

Figure 8: T-SNE visualization of original Seal-Tools
tool embedding and merged Seal-Tools tool embedding
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