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ABSTRACT

Automated Optical Inspection (AOI) systems play a pivotal role in ensuring qual-
ity control during Printed Circuit Boards (PCB) manufacturing. However, the
current AOI systems necessitate manual setting of the region of interest (ROI) for
all components. To address this, we propose a patch-based preprocessing tech-
nique, dividing high-resolution PCB images into small 1024 × 1024 pixel patches
and employing the YOLOv7 segmentation model for real-time component ROI
segmentation. Our method consistently delivered high accuracy across various
PCB components, irrespective of background color, and demonstrated robust per-
formance even with complex structures containing small components. It achieved
impressive outcomes, with an average IoU, F1 score, pixel accuracy, and mAP
of 0.8889, 0.9401, 0.9961, and 0.8255, respectively. Specifically, utilizing Fea-
ture Pyramid Network (FPN) and Path Aggregation Network (PAN) in YOLOv7’s
multi-resolution processing allowed us to accurately segment PCB components of
various sizes and process them in real-time. This study underscores the potential
of automating real-time component ROI segmentation in the PCB manufacturing
process to enhance production speed and quality control.

1 INTRODUCTION

Printed circuit boards (PCBs) are integral to nearly all electronic products, necessitating stringent
quality and reliability standards. Ensuring the performance and safety of the final product involves
identifying and correcting defects that may occur during PCB manufacturing. Automated Optical
Inspection (AOI) is a key technique employed for these quality controls, such as inspecting PCBs
during or after manufacturing to promptly identify defects. AOI systems utilize high-resolution
cameras and advanced image processing algorithms to detect defects, including solder bridges, lifted
pads, missing components, and misaligned parts (Hecht & Dishon, 1990).

The introduction of AOI has revolutionized the defect detection process, offering much faster and
more accurate results compared to traditional manual inspection methods (Liao et al., 2018). This
advancement significantly accelerated production speed and minimized the number of defective
products shipped. Additionally, AOI operates in a non-contact manner, safeguarding PCBs and
components from physical damage, thereby solidifying its status as an essential tool in modern PCB
manufacturing (Czimmermann et al., 2020).

Despite the advancements made by AOI systems, most still require a manual setting process. This
process involves defining a region of interest (ROI) for each PCB component to be inspected by
the AOI system. Operators manually specify the position and size of each component to ensure the
AOI system inspects them accurately. This procedure is exceedingly time-consuming, particularly
for complex PCB designs that contain hundreds of components, each requiring precise ROI settings.
This not only slows down the production line but also escalates labor costs and operator fatigue due
to the high level of expertise and experience needed for the task. Furthermore, manual operations
are prone to errors, resulting in inaccurate ROI settings, which in turn diminishes the AOI system’s
inspection accuracy and affects overall product quality.

To address these inefficiencies, there is a growing need for an automated ROI segmentation process.
The automation of ROI setting can save time and costs, ensure consistent inspection quality, and
reduce dependence on skilled labor. This study proposes a deep learning-based automated method
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for partitioning PCB components, removing the need for manual instruction and enhancing the effi-
ciency and reliability of the overall inspection process.

This study presents a novel preprocessing method to raise the learning efficiency and accuracy of
deep learning models. Rather than processing entire PCB images, the images are cropped into
1024x1024 pixel-sized patches, effectively managing large data volumes and significantly improving
model learning speed (Long et al., 2015).

Dividing PCB images into smaller patches offers several advantages. It concentrates the information
within each patch, allowing the model to learn data more efficiently. This approach captures PCB
details more effectively, enabling more accurate ROI settings and handling various component sizes
and formats. Additionally, using small patches optimizes GPU memory usage, resolves memory
shortage issues, and allows for larger batch sizes, which speeds up model convergence and reduces
training time (Zhang et al., 2024). Training with small patches also enhances the model’s ability to
generalize, ensuring consistent performance across different PCB images.

With these goals, this study proposes a deep learning-based segmentation method for PCB AOI
systems, incorporating preprocessing techniques to enhance learning efficiency and accuracy. This
approach aims to elevate the automation level in PCB manufacturing processes and boost product
quality. Ultimately, the study aspires to strengthen the competitiveness of the PCB manufacturing
industry and contribute to the development of smarter manufacturing practices.

1.1 RELATED WORK

Image Patch Division. Research on dividing and processing images by patches has been used exten-
sively to reduce memory usage and increase processing speed, especially in high-resolution image
processing. These techniques can provide efficient and fast processing performance by dividing an
image into smaller-sized patches and inputting each patch into the model rather than processing the
entire high-resolution image.

An image patch division method was used to more efficiently detect retinal lesions in situations with
a small amount of data by (Lam et al., 2018). When detecting lesions in retinal images, dividing and
learning in small patch units rather than processing the entire image generated more training data,
even with a small amount of data.

In the study by (Gao et al., 2013), a small target was effectively detected from a single infrared im-
age. In infrared images, to solve the problem of small targets being easily hidden by the background
or the features of the target being unclear, a patch-based model was proposed that divides an image
into small patches and detects targets within each patch. It works in a way that highlights patches
containing small targets and suppresses background noise, which helps to reduce computational
complexity while maintaining high accuracy in detecting small-sized targets.

MegaDetectNet by (Wang et al., 2023b) detects targets from ultra-high resolution images by ex-
tracting patches of foreground images where the target exists, which avoids unnecessary image
processing, maximizes computational efficiency, and significantly improves detection speed.

Automated Solutions for PCB AOI. Although the current industry recognizes the need for auto-
mated solutions for PCB AOI, several challenges still need to be solved to implement these solu-
tions. (Anoop et al., 2015) compared various algorithms for detecting PCB defects, but the problem
of setting ROIs with automatic segmentation has not been fully addressed.

Moreover, setting the ROI for numerous components in complex PCB designs is inefficient and
increases the likelihood of errors. For instance, (Malge & Nadaf, 2014) utilized traditional image
processing techniques to identify PCB defects, but these methods still depend on manual settings and
lack automatic segmentation. Therefore, developing an automated segmentation solution to replace
the manual process is essential to increase the efficiency of the PCB manufacturing process.

Deep Learning-Based Segmentation in Different Domains. Automatic image segmentation tech-
niques based on deep learning have been widely studied and applied in various fields, including
medical imaging, autonomous vehicles, and agriculture. In medical imaging, convolutional neural
networks (CNNs), especially U-Net, have demonstrated strong performance in cell and tissue seg-
mentation. (Ronneberger et al., 2015) introduced an image segmentation technique using U-Net that
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performed well even with limited datasets. The model showed the ability to process medical images
of various sizes and formats effectively.

In autonomous vehicles, Mask R-CNN is positioned as a powerful model that can simultaneously
perform object detection and segmentation. (He et al., 2017) proposed a method to detect and seg-
ment objects from image data of autonomous vehicles using Mask R-CNN, which boasts high ac-
curacy and efficiency. They have demonstrated that it can effectively segment vehicles, pedestrians,
road signs, etc., in complex urban environments.

In agriculture, (Gao et al., 2020) proposed MMUU-Net for accurate segmentation of agricultural
land using high-resolution satellite images, which can efficiently distinguish agricultural and non-
agricultural areas and can be utilized in various fields such as agricultural management, crop produc-
tion forecasting, and environmental monitoring. Such deep learning-based segmentation techniques
can be equally applied to PCB inspection, especially useful for efficiently handling numerous com-
plex components. Therefore, automated segmentation solutions are likely to be positioned as a piv-
otal technology to maximize the efficiency of PCB AOI systems and further improve the automation
level of manufacturing processes.

2 METHODOLOGY

2.1 PATCH-WISE PREPROCESSING OF PCB IMAGES

Learning a model using an image of an entire PCB comes with several challenges due to its size and
complexity. PCB images have high resolution and contain a wide variety of components, requiring
substantial computing resources to process effectively. In particular, when using large datasets to
train deep learning models, problems may occur due to resource limitations such as GPU memory.
Thus, a preprocessing process was applied to partition PCB images into small patches of 1024 ×
1024 pixels in order to maximize learning efficiency and model performance.

In this study, we proposed a preprocessing method to divide PCB images into 1024 × 1024 pixel
size patches for processing. Learning a model using entire PCB images results in excessive memory
usage and reduces learning efficiency due to high resolution and complexity. PCB images are usually
10,000 x 15,000 pixels and can be up to 25,000 x 30,000 pixels. On the other hand, components
are small in size, ranging from 40 x 80 pixels to 1,000 x 1,000 pixels, significantly smaller than the
overall board size, making it highly inefficient to use the entire board images for training.

To solve this, we divided all images into small patches of 1024 × 1024 pixel size based on the bottom
left to the top right of the PCB, as shown in Figure 1. If the width and length of the PCB are not
divided by 1024, the remaining parts on the right and top edges are filled with black to make the 1024
x 1024 pixel size patches. This preprocessing method is advantageous because, unlike domains such
as medical images where targets or lesions are concentrated at specific positions, PCB components
are spread throughout the board, so all components are evenly distributed in patches. Each patch
was processed in a separate learning unit, and the model was trained to segment components in the
patch accurately. After learning about the patches divided in this way, the results were output in a
patch state and recombined into one PCB image. All components segmented in each patch were
reconstructed across the entire PCB. This made it possible to segment all materials on the PCB by
type.

This preprocessing optimizes memory usage during learning and inference while providing uniform
visual information that can be segmented globally without missing small objects. Moreover, since
each patch is processed independently, it has a fast training speed and can efficiently process large
PCB images without memory constraints.

2.2 YOLOV7 SEGMENTATION

In this study, we adopted the YOLOv7 segmentation model to automate ROI segmentation in PCB
AOI systems (Wang et al., 2023a). PCB AOI systems are essential for real-time analysis of PCB
images, and YOLOv7 is known for its impressive speed, delivering high Frames Per Second (FPS)
to process multiple images per second efficiently. YOLOv7 achieves 30 FPS or higher on standard
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Figure 1: Patch-wise preprocessing. An example of an 18242 x 14782 pixel size PCB image divided
into 1024 x 1024 pixel size patches from the bottom left corner to the top right corner.

GPU setups, outpacing alternatives such as YOLOv4 and Faster R-CNN, which makes it ideal for
high-speed PCB inspection.

Since this study is to draw accurate ROI for all components, a segmentation head was used instead
of a detection head so that output could be in pixel-wise class labels instead of bounding boxes. The
segmentation head involves a series of upsampling layers and convolutional layers to increase the
resolution of the feature maps and predict the class of each pixel. In addition, YOLOv7’s segmenta-
tion capability is particularly noteworthy due to its Enhanced-Efficient Layer Aggregation Network
(E-ELAN) architecture. It is a cutting-edge architecture in object detection that draws inspiration
from the successful foundations laid by Feature Pyramid Network (FPN) and Path Aggregation Net-
work (PANet). While building upon the strengths of these predecessors, E-ELAN introduces novel
techniques to streamline feature aggregation and enhance performance. By efficiently routing in-
formation across feature levels and adaptively fusing features, E-ELAN demonstrates a remarkable
ability to handle objects of varying sizes and capture fine-grained details. This architectural innova-
tion solidifies E-ELAN’s position as a leading contender in the field of object detection and makes
the entire network simply look like Figure 2.

Furthermore, YOLOv7 enhances its efficiency through lightweight operations and the Bag-of-
Freebies technique. Unlike traditional deep learning models that rely on complex calculations,
YOLOv7 minimizes computational overhead while maintaining accuracy by integrating various
methods that improve performance without requiring additional training. This efficiency makes
YOLOv7 well-suited for real-time PCB AOI applications.

In this experiment, we utilized Stochastic Gradient Descent (SGD) as our optimization algorithm
with an initial learning rate of 0.01, a momentum of 0.937, a weight decay of 5e-4, and a maximum
learning rate of 0.1 for the OneCycleLR scheduler. Weight decay is a regularization technique
that helps prevent overfitting by penalizing large weights. The combination of these optimization
parameters, along with the OneCycleLR learning rate scheduler, contributed to the model’s effective
convergence and generalization performance.

In addition, we utilized the Binary Cross Entropy with Logits Loss (BCEWithLogitsLoss) to esti-
mate the likelihood of each pixel being associated with a specific class. The BCEWithLogitsLoss
is particularly effective in clearly delineating the boundary between two classes and is commonly
employed as a loss function, especially in split operations. To optimize GPU memory usage, the
batch size was set to 8 and the epoch to 500. Given the high-resolution nature of PCB images, we
chose a relatively small batch size to aid in memory management.

3 EXPERIMENTS

3.1 DATASET

In this study, 67 PCB images were collected directly from the AOI system, and their patches were
manually labeled. Instead of labeling all components in one class, ten labeling classes were com-
posed, and each class was defined based on the main electronic elements in the PCB. The labeled
classes consisted of lead, pad, chip, resistor, capacitor, diode, integrated circuit (IC), connector,
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Figure 2: Simplified yolov7 model

light-emitting diode (LED), and coil. Each component plays an essential role in the electrical per-
formance and operation of the product, so individual labeling is required.

The work of (Li et al., 2020) focused on the pixel-by-pixel division of the location that a specific
component occupies in the actual PCB and its material in a way that individually labels the materials
in the PCB. This aimed for accurate location detection and division of each item rather than a specific
classification of the type of item. Although this method is advantageous in effectively capturing the
location of individual components in a PCB, it has limitations in reflecting the functional differences
between components because it treats all materials in the same way without distinguishing between
material types.

Instead of the comprehensive labeling commonly used in previous studies, this study classifies each
PCB component separately, which allows more accurate segmentation results to be derived. For
example, resistors regulate current flow, and capacitors store charge. Such functionally essential
elements need to be labeled individually to ensure the stability of the operation of electronic devices.
In addition, components in a PCB vary in size and shape, so classes must be subdivided.

In addition, the labeling work was done manually by experienced AOI inspection operators to min-
imize possible errors in the labeling process. Repeated reviews were conducted to ensure that the
class of each component was classified correctly and whether the labeled areas matched the actual
components. This was a crucial step to improve the quality of the training data and enable the model
to make more accurate predictions.

3.2 TRAINING

In this study, we leveraged the NVIDIA A100 80GB PCIe GPU. The A100 GPU is optimized for
processing large data and high-resolution images, enabling optimal performance, particularly for
tasks that demand substantial memory resources. With its 80GB memory capacity, we effectively
mitigated memory constraints while supporting high-resolution image processing and large batch
sizes.

Of the total 67 PCB images, 52 were split for training, 10 for validation, and 5 for testing. We specif-
ically selected five different test PCBs with varying background colors to assess the performance
across different backgrounds. The data split was carefully planned to ensure a diverse representa-
tion of components. Given the diverse material types of PCBs, 70% of all PCBs were utilized for
training.

4 RESULTS

In this experiment, five PCBs were selected as the test dataset to evaluate the model’s performance
under various conditions. These boards are large in size, contain hundreds of components, ranging
from 286 to 956, and each has a different background color - blue, green, brown-green, white, and
black. The diverse selection of background colors was deliberate to ensure the model’s consistent
ability to detect components regardless of background variations.
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Figure 3: From left to right column: blue, green, brown-green, white and block boards; from top
to bottom row: original image, ground truth, prediction, zoomed-in view of prediction, and the
corresponding results from DeepLabv3+(Chen et al., 2018), Mask R-CNN(He et al., 2017), and
YOLACT(Bolya et al., 2019). Areas highlighted by red boxes in the prediction are critical regions
of interest and zoomed in for a detailed evaluation. Each class is color-coded as follows: leads in
tan, pads in blue, chips in cyan, connectors in pink, coils in yellow, resistors in red, ICs in green,
capacitors in turquoise, LEDs in black, and diodes in purple.
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In PCB manufacturing environments, various background colors are used, and each one can affect
the lighting, image quality, and inspection. Therefore, it was crucial to assess the model’s per-
formance by testing in such various conditions. In particular, blue and green are common PCB
background colors, making it challenging to distinguish components against these backgrounds.
Additionally, black and white could affect segmentation performance due to contrast.

The proposed preprocessing method and the use of YOLOv7 segmentation model in this study
enabled segmentation of PCB components even under various background conditions, as shown in
Figure 3. Using the test dataset, the model successfully segmented components with diverse colors
and shapes. Segmentation of components with irregular shapes and colors, such as connectors, can
be particularly challenging. Connectors often have irregular shapes and various colors, increasing
the likelihood of errors in an automated segmentation system. However, the YOLOv7 segmentation
model used in this study adeptly identified and segmented the intricate shapes and irregular colors
of connectors. This confirmed that the model can handle components of various shapes and colors.

Moreover, in the case of black ICs on the black board, the last column of Figure 3, the model
showed exceptional performance even when there was minimal color contrast between the board
and the component, which made it difficult to distinguish the boundaries. While segmented com-
ponents in a generally low-contrast setting may be arduous, this study overcame these challenges
and segmented the boundaries of black ICs on the black board. In the case of DeepLabv3+, it was
observed that more than 70% of the IC could not be segmented. The model struggled to distinguish
the boundary between the black background and the black IC, leading to incomplete segmentation
of the IC area. Furthermore, the leads and pads were not segmented completely, highlighting the
model’s limitations in delineating boundaries in low-color contrast environments. Similarly, Mask
R-CNN also faced challenges in accurately detecting the boundary between the background and the
IC, resulting in consistently irregular results. This can be attributed to a performance drop in bound-
ary recognition, leading to incomplete segmentation of the leads and pads. While Mask R-CNN
excels in detecting object shapes, its limitations are evident in low-contrast scenarios. On the other
hand, YOLACT demonstrated relatively good performance in segmenting the IC but struggled to
detect the dark parts of the pads accurately. Despite its fast speed and good performance, YOLACT
exhibited performance degradation in certain small and dark areas, such as pads.

Chips of different colors and sizes were also accurately segmented, as shown in the second column
of Figure 3. Given the diversity in chip sizes and colors, performing uniform segmentation presented
an achievement. Additionally, the segmentation performance of leads and pads may vary depending
on the lighting reflection and board color. However, they were all segmented accurately despite their
sizes and lighting conditions.

In contrast, DeepLabv3+ segmented the pads relatively accurately but misidentified the chip as a
diode. The distinction between chips and diodes was unclear, and confusion occurred due to similar
color and shape, highlighting its limitation in boundary distinction. Mask R-CNN tended only to
detect parts with different colors in the pad segmentation. It was unable to segment the entire pad,
but only segmented parts with high illumination values, and as a result was unable to recognize the
entire pad. Lastly, YOLACT misidentified polar parts on the side of the chip as a pad, resulting in
the incorrect segmentation of the chip and incomplete segmentation of the pad. Overall, these results
demonstrate specific limitations of each model in segmenting chips and pads.

The model performance is quantitatively evaluated using metrics in Table 1, with an average IoU, F1
score, pixel accuracy, and mAP of 0.8889, 0.9401, 0.9961, and 0.8255, respectively. This suggests
that the segmentation of PCB components showed high accuracy overall. In particular, the IoU

Table 1: Evaluation metric values and their average values of the test dataset.

Board color Blue Green Brown-green White Black Average
IoU 0.9133 0.8692 0.8823 0.8851 0.8948 0.8889
F1 Score 0.9539 0.9281 0.9364 0.9337 0.9485 0.9401
Pixel Accuracy 0.9958 0.9975 0.9960 0.9957 0.9954 0.9961
mAP 0.8698 0.7917 0.8033 0.8345 0.8281 0.8255
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Table 2: Comparison of the average evaluation metric value and inference time in milliseconds for
DeepLabv3+, Mask R-CNN, YOLACT, and YOLOv7 on the test dataset.

DeepLabv3+ Mask R-CNN YOLACT YOLOv7
IoU 0.8178 0.8309 0.8556 0.8889
F1 Score 0.8976 0.9001 0.9113 0.9401
Pixel Accuracy 0.9283 0.9297 0.9488 0.9961
mAP 0.6919 0.7113 0.7151 0.8255
Inference time (ms) 60-80 45-60 20-35 10-20

was over 0.86, the F1 score was over 0.92, and the pixel accuracy was over 0.99 for all test PCBs,
confirming that the model performed consistently in various background conditions.

Compared with DeepLabv3+, Mask R-CNN, and YOLACT, YOLOv7 recorded the highest perfor-
mance across all metrics, as shown in Table 2. It achieved an overall average IoU of 0.8889, an
F1 score of 0.9401, a Pixel Accuracy of 0.9961, and an mAP of 0.8255. These results demon-
strate YOLOv7’s exceptional capability in accurately segmenting PCB components, and effectively
handling components of various sizes and shapes. This makes it highly suitable for real-world envi-
ronments where precision and consistent performance are crucial in PCB AOI systems.

Additionally, YOLOv7 showed the fastest inference speed at 10-20ms. DeepLabv3+ recorded in-
ference times of 60-80ms, Mask R-CNN recorded 45-60ms, and YOLACT recorded 20-35ms, con-
firming that YOLOv7 is the best model for real-time processing. In PCB manufacturing, instant
inspection and quality control are essential to keep pace with rapid production. Hence, YOLOv7’s
fast processing speed and high accuracy make it the optimal choice for real-time PCB inspection,
rendering it highly valuable for application in manufacturing facilities.

5 DISCUSSION

In the proposed patch-wise learning, since images are divided into a constant size of 1024 × 1024
pixels and processed, it was observed that small components could not be recognized when they fell
on the patch boundary, or only a part of the object was detected. This issue occurred frequently,
especially for small components or patch boundaries on the PCB, which can be evaluated as one of
the inherent limitations of patch-wise learning. Hence, the average IoU was relatively low at 0.8889.
Since tiny objects span the boundary in the patch-wise processing, they are undetected or partially
detected.

In addition, while the body part of the component was segmented with high accuracy, smaller el-
ements, such as leads and pads, proved to be relatively difficult to segment, as shown in the third
column-fourth row of Figure 3 that two small parts of pads are undetected. This is interpreted as
being due to the fact that elements such as leads and pads are small compared to the body, and their
location on the PCB posed difficulties to model learning. Thus, relatively poor boundaries and small
sizes are other factors that lead to a low IoU value on average.

6 CONCLUSION

In this study, we proposed a patch-wise preprocessing method to partition PCB images into patches
for efficient component ROI setting in PCB AOI systems. By dividing PCB images into 1024 ×
1024 pixel patches and processing them, we achieved significantly accurate segmentation results
for all components on PCBs. Furthermore, by utilizing YOLOv7 segmentation model, we solved
the memory usage problem that occurs when processing high-resolution images and enabled faster
and more efficient inference. The proposed patch-wise learning consistently demonstrated strong
performance with PCB images of varying background colors and sizes and enabled accurate seg-
mentation across different components such as resistors, capacitors, and ICs. However, a limit was
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found for small targets such as leads and pads across the patch boundaries, with a relative decrease
in segmentation performance.

In future research, finer patch sizes or multi-resolution approaches can be considered to overcome
these limitations and improve the segmentation performance of small components. Moreover, fur-
ther experiments in various PCB design and manufacturing environments are necessary to validate
the widespread applicability of the proposed patch-wise method in industrial sites. This study high-
lights the potential of an effective preprocessing method with YOLOv7 segmentation model for
automatic ROI setting in the PCB AOI system, aiming to enhance the speed and accuracy of inspec-
tions in the PCB manufacturing process.
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