6.864 PSET1

Part 1

Implementation Details: In this part, we explore different
ways of using unlabeled text to learn word representations.
Using a dataset on product review, we first created a term doc-
ument matrix and implemented a function to compute word
representations using LSA. The latter was done using the
TruncatedSVD function from sklearn.decomposition library.
We then implemented the TF-IDF transform where we mul-
tiply each entry in the term document matrix by its inverse
document frequency. Lastly, we train a logistic regression
model on a set of labeled reviews using three different fea-
turizers. The LSA featurizer contains the learned feature rep-
resentation of each review, which is calculated by summing
LSA word representations. We examined how much repre-
sentations learned from unlabeled reviews improve revsiew
classification.

Question 1. The nearest neighbors in representation space
are somehow semantically related to each other. For example,
the most similar words to "the" are: "of", "and", and "to";
these words are often used in various sentences and do not
contribute significantly to the meaning of the sentence.

The most similar words to "dog" are: "food", "pet",
"switched", and "foods"; each of these words has a somewhat
direct connection to "dog" except for "switched".

The most similar words to "good" are: ".", "a", "but", ",",
and "the"; these words do not have apparent connection to
"good" in terms of meaning. However, they are often in prox-
imity to "good". For example, "a good person", "the good
food", or "I am good.".

Question 2. The size of the LSA representations affects this
behavior because it indicates the number of latent space we
are mapping each word to. If the LSA representation is
too small, very little latent information of the words will be
learned. However, if the LSA representations is too large, the
embedding matrix might contain too much irrelevant infor-
mation that can be misleading when mapping words to latent
space (overfitting). When we decrease the size of the LSA
representation to 5, some words produce poor results. For
example, the most similar words to "dog" are: "him", "food",
"formula", "general", and "began". These words have weaker
connection to "dog" than the words generated in Question 1
with LSA representation size of 500. However, some words
such as "the" continue to produce good results; the most sim-
ilar words to "the" are: "a", "be", "need", "but", and ".". This
might be due to the fact that these words also lie close to
the most represented latent dimension. Thus, decreasing the
number of latent dimensions does not influence their nearest
neighbors significantly.

Question 3.Let Wy = UXVT, then Wy = Wy W =
USVTVSTUT. Since U and V are both orthogonal matri-
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Fig. 1. Similar words after performing LSA on term-document matrix
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Fig. 2. Similar words after performing LSA on co-occurrence matrix

ces given the properties SVD, VTV will result in an identity
matrix. Then, we can simplify Wy to USXTUT. Since &
is diagonal, »7T will also be diagonal where each element is
the square of the corresponding element in . Let ¥y = 2%7,
Wy = UX:UT. Therefore, the left singular vectors of Wiy
and Wy, are the same. However, we can do not fully observe
this behavior in our implementation. As shown in Fig. 1 and
Fig. 2, most of the word obtain the different similar words
although in both cases, they still fit well together with our
target words. These discrepancies are due to the numerical
estimations when performing SVD.

Question 4. Learned representations alone do not help with
the review classification problem in most cases. This is be-
cause the many reviews, positive reviews will usually con-
tain such positive terms as "good", "like", and "better" more
frequently. However, the LSA featurizer does not account
for the frequency of terms. To make the matter worse, LSA
suggests that "bad" is very similar to "like" and "better" as
shown in Fig. 2. As a result, such word as "like" and "better"
are treated as signals for both positive and negative reviews,
contributing to their poor performance.

However, in some cases, the combo featurizer performs
better than both the word and the LSA featurizer. This is
because the combo featurizer contains information on both
the frequency of terms and their latent embeddings.

As the number of labeled examples increases, the word
embeddings increases the accuracy for LSA featurizer. This
is because the word embeddings become more precise as the
number of examples increase. However, the accuracy for Isa,
and for word and combo, all plateau at around 1,000 exam-



Number of examples vs. accuracy

.
.
.

«— word + combo .
—e— |sa $ e

Test accuracy

0.50

10t 10° 10° 10*
Number of examples (log scale)

Fig. 3. Test accuracy of word, Isa, and combo for various number of examples with
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Fig. 4. Test accuracy of word, Isa, and combo for various LSA representation size
with 1000 examples

ples. After this point, additional examples will not increase
accuracy significantly.

Question 5. As the size of word embeddings increases, the
accuracy of the Isa featurizer also increases because the
higher latent space is able to encode more representations for
each word. However, when the size of the word embeddings
reaches around 100, the accuracy of the Isa featurizer begins
to reach its peak as shown in Fig. 4. After this peak, the ac-
curacy drops subtly because the word embeddings might be
overfitting due to the high representation size.

One interesting trend in Fig. 4 is that the accuracy of
combo remains relatively high and unchanged throughout. Its
accuracy is quite high even when the accuracy of the Isa fea-
turizer is significantly lower. Thus, it can be inferred that that
the combo featurizer relies more on the word featurizer than
the Isa featurizer.

Part 2

Implementation Details: In Part 2, we trained a word embed-
ding model with a word2vec-style objective rather than a ma-
trix factorization objective. We wrote a torch module where
the forward function takes a batch of context word ID’s and
predict the word in the middle of the context, as in the CBOW

moded. This was done by adding embeddings, a hidden lin-
ear layer, and a softmax output that returns the most proba-
ble word. The training function takes in a corpus of training
sentences and returns a matrix of word embeddings with the
same structure as Part 1. We used the Adam optimizer with a
learning rate of 0.001. We used cross entropy loss as our loss
function.

After training the word embeddings, we visualized the
embedding space and check its closest neighbors. We also
ran clustering and qualitatviely looked for underlying pattern
in clusters. Lastly, we used the trained word embeddings to
constructor vector representations of full reviews by simply
averaging all the word embeddings in the review to create an
overall embedding. We then evaluated their accuracy in the
same review classification task from Part 1.

Question 1. The nearest neighbors in representation space
are much more similar than those from Part 1. Qualitatively,
most of these words represents similar words more naturally
in product reviews.

For example, the most similar words to "the" are: "my",
"a", "their", "your", "this"; like in Part 1, words similar to
"the" are often used in various sentences and do not con-
tribute significantly to the meaning of the sentence. However,
similar words in this case are more related and are usually
followed by nouns.

The most similar words to "dog" are: "puppy", "snacks",
"pouch"”, "cafe", and "pet"; each of these words has more ap-
parent direct connections to "dog" than those in part 1. Lastly,
the most similar words to "good" are: "restaurant”, "excited",
"difficult”, "great", and "superior”. In Part 1, similar words to
"good" do not have apparent connection to "good" in terms
of meaning, but they are often in proximity to "good". On the
other hand, in this scenario, the most similar words to "good"
have apparent connection in terms of meaning.

Question 2. Qualitatively, increasing the context size pro-
duces more similar words. For example, when the context
size is 1, the most similar words of "dog" are: "cat", "sea",
"condition", "prepared", and "belgian"; most of which do not
have direct connection to "dog". However, as we increase
the context size to 5, the most similar words of "dog" are:
"p", "sweeteners", "pets", "co", and "live"; most of which
have some connection to "dog". Increasing the context size
allows the model to account to take more words in proxim-
ity into consideration. However, if the context size becomes
too large, accuracy decreases. As shown in Fig. 5, increasing
the context size first improves accuracy. When the context
size becomes around 10, the accuracy decreases significantly.
This is because words outside the context range of the target
word are taken into consideration when learning embeddings

for our target word.

Question 3. The learned word embeddings produce higher
accuracy with fewer training examples. As shown in Fig. 6, at
around 1000 examples, the learned word embeddings reached
an accuracy of around 0.80. On the other hand, as shown in
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Fig. 5. Test accuracy of various context sizes trained with 500 representation size,
10 epoches, and 100 batch size. Vector representations of reviews computed by
averaging all word embeddings in the review
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Fig. 6. Test accuracy of different number of examples trained with 500 represen-
tation size, 30 epoches, and 100 batch size. Vector representations of reviews
computed by averaging all word embeddings in the review

Fig. 3, the best featurizer only reached an accuracy of around
0.75.

The learned word embeddings reaches its highest accu-
racy of around 0.83 at around 10000 examples. The accuracy
then begins to decrease due to overfitting. On the other hand,
the best featurizer in Fig. 3 is only able to reach a highest
accuracy of around 0.78 at around 10000 examples.

Another interesting trend in both figures is that in both
graphs, the accuracy experience a sharp dip right before 100
examples. We were not able to figure out the cause of this
significant dip.

Question 4. One advantage of using the CBOW model is
that it considers words in proximity when learning represen-
tations. On the other hand, LSA is a bag-of-words model that
mainly relies on the term document frequencies to generate
word embeddings without considering the order of words. As
a result, CBOW model is able to produce higher accuracy,
better representation, even with fewer training examples.
Some disadvantages of using the CBOW model is that it
has a long training time and can possibly overfit. However,
another problem that both CBOW and LSA do not address
is identifying embeddings for words with multiple meanings
since they only have one vector representation for each word.

Question 5. One problem with constructing a representa-
tion of the review by averaging the embeddings of the in-
dividual words is that sentences with double negatives might
seem much worse than expected because averaging the em-
beddings does not take the words in context into considera-
tion. For example, the review "It wasn’t bad at all, I enjoyed
it." can be classified as neutral due to the double negative in
the first part of the sentence while it should be classified pos-
itive.

Part 3

Implementation Details: In this part, we use the Baum-Welch
algorithm to learn categorical representations of words in the
vocabulary. First, we implemented the forward-backward al-
gorithm for HMM as we’ve seen in lecture. To prevent under-
flowing, most all computation was done in log space. More
specifically, log(ab) =log(a)+1og(b); and if x =log(a) and
y =log(b), log(a+b) = logaddexp(x,y). In many scenar-
ios, we must perform logaddexp() across the rows or columns
of a matrix. To vectorize computation, we used logsumexp()
from scipy.special library. After having computed v (j) and
Be(1), we calculated & (,7) and v¢(¢). At the end of each it-
eration of Baum-Welch, we update A, B, and pi using ¢ and
Y.

Note that in our implementation of forward-backward, we
leave A, B, and pi in standard decimal space. However, a,
B, 7, and & are all in log space. Additionally, as we loop
through each review in corpus, using & and ~y, we calculate
a running sum of E[s; — s;], E[s; = s«], E[s;,wg], E[s;],
and E[q1 = s;]. At the end of each iteration, we also divided
each term in E[q; = s;] by the length of the corpus. We did
not divide other expected values by the length of the corpus
because they would cancel each other out when updating A,
B, and 7.

We then repeated classification experiment from Parts 1
and 2 using the vector of expected hidden state counts as a
sentence representation.

Question 1. We trained the model with two hidden states
for three iterations, since the total log probability converges
at around three iterations. The first state contains names of
objects such as "plum", "mints", and "plocky’s". The second
state contains words that have weak indication about quality
of the product such as "remaining", "risk", "burn", "improve",
"harder", "rip", and etc.

We trained the model with 10 hidden states for three it-
erations. Each of the ten state contains words that are some-
how related; however, there isn’t a clear boundary between
each hidden state. For example, state 1 contains "flavour”,
"restaurant”, "ordering", "oven", and "asked"; all these words
are related to food and restaurant. State 3 contains "earlier",
"target", "serious", and "mushy"; these words tend to deal
with the condition and state of the product. State 7 contains
"sad", "paying", "offer", and "handy"; these words have indi-
rect connections to payment. Most of the states contain words

describing the various aspects of a product; and these aspects
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Fig. 7. Test accuracy of different number of examples. Embeddings are learned
using the Baum-Welch algorithm with 5 iterations.

(payment, condition, quality, state, and etc.) are often linked
to whether the product receives a positive or negative review.

We started training the model with 100 hidden states but
did not finish due to long training time. However, using the
pattern from two states and 10 states, we suppose that each
of the 100 states will contain more detailed description that
contribute to product review. These detailed descriptions can
include price, arrival time, portion, service, and etc.

Question 2. As the number of labeled examples increases,
HMM-based sentence representations achieve higher accu-
racy on the same review classification task from Parts 1 and 2
of the homework. As shown in Fig. 7, the HMM-based sen-
tence representations achieve a accuracy higher than 0.85 at
1000 examples. As the number of examples continue to in-
crease, the accuracy plateaus at around 0.90. In contrast, as
shown in 3, the best featurizer from Part 1 only obtained a
highest accuracy of around 0.80. As shown in 6, the em-
beddings from the CBOW model only obtained a highest
accuracy of around 0.83. The high accuracy of the HMM-
based representation is that it considers the observations in
sequence, and human language is fundamentally sequential
in nature. On the other hand, in Part 1, we applied 1sa featur-
izer to generate review representations. Meanwhile, in Part
2, we simply constructed review representations by averag-
ing the embeddings of the individual words. However, both
approaches do not account for the sequential ordering of the
words in the review.

The HMM state distributions are sensible to sentence rep-
resentation because HMM is a probabilistic method of mod-
eling time series data. The hidden state distributions are
generated based on observations at each discrete sequential
timestamps. Because human sentences are also sequential in
nature, the hidden state distributions conditioned on observed
words are sensible. As evident in Fig. 7, HMM-based sen-
tence representations achieve higher accuracy then the earlier
models in Parts 1 and 2.
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1 %%bash

2 !'(stat -t /usr/local/lib/*/dist-packages/google/colab > /dev/null 2>&1) && exit
3rm -rf 6864-hwl

4 git clone https://github.com/lingo-mit/6864-hwl.git

[

import sys
sys.path.append("/content/6864-hwl")

import csv

import itertools as it
import numpy as np
np.random.seed(0)

oNOUTL S WN =

(o)

import lab util

o
= o©

import math
from sklearn.decomposition import TruncatedSVD

=
N

v |Introduction

In this lab, you'll explore three different ways of using unlabeled text data to learn pretrained word rep
the effects of different modeling decisions (representation learning objective, context size, etc.) on b
representations and their effect on a downstream prediction problem.

General lab report guidelines

Homework assignments should be submitted in the form of a research report. (We'll be providing a pl
but are still sorting out some logistics.) Please upload PDFs, with a maximum of four single-spaced p
Association for Computational Linguistics style files.) Reports should have one section for each part

section should describe the details of your code implementation, and include whatever charts / table:
questions at the end of the corresponding homework part.

We're going to be working with a dataset of product reviews. It looks like this:

1 data = []

2 n positive = 0

3n disp =0

4 with open("/content/6864-hwl/reviews.csv") as reader:

5 csvreader = csv.reader(reader)

6 next(csvreader)

7 for id, review, label in csvreader:

8 label = int(label)

9

10 # hacky class balancing
https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWm8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo... 1/15
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27 print(f"Read {len(data)} total reviews.")

Copy of Copy of 6864-hw1 - Colaboratory

if label == 1:
if n _positive == 2000:
continue
n_positive += 1
if len(data) == 4000:
break

data.append((review, label))

if n disp > 5:

continue
n disp +=1
print("review:", review)

print("rating:", label, "(good)" if label

print()

28 np.random.shuffle(data)

29 reviews, labels = zip(*data)

30 train reviews = reviews|[:3000]
31 train labels = labels[:3000]

32 val reviews = reviews[3000:3500]
33 val labels = labels[3000:3500]
34 test reviews = reviews[3500:]

35 test labels = labels[3500:]

[

1 else "(bad)")

We've provided a little bit of helper code for reading in the dataset; your job is to implement the learnii

~ Part 1: word representations via matrix factorization

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo...

2/15



2/29/2020 Copy of Copy of 6864-hw1 - Colaboratory

First, we'll construct the term--document matrix (look at /content/6864-hwl/lab util.py in the fil
how this works).

1 vectorizer = lab util.CountVectorizer()

2 vectorizer.fit(train reviews)

3 td matrix = vectorizer.transform(train reviews).T

4 print(f"TD matrix is {td matrix.shape[0]} x {td matrix.shape[1]}")

[

First, implement a function that computes word representations via latent semantic analysis:

1

2 def learn reps lsa(matrix, rep size):

3 # "matrix’ is a " |V]| x n matrix, where " |V| 1is the number of words in the
4 # vocabulary. This function should return a " |V| x rep size  matrix with each
5 # row corresponding to a word representation. The “sklearn.decomposition’

6 # package may be useful.

7

8 # Your code here!

9 svd = TruncatedSVD(n components=rep size, n iter=30, random state=42)
10 svd.fit(matrix)
11 return svd.transform(matrix)

link textl et's look at some representations:

1 reps = learn reps lsa(td matrix.dot(td matrix.T), 1000)

2 WOl"dS = [Ilgoodll’ Ilbadll’ Ilcookie“’ Ilje'L'l.yII’ Ildogll’ Ilthell’ II4II]

3 show tokens = [vectorizer.tokenizer.word to token[word] for word in words]
4 lab util.show similar words(vectorizer.tokenizer, reps, show tokens)

[

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo... 3/15
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We've been operating on the raw count matrix, but in class we discussed several reweighting scheme

more informative.

Here, implement the TF-IDF transform and see how it affects learned representations.

1 def transform tfidf(matrix):

O 00 NOUL B~ WN

el el el
NOoOO U DS WNRO

matrix copy = matrix.copy()
matrix copy[matrix copy>0.]=1.
# print(len(matrix copy[matrix copy == 0])+len(matrix copy[matrix copy==1]))

num_docs containing word = np.sum(matrix copy, axis = 1)
# print(num docs containing word)
for i in range(len(matrix)):

for j in range(len(matrix[0])):

matrix[i][j]*=math.log(len(matrix[0])/num docs containing word[i],10)

return matrix
# matrix is a |V| x |D| matrix of raw counts, where |V| is the
# vocabulary size and |D| is the number of documents in the corpus. This
# function should (nondestructively) return a version of matrix with the
# TF-IDF transform appliied.

# Your code here!

How does this change the learned similarity function?

1T +Ad mat+riv +Ffidf — +rancfarm +FfiAdf(+Ad matrivIi#H Antl(+Ad matriv TN

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo...
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L LU_IIIULIJ./\_LIJ.UI - LIUIIJIUIIII_LIJ.UI\LU_IIIULIJ./\[TT-UUL\LU_IIIULIJ./\-I[
2 reps_tfidf = learn reps lsa(td matrix tfidf, 500)
3 lab util.show similar words(vectorizer.tokenizer, reps tfidf, show tokens)

[

Now that we have some representations, let's see if we can do something useful with them.
Below, implement a feature function that represents a document as the sum of its learned word embe

The remaining code trains a logistic regression model on a set of labeled reviews; we're interested in
from unlabeled reviews improve classification.

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo... 5/15
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1 def word featurizer(xs):

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

# normalize
return xs / np.sqrt((xs ** 2).sum(axis=1, keepdims=True))

def lsa featurizer(xs):

# This function takes in a matrix in which each row contains the word counts
# for the given review. It should return a matrix in which each row contains
# the learned feature representation of each review (e.g. the sum of LSA

# word representations).

feats = np.dot(xs, reps tfidf)

# feats = None # Your code here!

# normalize

return feats / np.sqrt((feats ** 2).sum(axis=1, keepdims=True))

def combo featurizer(xs):

return np.concatenate((word featurizer(xs), lsa featurizer(xs)), axis=1)

def train model(featurizer, xs, ys):

import sklearn.linear model

xs_ featurized = featurizer(xs)

model = sklearn.linear model.LogisticRegression()
model.fit(xs featurized, ys)

return model

def eval model(model, featurizer, xs, ys):

xs featurized = featurizer(xs)
pred ys = model.predict(xs featurized)
print("test accuracy", np.mean(pred ys == ys))

def training experiment(name, featurizer, n train):

print(f"“{name} features, {n train} examples")

train xs = vectorizer.transform(train reviews[:n train])
train ys = train labels[:n train]

test xs = vectorizer.transform(test reviews)

test ys = test labels

model = train model(featurizer, train xs, train ys)

eval model(model, featurizer, test xs, test ys)

print()

41 training experiment("word", word featurizer, 500)
42 training experiment("lsa", lsa featurizer, 500)
43 training experiment("combo", combo featurizer, 500)

[

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo...
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Part 1: Lab writeup

Part 1 of your lab report should discuss any implementation details that were important to filling out 1

up experiments that answer the following questions:

1. Qualitatively, what do you observe about nearest neighbors in representation space? (E.g. what

good?)

2. How

does the size of the LSA representation affect this behavior?

3. Recall that the we can compute the word co-occurrence matrix Wy, = Wy, I/Vn;r What can you
left singular vectors of W;,; and W};? Do you observe this behavior with your implementation of

4. Do learned representations help with the review classification problem? What is the relationshig

and the effect of word embeddings?

5. What is the relationship between the size of the word embeddings and their usefulness for the ¢

~ Part 2: word representations via language modeling

In this section, we'll train a word embedding model with a word2vec-style objective rather than a matr

little more work; we've provided scaffolding for a PyTorch model implementation below. (If you've nev

tutorials here. You're also welcome to implement these experiments in any other framework of your ¢

coNOOUTL S WN -
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https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo...

import
import
import
import
import
class
# A
# sh
# in

def

def

torch

torch.nn as nn
torch.nn.functional as F
torch.optim as optim
torch.utils.data as torch data

Word2VecModel (nn.Module) :
torch module implementing a word2vec predictor. The "forward™ function
ould take a batch of context word ids as input and predict the word

the middle of the context as output, as in the CBOW model from lecture.

~_init (self, vocab size, embed dim):

super(). init ()

self.embeddings = nn.Embedding(vocab size, embed dim)
self.linear = nn.Linear(embed dim, vocab size)

# Your code here!

forward(self, context):

# Context is an 'n_batch x n _context’™ matrix of integer word ids

# this function should return a set of scores for predicting the word
# in the middle of the context

7/15


https://pytorch.org/tutorials/

2/29/2020 Copy of Copy of 6864-hw1 - Colaboratory

23

24 # Your code here!

25 embeddings = self.embeddings(context)
26 embed sum = embeddings.sum(dim=1)

27 hidden = self.linear(embed sum)

28 output = F.log softmax(hidden, dim=1)
29 return output

30

31

1 def learn reps word2vec(corpus, window size, rep size, n _epochs, n batch):

2 # This method takes in a corpus of training sentences. It returns a matrix of
3 # word embeddings with the same structure as used in the previous section of
4 # the assignment. (You can extract this matrix from the parameters of the

5 # Word2VecModel.)
6
7
8

tokenizer = lab util.Tokenizer()
tokenizer.fit(corpus)
9 tokenized corpus = tokenizer.tokenize(corpus)

11 ngrams = lab util.get ngrams(tokenized corpus, window size)

13 device = torch.device('cuda') # run on colab gpu

14 model = Word2VecModel(tokenizer.vocab size, rep size).to(device)

15 opt = optim.Adam(model.parameters(), 1r=0.001)

16 loss fn = nn.CrossEntropyLoss() # Your code here

17

18 loader = torch data.DatalLoader(ngrams, batch size=n batch, shuffle=True)
19

20 for epoch in range(n _epochs):

21 for context, label in loader:

22 # as described above, “context® is a batch of context word ids, and
23 # “label’ is a batch of predicted word labels
24 model.zero grad()

25 pred = model(context.cuda()).cuda()

26 label = label.cuda()

27 #print(pred.shape, label.shape)

28 loss = loss fn(pred, label)

29 loss.backward()

30 opt.step()

31 # Your code here!

32

33 # reminder: you want to return a ‘vocab size x embedding size  numpy array
34 embedding matrix = []

35 # Your code here!

36 for layer in model.embeddings.parameters():

37 embedding matrix.append(layer.data.cpu().numpy())

38 return embedding matrix

1 # reps word2vec = learn_reps word2vec(train reviews, 2, 500, 30, 100)
2 ranc wnrd2var = lToaarn ranc wnrd2var(t+rain rowviouwc 2 E0A n 10M)
https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWm8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo... 8/15
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3 reps_word2vec = np.array(rgps_word2vec).saueeze()

After training the embeddings, we can try to visualize the embedding space to see if it makes sense. |

and check its closest neighbors.

1 lab util.show similar words(vectorizer.tokenizer, reps word2vec, show tokens)

[

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printMo...

good 47
piece 1.683
metallic 1.684
french 1.711
easy 1.715
vanilla 1.715
bad 201
crazy 1.691
further 1.704
solid 1.705
liquid 1.713
carried 1.715
cookie 504
lime 1.680
roll 1.717

concentrated 1.728

wrapped 1.730
hold 1.736
jelly 351
sucralose 1.664
clams 1.707
general 1.709
commercial 1.725
individual 1.732
dog 925
store 1.686
maker 1.688
note 1.710
caused 1.736
r 1.741
the 36
my 1.537
a 1.555
their 1.667
another 1.691
an 1.705
4 292
gallon 1.700
toddler 1.703
six 1.719

9/15
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We can also cluster the embedding space. Clustering in 4 or more dimensions is hard to visualize, an:
because there are so many words in the vocabulary. One thing we can try to do is assign cluster label

[ R D DR [ ———

from sklearn.cluster import KMeans

1
2
3 indices = KMeans(n clusters=10).fit predict(reps word2vec)

4 zipped = list(zip(range(vectorizer.tokenizer.vocab size), indices))
5 np.random.shuffle(zipped)

6 zipped = zipped[:100]

7 zipped = sorted(zipped, key=lambda x: x[1])

8 for token, cluster idx in zipped:

9 word = vectorizer.tokenizer.token to word[token]

10 print(f"{word}: {cluster idx}")

[

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printM... 10/15



2/29/2020 Copy of Copy of 6864-hw1 - Colaboratory

bottle: 1
unfortunately: 1
baby: 1

dip: 1
dressing: 1
horrible: 1
stuff: 1

test: 1

mother: 1
chunks: 1
sesame: 1
disappointed: 1
cereal: 1
serious: 1
mint: 1

figure: 1
remember: 1
decided: 1
craving: 1
claims: 1
switch: 1

co: 1

state: 1
health: 1
touch: 1
spinach: 1
than: 1
described: 1
tasting: 2
sunflower: 5
lid: 5
watching: 5
contacted: 5
thats: 5
quantity: 5
palatable: 5
second: 5
guests: 5
speak: 5

much: 5

twist: 5
remaining: 5
chewy: 7
i: 7
potato: 7
paste: 7
kind: 7
mustard:
flavour:
allergy:
peanuts: 7

NN

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printM... 11/15
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tin: 7
barely: 7
chocolates: 7
beverage: 7
toddler: 7
design: 7
decaffeinated: 7
bears: 7
left: 7
shape: 7
tough: 7
nutritious: 7
low: 7
beef: 7
shows: 7
worst: 7
wait: 8
trouble: 8
gives: 9
irish: 9
citrus: 9
anywhere: 9
reduced: 9
placed: 9
enjoy: 9
she: 9
about: 9
date: 9
such: 9
complete: 9
egg: 9
paying: 9
puppy: 9
become: 9
clear: 9
fell: 9
write:
maybe:
thing:
worth:
today:
like: 9
lot: 9

O O © O VO

Finally, we can use the trained word embeddings to construct vector representations of full reviews. (
average all the word embeddings in the review to create an overall embedding. Implement the transfc
this.

1 def lsa featurizer(xs):
2 feats = np.dot(xs, reps word2vec)

3 # This function takes in a matrix in which each row contains the word counts
https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printM... 12/15
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4 # for the given review. It should return a matrix in which each row contains
# the learned feature representation of each review (e.g. the sum of LSA
# word representations).

0 N O U

# normalize

9 return feats / np.sqrt((feats ** 2).sum(axis=1, keepdims=True))
10

11 training experiment("word2vec", lsa featurizer, 500)

> word2vec features, 500 examples
test accuracy 0.772

1 # for examples in # examples = [10,50,70,100,150,200,500,800,1000,2000,4000,8000,1
2 # print(examples)

3 reps word2vec = learn reps word2vec(train reviews, 2, 500, 30, 100)

4 reps word2vec = np.array(reps word2vec).squeeze()

5 for examples in [20000, 30000, 50000]:

6 training experiment("word2vec", lsa featurizer, examples)

[> word2vec features, 20000 examples
test accuracy 0.812

word2vec features, 30000 examples
test accuracy 0.812

word2vec features, 50000 examples
test accuracy 0.812

2 word2vec features, 500 examples test accuracy 0.776
4 word2vec features, 500 examples test accuracy 0.744
8 word2vec features, 500 examples test accuracy 0.764
16 word2vec features, 500 examples test accuracy 0.746
32 word2vec features, 500 examples test accuracy 0.752
64 word2vec features, 500 examples test accuracy 0.718

128 word2vec features, 500 examples test accuracy 0.738

1 import pylab

2 import matplotlib.pyplot as plt

3a [pow(10, i) for i in range(10)]

4 b [pow (10, i*2) for i in range(9)]

5 b.append(12)

6

7 context = [1, 2, 3, 4, 5, 8, 16, 32, 64, 128]

~ ra =~~~ A ==~ A =~ Aa ~A = a A == a A =~ a A = A~ A =~ A =anA A =AaAn

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printM... 13/15
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8 accuracy = |U./bb, U.//b, VU./bZ, VU./44, VU.//4, VU./04, U./40, VU./52, VU./15, VU./38]
9

10 examples
11 accuracy

12

13 #
14 #
15 #
16 #
17 #
18

19 #
20 #
21 #
22 #
23 #
24 #
25 #
26 #
27

28 #
29

30 #
31 #
32 #

[10,50,70,100,150,200,500,800,1000,2000,4000,8000,10000, 20000, 30000,
[0.538, 0.642, 0.588, 0.684, 0.698, 0.754, 0.788, 0.8, 0.786, 0.808, 0.

different number of training examples:

word = [0.496, 0.6, 0.584, 0.616, 0.678, 0.716, 0.76, 0.76, 0.784, 0.776, 0.784,
lsa = [0.474, 0.578, 0.498, 0.614, 0.646, 0.686, 0.722, 0.74, 0.734, 0.75, 0.758
combo = [0.496, 0.618, 0.614, 0.626, 0.682, 0.718, 0.766, 0.772, 0.784, 0.776, ©
examples = [10,50,70,100,150,200,500,800,1000,2000,4000,8000,10000]

word = [0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.
lsa = [0.476, 0.476, 0.604, 0.596, 0.69, 0.704, 0.712, 0.726, 0.728, 0.734, 0.73
combo = [0.784, 0.784, 0.784, 0.778, 0.782, 0.784, 0.784, 0.784, 0.784, 0.784, 0O
examples = [1, 2, 5, 10, 50, 70, 100, 150, 200, 300, 500, 1000, 2000, 2999]
context size = [1,2,3,4,5,8,16,32,64,32,64,128]

accuracy = [0.766,0.776, 0.762,0.774,0.744, 0.764, 0.746, 0.752, 0.718, 0.738]
fig = plt.figure()

ax = fig.add subplot(2, 1, 1)

plt.
line, = ax.plot(a, color='blue', lw=2)
line, = ax.plot(b, color = "green", lw =2)

ax.set yscale('log')

33 plt.plot( examples, accuracy, marker='o', markerfacecolor='blue', markersize=5, co

34 #
35 #

plt.plot( examples, lsa, marker='o', markerfacecolor='darkred', markersize =5,
plt.plot( examples, combo, marker='o', markerfacecolor='forestgreen', markersize

36 plt.xscale("log")

37 plt.xlabel("Number of examples (log scale)")
38 plt.ylabel("Test accuracy")

39 plt.title("Number of examples vs. accuracy")

40 #
41

plt.legend(loc = 'lower right', shadow=True,)

42 pylab.show()

[

Number of examples vs. accuracy

- -
- -

080 1 *

Test accuracy

10t 10 103 10¢
Mumber of examples (log scale)

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWma8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printM... 14/15
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**Part 2: Lab writeup**
Part 2 of your lab report should discuss any implementation details that were
important to filling out the code above. Then, use the code to set up

experiments that answer the following questions:

1. Qualitatively, what do you observe about nearest neighbors in representation

space? (E.g. what words are most similar to the , dog , 3 , and good ?) How
well do word2vec representations correspond to your intuitions about word
similarity?

2. One important parameter in word2vec-style models is context size. How does
changing the context size affect the kinds of representations that are learned?

3. How do results on the downstream classification problem compare to
part 17

4. What are some advantages and disadvantages of learned embedding
representations, relative to the featurization done in part 17

5. What are some potential problems with constructing a representation of the
review by averaging the embeddings of the individual words?

Part 2: Lab writeup

Part 2 of your lab report should discuss any implementation details that were important to filling out 1
up experiments that answer the following questions:

1. Qualitatively, what do you observe about nearest neighbors in representation space? (E.g. what
good?) How well do word2vec representations correspond to your intuitions about word similar

2. One important parameter in word2vec-style models is context size. How does changing the con
representations that are learned?

3. How do results on the downstream classification problem compare to part 1?
4. What are some advantages and disadvantages of learned embedding representations, relative t

5. What are some potential problems with constructing a representation of the review by averagin:

https://colab.research.google.com/drive/10p1Hh8WDn8RpnFHOadWm8rj8izRUWvyu?authuser=1#scrollTo=XSfoQbxaXtfH&printM... 15/15
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1 %%bash

2 !'(stat -t /usr/local/lib/*/dist-packages/google/colab > /dev/null 2>&1) && exit
3rm -rf 6864-hwl

4 git clone https://github.com/lingo-mit/6864-hwl.git

> Cloning into '6864-hwl'...

import sys
sys.path.append("/content/6864-hwl")

import csv

import itertools as it
import numpy as np
np.random.seed(0)

O 00O NOYUL B WN =

import lab util

v Hidden Markov Models

In the remaining part of the lab (containing part 3) you'll use the Baum--Welch algorithm to learn catey
vocabulary. Answers to questions in this lab should go in the same report as the initial release.

As before, we'll start by loading up a dataset:

1 data = []

2 n positive = 0

3 n disp = 0

4 with open("/content/6864-hwl/reviews.csv") as reader:
5 csvreader = csv.reader(reader)

6 next(csvreader)

7 for id, review, label in csvreader:
8 label = int(label)

9

10 # hacky class balancing

11 if label == 1:

12 if n positive == 2000:
13 continue

14 n positive +=1

15 if len(data) == 4000:

16 break

17

18 data.append((review, label))
19

20 if n disp > 5:

21 continue

22 n disp +=1

23 print("review:", review)

24 print("rating:", label, "(good)" if label == 1 else "(bad)")
https://colab.research.google.com/drive/16Xt7iSUyzwoiwVS3MTAOrctDhFIUlj-1#scrollTo=mL6)JQXL)spyA&uniqifier=4&printMode=true 1/13
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print()

27 print(f"Read {len(data)} total reviews.")
28 np.random.shuffle(data)

29 reviews, labels = zip(*data)

30 train reviews = reviews[:3000]

31 train labels = labels[:3000]

32 val reviews = reviews[3000:3500]

33 val labels = labels[3000:3500]

34 test reviews = reviews[3500:]

35 test labels = labels[3500:]

[

review

rating:

review:
rating:

review:
rating:

review:
rating:

review:
rating:

review:
rating:

: I have bought several of the Vitality canned dog food products and have
1 (good)

Product arrived labeled as Jumbo Salted Peanuts...the peanuts were actua
0 (bad)

This is a confection that has been around a few centuries. It is a ligh
1 (good)

If you are looking for the secret ingredient in Robitussin I believe I hi
0 (bad)

Great taffy at a great price. There was a wide assortment of yummy taff
1 (good)

I got a wild hair for taffy and ordered this five pound bag. The taffy wi
1 (good)

Read 4000 total reviews.

Next, implement the forward--backward algorithm for HMMs like we saw in class.

IMPORTANT NOTE: if you directly multiply probabilities as shown on the class slides, you'll get undert

the log domain (remember that log(ab) = log(a) + log(b), log(a+b) = logaddexp(a, b)).

1 # hmm model
2 from scipy.special import logsumexp
3 from math import e

4
5
6
7
8
9

10
11
12

13
14

class HMM(object):

def

__init (self, num states, num words):
self.num states = num states
self.num words = num words

self.states = range(num states)
self.symbols = range(num words)

# initialize the matrix A with random transition probabilities p(j|i)
# A chould he a matrix nf <ize “nim ctatec x num ctatecg’

https://colab.research.google.com/drive/16Xt7iSUyzwoiwVS3MTAOrctDhFIUlj-1#scrollTo=mL6)JQXL)spyA&uniqifier=4&printMode=true 2/13
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15 # with rows that sum to 1

16 temp A = np.random.rand(self.num states, self.num states)

17 self.A = (temp A.T/temp A.sum(axis=1)).T

18

19 # initialize the matrix B with random emission probabilities p(o]|i)
20 # B should be a matrix of size “num states x num words®

21 # with rows that sum to 1

22 ## B[i][o] = p(o]|1)

23 temp B = np.random.rand(self.num states, self.num words)

24 self.B = (temp B.T/temp B.sum(axis=1l)).T

25

26 # initialize the vector pi with a random starting distribution

27 # pi should be a vector of size "num states’

28 temp pi = np.random.rand(self.num states)

29 self.pi = temp pi/sum(temp pi)

30

31 def generate(self, n):

32 """randomly sample the HMM to generate a sequence.

33 e

34 # we'll give you this one

35

36 sequence = []

37 # initialize the first state

38 state = np.random.choice(self.states, p=self.pi)

39 for i in range(n):

40 # get the emission probs for this state

41 b = self.B[state, :]

42 # emit a word

43 #H####### exponentiate b here to bring out of log space ####
44 word = np.random.choice(self.symbols, p=b)

45 sequence.append(word)

46 # get the transition probs for this state

47 a = self.A[state, :]

48 # update the state

49 state = np.random.choice(self.states, p=a)

50 return sequence

51

52 def forward(self, obs):

53 # run the forward algorithm

54 # this function should return a “len(obs) x num states’ matrix

55 # where the (i, j)th entry contains p(obs[:t], hidden state t = i)
56 # where the (i, j)th entry contains p(obs[:t], hidden state t = j)
57 alpha = np.zeros((len(obs), self.num states))

58 # alpha = np.full((len(obs), self.num states), 0.00000000000000000001)
59 for t in range(len(alpha)):

60 for j in range(len(alpha[0@])):

61 if t==0:

62 alphal[t][j]l=np.log(self.pi[j])+np.log(self.B[j]l[obs[t]])
63 else:

64 alpha t 1 = alpha[t-1]

65 aij = np.log(self.Al:,jl])

https://colab.research.google.com/drive/16Xt7iSUyzwoiwVS3MTAOrctDhFIUlj-1#scrollTo=mL6)JQXL)spyA&uniqifier=4&printMode=true 3/13
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66 alphal[t][j] = logsumexp(alpha t 1 + aij)+np.log(self.B[j][obs]
67

68 # def find(t, j):

69 # # if alphal[t][j] !'= 0O:

70 # # return alpha[t][j]

71 # if t ==

72 # alpha[t][j] = np.log(self.pi[j])+np.log(self.B[jl[obs[t]])

73 # else:

74 # total = None

75 # for i in range(self.num states):

76 # # print("yoyoyo")

77 # if total == None:

78 # total = find(t-1, i) + np.log(self.A[i][j])

79 # else:

80 # total = np.logaddexp(total, find(t-1, i)+np.log(self.A[i]]
81 # total += np.log(self.B[j][obs[t]])

82 # alphal[t][j] = total

83 # return alpha[t][j]

84

85 # log probs = None

86 # # print("number of states", (self.num states))

87 # for state in range(self.num states):

88 # if log probs == None:

89 # # log probs = find(len(obs)-1, state)

90 # log probs = alpha[len(obs)-1, state]

91 # else:

92 # # log probs = np.logaddexp(log probs, find(len(obs)-1, state))
93 # log probs = np.logaddexp(log probs, alpha[len(obs)-1, state])
94 # print("this ur log prob", logsumexp(alpha, axis = 1)[-1])

95 # print("this ur log prob part 2 kkokokoko", log probs)

96 return alpha, logsumexp(alpha, axis = 1)[-1]

97

98 def backward(self, obs):

99 # run the backward algorithm

100 # this function should return a "len(obs) x num states’ matrix

101 # where the (i, j)th entry contains p(obs[t+1:] | hidden state t = i)
102 # where the (i, j)th entry contains p(obs[t+1:] | hidden state t = j)
103

104 beta = np.zeros((len(obs), self.num states))

105 for t in range(len(beta)-1, -1, -1):

106 for i in range(len(beta[0])):

107 if t == len(obs)-1:

108 beta[t][i] = np.log(1l)

109 else:

110 beta tplusl = beta[t+1]

111 b j o tplusl = np.log(self.B[:,obs[t+1]])

112 aij = np.log(self.A[i])

113 beta[t][i] = logsumexp(beta tplusl + b j o tplusl + aij)
114

115 # def find(t, 1):

116 # if beta[t][i] '= O:

117 # return betalt1li]

https://colab.research.google.com/drive/16Xt7iSUyzwoiwVS3MTAOrctDhFIUlj-1#scrollTo=mL6JQXL)spyA&uniqifier=4&printMode=true  4/13
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if t == len(obs)-1:

118 #

119 # beta[t][i] = np.log(1l)

120 # else:

121 # total = 0

122 # for j in range(self.num states):

123 # # total += log(self.A[i]l[j])*log(self.B[jl[obs[t+1]])*find(t+1,
124 # # total = np.logaddexp(total, np.log(self.A[i][]j])+np.log(self
125 # total = np.logaddexp(total, np.log(self.A[i][j])+np.log(self.B
126 # beta[t][1] = total

127 # return beta[t][1]

128

129 # log probs = None

130

131 # for state in range(self.num states):

132 # if log probs == None:

133 # log probs = np.log(self.pi[state])+np.log(self.B[state][obs[0]])
134 # else:

135 # log probs = np.logaddexp(log probs, np.log(self.pi[state])+np.lo
136 # print("log probs forward", log probs)

137 # print(logsumexp(alpga, axis = 0))

138 log probs = logsumexp(np.log(self.pi)+np.log(self.B[:,obs[0]])+betal[0])
139 return beta, log probs

140

141 def forward backward(self, obs):

142 # compute forward--backward scores

143

144 # logprob is the total log-probability of the sequence obs

145 # (marginalizing over hidden states)

146

147 # gamma is a matrix of size “len(obs) x num states’

148 # it contains the marginal probability of being in state i at time t

149

150 # xi is a tensor of size “len(obs) x num states x num states’

151 # it conains the marginal probability of transitioning from i to j at t
152

153 # fix log prob stuff for these

154 alpha, log probsl = self.forward(obs)

155 beta, log probs = self.backward(obs)

156 # print("log probs for forward", "log probs for backward")

157 # print(log probsl, log probs)

158 # logprob = math.log(probsl, 10)

159 # gamma = 1/probs 1*np.multiply(alpha,beta)

160 gamma = alpha+beta-log probs

161

162 x1i = np.zeros((len(obs)-1, self.num states, self.num states))

163 for t in range(len(xi)):

164 for i in range(len(xi[0])):

165 for j in range(len(xi[0]1[0])):

166 xi[t][i1[j] = alpha[t][i]+np.log(self.A[i][j])+np.log(self.B[]j
167

168 # return logprob, xi, gamma

arn [ e S - —

https://colab.research.google.com/drive/16Xt7iSUyzwoiwVS3MTAOrctDhFIUlj-1#scrollTo=mL6)JQXL)spyA&uniqifier=4&printMode=true 5/13
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109 rewurn tog proos, X1, gamma

170

171 def update expected sij(self, expected sij, xi):

172 expected sij = logsumexp(xi, axis = 0)

173 # for 1 in range(len(expected sij)):

174 # for j in range(len(expected sij[0])):

175 # total = 0

176 # for t in range(len(xi)):

177 # total=np.logaddexp(xi[t][i][j], total)

178 # expected sij[i][j] = np.logaddexp(expected sij[i][j], total)
179 return expected sij

180

181 def update expected si(self, expected si, gamma):

182 # print(type(expected si), type(gammal[:-1].sum(axis=0)))

183 # expected si += gamma[:-1].sum(axis = 0)

184 expected si = np.logaddexp(expected si, logsumexp(gammal[:-1], axis = 0))
185 return expected si

186

187 def update expected sj wk(self, expected sj wk, gamma, obs):

188 for j in range(len(expected sj wk)):

189 for k in range(len(expected sj wk[0])):

190 # for k in range(len(expected sj wk[0])):

191 total = 0

192 for t in range(len(gamma)):

193 if obs[t] == k:

194 # total.append(gammal[t][j])

195 total = np.logaddexp(total, gamma[t][j])

196 expected sj wk[j]l[k] = np.logaddexp(expected sj wk[j][k], logsumex
197 return expected sj wk

198

199 def update expected sj(self, expected sj, gamma):

200 # expected sj += gamma.sum(axis = 0)

201 expected sj = np.logaddexp(expected sj, logsumexp(gamma, axis = 0))
202 return expected sj

203

204 def update expected pi si(self, expected pi si, gamma):

205 # for s in range(len(expected pi si)):

206 # expected pi si[s] = np.logaddexp(gamma[0][s], expected pi si[s])
207 expected pi si = np.logaddexp(expected pi si, gamma[0])

208 return expected pi si

209

210 def learn unsupervised(self, corpus, num iters):

211 """Run the Baum Welch EM algorithm

212 e

213

214 for i iter in range(num iters):

215 expected si = np.zeros(self.num states)

216 expected sij = np.zeros((self.num states, self.num states))

217 expected sj wk = np.zeros((self.num states, self.num words))
218 expected sj = np.zeros(self.num states)

219 expected pi si = np.zeros(self.num states)

220 # keep running sum of these expected values and update at the end
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221 total logprob = 0

222 # for review in corpus:

223 for i in range(len(corpus)):

224 logprobs, xi, gamma = self.forward backward(corpus[i])

225 expected si = self.update expected si(expected si, gamma)

226 expected sij = self.update expected sij(expected sij, xi)

227 expected sj wk = self.update expected sj wk(expected sj wk, gamma,
228 expected sj = self.update expected sj(expected sj, gamma)

229 expected pi si = self.update expected pi si(expected pi si, gamma)
230

231 total logprob += logprobs

232 print("review number " + str(i/len(corpus)), "running avg logprobs
233 # your code here

234 total logprob/=len(corpus)

235 # expected pi si -= np.log(len(corpus))

236 print("log-likelihood", total logprob)

237 self.A = np.exp(expected sij - np.array([expected si]).T)

238 self.B = np.exp(expected sj wk - np.array([expected sj]).T)

239 self.pi = np.exp(expected pi si - np.log(len(corpus)))

240

241

242  ##### when calculating xiand gamma, instead of dividing, do log space

1 import sys

2 sys.setrecursionlimit(100000)

3

4 tokenizer = lab util.Tokenizer()

5 tokenizer.fit(train reviews)

6 train reviews tk = tokenizer.tokenize(train reviews)

7 print(tokenizer.vocab size)

8

9 hmm = HMM(num states=2, num words=tokenizer.vocab size)
10 hmm.learn unsupervised(train reviews tk, 3)

[
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.962 running avg logprobs
.9623333333333334 running
.9626666666666667 running
.963 running avg logprobs
.9633333333333334 running
.9636666666666667 running
.964 running avg logprobs
.9643333333333334 running
.9646666666666667 running
.965 running avg logprobs
.9653333333333334 running
.9656666666666667 running
.966 running avg logprobs
.9663333333333334 running
.9666666666666667 running
.967 running avg logprobs
.9673333333333334 running
.9676666666666667 running
.968 running avg logprobs
.9683333333333334 running
.9686666666666667 running
.969 running avg logprobs
.9693333333333334 running
.9696666666666667 running
.97 running avg logprobs
.9703333333333334 running
.9706666666666667 running
.971 running avg logprobs
.9713333333333334 running
.9716666666666667 running
.972 running avg logprobs
.9723333333333334 running
.9726666666666667 running
.973 running avg logprobs
.9733333333333334 running
.9736666666666667 running
.974 running avg logprobs
.9743333333333334 running
.9746666666666667 running
.975 running avg logprobs
.9753333333333334 running
.9756666666666667 running
.976 running avg logprobs
.9763333333333334 running
.9766666666666667 running
.977 running avg logprobs
.9773333333333334 running
.9776666666666667 running
.978 running avg logprobs
.9783333333333334 running
0.

9786666666666667 runnlng

A=A~

-1062.157397154726

avg logprobs -1061.8946071832434
avg logprobs -1061.926349016642
-1063.1042207010842

avg logprobs -1063.2674157437941
avg logprobs -1063.3681409559642
-1063.5672450028985

avg logprobs -1063.320304574298
avg logprobs -1064.1019187877575
-1064.0663782868178

avg logprobs -1063.8245216220428
avg logprobs -1063.6150816096842
-1063.6939759643003

avg logprobs -1063.5672332877375
avg logprobs -1063.7297829569695
-1064.1509413351341

avg logprobs -1064.0797816722747
avg logprobs -1064.0972471765526
-1063.9799028016705

avg logprobs -1064.124254247945
avg logprobs -1063.8124026548999
-1063.9633028429332

avg logprobs -1063.8266494247744
avg logprobs -1063.697986806636
1063.7893104420193

avg logprobs -1063.9848607859055
avg logprobs -1063.765397467895
-1064.0392052736343

avg logprobs -1063.8472830168068
avg logprobs -1063.6840365522569
-1063.5906521659522

avg logprobs -1063.3144391070325
avg logprobs -1063.0619131026444
-1063.0020595609633

avg logprobs -1062.9212060327463
avg logprobs -1062.7174510063858
-1063.6005840632545

avg logprobs -1064.3341276631725
avg logprobs -1064.3563951891138
-1064.1116946352095

avg logprobs -1063.8496161527394
avg logprobs -1065.3548202335173
-1065.7842959140053

avg logprobs -1066.902862799503
avg logprobs -1066.670443580452
-1066.5200145029307

avg logprobs -1066.607726168395
avg logprobs -1066.6084921284385
-1067.1130946286205

avg logprobs -1066.8482902793787
avg logprobs -1066.6738124658607
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.Y/Y running avg Logprons
.9793333333333333 running
.9796666666666667 running
.98 running avg logprobs
.9803333333333333 running
.9806666666666667 running
.981 running avg logprobs
.9813333333333333 running
.9816666666666667 running
.982 running avg logprobs
.9823333333333333 running
.9826666666666667 running
.983 running avg logprobs
.9833333333333333 running
.9836666666666667 running
.984 running avg logprobs
.9843333333333333 running
.9846666666666667 running
.985 running avg logprobs
.9853333333333333 running
.9856666666666667 running
.986 running avg logprobs
.9863333333333333 running
.9866666666666667 running
.987 running avg logprobs
.9873333333333333 running
.9876666666666667 running
.988 running avg logprobs
.9883333333333333 running
.9886666666666667 running
.989 running avg logprobs
.9893333333333333 running
.9896666666666667 running
.99 running avg logprobs
.9903333333333333 running
.9906666666666667 running
.991 running avg logprobs
.9913333333333333 running
.9916666666666667 running
.992 running avg logprobs
.9923333333333333 running
.9926666666666667 running
.993 running avg logprobs
.9933333333333333 running
.9936666666666667 running
.994 running avg logprobs
.9943333333333333 running
.9946666666666667 running
.995 running avg logprobs
.9953333333333333 running
.9956666666666667 running
.996 running avg logprobs
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- 1YU08.422059255024
avg logprobs -1068.3662495807882
avg logprobs -1068.6801265062286
1069.3116851430218

avg logprobs -1069.994828485061

avg logprobs -1069.8750150969433
-1070.3821626660251

avg logprobs -1070.1616712763657
avg logprobs -1070.1171897253123
-1069.8549228822762

avg logprobs -1070.1956668534388
avg logprobs -1070.088952966992

-1069.876348020101

avg logprobs -1069.7057804202936
avg logprobs -1069.6241006777782
-1069.9550459285465

avg logprobs -1069.8123047827496
avg logprobs -1070.0416584564175
-1069.923133429742

avg logprobs -1069.7584335778188
avg logprobs -1070.0008496186256
-1069.8059744752754

avg logprobs -1069.628770334747

avg logprobs -1069.453749418545

-1069.570837669485

avg logprobs -1069.402906208953

avg logprobs -1069.6182495907176
-1070.4922112713912

avg logprobs -1070.607976015914

avg logprobs -1074.4468006899565
-1074.2623902009475

avg logprobs -1074.0831938113952
avg logprobs -1073.8482979800897
1073.696307886683

avg logprobs -1073.4525839590042
avg logprobs -1073.324343127259

-1073.5337005580682

avg logprobs -1073.544179302291

avg logprobs -1073.3940775941655
-1073.5936617398886

avg logprobs -1073.4594806432763
avg logprobs -1073.318911957182

-1073.0636374281155

avg logprobs -1072.8088089945118
avg logprobs -1072.6098841559703
-1072.9425897524973

avg logprobs -1073.472007249375

avg logprobs -1073.3573730914334
-1073.5447796930807

avg logprobs -1073.4817323888103
avg logprobs -1073.8283746158627
-1074.138545088336
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.9963333333333333 running
.9966666666666667 running
.997 running avg logprobs
.9973333333333333 running
.9976666666666667 running
.998 running avg logprobs
.9983333333333333 running
.9986666666666667 running
.999 running avg logprobs
.9993333333333333 running
.9996666666666667 running

log-likelihood -1072.575455134532
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avg logprobs -1074.2437376237583
avg logprobs -1074.1739200197476
-1074.1217170253085

avg logprobs -1073.8631953663871
avg logprobs -1073.7332319985883
-1073.4920253646653

avg logprobs -1073.530135631122
avg logprobs -1073.3533881816213
-1073.0970880457858

avg logprobs -1073.0767006003568
avg logprobs -1072.9330995010323
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