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ABSTRACT

Continual learning has been developed using standard supervised contrastive loss
from the perspective of feature learning. Due to the data imbalance during the
training, there are still challenges in learning better representations. In this work,
we suggest using a different similarity metric instead of cosine similarity in super-
vised contrastive loss in order to learn more robust representations. We validate
the our method on one of the image classification datasets Seq-CIFAR-10 and the
results outperform recent continual learning baselines.

1 INTRODUCTION

Continual learning is the research direction that mainly tackles the problem of catastrophic forgetting
while a model learns new data consistently. To mitigate the catastrophic forgetting phenomenon,
one strategy is to enhance the learned representation while training. An effective approach for
achieving this is to apply supervised contrastive learning (Cha et al., 2021; Mai et al., 2021a;b; Han
& Guo, 2021; Davari et al., 2022). Neglecting the consideration of the imbalance phenomenon
between current training samples and replayed samples can cause loss of intra-class information
while learning representations.This is because cosine similarity within the supervised contrastive
loss, can extract features with large within-class variance, resulting in degraded model performance.
To enhance the stability and reliability of feature extraction, we drew inspiration from (Kobayashi,
2021), we propose to use a similarity function based on the von Mises-Fisher distribution, further
extended with a student t-distribution(t-vMF) to replace cosine similarity. We adopt the method
on asymmetric supervised contrastive loss(Cha et al., 2021), and conduct experiments under offline
continual learning settings, and the results show effective improvement on prediction accuracy.

2 T-VMF SIMILARITY ADOPTED IN CONTINUAL REPRESENTATION
LEARNING

An overview of asymmetric supervised contrastive loss LASC(Cha et al., 2021). A base encoder
f(·) receives as input two augmented versions x̃i and x̃p from data sample x with it’s label y. To
using an inner product to measure distances, this representations are further mapped to a feature
space with projection model g(·). The final extracted features can be written as zi = g(f(x̃i)) and
zp = g(f(x̃p)). Differ from (Mai et al., 2021a), LASC selects anchor samples only from current
training data rather than consider all the samples in the training stage. Let S denotes all the indices
of the current learning samples in a single batch and P (i) denotes the indices of all positive samples
that are distinguished from i. LASC can be defined as follows:

LASC =
∑
i∈S

−1

|P (i)|
∑

p∈P (i)

log
exp(sim(zi · zp)/τ)∑

a∈A(i) exp(sim(zi · za)/τ)
), (1)

where sim(zi · zp), a cosine similarity function can be written as = ∥zi∥∥zp∥cosθ with an angle θ
between zi and zp. And τ is a temperature hyperparameter. P (i) denotes the indices of all positive
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Table 1: Classification accuracy for Seq-CIFAR-10. All results are averaged over ten independent
trials. Best performance are marked in bold.

Buffer Baselines Class Incremental Task Incremental

200

HAL (Chaudhry et al., 2020) 32.36± 2.70 82.51± 3.20
DER (Buzzega et al., 2020) 61.93± 1.79 91.40± 0.92
DER++ (Buzzega et al., 2020) 64.88± 1.17 91.92± 0.60
Co2L (Cha et al., 2021) 65.57± 1.37 93.43± 0.78
Ours 67.98 ± 1.29 95.10 ± 0.42

500

HAL(Chaudhry et al., 2020) 41.79± 4.46 84.54± 2.36
DER (Buzzega et al., 2020) 70.51± 1.67 93.40± 0.39
DER++ (Buzzega et al., 2020) 72.70± 1.17 93.88± 0.60
Co2L (Cha et al., 2021) 74.26 ± 0.77 95.90 ± 0.26
Ours 71.68± 0.41 95.51± 0.19

samples that are distinguish from i; it is equivalent to {p ∈ A(i) : ỹp = ỹi}. |P (i)| is the number of
elements in set P (i).
We propose to use the t-vMF Similarity(Kobayashi, 2021) to replace the cosine similarity in equa-
tion1. We first build a von Mises–Fisher distribution(mar; Banerjee et al., 2005) based similarity
p(z̃i; z̃p, κ) = Cκexp(κcosθ) between features z̃i and z̃p. It produces a probability density function
on p dimension with with parameter κ. The parameter κ controls concentration of the distribution,
and Cκ is a normalization constant. Apply a t-distributed profile function ft(d;κ) = 1

1+ 1
2κd

2 on
p(z̃i; z̃p, κ), the equation of t-vFM similarity function between two features z̃i and z̃p is formalized
as follows(More detail in Appendix A.1):

ϕt(cosθ;κ) ==
1 + cosθ

1 + κ(1− cosθ)
− 1 (2)

Adopt equation2 in the original LASC , the loss function of our proposed method is shown as follows:

LOurs =
∑
i∈S

−1

|P (i)|
∑

p∈P (i)

log
exp(ϕt(cosθ;κ)/τ)∑

a∈A(i) exp(ϕt(cosθ;κ)/τ)
). (3)

The larger value κ has, that smaller compact region between two representation is.

3 EXPERIMENT AND DISCUSSION

Following prior work (Cha et al., 2021), we demonstrate the our method by training ResNet-18 (He
et al., 2016) as a base encoder on Seq-CIFAR-10 dataset (Krizhevsky et al., 2009). We validate our
method on class incremental learning and task incremental learning scenarios with replay buffers of
size 200 and 500 (Buzzega et al., 2020).The value of κ in Equation 3 is set to 16.(More detail in
Appendix A.2). As shown in Table 1, our proposed method outperforms all the baselines with buffer
200, which indicates that the t-vMF similarity shows promise. In the case of buffer size 500, even
though the proposed method does not outperform all baselines, it approaches the best baselines.

4 CONCLUSION AND FUTURE WORK

In this work, we delve deeply into continual representation learning, using t-vMF similarity to en-
hance feature reliability and outperform most baselines in terms of prediction accuracy. Our future
aim is to further investigate alternative representation learning approaches and various metrics to
improve continual representation learning.
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A APPENDIX

A.1 MORE DETAIL EXPLANATION ON T-VFM SIMILARITY

T-vFM similarity has the foundation on a similarity function that based von Mises–Fisher distri-
bution(mar; Banerjee et al., 2005), a von Mises–Fisher distributed similarity which produces a
probability density function on p dimension with parameter κ between two features z̃i and z̃p in
d dimension can be formulated as:

p(z̃i; z̃p, κ) = Cκexp(κz̃
⊤
p z̃i) (4)

= Cκexp(κcosθ). (5)
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The parameter κ controls concentration of the distribution, and Cκ is a normalization constant. To
find out the part that mainly support the distribution p(z̃i; z̃p, κ), define a profile function fe with d
and κ, then the profile function fe(d;κ) is defined as

fe(d;κ) = exp(−1

2
κd2). (6)

Thus, Equation 5 can be reformulated by using a profile function(Equation 6) as follows

p(z̃i; z̃p, κ) = Cκexp(κ− 1

2
κ∥z̃i − z̃p∥2) (7)

= C
′

κfe(∥z̃i − z̃p∥;κ). (8)

Observing from Equation 8, the vMF similarity is primarily distinguished by fe(∥z̃i−z̃p∥;κ), which
means the vMF similarity can formally be re-defined as an alternative for cosθ as

ϕe(cosθ;κ) = 2
fe(|z̃i − z̃p∥;κ)− fe(2;κ)

fe(0;κ)− fe(2;κ)
− 1 (9)

= 2
exp(κcosθ)− exp(−κ)

exp(κ)− exp(−κ)
− 1 ∈ [1,−1]. (10)

Equation 10 demonstrates von Mises–Fisher distributed similarity between two features z̃i and z̃p
with an important parameter κ. According to its function that introduced above, changing different
value of κ can dynamically balance the trade-off between learning discriminative features for each
task and minimizing interference between new task samples and learned task samples.
A previous work Van der Maaten & Hinton (2008) suggested using a heavy tail distribution to better
capture distinguishing features. Modify the profile function(Equation 6) with a heavy-tailed student
T distribution, the new profile function can be updated as follows:

ft(d;κ) =
1

1 + 1
2κd

2
. (11)

Due to the property of t-distribution, it makes the similarity function less sensitive to small changes
in the learned representations. We reformulate vMF similarity with Equation 10, the formal defini-
tion of t-vFM similarity between features z̃i and z̃p is given as follows:

ϕt(cosθ;κ) = 2
ft(|z̃i − z̃p∥;κ)− ft(2;κ)

ft(0;κ)− ft(2;κ)
− 1, (12)

= 2

1
1+κ(1−cosθ)− 1

1+2κ

1− 1
1+2κ

− 1, (13)

=
1 + cosθ

1 + κ(1− cosθ)
− 1. (14)

As shown in Equation 14, t-vFM similarity can be simply calculated with cosθ and κ. Since cosθ ∈
[−1,+1], fe(∥z̃i−z̃p∥;κ) is resized to be adaptable with cosθ. Applying Equation 14 to asymmetric
contrastive loss, our proposed loss can be modified from Equation 1 as follows:

LOurs =
∑
i∈S

−1

|P (i)|
∑

p∈P (i)

log
exp(ϕt(cosθ;κ)/τ)∑

a∈A(i) exp(ϕt(cosθ;κ)/τ)
). (15)

A.2 EXPERIMENTAL DETAILS

Dataset and architecture In the training stage, we split the CIFAR-10 dataset into five distinct
sets of samples,with each set consisting of two different classes. For architecture, we use a non-
pretrained ResNet-18 as a base encoder for extracting features followed by a 2-layer projection
MLP to map these representations to a latent space of 128 dimensions (Khosla et al., 2020).

Hyperparameters We train the base encoder with a 512 batch size, and 0.5 as learning rate. The
temperature hyperparameter(τ ) for our loss is set to 0.5.
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Table 2: Classification accuracy for Seq-CIFAR-10. All results are averaged over ten independent
trials. Best performance are marked in bold. Our proposed method choose three values of κ: 4,16,32

Buffer Baselines Class Incremental Task Incremental

200

HAL (Chaudhry et al., 2020) 32.36± 2.70 82.51± 3.20
DER (Buzzega et al., 2020) 61.93± 1.79 91.40± 0.92
DER++ (Buzzega et al., 2020) 64.88± 1.17 91.92± 0.60
Co2L (Cha et al., 2021) 65.57± 1.37 93.43± 0.78
Ours(κ = 4) 67.94± 1.04 95.20 ± 0.22
Ours (κ = 16) 67.98± 1.29 95.10± 0.42
Ours (κ = 32) 67.99 ± 0.71 95.14± 0.38

500

HAL(Chaudhry et al., 2020) 41.79± 4.46 84.54± 2.36
DER (Buzzega et al., 2020) 70.51± 1.67 93.40± 0.39
DER++ (Buzzega et al., 2020) 72.70± 1.17 93.88± 0.60
Co2L (Cha et al., 2021) 74.26 ± 0.77 95.90 ± 0.26
Ours (κ = 4) 71.51± 0.84 95.37± 0.18
Ours (κ = 16) 71.68± 0.48 95.51± 0.19
Ours (κ = 32) 71.32± 0.70 95.43± 0.26

Evaluation We follow class balance strategyCha et al. (2021) and use an additional linear classifier
trained only on the final task samples and the buffer data with learned representations. All the results
are reported with 10 trials.

Additional experiment on different values of κ As shown in Table 2, we report results with
different κ values, and our algorithm surpasses all the baselines of recent works in the case of buffer
200 setting. In the comparison of 3 different values of κ, class incremental learning reaches the
best performance when κ = 32, and task incremental learning achieves the best performance when
κ = 4. Such results indicate that our method successfully learns and reduces the effect of data
imbalance. Moreover, there are no big difference among all the results with different values of κ,
which indicates a narrow region does not effect the performance in this case.

A.3 RELATED WORKS

Contrastive Continual Learning Looking at continual learning from the perspective of feature
learning, the former can be broken down into following two main questions: How can the learning
features be robust and more reliable? How can the learned features be maintained? There are many
recent works that focused on apply contrastive loss to leverage more generalized presentations.
Self-supervised contrastive loss(Chen et al., 2020) was adopted in these works (Gallardo et al.,
2021; Zhang et al., 2020), which increased models’ performance without using labels. Supervised
contrastive loss(Khosla et al., 2020) was used in many recent works(Mai et al., 2021a; Cha
et al., 2021; Han & Guo, 2021; Davari et al., 2022) to make samples that belong to the same
class get closer to each other. Supervised contrastive loss was used in continual learning in the
study presented by (Mai et al., 2021a), then feature propagation was introduced with supervised
contrastive loss to tackle multiple continual learning tasks(Han & Guo, 2021). In (Davari et al.,
2022), controlling feature forgetting was suggested using a linear classifier before and after a new
task started. Another recent work(Cha et al., 2021) improved supervised contrastive loss for better
feature learning, and it also introduced a relation distillation to maintain the learned representation.
There haven’t been many works that consider a better approach on calculating similarity under the
data imbalance environment. In our work, we investigate a different type of similarity function that
adopts in asymmetric supervised contrastive loss(Cha et al., 2021) to diminish intra-class variance.
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von Mises-Fisher Distribution In recent years, von Mises–Fisher Distribution(mar) is one of
the probability distributions on sphere that has been applied to many fields in deep learning. One
of the previous works(Gopal & Yang, 2014) presented a von Mises–Fisher distribution-based
clustering method, which is more effective on high-dimensional data. Different types of von
Mises–Fisher distribution based clustering approaches have been adopted for different tasks such
as semantic segmentation(Hwang et al., 2019) and graph neural network(Wang et al., 2023). Using
von Mises–Fisher distribution on metric learning or loss functions (Hasnat et al., 2017; Zhe et al.,
2019; Kobayashi, 2021) showed significant improvement in performance as well.
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