
Under review as a conference paper at ICLR 2024

LAMPP: LANGUAGE MODELS AS PROBABILISTIC PRI-
ORS FOR PERCEPTION AND ACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models trained on large text corpora encode rich distributional informa-
tion about real-world environments and action sequences. This information plays a
crucial role in current approaches to language processing tasks like question an-
swering and instruction generation. We describe how to leverage language models
for non-linguistic perception and control tasks. Our approach casts labeling and
decision-making as inference in probabilistic graphical models in which language
models parameterize prior distributions over labels, decisions and parameters,
making it possible to integrate uncertain observations and incomplete background
knowledge in a principled and query-efficient way. Applied to semantic segmenta-
tion, household navigation, and activity recognition tasks, this approach improves
predictions on rare, out-of-distribution, and structurally novel inputs.1

1 INTRODUCTION

Common-sense priors are crucial for decision-making under uncertainty in real-world environments.
Suppose that we wish to label the objects in the scene depicted in Fig. 1(b). Once a few prominent
objects (like the bathtub) have been identified, it is clear that the picture depicts a bathroom. This
helps resolve some more challenging object labels: the curtain in the scene is a shower curtain, not a
window curtain; the object on the wall is more likely a mirror than a painting. Prior knowledge about
likely object or event co-occurrences are essential not just in vision tasks, but also for navigating
unfamiliar places and understanding other agents’ behaviors. Indeed, such expectations play a key
role in human reasoning for tasks like object classification and written text interpretation (Kveraga
et al., 2007; Mirault et al., 2018).

In most problem domains, current machine learning models acquire information about the prior
distribution of labels and decisions from task-specific datasets. Especially when training data is
sparse or biased, this can result in systematic errors, particularly on unusual or out-of-distribution
inputs. How might we endow models with more general and flexible prior knowledge?

We propose to use language models (LMs)—learned distributions over natural language strings—as
task-general probabilistic priors. Unlike segmented images or robot demonstrations, large text corpora
are readily available and describe diverse facets of human experience. LMs trained on them encode
much of this information—like the fact that plates are located in kitchens, and that whisking eggs is
preceded by breaking them—with greater diversity and fidelity than provided by most task-specific
datasets. Such linguistic supervision has also been hypothesized to play a role in aspects of human
common-sense knowledge that are difficult to learn from direct experience (Painter, 2005).

In text generation tasks, LMs are used as knowledge sources in tasks spanning common-sense
question answering (Talmor et al., 2021), storytelling (Ammanabrolu et al., 2020; 2021), and program
synthesis (Lew et al., 2020). They have also been applied to grounded language understanding
problems via “model chaining” approaches, which encode the output of perceptual systems as natural
language strings that can be input to LMs (Zeng et al., 2023; Singh et al., 2022). In general, such
approaches are effective but computationally costly to run—LMs must be queried for every possible
labeling decision, limiting their applicability to problems with simple action or label spaces.

1Our code will be made publicly available upon acceptance.

1

Under review as a conference paper at ICLR 2024

Image
Segmentation

bathroom

Y

X

LM prior
p(Y, Y′)

Observation
generator
p(X ∣ Y)

Latent
labels

Target labels

Observations

Y′

make
pancakes

bathtub shower
curtain

crack
egg whisk

Action
Recognition

a bathtub in
a bathroomp() ×
a shower curtain
in a bathroomp()

to make
pancakes,
crack egg
then whisk

p()

(a) (b) (d)

find TV

TV living
room

Object
Navigation

a TV in a
living room

(c)

p()

Figure 1: In LAMPP, the LM provides a prior over a
structured label space P (Y, Y ′) and a task-specific ob-
servation model provides P (X | Y). We apply LAMPP
to concrete tasks, including image segmentation and
video action recognition. In image segmentation, the
LM provides a prior over what objects are likely to co-
occur (based on room-object probabilities), which allows
it to determine that the observed curtain is a shower cur-
tain. In action recognition, the LM provides a prior over
what action sequences are likely to accomplish the target
tasks, allowing it to infer the action sequence in a video.

In this paper, we focus on LMs as a source of
probabilistic background knowledge that can be
integrated with existing domain models and in-
ference procedures. By using LMs to place prior
distributions over labels, decisions or model
parameters, we can combine “top-down” back-
ground knowledge with “bottom-up” task mod-
els, resulting in a principled framework for in-
tegrating linguistic supervision with structured
uncertainty about non-linguistic variables.

We call this approach LAMPP (Language
Models as Probabilistic Priors). LAMPP is
a generic modeling framework that operates
on top of and improves base models for exist-
ing tasks. Similar in spirit to chain-of-thought
prompting (Wei et al., 2022) and Socratic model
approaches (Zeng et al., 2023), LAMPP is not
a (single) model that can be applied in the same
way across domains, but rather a “modeling phi-
losophy” based on querying LMs for the pa-
rameters of task-specific priors rather than for
predictions directly. Our experiments show that
this approach can match or outperform existing “prediction-first” approaches for integrating LMs and
domain models, while requiring orders of magnitude fewer LM queries.

We present three case studies featuring tasks with diverse objectives and input modalities—semantic
image segmentation, robot navigation, and video action recognition. Across problem domains,
LAMPP consistently improves performance on rare, out-of-distribution, and structurally novel inputs,
and sometimes in-distribution accuracy. We also show that LAMPP offers complementary benefits
to multimodal pre-training schemes (like CLIP (Radford et al., 2021)) that learn from paired text
and task data. Our results show that language is a useful source of background knowledge for
general decision-making, and that uncertain background knowledge can be integrated with uncertain
observations to yield accurate predictions. Moreover, LaMPP interacts with LMs once per domain
rather than once per input, it can be applied to large test sets and label spaces with no query overhead.

2 METHOD

A language model (LM) is a distribution over natural language strings. LMs trained on sufficiently
large text datasets become good models not just of grammatical phenomena, but various kinds of
world knowledge (Talmor et al., 2021; Li et al., 2021). Our work proposes to extract probabilistic
common-sense priors from language models, which can then be used to supplement and inform
arbitrary task-specific models operating over multiple modalities. These priors can be leveraged at
multiple stages in the machine learning pipeline:

Prediction: In many learning problems, our ultimate goal is to model a distribution p(y | x) over
labels or decisions y given (non-linguistic) observations x. These ys might be structured objects: in
Fig. 1(b), x is an image and y is a set of labels for objects in the image. By Bayes’ rule, we can write
p(y | x) ∝ p(y)p(x | y), which factors this decision-making problem into two parts: a prior over
labels p(y), and a generative model of observations p(x | y). With such a generative model, we may
immediately combine it with a representation of the prior p(y) to model the distribution over labels.

Learning: In models with interpretable parameters, we may also leverage knowledge about the
distribution of these parameters themselves during learning, before we make any predictions at all.
Given a dataset D of examples (xi, yi) and a predictive model p(y | x; θ), we may write:

p(θ | D) ∝ p(D | θ)p(θ) =
(∏

i

p(yi | xi; θ)
)
p(θ) ,

2

Under review as a conference paper at ICLR 2024

in this case making it possible to leverage prior knowledge of θ itself, e.g., when optimizing model
parameters or performing full Bayesian inference.

In structured output spaces like segmented images or robot trajectories, a useful prior contains
information about which joint configurations are plausible (e.g., an image might contain sofas and
chairs, or showers and sinks, but not sinks and sofas). How can we use an LM to obtain and use
distributions p(y) or p(θ)? Applying LAMPP in a given problem domain involves four steps:

1. Choosing a base model: We use any model of observations p(x | y) or labels p(y | x; θ).
2. Designing a label space: When reasoning about a joint distribution over labels or parameters,

correlations between these variables might be expressed most compactly in terms of some
other latent variable (in Fig. 1(b), object labels are coupled by a latent room). Before
querying an LM to obtain p(y) or p(θ), we may introduce additional variables like this one
to better model probabilistic relationships among labels.

3. Querying the LM: We then obtain scores for each configuration of y or θ by prompting
a language model with a query about the plausibility of the configuration, then evaluating
the probability that the LM assigns to the query. Examples are shown in Fig. 1(b–c). For
all experiments in this paper, we use the GPT-3 (specifically, the text-davinci-003
model) to score queries (Brown et al., 2020).

4. Inference: Finally, we perform inference in the graphical model defined by p(y) and p(x | y)
(or p(θ) p(y | x, θ)) to find the highest-scoring configuration of y for a given x.

In Sections 3–5, we apply this framework to three learning problems. In each section, we eval-
uate LAMPP’s ability to improve generalization over base models. We focus on three types of
generalization: zero-shot (ZS), out-of-distribution (OOD), and in-distribution (ID). The type of
generalization required depends on the availability and distribution of training data: ZS evaluations
focus on the case in which p(x | y) is known (possibly just for components of y, e.g., appearances of
individual objects), but no information about the joint distribution p(y) (e.g., configurations of rooms)
is available at training time. OOD evaluations focus on biased training sets (in which particular label
combinations are over- or under-represented). ID evaluations focus on cases where the full evaluation
distribution is known and available at training time.

r

y1

d1

y2

d2

room

true
label

noisy
label

x1
x2

image
segments

bedroom

bed

bed nightstand

table

a nightstand looks
like a tablep()

a nightstand in
a bedroomp()

Figure 2: Generative model for image
semantic segmentation. Images orig-
inate in a room r, which generates the
objects y1, y2 in the room, which gen-
erate noisy labels d1, d2 representing
perceptually similar objects. Finally,
each di generates an image segment xi,
a continuous region of image pixels de-
picting each object. Rooms r, true la-
bels yi, and noisy labels di are latent,
while image segments xi are observed.

Finally, we note that LAMPP is much cheaper than approaches
in which the LM is responsible for directly generating final pre-
dictions. In LAMPP, there is a fixed overhead cost to construct
the graphical model for each domain, after which inference
does not require interacting with an LM at all; model probabil-
ities can be re-composed and reused indefinitely for each new
inference.

3 LAMPP FOR SEMANTIC SEGMENTATION

We first study the task of semantic image segmentation: iden-
tifying object boundaries in an image and labeling each object
xi with its class yi. How might background knowledge from
an LM help with this task? Intuitively, it may be hard for a
bottom-up visual classifier to integrate global image context
and model correlations among distant objects’ labels. LMs
encode common-sense information about the global structure
of scenes, which can be combined with easy-to-predict object
labels to help with more challenging predictions.

3.1 METHODS

Base model Standard models for semantic segmentation dis-
criminatively assign a label yi to each pixel xi in an input image
x according to some pseg(yi | x). We use RedNet (Jiang et al., 2018), a ResNet-50-based autoencoder
model, or CLIPSeg (Lüddecke & Ecker, 2022), a zero-shot segmentation model built off CLIP,

3

Under review as a conference paper at ICLR 2024

Base Model Total # Tokens Best / Worst /
+ Method ($ Cost) Avg. ∆IoU ∆ IoU over object classes

RedNet (ID) 9.5e+5 tokens +18.9 / −2.16 /
+ LAMPP ($1.86*) +0.5

RedNet (ID) 1.6e+8 tokens +16.9 / −37.2 /
+ SM ($3112*) −10.3

RedNet (OOD) 9.5e+5 tokens +8.92 / −2.50 /
+ LAMPP ($1.86*) +0.2

CLIPSeg (ZS) 9.5e+5 tokens +13.3 / −5.0 /
+ LAMPP ($1.86*) +0.4

Table 1: Image semantic segmentation results for ID and OOD generalization. We report the total cost (in terms
of # tokens, and the rough dollar amount) for running the entire experiment. LAMPP is much cheaper than SM.
We also report the improvement to Intersection-over-Union (IoU) when applying either LAMPP or a Socratic
model approach to each base model. We compute separate ∆IoU for each object class and report the largest,
smallest, and average ∆IoU over classes in the third column, visualizing the full distribution of ∆IoU over object
classes in the rightmost column. LAMPP improves semantic segmentation dramatically on certain categories,
while having minimal effect on all other categories. *Costs computed relative to Sept. 28, 2023 pricing.

to compute pseg. By computing argmaxy p(y | x) for each pixel in an input image, we obtain a
collection of segments: contiguous input regions assigned the same label (see Fig. 2 bottom). When
applying LAMPP, we treat these segments as given, but infer a new joint labeling.

Label Space We hypothesize a generative process (Fig. 2) in which every image originates in a
room r. Conditioned on the room, a fixed number of objects are generated, each with label yi. To
model possible perceptual ambiguity, each true object labels in turn generates a noisy object label di.
Finally, each of these generates an image segment xi.

We use the base segmentation model pseg to compute p(xi | di) by applying Bayes’ rule locally for
each segment: p(xi | di) ∝ pseg(di | xi)/p(di). All other distributions are parameterized by a LM.
Ultimately, we wish to recover object labels yi; latent labels r and d help extract usable background
information about objects’ co-occurrence patterns and perceptual properties.

LM Queries We compute the object–room co-occurrence probabilities p(yi | r) by prompting the
LM with: “A(n) [r] has a(n) [yi]: [plausible / implausible] ”. We compute the relative probability
assigned to the tokens plausible and implausible, then normalize over all object labels y to parameter-
ize the final distribution. We use the same procedure to parameterize the object–object confusion
model p(di | yi), using the prompt: “The [di] looks like the [yi]: [plausible / implausible] ”.

Inference The model in Fig. 2 defines a joint distribution over all labels y = y1, . . . , yn. To re-label
a segmented image, we compute the max-marginal-probability label for each segment independently:

argmax p(yi | x) = argmax
∑
r

∑
y\{yi}

∑
d

p(x, d, y, r) (1)

The form of the decision rule used for semantic segmentation (which includes several simplifications
for computational efficiency) can be found in Appendix A.1.

3.2 EXPERIMENTS

We use the SUN RGB-D dataset (Song et al., 2015), which contains RGB-D images of indoor
environments. We also implement a Socratic model (SM) baseline that integrates LM knowledge
without considering model uncertainties. We take noisy labels from the image model (di) and directly

4

Under review as a conference paper at ICLR 2024

query the LM for true labels (yi). Details of this baseline can be found in Appendix A.2. We evaluate
the RedNet and CLIPSeg base models, this Socratic model approach, and LAMPP on in-distribution,
out-of-distribution, and zero-shot generalization.

ID Generalization We use a RedNet checkpoint trained on the entire SUNRGB-D training split. As
these splits were not created with any special biases in mind, the training split should reflect a similar
label distribution to the test split.

OOD Generalization We train RedNet on a distribution p(yi, yj) that differs from the true distri-
bution. We do this by picking two object labels that commonly occur together (i.e. picking yi and
yj such that p(yi, yj) is high), and removing all images from the training set where they do occur
together (thus making p(yi, yj) close to zero in the training set). In this case, we choose beds and
nightstands and remove images where they co-occur from the training set. We evaluate on the original
test split where beds and nightstands frequently co-occur.

ZS Generalization We use CLIPSeg applied to the SUNRGB-D domain without fine-tuning. We
use CLIPSeg instead of RedNet here because CLIPSeg is pre-trained and designed to be applied
zero-shot, whereas RedNet is not pre-trained.

3.3 RESULTS

We measure change in intersection-over-union (∆IoU) between predicted and ground-truth object
segmentations afforded to each object class after applying LAMPP and SM to each base model.
Results can be found in Table 1 and Appendix A.3.

We see that in all cases, LAMPP improves the accuracy of the base classifier. To get a better
understanding of the distribution of improvements over object categories, we report per-category
differences in IoU of our model relative to the baseline image model (columns 2 and 4). As expected
LAMPP offers very large accuracy improvements on a small number of rare classes, while preserving
model behavior on all other classes. The third column shows that LAMPP is much cheaper than SM.
Note that we do not run SM in the OOD or ZS cases due to its prohibitive cost.

In the ID setting, the accuracy of detecting shower curtains (see Appendix A.3) improves by nearly
20 points with LAMPP, as the base model obtains near-0% mIoU on shower curtains, almost always
mistaking them for (window) curtains. Here, background knowledge from language fixes a major
(and previously undescribed) prediction error for a rare class. The Socratic model approach repairs
prediction errors on the same rare class as LAMPP in the ID setting, but introduces many other errors.

In the OOD setting, the base image model sees far fewer examples of nightstands and consequently
never predicts nightstands on the test data. (Nightstands are frequently predicted to be tables and
cabinets instead). This is likewise rectified with LAMPP: background knowledge from language
reduces model sensitivity to a systematic bias in dataset construction.

Finally, in the ZS setting, we see that LAMPP is able to offer additional improvements even on top
of a model trained in a multi-modal fashion. This shows that even large, pre-trained multi-modal
models are subject to biases that can be fixed with (other) LMs.

4 LAMPP FOR NAVIGATION

We next turn to the problem of object navigation. Here, we wish to build an agent that, given a goal
object g (e.g., a television or a bed), can take actions a to explore and find g in an environment, while
using noisy partial observations x from a camera for object recognition and decision-making. Prior
knowledge about where goal objects are likely located can guide this exploration, steering agents
away from regions of the environment unlikely to accomplish the agent’s goals.

4.1 METHODS

Base model We assume access to a pre-trained navigation policy (in this case, from the STUBBORN
agent; Luo et al., 2022) that can plan a path to any specified coordinate a in the environment given
image observations x. Our goal is to build a high-level policy π(a | x) that can direct this low-level
navigation. We focus on household environments, and assume access to a coarse semantic map of

5

Under review as a conference paper at ICLR 2024

an environment that identifies rooms, but not locations of objects within them. In each state, the
STUBBORN low-level navigation policy also outputs a scalar score reflecting its confidence that the
goal object is present.

y

r agent
location

true goal object
present?

living
room

gTV goal
object

agent
observation

a TV in a living roomp()

x

Figure 3: Generative model for object
navigation. Given goal object g, we
depict a decomposition of the agent’s
success score y, which takes on value 1
(true) if g is present and 0 (false) other-
wise. We focus on a household domain
in which agents navigate to rooms r. r
generates the success condition y (indi-
cating whether g is present at the agent
location), which generates the agent ob-
servation x of the location. Goal ob-
jects g and rooms r are given, success
conditions y are latent, and agent obser-
vations x are partially observed.

Label space Our high-level policy alternates between per-
forming two kinds of actions a: Navigation, where the agent
chooses a room r in the environment to move to (when a room
is selected, we direct the low-level navigation policy to move
to a point in the center of the room, and then explore randomly
within the room for a fixed number of time steps), and Selec-
tion, whenever an observation is received during navigation,
the agent evaluates whether it the goal object is present (if so,
the episode ends).

A rollout of this policy thus consists of a sequence of navigation
actions, interleaved with a selection action for every observation
obtained while navigating. In both cases, choosing actions
effectively requires inference of a specific unobserved property
of environment state: whether the goal object is in fact present
near the agent. We represent this property with a latent variable
y. When navigating, the agent must infer the room that is most
likely to contain the goal object. When selecting, the agent
must infer whether its current perception is reliable.

We normalize the low-level policy’s success score and interpret
it as a distribution p(x | y), then use the LM to define a distri-
bution p(y | r, g). Together, these give a distribution over latent
success conditions and observations given goals and locations,
which are used to select high-level actions.

LM queries For p(y | r, g), we use the same query as in Section 3 for deriving object–room
probabilities, inserting g in place of yi, except here we do not normalize over object labels (since y is
binary), and simply take the relative probability of generating the token plausible.

Inference With this model, we define a policy that performs inference about the location of the
goal object, then greedily attempts to navigate to the location most likely to contain it. This requires
defining p(a | x, g) for both navigation and selection steps. In Navigation, the agent chooses a room
r maximizing p(y | r, g). (The agent does not yet have an observation from the new room, so the
optimal policy moves to the room most likely to contain the goal object a priori.) In Selection, the
agent ends the episode only if p(y | x, r, g) > τ for some confidence threshold τ . We use τ = 0.2 in
our experiments, tuned on a subset of the training data.

During exploration, the agent maintains a list of previously visited rooms. Navigation steps choose
only among rooms that have not yet been visited.

4.2 EXPERIMENTS

We consider a modified version of the Habitat Challenge ObjectNav task (Yadav et al., 2022). The
task objective is to find and move to an instance of the object in unfamiliar household environments
as quickly as possible. The agent receives first-person RGBD images, compass readings, and 2D
GPS values as inputs at each timestep. In our version of the task, we assume access to a high-level
map of the environment which specifies the coordinates and label of each room. Individual objects
are not labeled; the agent must rely on top-down knowledge of where certain objects are likely to be
in order to efficiently find the target object.

We implement a SM baseline where the LM guides agent exploration by specifying an ordering
of rooms to visit. Details can be found in Appendix B.1. This is similar to prior work that use
LMs to specify high-level policies (Zeng et al., 2023; Sharma et al., 2022), whereby neither LM nor
observation model uncertainties are accounted for when generating the high-level policy.

We modify the base STUBBORN agent to condition on the high-level map. The base model visits
rooms in a random order (effectively beginning with a uniform belief over object locations given

6

Under review as a conference paper at ICLR 2024

rooms). Results in Appendix B.4 show that an agent equipped with this high-level policy performs
comparably to the original STUBBORN agent. We evaluate how much Socratic modeling or LAMPP
improves the ability of this Uniform Prior agent to perform zero-shot generalization, where the
training data does not contain any information about p(y | r, g).2

4.3 EVALUATION & RESULTS Base Model Total # Tokens
+ Method ($ Cost) goal obj classes

Unif Prior 1.2e+4 tokens
vs. LAMPP ($0.03*)

Unif Prior 2.7e+5 tokens
vs. SM ($0.54*)

Table 2: Navigation Results for ZS generalization. We report
improvements to success rates (SR) when applying either
LAMPP or SM to a base uniform priors model. We compute
separate ∆SR for each goal object class and report the largest,
smallest, and average ∆SR over goal objects in the second
column. We visualize the full distribution of ∆SR over goal
objects in the rightmost column. By using LAMPP, we are
able to achieve significant improvement over almost all object
classes. *Costs computed relative to Sept. 28, 2023 pricing.

We evaluate success rate (SR), the percent
of instances in which the agent success-
fully navigated to the goal object.3 Because
the STUBBORN agent is designed to han-
dle only single floors we evaluate only in-
stances in which the goal object is located
on the same floor as the agent’s starting
location.

Results are reported in Table 2 and Ap-
pendix B.3. We report ∆SR on each goal
object from applying either LAMPP or SM
to the base model. Using LAMPP, we find
greatest improvements in goal object cate-
gories that have strong tendencies to occur
only in specific rooms, such as TV monitors (+33.3), and smallest for objects that occur in many
different rooms, like plants (+0.0) (Appendix B.3). Compared to SM, LAMPP improves SR by a
wide margin (see Appendix B.5 for analysis). LAMPP is also substantially more query-efficient: SM
requires one query per navigation action, while LAMPP performs a fixed number of initial queries,
which are reused across all actions and episodes.

5 LAMPP FOR ACTION RECOGNITION AND SEGMENTATION

The final task we study focuses on video understanding: specifically, taking demonstrative videos
of a task (e.g., making an omelet) and segmenting them into actions (e.g., cracking or whisking
eggs). Because it is hard to procure segmented and annotated videos, datasets for this task are
usually small, and it may be difficult for models trained on task data alone to learn robust models
of task-action relationships and action orderings. Large LMs’ training data contains much more
high-level information about tasks and steps that can be taken to complete them.

5.1 METHODS

Base model Given a video of task t, we wish to label each video frame xi with an action yi (chosen
from a fixed inventory of plausible actions for the task) according to argmaxy1···yn

p(y1 · · · yn |
x1 · · ·xn, t). We build on a model from Fried et al. (2020) that frames this as inference in a task-
specific hidden Markov model (HMM) in which a latent sequence of actions generates a sequence of
video frames according to:

p(x1···n | y1···n) ∝
∏
j

p(xj | yj ; η) p(yj | yj−1; θ) (2)

(omitting the dependence on the task t for clarity). This generative model decomposes into an
emission model with parameters η and a transition model with parameters θt, and allows efficient
inference of p(y | x).4 p(yj | yj−1; θ) is a multinomial distribution parameterized by a transition
matrix encoding probability each action yj−1 is followed by action yj .

2At the time these experiments were conducted, room labels were not yet present in the dataset, so we could
only study the zero-shot setting. To evaluate LAMPP, the first two authors of the paper manually annotated
room labels in the evaluation set.

3We report Success weighted by Path Length (SPL) in Appendix B.3.
4The model in Fried et al. (2020) is a hidden semi-Markov model (HSMM) in which latent action states

generate multiple lower-level actions in sequence. We omit the HSMM emission model for clarity of presentation.

7

Under review as a conference paper at ICLR 2024

x1

make
pancakes task

θ

action

t

y1 y2

x2 video
frame

transition
probabilities

crack
egg

α Dirichlet
prior

crack egg whisk α(→)
= p(to make pancakes,

crack egg then whisk)

Figure 4: Generative model for action
segmentation. The base model is a
HMM with transition probabilities pa-
rameterized by θ. We generate a prior
over model parameters θ: Each task t
generates a Dirichlet prior α over ac-
tion transitions, which in turn generates
θ. θ parameterizes the action transi-
tion distribution y1 → y2. Each ac-
tion yi at timestep i then generates the
observed video frame xi. Tasks t and
video frames xi are observed, actions
yi are partially-observed, and parame-
ter priors α and parameters θ are latent.

Here we apply LAMPP to the problem of learning model pa-
rameters themselves. We use a LM to place a prior on transition
parameters θ, thus incorporating prior knowledge from LMs
while learning action transition distributions from data. Given
a dataset of labeled videos of the form (x1...n, y1...n), we com-
pute a maximum a posteriori estimate of θ:

argmax
θ

log p(θ) +
∑
x,y

∑
j

log p(yj | yj−1; θ) , (3)

(likewise for η).

Label space We parameterize the prior p(θ) as a Dirich-
let distribution with hyperparameters α, according to which
p(θ) ∝

∏
i θ

αi−1
i . Intuitively, the larger αi is, the more prob-

able the corresponding θi is judged to be a priori. Here, param-
eters θy→y′ are probabilities of transitioning from action y to
y′; we would like αy→y′ to be large for plausible transitions.

Prompting the LM To derive values of α for each action
transition y → y′, we query the LM with the prompt: “Your
task is to [t]. Here is an *unordered* set of possible actions:
{[Y]}. Please order these actions for your task. The step after
[y] can be [y′] ”, where Y is a set of all available actions for
the task. We condition the LM on the non-highlighted portion
of the prompt and set αy→y′ = λ · pLM(y′ | prompt(y)), where
λ controls the strength of the prior.

Inference The use of a Dirichlet prior means that Eq. (3) has a convenient closed-form solution:

θy→y′ =
αy→y′ +#(y → y′)− 1

(
∑

y′′ αy→y′′) + #(y)− |Y | , (4)

where #(y → y′) denote number of occurrences of the transition y → y′ in the training data, #(y)
denotes number of occurrences of y in the training data, and |Y | is total number of actions.

5.2 EXPERIMENTS

We use the CrossTask dataset (Zhukov et al., 2019), which features instructional videos depicting
tasks (e.g., make pancakes). The learning problem is to segment videos into regions and annotate
each region with the corresponding action being depicted (e.g., add egg). We evaluate the ability of
the LAMPP to improve the zero-shot and out-of-distribution generalization abilities of the base
model. For all experiments with LAMPP, we use λ = 10. We do not study an SM baseline for this
task, as they are unable to generate parameters rather than labels.5

ZS Generalization We assume that the training data contains no information about the transition
distribution p(yi | yi−1, t). However, we still assume access to all video scenes and their action
labels, which allows us to learn emission distributions p(xi | yi). We do this by assuming access to
only an unordered set of video frames from each task, where each frame is annotated with its action
label, but with no sense of which frame preceded or followed it.

Because we have no access to empirical counts of transitions from the training data, the model falls
back completely on its priors when computing those parameters θy→y′ =

αy→y′−1

(
∑

y′′ αy→y′′)−|Y | which is
uniform for the base model and derived from the LM for LAMPP.

OOD Generalization We bias the transition distribution by randomly sampling a common transition
from each task and holding out all videos from the training set that contain that transition.

5We also find that LAMPP did not improve the base model in-domain. We believe this is because the
base model is simple enough that simply counting transitions and observation co-occurrence is sufficient for
estimating parameters, and the action space is small enough that the dataset sufficiently covers the actions and
transitions for each task.

8

Under review as a conference paper at ICLR 2024

5.3 EVALUATION & RESULTS
Base Model # Tokens ∆ Recall
+ Method ($ Cost) (class avg. / freq avg.)

HMM (ZS) 5.4e+5 +1.3 / +1.9
+ LAMPP ($1.09*)

HMM (OOD) 5.4e+5 +0.5 / +0.3
+ LAMPP ($1.09*)

Table 3: Video segmentation results for ZS and OOD
generalization. We report the average improvement in
step recall for LAMPP applied to the base HMM model
from Fried et al. (2020). We report both a class-averaged
step recall (over actions) and a frequency-averaged step
recall (over videos). We also report the distribution of
∆ recall over tasks in the rightmost column. Note in the
ZS case, LAMPP provides significant improvement in
certain task classes. *Costs relative to Sept. 28, 2023 pricing.

Following Fried et al. (2020), we evaluate step
recall, i.e. the percentage of actions in the
real action sequence that are also in the model-
predicted action sequence. For simplicity, we ig-
nore background actions during evaluation. Re-
sults are shown in Table 3 and Appendix C.2.
For both the ZS and OOD settings, step recall
slightly improves with LAMPP. The small mag-
nitude of improvement may be because the LM
sometimes does not possess a sensible prior over
action sequences: for example, it is biased to-
wards returning actions in the order they are
named in the prompt.

6 RELATED WORK

String Space Model Chaining There has been much recent work in combining and composing
the functionality of various models entirely in string space. The Socratic models framework (Zeng
et al., 2023) proposes chaining together models operating over different modalities by converting
outputs from each into natural language strings. Inter-model interactions are performed purely in
natural language. While such methods have yielded strong results in tasks like egocentric perception
and robot manipulation (Ahn et al., 2022), they are fundamentally limited by the expressivity of
the string-valued interface. Models often output useful features that cannot be easily expressed in
language, such as graded or probabilistic uncertainty (e.g., in a traditional image classifier). Even if
such information is written in string form, there is no guarantee that language models will correctly
use it for formal symbolic reasoning—today’s LLMs still struggle with arithmetic tasks expressed as
string-valued prompts. (Ye & Durrett, 2022). Thus, string-space approaches are limited when outputs
from task-specific models involve gradation or uncertainty that is not easily expressed in language.

Concurrent to the present work is LMPriors (Choi et al., 2022), which similarly seeks to use
language model scores as a source of common-sense information in other decision-making tasks.
There, LMs are applied to feature selection, reward shaping, and casual inference tasks, rather than
explicit probabilistic models. However, the approach involves sampling greedily from the prior
distribution of the language model over variable names, discarding any/all graded information about
the relationship between variables. We therefore explore how language model outputs can be worked
with probabilistically instead.

LMs and Probabilistic Graphical Models Many prompting methods for language processing tasks,
like chain-of-thought prompting (Wei et al., 2022) and bootstrapped rationale-generation (Zelikman
et al., 2022) may be interpreted as probabilistic programs built from LM queries (Dohan et al., 2022).
However, this analysis exclusively considers language tasks; to the best of our knowledge, the present
work is the first to specifically connect language model evaluations to probabilistic graphical models
in non-language domains.

7 CONCLUSION

We present LAMPP, a generic technique for integrating background knowledge from language
into decision-making problems by extracting probabilistic priors from language models. LAMPP
improves zero-shot, out-of-distribution, and in-distribution generalization across image segmentation,
household navigation, and video-action recognition tasks. It enables principled composition of
uncertain perception and noisy common-sense and domain priors, and shows that language models’
comparatively unstructured knowledge can be integrated naturally into structured probabilistic
approaches for learning or inference. The effectiveness of LAMPP depends crucially on the quality
of the LMs used to generate priors. While remarkably effective, today’s LMs still struggle to produce
calibrated plausibility judgments for some rare tasks. As the quality of LMs for core NLP tasks
improves, we expect that their usefulness for LAMPP will improve as well.

9

Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

Large language models are known to learn false or misleading information and socially-biased
distributions from their pre-training data. Blind application of these priors to various domains can
thus result in potentially erroneous or biased predictions. As seen above, improvements at assigning
specific labels tasks are tied to the accuracy of the priors over those labels. An important benefit of
LAMPP is that these priors have simple, explicit representations (as conditional probability tables
rather than large neural models). However, even these will inherit biases and errors from the LMs
that generate them, and human review is essential before deploying LAMPP in real-world scenarios.

REPRODUCIBILITY

We will make the code publicly available upon acceptance. All prompts we used for query-
ing GPT* models are available in the Appendix. In our experiments, we queried the GPT3
text-davinci-002 model for token probabilities over output tokens. Further details on hyper-
parameter settings and computational requirements can be found in Appendices D and E.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey,
Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

Prithviraj Ammanabrolu, Wesley Cheung, William Broniec, and Mark O. Riedl. Automated sto-
rytelling via causal, commonsense plot ordering. In AAAI Conference on Artificial Intelligence,
2020.

Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li, Arthur Szlam, Tim Rocktäschel, and Jason
Weston. How to motivate your dragon: Teaching goal-driven agents to speak and act in fantasy
worlds. In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 807–833, Online, June 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.64. URL https:
//aclanthology.org/2021.naacl-main.64.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Kristy Choi, Chris Cundy, Sanjari Srivastava, and Stefano Ermon. LMPriors: Pre-trained language
models as task-specific priors. In NeurIPS 2022 Foundation Models for Decision Making Workshop,
2022. URL https://openreview.net/forum?id=U2MnmJ7Sa4.

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A. Saurous, Jascha Sohl-dickstein, Kevin Murphy, and
Charles Sutton. Language model cascades. In International Conference on Machine Learning,
2022.

Daniel Fried, Jean-Baptiste Alayrac, Phil Blunsom, Chris Dyer, Stephen Clark, and Aida Nematzadeh.
Learning to segment actions from observation and narration. In Proceedings of the 58th Annual

10

https://aclanthology.org/2021.naacl-main.64
https://aclanthology.org/2021.naacl-main.64
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=U2MnmJ7Sa4

Under review as a conference paper at ICLR 2024

Meeting of the Association for Computational Linguistics, pp. 2569–2588, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.231. URL https:
//aclanthology.org/2020.acl-main.231.

Jindong Jiang, Lunan Zheng, Fei Luo, and Zhijun Zhang. Rednet: Residual encoder-decoder
network for indoor rgb-d semantic segmentation, 2018. URL https://arxiv.org/abs/
1806.01054.

Kestutis Kveraga, Avniel Ghuman, and Moshe Bar. Top-down predictions in the cognitive brain.
Brain and Cognition, 65(2):145–168, 2007.

Alexander K. Lew, Michael Henry Tessler, Vikash K. Mansinghka, and Joshua B. Tenenbaum.
Leveraging unstructured statistical knowledge in a probabilistic language of thought. Proceedings
of the Annual Conference of the Cognitive Science Society, 2020.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Implicit representations of meaning in neural
language models. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 1813–1827, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.143. URL https://aclanthology.org/
2021.acl-long.143.

Timo Lüddecke and Alexander Ecker. Image segmentation using text and image prompts. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7086–7096, June 2022.

Haokuan Luo, Albert Yue, Zhang-Wei Hong, and Pulkit Agrawal. Stubborn: A strong baseline for
indoor object navigation, 2022.

Jonathan Mirault, Joshua Snell, and Jonathan Grainger. You that read wrong again! a transposed-word
effect in grammaticality judgments. Psychological Science, 29:095679761880629, 10 2018. doi:
10.1177/0956797618806296.

C. Painter. Learning Through Language in Early Childhood. Continuum Collection. Bloomsbury
Publishing, 2005. ISBN 9781847143945. URL https://books.google.com/books?
id=4sB0i-DfT0MC.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Conference
on Machine Learning, 2021.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with la-
tent language. In Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 1713–1726, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.120. URL https:
//aclanthology.org/2022.acl-long.120.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In Second Workshop on Language and Reinforcement Learning, 2022.
URL https://openreview.net/forum?id=aflRdmGOhw1.

Shuran Song, Samuel Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understanding
benchmark suite. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 567–576. IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.7298655. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298655.

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bhagavatula, Yoav Goldberg, Yejin Choi, and
Jonathan Berant. CommonsenseQA 2.0: Exposing the limits of AI through gamification. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 1), 2021. URL https://openreview.net/forum?id=qF7FlUT5dxa.

11

https://aclanthology.org/2020.acl-main.231
https://aclanthology.org/2020.acl-main.231
https://arxiv.org/abs/1806.01054
https://arxiv.org/abs/1806.01054
https://aclanthology.org/2021.acl-long.143
https://aclanthology.org/2021.acl-long.143
https://books.google.com/books?id=4sB0i-DfT0MC
https://books.google.com/books?id=4sB0i-DfT0MC
https://aclanthology.org/2022.acl-long.120
https://aclanthology.org/2022.acl-long.120
https://openreview.net/forum?id=aflRdmGOhw1
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298655
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298655
https://openreview.net/forum?id=qF7FlUT5dxa

Under review as a conference paper at ICLR 2024

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Karmesh Yadav, Santhosh Kumar Ramakrishnan, John Turner, Aaron Gokaslan, Oleksandr
Maksymets, Rishabh Jain, Ram Ramrakhya, Angel X Chang, Alexander Clegg, Manolis
Savva, Eric Undersander, Devendra Singh Chaplot, and Dhruv Batra. Habitat challenge 2022.
https://aihabitat.org/challenge/2022/, 2022.

Xi Ye and Greg Durrett. The unreliability of explanations in few-shot prompting for textual reasoning.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STar: Bootstrapping reasoning
with reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Fed-
erico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke,
and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning with language.
In Submitted to The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=G2Q2Mh3avow. under review.

Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David Fouhey, Ivan Laptev, and
Josef Sivic. Cross-task weakly supervised learning from instructional videos. In Computer Vision
and Pattern Recognition, 2019.

12

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aihabitat.org/challenge/2022/
https://openreview.net/forum?id=G2Q2Mh3avow

Under review as a conference paper at ICLR 2024

A LAMPP FOR SEMANTIC SEGMENTATION

A.1 METHODS

We derive the following decision rule from the model in Fig. 2:

p(yi | x) ∝∼

p(yi | di = d∗i)p(di = d∗i | xi)

∑
r

p(r)p(yi | r)
∏

j=1···n

∑
yj

p(r | yj)p(dj = yj | xj)

p(r)

(5)

We obtain this decision rule as described below. Here we denote rooms r, true object labels
y, noisy object labels d, and observations x. (Underlines denote sets of variables, so e.g., x =
{x1, . . . , xn}.) Finally, we write d∗i to denote the base model’s prediction for each image segment
(d∗i = argmax pseg(di | xi)). To see this:

p(yi | x) ∝
∑
r

∑
y\{yi}

∑
d

p(x, y, d, r)

=
∑
r

∑
y\{yi}

∑
d

p(r)
(
p(yi | r)p(di | yi)p(xi | di)

)∏
j

p(yj | r)p(dj | yj)p(xj | dj)

=
∑
r

p(r)
(
p(yi | r)

∑
di

p(di | yi)p(xi | di)
)(∏

j

∑
yj

p(yj | r)
∑
dj

p(dj | yj)p(xj | dj)
)

Rather than marginalizing over all choices of d, we restrict each sum to a single term. For di, we
choose the most likely detector output di = d∗i . For dj , we choose the corresponding yj in the
outer sum. Together, these simplifications reduce the total number of unnecessary LM queries about
unlikely object confusions, and give a lower bound:

≥ p(di = d∗i | yi)p(x | di = d∗i)
∑
r

p(r)(p(yi | r)
(∏

j

∑
yj

p(yj | r)p(dj = yj | yj)p(xj | yj)
)

Applying Bayes’ rule locally:

=
p(yi | di = d∗i)p(di = d∗i)

p(yi)

p(di = d∗i | xi)p(xi)

p(di = d∗i)∑
r

p(r)p(yi | r)
(∏

i

∑
yj

p(r | yj)p(yj)
p(r)

p(dj = yj | yj)
p(dj = yj | xj)p(xj)

p(dj = yj)

)

Finally, we make two modeling assumptions. First, we assume that of the form p(y) and p(d)—the
marginal distributions of true and noisy object labels—are uniform. This allows us to use LMs as a
source of information about object co-occurrence probabilities without relying on their assumptions
about base class frequency. Second, for non-target detections xj , we assume the probability that
noisy labels match the true labels is constant over object categories. Then, dropping constant terms
gives:

∝ p(yi | di = d∗i)p(di = d∗i | xi)
∑
r

p(r)p(yi | r)
(∏

j

∑
yj

p(r | yj)
p(r)

p(dj = yj | xj)
)

A.2 SOCRATIC MODEL BASELINE

We attempt to make the Socratic models inference procedure for this task as analogous to the LAMPP
approach as possible: the LM must account for both room-object co-occurrence likelihoods and
object-object resemblance likelihoods when predicting true labels. However, here, the LM must

13

Under review as a conference paper at ICLR 2024

Base Model mIoU ∆IoU by Object Category

RedNet (ID) 47.8

+ LAMPP 48.3

+ SM 37.5

RedNet (OOD) 33.8

+ LAMPP 34.0

CLIPSeg (ZS) 27.7

+ LAMPP 28.2

Table 4: Image Segmentation results. We report mIoU, or intersection-over-union averaged over each object
category. We also report the improvements to IoU for each object category when LAMPP or Socratic Models is
applied to RedNet trained on in-domain or out-of-domain data, and CLIPSeg applied zero shot.

implicitly incorporate these likelihoods into its text-scoring, rather than integrating them into a
structured probabilistic framework.

Specifically, the Socratic model baseline is given model predictions d̂i for each segment xi and
re-labels each segment by querying GPT-3 with:

You can see: [d̂]

You are in the [r]

The thing that looks like [d̂i] is actually [yi] .

The LM is given the non-highlighted portions and asked to generate the portions highlighted in yellow.
d̂ is the set of all unique objects detected by the base model, written out as a comma-separated list. r
is a room type generated by the LM based on these objects (inferred by normalizing over possible
room types), and yi is the actual identity of the object corresponding to this segment. We replace all
pixels formerly predicted as d̂i with yi.

A.3 FULL RESULTS

See Table 4 for the full results over object categories. In the ID case, note that shower curtain
improved dramatically with the incorporation of LAMPP. This is because the base model almost
always classifies shower curtains as window curtains, while explicitly incorporating room priors from
language models fixes this major class of error. Moreover, in the OOD setting, the base image model
sees far fewer examples of nightstands and consequently never predicts nightstands on the test data.
(Nightstands are frequently predicted to be tables and cabinets instead). This is likewise rectified
with LAMPP: background knowledge from language reduces model sensitivity to a systematic bias
in dataset construction

The goal objects that improved the most with the incorporation of LAMPP (shower curtain, nightstand
in the OOD case) are all ones that strongly co-occur with specific rooms, indicating the usefulness of
incorporating room-object co-occurrence priors.

14

Under review as a conference paper at ICLR 2024

(a) Table → Nightstand (b) Sofa → Bed

(c) Desk → Table

Figure 5: Image Segmentation Domain: Examples of errors from LAMPP.

A.4 ERROR ANALYSIS

We manually inspect 50 random outputs from LAMPP on the ID setting and identify broadly the
following categories of errors, which are illustrated in Fig. 5.

1. Mislabelling: The ground truth labels are sometimes incorrect. For example, in Fig. 5(a),
the nightstand is mislabelled as a “table”. LAMPP is then wrongly penalize when it changes
the table to a nightstand.

2. Missegmentation: Object boundaries may be incorrectly identified, as in Fig. 5(b) and
Fig. 5(c). This can confuse LAMPP as it may be unlikely for two visually-similar items to
co-occur in the same room (e.g. beds and sofas), and LAMPP may try to “paint over” the
mis-segmented chunk with the wrong label.

3. Example inconsistent with LM priors: For a small number of examples, the LM prior may
be incorrect. These examples can be thought of as being sampled from the tail of the
distribution. For example, in Fig. 5(b), the LM believes that it is unlikely for beds and
sofas to co-occur in the same room. However, this particular example is of a furniture shop,
meaning that it is actually the case that the bed and sofa are next to each other.

4. Insufficient information to LM: Because we may only interact with LMs through text, the
LM loses out on certain visual signal that may help disambiguate between two semantically-
similar object labels. For example, in Fig. 5(c), LAMPP incorrectly converts the desk into
a table, likely because the LM does not have sufficient information to conclude that the
image is of an office setting (desks are more often used to in the context of work). Note that
“computer” and “printer” weren’t available labels for the segmentation model, but may have
be useful information for the LM.

15

Under review as a conference paper at ICLR 2024

B LAMPP FOR NAVIGATION

B.1 SOCRATIC MODEL BASELINE

As in the image segmentation case, we have a Socratic model baseline. LM priors are integrated into
exploration through directly querying the LM with

The house has: [r].
You want to find a [g]. First, go to each [r0] . If not found, go to each [r1] . If not
found, go to each · · ·

whereby r is a list of all room types in the environment, for example, 3 bathrooms, 1 living room, 1
bedroom. The LM returns the best room type r0 to navigate to in order to find g. The agent visits all
r0 in order of proximity. If the object is not found, the LM is queried for the next best room type to
visit, etc., until the object is found or we run out of rooms in the environment.

B.2 METHODS

Below we provide intuition for why our policy outlined in Section 4.1 follows from the generative
story of the success score yi depicted in Fig. 3. We assume objects are equally likely to be distributed
across all rooms.

At a high level, an agent greedily optimizing for success should move to a room r that maximizes
p(y | x, r, g) which, following Fig. 3 is equivalent to maximizing:

p(y | g, r)p(x | y) ∝ p(y | g, r)p(y | x)p(x)/p(y) ∝ p(y | g, r)p(y | x) (6)

The policy that maximizes Eq. (6) iterates between navigation and selection actions:

1. Navigation: We navigate to the unobserved room with the highest p(y | r).6 This follows
directly from Eq. (6) and the assumption of uniform initial object locations.

2. Selection: Once we have some observations x of the room, we branch off into two cases:
(a) Deciding to continue: We do not see g (low p(y | x)). If we take n (= 25) steps in

the room and do not see any instance of g, we become relatively confident that the
room does not contain g at all, so p(y | x) → 0 for that room. (Consequently, the
objective p(y | x)p(y | r) also → 0 for this room.) We eliminate this room from the
list of unobserved rooms and return to step 1.

(b) Deciding to stop: We see g (high p(y | x)), either on the way to the room or within the
room. We navigate to exact location that maximizes p(y | x) and decide to stop based
on p(y | x)p(r | y).

B.3 FULL RESULTS

See Table 5 for the full set of results over goal-object categories. Note that the goal objects that
improved the most with the incorporation of LAMPP (TV monitor, sofa, toilet) are all ones that
strongly co-occur with specific rooms, indicating the usefulness of incorporating room-object co-
occurrence priors.

B.4 UNIFORM PRIORS MODEL VS. ORIGINAL STUBBORN AGENT MODEL

Recall that we modified the original STUBBORN agent in the navigation task to utilize the high-level
map, by uniformly sampling a random (unvisited) room to visit. More specifically, the uniform priors
model utilizes effectively the same high-level policy as LAMPP-based agent, but replaces LM priors
over over object-room co-occurrences with uniform priors:

p(y = True | r, g) = 1

room types in environment
. (7)

6For rooms with the same p(y | r), or if there are multiple rooms of the same type, we navigate in order of
proximity to the agent’s current location.

16

Under review as a conference paper at ICLR 2024

Base Model SR SPL ∆SR by Goal Object Category
Class Freq. Class Freq.

Orig STUBBORN 52.7 53.8 21.2 22.8
Unif Prior (ZS) 52.1 51.7 20.2 21.5

+ LAMPP 66.5 65.9 35.4 36.0

+ SM 61.2 65.3 31.3 35.1

Table 5: Navigation results, showing class-averaged success rate (SR; averaged over goal objects) and frequency-
averaged success rate (averaged over episodes). We also report SPL, Success weighted by (normalized inverse)
Path Length. Finally, we report the improvements to success rate over each object category when LAMPP vs.
Socratic Models is applied.

Model Class-Avg. SR Freq.-Avg. SR

LAMPP 66.5 65.9
−p(y | r) during selection 58.8 64.9

Socratic model 61.2 65.3

Table 6: Navigation results verification ablations. We ablate the LM uncertainties over p(y | r) when computing
the selection action, making LAMPP functionally similar to a Socratic model baseline. We find that having
these uncertainties are crucial; without them, LAMPP actually underperforms the Socratic model baseline.

Note in the zero-shot case we have no additional information about p(y | r, g), so we must assume it
is uniform.

We report average success rates over object categories of the original STUBBORN agent vs. a
uniform priors agent vs. an LAMPP-based agent vs. a Socratic-model-based agent in Table 5. We
find that LAMPP is able to outperform both the original STUBBORN agent and the uniform priors
agent.

B.5 ADDITIONAL ANALYSIS

Why does LAMPP outperform Socratic modeling? In the SM approach, high-level decisions from
the LM and low-level decisions from observation models are usually considered separately and
delegated to different phases (it is hard to combine these information sources in string-space): in
our implementation, the SM baseline uses the top-down LM for navigation, and the bottom-up
observation model for selection.

Because the policy dictated by the LAMPP probabilistic model also ignores bottom-up observation
probabilities until the goal object is observed, the navigation step of both approaches is functionally
equivalent. However, for the selection step, we find that combining bottom-up and top-down uncer-
tainties is crucial (recall that LAMPP thresholds p(y | x, r, g) at selection steps, which decomposes
to p(y | x)p(y | r, g)).
To further understand and how using LM probabilities contributes at this phase, we run a version
of LAMPP where we simply change the decision rule at the selection action to p(y | x). Results
are reported in Table 6. Note that we actually underperform the SM baseline when we take away
top-down uncertainties p(y | r, g) — once again highlighting the importance of combining both
sources of uncertainty.

C LAMPP FOR VIDEO-ACTION SEGMENTATION

17

Under review as a conference paper at ICLR 2024

Base Model Step Recall ∆ Step Recall by Task
Class Freq.

HSMM (ZS) 44.4 46.0

+ LAMPP 45.7 47.9

HSMM (OOD) 37.6 40.9

+ LAMPP 38.1 41.2

Table 7: Action recognition and segmentation results, showing class-averaged step recall (averaged over tasks)
and frequency-averaged step recall (averaged over videos). We also report the improvements to step recall over
each object category when LAMPP is applied.

C.1 SELECTING THE LM PROMPT

We performed significant prompt engineering in this setting (on the training set), and found that with
all of the prompts we tried, GPT-3 was biased towards outputting actions in the order that they were
presented to the model. The following are some examples of other prompts we tried:

Your task is to [t]. Your actions are: {[Y]}
The step after [y] is [y′]: [plausible / implausible]

Your task is to [t]. Your actions are: {[Y]}
The step after [y] is [y′]

We also tried having the LM produce a global ordering and setting probability from an action later in
the sequence to earlier in the sequence to 0:

Your task is to [t]. Your set of actions is: {[Y]}
The correct ordering is:

The prompt in 5.1 was slightly better at combating this effect, though still highly imperfect.

C.2 FULL RESULTS

See Table 7 for the full set of results over actions.

C.3 ERROR ANALYSIS

In this domain, GPT-3 often produced priors that were unaligned with the true distribution, leading
to errors in downstream prediction with LAMPP. As noted in C.1, we found that GPT-3 has a
proclivity to output actions in the order that they were presented in the prompt. To further probe
errors in GPT-3’s priors, we plot GPT-3’s distribution over actions for tasks against the ground-truth
distribution over actions in the real training and validation datasets. We found that, when these priors
were uncorrelated with real priors from the dataset, there tended to fall into the following categories:

1. Bias towards ordering in prompt: see discussion in Appendix C.1.
2. Task ambiguity: The LM and ground-truth demonstrations may prefer slightly different

ways of accomplishing the same task. For example, in the “Grill steak” task (Fig. 6(a,b)),

18

Under review as a conference paper at ICLR 2024

p(y′ ∣ y = ∅, t = Grill Steak) p(y′ ∣ y = cut steak, t = Grill Steak)

(a) Distribution over initial
actions for task “Grill Steak”

(b) Distribution over actions following
“cut steak” for task “Grill Steak”

p(y′ ∣ y = tight wheel, t = Change a Tire)

(c) Distribution over actions following
“tight wheel” for task “Change a Tire”

Figure 6: LM vs. ground-truth distributions over action sequences for tasks. GPT-3 priors are plotted in blue,
while training-set distributions and validation-set distributions are plotted in blue and orange respectively. The
red line represents a “smoothed” LM prior which combines GPT-3 priors with learned priors.

GPT-3 prefers to cut the steak before cooking (green line in Fig. 6(a) shows that the LM’s
highest-probability initial action is “cut steak”), while the ground-truth distribution prefers
cutting the steak after cooking (blue & orange lines in Fig. 6(b) shows that the datasets’
highest-probability action after “cut steak” is “taste steak”).

3. Action ambiguity: Note that, in this dataset, actions are typically named with a very short
description, which may sometimes cause ambiguity. For example, in the “Change a tire”
task Fig. 6(c), it is unclear whether actions involving the wheel is referring to the old wheel
or the new wheel, and the action “start loose” is unclear.

4. Structural limitations of HSMM: Because we are modelling a sequence of scenes from videos
with an HSMM, the action segmentations may be imperfect – for example, in Fig. 6(b), the
HSMM learns that it is highly likely for the action after “cut steak” to also be “cut steak”
from the training datasets (with probability ∼ 0.5), perhaps because the cutting scene hasn’t
ended. The LM is unable to these transitions.

5. Wrong LM Priors: GPT-3 sometimes simply has incorrect priors about the action orderings
for tasks, for example putting a fairly high probability on “widthdraw wheel” after “tight
wheel” for task “Change a tire” in Fig. 6(c).

D TRAINING DETAILS

D.1 HYPERPARAMETERS

Since our method builds upon each base model, we used standard hyperparameters to train and run
inference for each base model. For the components of LAMPP that we build on top of the base
models, there are usually only a few hyperparameters to tune, which we tune based on performance
on a held-out development set.

In image segmentation, we tune is a weighting term λ at the final decision layer that trades off the
weight on the LM prior and the observation posterior.

log p(y | x) = λ log p(y) + (1− λ) log p(x | y)

We find he optimal λ to be 0.9. In the navigation case, we tune a threshold τ that determines when
the agent stops (p(y | x, r, g) > τ) and find the optimal τ is 0.2 For video-action segmentation, we
have a hyperparameter α controlling the weight on the prior (see Eq. (4)), which we set to 10.

E COMPUTATIONAL DETAILS

We run all experiments on a single 32GB NVIDIA V100 GPU.

19

Under review as a conference paper at ICLR 2024

For image segmentation experiments, we used either: 1. a pretrained RedNet checkpoint, 2. a RedNet
checkpoint trained for 1000 epochs on OOD data, 3. a pretrained zero-shot CLIPSeg model. 1 and 3
required no training, 2 required training for ∼ 3-4 days on the GPU. Inference for a single experiment
takes several hours each on a single GPU.

For navigation experiments, we used the pre-trained STUBBORN model. A full inference run on
our GPU takes about a full day to complete. (However, multiple inference experiments could be run
in parallel using the same GPU – the bottleneck is simulating every step of every trajectory, rather
than GPU inference.)

For video-action segmentation experiments, we use the HSMM model trained by Fried et al. (2020).
On a single GPU, the model typically takes only a few minutes to fully train and a few minutes for
inference. Several inference experiments can be run in parallel on the same GPU.

Finally, to derive LM priors, we query the OpenAI API. Using our method uses a budget of ∼$12
(in totality, over all experiments in all domains), as it queries a fixed number queries ahead of time
(∼4k queries), which get reused over the entire test set. Meanwhile, running full SM experiments
requires on the order of several hundred dollars in totality – frequently requiring multiple queries per
test sample.

F LIMITATIONS

While flexible, LAMPP is not applicable to every machine learning task, and specifically requires (1)
a formalization of the task as a probabilistic graphical model, in which (2) values of some variables
(e.g. labels) can be represented as natural language strings, and (3) probabilistic relations between
these variables are described (with some degree of precision) in large-scale text corpora. As shown
above, many success cases involve common-sense knowledge about human environments or human
task structures; more specialized tasks (e.g. fine-grained image classification or medical diagnosis)
may not enjoy the same benefits.

20

	Introduction
	Method
	LaMPP for Semantic Segmentation
	Methods
	Experiments
	Results

	LaMPP for Navigation
	Methods
	Experiments
	Evaluation & Results

	LaMPP for Action Recognition and Segmentation
	Methods
	Experiments
	Evaluation & Results

	Related Work
	Conclusion
	LaMPP for Semantic Segmentation
	Methods
	Socratic Model Baseline
	Full Results
	Error Analysis

	LaMPP for Navigation
	Socratic Model Baseline
	Methods
	Full Results
	Uniform Priors Model vs. Original STUBBORN Agent Model
	Additional Analysis

	LaMPP for Video-Action Segmentation
	Selecting the LM prompt
	Full Results
	Error Analysis

	Training Details
	Hyperparameters

	Computational Details
	Limitations

