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ABSTRACT

Automatic video polyp segmentation (VPS) is crucial for preventing and treat-
ing colorectal cancer by ensuring accurate identification of polyps in colonoscopy
examinations. However, its clinical application is hampered by two key chal-
lenges: shape collapse, which compromises structural integrity, and episodic am-
nesia, which causes instability in challenging video sequences. To address these
challenges, we present a novel video segmentation network, HFSTI-Net, which
integrates global perception with spatiotemporal consistency in spatial, temporal,
and frequency domains. Specifically, to address shape collapse under low con-
trast or visual ambiguity, we design a Hierarchical Frequency-spatial Interaction
(HFSI) module that fuses spatial and frequency cues for fine-grained boundary lo-
calization. Furthermore, we propose a recurrent mask-guided propagation (RMP)
module that introduces a dual enhancement mechanism based on feature memory
and mask alignment, effectively incorporating spatiotemporal information to al-
leviate inter-frame inconsistencies and ensuring long-term segmentation stability.
Extensive experiments on the SUN-SEG and CVC-612 datasets demonstrate that
our method achieves real-time inference and outperforms other state-of-the-art ap-
proaches. The codes will be made available upon publication.

1 INTRODUCTION

Colorectal cancer (CRC), a prevalent gastrointestinal malignancy and the third most common cancer
globally, can be effectively prevented Shaukat & Levin (2022) through timely screening and removal
of precursor polyps via colonoscopy Wu et al. (2024). However, the diagnostic process heavily
relies on endoscopists’ expertise, and hence inexperienced practitioners risk missing the detection
of precancerous lesions. Therefore, accurate and real-time automated polyp segmentation is crucial
for enhancing early CRC diagnosis and supporting timely clinical decision-making.

In recent years, numerous deep learning based methods have been proposed for image polyp seg-
mentation (IPS) and achieved remarkable successes Wei et al. (2021); Dong et al. (2021); Zhou et al.
(2023). However, these approaches still face two inherent limitations in real-world clinical settings.
First, as illustrated in Figure 1 (b), the low contrast between polyps and the surrounding mucosa
makes it challenging to accurately distinguish the target from the background only based on static
image information alone Fan et al. (2020b); Wu et al. (2023). This often leads to a phenomenon
that we usually call shape collapse in the segmentation results. Second, these static image-based
methods overlook a critical fact that real-world clinical screening is conducted based on a continu-
ous video stream Puyal et al. (2020); Ji et al. (2021); Li et al. (2022). In the video, the appearance
of polyps can undergo drastic changes due to variations in viewpoint, intestinal peristalsis, and cam-
era motion (as shown in Figure 1 (c)), where appearance not only refers to visual texture but also
encompasses substantial variations in polyp size, position, and shape. While these temporal varia-
tions pose a new challenge for accurate segmentation, they are also probably helpful to address the
first limitation, as different frames can provide complementary views to disambiguate low-contrast
regions. Existing IPS methods, however, are inherently not able to sufficiently leverage temporal in-
formation, and hence cannot achieve satisfactory segmentation results in clinical practice. To more
closely align with real-world clinical scenarios, the task of video polyp segmentation (VPS) has
emerged Ji et al. (2022); Hu et al. (2024). VPS methods aim to enhance segmentation robustness
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Figure 1: Challenges of VPS including (a) shape collapse, (b) low contrast between polyps and
background, (c) significant variations between adjacent frames, and (d) consecutive low-quality
frames.

and accuracy by leveraging temporal coherence in videos. Current mainstream VPS approaches,
either employing hybrid 2D/3D architectures Puyal et al. (2020); Bhattacharya et al. (2024); Xu
et al. (2024) or harnessing self-attention mechanisms Vaswani (2017); Ji et al. (2021); Chen et al.
(2024), predominantly rely on implicit modeling of dense, pixel-level features to propagate tempo-
ral information. However, these methods are highly sensitive to appearance variations as pixel-level
features largely lack high-level semantic abstraction. Consequently, these methods cannot address
challenges caused by large temporal gaps among frames, such as drastic deformations and sequences
of low-contrast and blurry frames (as shown in Figure 1 (d)), which lead to the episodic amnesia.
To address this shortcoming, some approaches propose to employ global-to-local learning to capture
more temporal information, but these methods are usually unstable as the temporal information they
extracted is quite limited.

Although VPS improves robustness with temporal coherence, it still fails under low contrast or oc-
clusion, leading to structural loss and missed polyps. Recently, integrating frequency information
into deep learning models has shown considerable promise for many computer vision tasks, such
as camouflaged object detection (COD) Fan et al. (2020a). Existing spatial-domain methods, such
as those focusing on enhancing pixel-level discriminability Ji et al. (2021); Cheng et al. (2022);
Wang et al. (2022), often struggle with capturing comprehensive contextual information due to their
inherent limitations in local feature representation. Accordingly, for dealing with ‘camouflaged’
polyps in colon structures, leveraging global frequency perception and harnessing multi-domain
representations may enable the model to perceive spatial details within features. While conventional
spatial-domain methods Chi et al. (2020); Wang et al. (2023b) struggle to effectively identify tar-
gets from the background due to their high visual similarity, recent works have begun exploring
frequency-domain representations to enhance identification capacity. To address this issue, recent
works Li et al. (2024); Wang et al. (2023a) explore the frequency-domain representations to en-
hance the identification capacity. However, these methods ignore the modeling of frequency-spatial
interactions, limiting their ability to adaptively fuse cross-domain features and ultimately hindering
spatial-domain feature learning. Besides, these methods fail to model the dependencies between
different frequency components and their spatial counterparts, leading to incomprehensive feature
representations for precise target localization.

In this paper, we propose a novel network, HFSTI-Net, for VPS, addressing challenges by jointly
modeling frequency, spatial, and temporal features. The network consists of two key components:
a hierarchical frequency-spatial interaction (HFSI) module and a recurrent mask-guided propaga-
tion (RMP) module. The HFSI module uses a dual-path design to combine local spatial cues with
global frequency representations, effectively capturing fine-grained boundary details and prevent-
ing shape collapse, even in low-contrast or ambiguous conditions. The RMP module introduces
a memory-based dual enhancement mechanism, storing historical embeddings and predictions to
model temporal dependencies and mitigate inconsistencies, improving spatiotemporal consistency
and reducing episodic amnesia. Extensive experiments on SUN-SEG and CVC-612 demonstrate
that HFSTI-Net outperforms SOTA methods. Our contributions are summarized as follows:

• We propose a novel video polyp segmentation network, HFSTI-Net, that jointly models
spatial, frequency, and temporal information to address challenges such as background
interference, low contrast, and rapid endoscope movements.
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• We design a HFSI module to enhance boundary localization and structural integrity by
integrating local spatial cues with global frequency representations through a dual-path
Fourier-based interaction. Furthermore, we propose a RMP module that leverages feature
memory and mask alignment to capture long-term spatiotemporal dependencies, effectively
alleviating episodic amnesia and reducing tracking errors.

• We conduct extensive experiments on the SUN-SEG and CVC-612 dataset, which demon-
strates that our method achieves superior performance compared to other SOTA methods
but also maintains real-time efficiency, making it more suitable for clinical deployment.

2 RELATED WORKS

2.1 POLYP SEGMENTATION

With the development of deep learning, remarkable progress has been made in IPS. Although IPS
primarily leverages CNN architectures Cheng et al. (2021); Wu et al. (2022) for local feature ex-
traction, their limited global perspective leads to blurred boundaries and low-contrast issues. To
address this, Transformers Vaswani (2017) or hybrid CNN-Transformer architectures Zhang et al.
(2021); Li et al. (2021) were introduced to enhance global context awareness, alongside boundary
constraint methods Fan et al. (2020a); Cheng et al. (2021) for edge refinement. However, VPS
requires modeling temporal dynamics, an inherent limitation of static IPS methods. Early meth-
ods used hybrid 2D/3D convolutions to fuse spatial and short-term temporal features Puyal et al.
(2020), but their limited receptive field struggles with long-range dependencies. To address this,
attention-based methods emerged Ji et al. (2021), with models like PNS+ Ji et al. (2022) captur-
ing global temporal relationships across entire sequences. While effective, global attention is often
computationally expensive and sensitive to noise. To improve efficiency, later works introduced key
frame-guided strategies Xu et al. (2022); Hu et al. (2024), using high-quality frames as anchors.
This highlights that most temporal models implicitly learn inter-frame relationships via end-to-end
training. To address this limitation and mitigate episodic amnesia in challenging video sequences,
we propose the RMP module. Leveraging high-level features and predicted masks from a memory
bank, RMP captures rich spatiotemporal cues, allowing the model to recall dynamic changes and
historical context across frames. This enhances polyp recognition and localization while ensuring
long-term segmentation stability.

2.2 FREQUENCY LEARNING

The frequency domain plays an important role in signal analysis and has been increasingly applied
to computer vision tasks. Several methods He et al. (2023); Wang et al. (2023a) leverage frequency
information for enhanced feature representation. FcaNet Qin et al. (2021) views channel attention
as a frequency-domain compression problem and introduces multi-spectral attention to preserve in-
formative frequency features with no added complexity. Wang et al. (2023b) investigate frequency
learning in segmentation, showing that networks tend to focus on class-specific frequency compo-
nents, which may lead to frequency shortcuts and hinder generalization. To address the camouflage
challenge, FAGF-Net Li et al. (2024) incorporates frequency-aware attention and graph-based fu-
sion, outperforming spatial-only methods. However, existing frequency-based methods often treat
frequency and spatial information somewhat independently or lack a deep integration. This can
lead to an incomplete capture of intricate relationships between different frequency components and
their precise spatial counterparts, potentially limiting its effectiveness in the task of VPS. Therefore,
we propose a novel HFSI module designed to counteract shape collapse so enhance the structural
integrity of segmented polyps. It allows for exploring fine-grained structural details by learning
and enhancing frequency-spatial interactions from the frequency domain to distinguish foreground
polyp targets from surrounding tissues.

3 METHOD

3.1 OVERVIEW

Figure 2 presents the overall framework of our method, which addresses two key challenges in VPS:
maintaining structural integrity in segmented polyps and ensuring long-term segmentation stability
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Figure 2: Overview of the proposed network for VPS. Our model addresses shape collapse and
episodic amnesia to ensure structural integrity and long-term segmentation stability. The HFSI mod-
ule processes features in both spatial and frequency domains for fine-grained boundary localization,
counteracting shape collapse. The RMP module utilizes a memory bank and cross-attention for con-
sistent tracking, mitigating episodic amnesia. MFE blocks, with parallel convolutions (1×1, 3×3,
5×5), extract rich spatial features for complementary enhancement.

across challenging video sequences. To address shape collapse and preserve structural integrity,
we introduce a Hierarchical Frequency-spatial Interaction (HFSI) module. By jointly processing
features in the spatial and frequency domains and fusing them through an interwoven dual-path
design, it combines local detail cues with global context, enabling fine-grained boundary localization
and robust shape preservation, even under visual ambiguity and low contrast. To enforce long-term
segmentation stability and mitigate episodic amnesia in challenging video sequences, we propose a
Recurrent Mask-guided Propagation (RMP) module. It stores previous frame features and masks in
a memory bank and retrieves relevant information via cross-attention. A mask affinity mechanism
further aligns the current prediction with historical context, ensuring consistent and stable tracking
of polyps across frames, even through occlusions or significant appearance changes.

As shown in Figure 2, given an input video sequence {It}Tt=1 with It ∈ RH×W×3, we first extract
multi-level features F = {F t

i }4i=1 using a backbone encoder, where each F t
i has spatial resolution

H
2i+1 × W

2i+1 . Then, the top-level feature F t
4 is enhanced by a MFE module. To model temporal coher-

ence, the current feature F t
4 and historical context F t−1

4 , Pt−1 are passed into the RMP module. The
refined temporal feature is further processed by the HFSI module, which integrates local spatial and
global frequency cues through interwoven fusion, yielding enriched representations X = {χi}4i=1.
Finally, a decoder aggregates these features and progressively refines them to generate the prediction
P = {P i

t }4i=1.

3.2 HIERARCHICAL FREQUENCY-SPATIAL INTERACTION

Video polyp segmentation (VPS) is challenging due to the high visual similarity between polyps
and surrounding tissues in color, texture, and motion blur. While spatial-domain methods focus
on local details, they often miss global context. In contrast, frequency-based approaches capture
global semantics but are susceptible to noise and may underutilize informative frequency cues in
complex scenes. To address these issues, we propose the HFSI module with a dual-path structure
that extracts both spatial and frequency representations. Central to HFSI is an interwoven fusion
mechanism, which facilitates fine-grained interaction between the two domains, enabling adaptive
enhancement of meaningful features. As shown in Figure 3, the HFSI module consists of three
components: the Frequency Filter Block (FFB), which extracts global contextual patterns through
frequency-domain self-attention to enhance boundary localization and suppress background noise;
the Spatial Refinement Block (SRB), which emphasizes edge-aware details to preserve local struc-
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Figure 3: The key details module of the hierarchical frequency-spatial interaction (HFSI) module.
The module mainly consists of frequency filter block (FFB), spatial refinement block (SRB) and
interwoven fusion block (IFB).

tural precision; and the Interwoven Fusion Block (IFB), which adaptively blends frequency- and
spatial-domain features via a learnable attention mechanism for semantic alignment. By integrating
spatial and frequency cues across multiple levels, HFSI effectively improves both local detail and
global context, enabling more accurate segmentation of camouflaged polyps in complex scenes.

3.2.1 FREQUENCY FILTER BLOCK

To extract global contextual patterns in the frequency domain, the FFB applies a frequency-domain
self-attention mechanism that models channel-wise dependencies across spectral components. By
emphasizing salient frequency responses and suppressing redundancy, it sharpens polyp boundaries
and reduces background interference, especially in low-contrast frames. Given an input feature X ∈
RC×H×W , composed of current-layer and high-level features, we first apply layer normalization to
obtain X̂ = LN(X ). The normalized feature is then transformed into the frequency domain via
Fast Fourier Transform (FFT) to compute the query, key, and value: Qf , Kf , Vf = Fq,k,v(X̂ ),
respectively. We compute the frequency attention map via matrix multiplication and apply it to
reweight Vf , followed by inverse FFT to restore the spatial representation. In parallel, we introduce
a frequency residual branch that enriches spectral responses through a lightweight attention filter
σ(·) containing convolution, normalization, and activation layers. Finally, the outputs from both
branches are concatenated to yield the enhanced frequency-aware feature:

Xr
f = Cat

(
F−1(Λf ⊙ Vf ), F−1(σ(F(X̂ )))

)
, (1)

where Λf = Qf ⊙Kf denotes the attention map and ⊙ represents matrix multiplication.

This design ensures that rich global frequency cues are preserved and fused with spatial cues in later
modules, improving the network’s robustness to boundary ambiguity and structural complexity in
polyp regions.

3.2.2 SPATIAL REFINEMENT BLOCK

To accurately segment polyps with varying sizes and complex shapes, we design the Spatial Refine-
ment Block (SRB) to capture fine-grained structural details and local context. Unlike frequency-
based modeling, SRB operates entirely in the spatial domain and emphasizes edge-sensitive features
through spatial self-attention. As illustrated in Figure 3 (b), the input feature X is first passed
through a 1 × 1 convolution to encode positional information. To effectively capture multi-scale
spatial dependencies, we employ two depthwise separable convolutions with kernel sizes 3× 3 and
5× 5, respectively. These are used to compute the query, key, and value representations:

Qs, Ks, Vs = Cat(DCq,k,v
3 (X ), DCq,k,v

5 (X )), (2)

The spatial attention map is computed as Λs = Softmax(Qs ⊙Ks), which highlights salient spatial
structures. We then use this attention to reweight Vs, yielding a refined attention output. In parallel,
a residual spatial branch X r

s = Cat(DC3(X ),DC5(X )) is introduced to preserve original spatial
details. The final spatial-aware feature is formed by concatenating both branches:

Xr
s = Cat(Λs ⊙ Vs, X r

s ). (3)

3.2.3 INTERWOVEN FUSION BLOCK

Frequency and spatial features encode complementary information: frequency features emphasize
global semantic distributions, while spatial features highlight fine-grained structural details. To fully
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Figure 4: Structure of the recurrent mask-guided propagation module (RMP). The module consists
of temporal alignment module (TAM) and mask affinity module (MAM).

leverage the strengths of both representations, we design the Interwoven Fusion Block (IFB) as a
learnable bridge that enables dynamic feature entanglement across the two domains.

Given frequency-domain features Xf , spatial-domain features Xs, and an earlier-layer feature X ,
we first compute a composite representation via residual fusion: Xc = Xf +Xs+X. We then apply
layer normalization to obtain the normalized feature X̂c = LN(Xc), which serves as input to a two-
stage inter-domain interaction process. We separately enhance frequency and spatial representations
by projecting X̂c into each domain and applying gated multiplicative attention:

X̂2
f = GeLU(σ(F(X̂c))⊗ σ(F(X̂c), (4)

X̂2
s = GeLU(DC3(X̂c))⊗DC3(X̂c), (5)

where F(·) and DC3(·) denote the fast Fourier transform and depthwise convolution, respectively,
and σ(·) is a lightweight channel-wise attention filter. We begin by combining the intermediate
frequency and spatial features via element-wise multiplication:X̂fs = (X̂2

f ⊗ X̂2
s ), which serves

as the input to both the frequency and spatial refinement branches. The frequency branch performs
gated attention in the Fourier domain, while the spatial branch focuses on localized filtering. The
outputs of both branches are then aggregated:

X̂3
f = F−1

(
σ(F(X̂fs))⊗F(X̂fs)

)
, (6)

X̂3
s = DC3(X̂fs), X̂3

c = Cat(X̂3
f , X̂

3
s ) +Xc. (7)

Through interwoven, cross-domain interaction with gated fusion, IFB aligns global and local fea-
tures, reducing misalignment and background ambiguity for more precise segmentation.

3.3 RECURRENT MASK-GUIDED PROPAGATION MODULE

Although HFSI improves structural integrity, VPS still suffers from temporal inconsistency caused
by blur, motion, occlusion, and appearance changes. To address this, we propose the RMP mod-
ule, which explicitly models spatiotemporal dependencies to ensure long-term consistency. RMP
maintains a memory bank of high-level features and masks from past frames. For each incoming
frame, current features act as a query, while memory features and masks serve as key-value pairs.
Temporal alignment module integrates temporal cues, and the result is refined with MLP and nor-
malization. To further enhance alignment, a mask affinity module fuses the predicted mask with
spatial features and performs another cross-attention step with memory, enabling motion-consistent
polyp localization over time.

To model spatiotemporal dependencies, we employ a cross-attention mechanism within the temporal
alignment module. Given the current frame feature QT as the query and the memory bank features
KT and VT as key and value, we compute the attention-enhanced representation as:

Z = L(Attention(Lq(QT ), L
k(KT ), L

v(VT ))), (8)

where L represents a linear projection. The output Z is then refined via a multi-layer perceptron
(MLP), followed by layer normalization with residual connections:

QM = LN(MLP(Z) + Z) +QT ,KM = KT ⊕ VT . (9)
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Table 1: Quantitative comparison with different state-of-the-art methods on SUN-SEG and CVC-
612 test sets. The highest value is indicated in bold, while the second highest value is underlined.

Model Backbone Class SUN-SEG-Easy SUN-SEG-Hard CVC-612

Sα Emn
ϕ Fw

β Dice Sα Emn
ϕ Fw

β Dice Sα Emn
ϕ Fw

β Dice

ZoomNext PVT-B2 NVS 88.33 90.48 80.66 85.49 87.64 90.84 80.25 83.51 94.66 97.83 92.45 93.17
SLTnet PVT-B2 NVS 88.13 91.75 83.09 85.91 87.04 90.89 80.98 83.36 94.84 97.37 92.73 93.62

AutoSAM VIT-B IPS 86.28 91.67 78.36 81.28 83.57 89.93 73.59 77.37 91.52 95.38 87.47 88.73
WeakPolyp PVT-B2 IPS 89.04 92.77 83.83 85.27 88.41 92.57 82.93 84.59 91.44 95.78 88.54 88.79

PNS+ Res-50 VPS 86.20 86.17 76.28 82.23 84.29 86.13 72.98 79.60 94.81 96.75 89.63 93.06
MAST PVT-B2 VPS 84.53 89.81 77.04 78.43 86.17 91.42 77.76 80.32 92.03 95.38 87.47 90.84

VPSAM VIT-B VPS 89.31 92.34 82.86 85.62 88.93 92.13 82.98 85.28 93.26 95.75 89.63 92.33
SALI PVT-B2 VPS 89.54 93.07 83.68 86.17 87.58 91.93 80.56 83.87 91.73 95.21 86.54 88.77

Ours PVT-B2 VPS 90.73 94.86 85.82 88.03 89.63 93.92 83.26 86.27 95.02 98.46 93.58 94.31

Table 2: Efficiency comparison with SOTA
methods on SUN-SEG.

Method SUN-SEG-Hard
Dice GFlops Param.(M) FPS

SLTNet 83.36 32.47 25.79 12.36
ZoomNext 83.51 42.95 28.18 9.69

PNS+ 79.60 45.99 9.79 76.08
SALI 83.87 21.19 26.14 18.07

Ours 86.27 46.77 28.53 31.27

Table 3: The performance of different frame
rates on the RMP module.

label
SUN-SEG-Hard

Dice IoU GFlops Param.(M) FPS

1-frame 86.27 75.86 46.77 28.53 31.27

2-frame 86.41 76.07 46.91 28.85 29.43

3-frame 86.55 76.29 47.06 29.16 28.77

4-frame 86.66 76.46 47.19 29.48 26.94

Next, the temporally-aware feature QM is fused with the current frame’s spatial information and
projected to form query pairs (qk, qv). Simultaneously, the combined memory KM is projected to
obtain key-value pairs (mk,mv). These are fed into the mask affinity module, where cross-attention
is computed, and the final spatiotemporal representation is obtained by:

output = qv ⊕Attention(qk,mk,mv). (10)

3.4 LOSS FUNCTION

We apply multi-level supervision using a hybrid loss that combines weighted binary cross-entropy
(BCE) Ji et al. (2022) and weighted intersection over union (IoU) Rahman & Wang (2016). The
total loss is defined as:

Lall =

4∑
i=1

1

2i−1

(
Lw
bce(P

i
t , G) + Lw

iou(P
i
t , G)

)
, (11)

where P i
t is the prediction at the i-th decoder stage, and G is the ground truth.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. We evaluate our proposed HFSTI-Net on the two polyp datasets, SUN-SEG Ji et al. (2022)
and CVC-612 Bernal et al. (2015). (1) The SUN-SEG dataset contains a total of 49,136 frames from
285 sequences, divided into three subsets: the training set with 19,544 frames from 112 sequences;
the SUN-SEG-Easy test set with 17,070 frames from 119 sequences; and the SUN-SEG-Hard test
set with 12,522 frames from 54 sequences. (2) The CVC-612 dataset consists of 612 frames from
31 colonoscopy sequences. For SUN-SEG, we set aside 20% of the training set as the validation set.
For CVC-612, the dataset was split into training, validation, and test sets with a 6:2:2 ratio.

Implementation details. The proposed network was implemented on the PyTorch Paszke et al.
(2019) platform and trained on one NVIDIA 3090 GPU. Pvtv2 b2 Wang et al. (2022) is used as the
backbone for all experiments. We trained our model for 30 epochs with a batch size of 8. A video
clip of 2 frames with a patch size of 352 × 352 was fed into the network. We adopted the Adam
optimizer with an initial learning rate of 1e−4 and a weight decay of 0.1 for 10 epochs.
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Figure 5: Visual comparison with SOTA methods on SUN-SEG. Red, green, and yellow represent
ground truth, prediction, and their overlapping regions, respectively.
Table 4: Data visualization of module ablation
on the SUN-SEG.

HFSI RMP
SUN-SEG-Easy SUN-SEG-Hard

Sa Emn
φ Fω

β Dice Sa Emn
φ Fω

β Dice

89.51 92.93 83.72 86.20 88.03 92.29 80.62 83.67

✓ 89.71 93.68 84.15 87.04 88.59 92.91 81.24 84.03

✓ 90.51 93.87 84.53 87.24 88.97 93.02 81.86 85.27

✓ ✓ 90.73 94.86 85.82 88.03 89.63 93.92 83.26 86.27

Table 5: Sub-component ablation of HFSI on
SUN-SEG.

FFB SRB IFB
SUN-SEG-Easy SUN-SEG-Hard

Sa Emn
φ Fω

β Dice Sa Emn
φ Fω

β Dice

89.71 93.68 84.15 87.04 88.59 92.91 81.24 84.03

✓ 89.93 93.76 84.18 87.27 89.37 93.26 83.16 85.90

✓ 90.09 94.07 84.43 87.28 88.92 93.18 82.14 85.27

✓ ✓ 90.52 94.34 84.75 87.53 89.08 93.31 82.36 85.53

✓ ✓ ✓ 90.73 94.86 85.82 88.03 89.63 93.92 83.26 86.27

4.2 COMPARISON WITH EXISTING METHODS

To demonstrate the superiority of our proposed method, we compare it with popular image- and
video-level object/polyp segmentation methods on SUN-SEG-Easy, SUN-SEG-Hard, and CVC-
612. The compared methods include ZoomNext Pang et al. (2024), SLTNet Cheng et al. (2022),
AutoSAM Shaharabany et al. (2023), WeaklyPolyp Wei et al. (2023), PNS+ Ji et al. (2022), MAST
Chen et al. (2024), VPSAM Fang et al. (2024) and SALI Hu et al. (2024). These methods can
be categorized into four groups: (1) natural video segmentation (NVS), (2) IPS, and (3) VPS. All
training parameters are controlled and set identically for consistency.

Comparison with SOTA methods. The comparison results between our method and above state-of-
the-art methods on the SUN-SEG and CVC-612 are shown in Table 1. Under identical experimental
settings, our method outperforms all state-of-the-art approaches across every metric.

Visual comparison with SOTA. We present a visual comparison of our approach with state-of-the-
art methods in Figure 5. The figure showcases segmentation results on three challenging cases: (1)
similar foreground and background (lower case), (2) a sequence of consecutive low-quality frames
(middle case), and (3) variations between consecutive frames (upper case). As shown in Figure 5,
our method consistently achieves precise, stable segmentation where others struggle, demonstrating
its effectiveness in challenging conditions.

Performance efficiency comparison with SOTA. The focus of this paper is to improve accuracy.
To comprehensively analyze the strengths of our method, we also examine the trade-off between
accuracy and efficiency. Our method achieves a real-time inference speed, with an FPS of 31.27,
while surpassing the accuracy of other SOTA methods, as shown in Table 2.

4.3 ABLATION STUDIES

Effectiveness of RMP. To assess the contribution of the recurrent mask-guided propagation (RMP)
module, we performed ablation studies. Removing RMP leads to a clear drop in performance Ta-
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Figure 6: Visualization of module ablation on
SUN-SEG. Red, green, and yellow denote GT,
prediction, and overlap, respectively.

Figure 7: Visual comparison of image embed-
ding on HFSI components in the SUN-SEG
dataset.

Figure 8: T-SNE visualization of different mod-
eling strategies, where purple represents polyps
and pink represents background.

Figure 9: Failure cases. Red, green and yellow
represent the GT, prediction and their overlap-
ping regions, respectively.

ble 4, as temporal cues are essential for consistent segmentation in video sequences. Visual results
in Figure 6 show that RMP mitigates polyp fragmentation and improves boundary continuity across
frames. We further evaluated the impact of varying the number of memory frames during training
(1–4), as shown in Table 3. While using more frames improves accuracy, it slightly reduces FPS.
Notably, even a single memory frame provides competitive performance with real-time inference,
offering a practical trade-off between accuracy and efficiency.

Effectiveness of HFSI. As shown in Table 4 and Figure 6, HFSI improves both accuracy and bound-
ary quality. To assess its components, we ablated FFB, SRB, and IFB individually. Results in
Figure 7 and Table 5 show that removing IFB causes a notable drop, confirming the value of its in-
terwoven fusion. Unlike simple merging, IFB enables bidirectional interaction between spatial and
frequency domains for better global-local alignment. Further degradation occurs when disabling
both IFB and SRB, and the worst performance appears when both FFB and IFB are removed, due
to the lack of spectral filtering and fusion. These results validate the tightly integrated design of
HFSI. As shown in Figure 8, shows that combining both frequency and spatial domains (Ours) leads
to better separation of polyp and background classes compared to using only spatial or frequency
information individually.

Effectiveness of FFT/IFFT. To verify the necessity of FFT for frequency–space interaction, we
perform an ablation comparing FFT with a linear 1 × 1 convolution block and a spatial-attention
block (see Table 6). FFT naturally provides global context and isolates high-frequency components
important for preventing “shape collapse,” whereas linear and attention-based operators remain lim-
ited to spatial-domain processing. Results on SUN-SEG-Hard show that replacing FFT with a linear
block leads to a clear performance drop (−2.12% Dice), and spatial attention also underperforms
while using more parameters. These findings confirm that spectral interaction offers complementary
structural cues that spatial operators cannot replicate.

Table 6: Ablation study on the SUN-SEG-Hard Dataset.

Interaction Method Dice (%) Params (M)

Linear (1× 1 Conv) 84.15 (↓ 2.12) 28.42
Spatial Attention 85.38 (↓ 0.89) 29.80
Ours 86.27 28.53

Impact of memory size N. To determine the optimal number of historical frames stored in memory,
we conduct an ablation study on N . As shown in Figure 11, the performance peaks when using
N = 8, where the model effectively leverages temporal context without accumulating excessive
noise. Increasing N further (e.g., to 12) leads to accuracy degradation (Dice 84.31%) due to error
accumulation. Thus, N = 8 achieves the best trade-off between temporal richness and memory
reliability.
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Figure 10: Ablation study on input clip. Figure 11: Ablation study on memory size.

Impact of input clip. As shown in Figure 10 (a-b), we also explore the impact of different clip length
L. The performance improves greatly when L increases from 1 to 2 because more spatio-temporal
information is obtained. However, larger L values (e.g., 5 and 7) cause performance degradation.
Longer clips can theoretically bring more spatio-temporal information, which is effective for clips
composed of frames with high boundary discrimination. However, for colonoscopic videos with
low boundary discrimination, we analyze the possible reason is that establishing spatio-temporal
information between frames with a long temporal distance may bring redundant information that
interferes with effective spatio-temporal information.

4.4 DISCUSSIONS AND LIMITATIONS

While we only conduct experiments on colonoscopy video datasets, we believe that our HFSTI-Net
is general enough to analyze other medical videos with similar challenges. Moreover, our method-
ology still exhibits certain limitations that warrant further investigation. As shown in Figure 9, spot
interference (a-b), small polyps with very low contrast (c-d), and dramatic shapes (e-f) may limit
our method.

5 CONCLUSION

In this paper, we propose the (HFSTI-Net), a novel network to tackle the critical challenges of shape
collapse and episodic amnesia in video polyp segmentation. Its architecture effectively integrates
three domains: the Hierarchical Frequency-spatial Interaction (HFSI) module leverages interwo-
ven fusion of frequency and spatial cues to ensure fine-grained boundary localization and prevent
shape collapse, while the Recurrent Mask-guided Propagation (RMP) module forms a stable tempo-
ral memory to maintain long-term consistency. These pathways are synergistically fused, yielding
segmentations that are both precise and temporally coherent. Paired with efficient inference ca-
pabilities, our method achieves a superior balance between performance and real-time application.
Extensive experimental results on SUN-SEG and CVC-612 demonstrate the effectiveness of our
proposed method.
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A APPENDIX

A.1 MORE ABLATION STUDIES ON SUN-SEG

More comparisons on efficiency. To provide a more comprehensive comparison of efficiency and
accuracy, as shown in Figure 12, we further evaluate our method against other approaches. The
results demonstrate that our method not only achieves real-time inference but also reaches state-of-
the-art accuracy.

Figure 12: Performance-effciency comparison with other state-of-the-art methods on SUN-SEG.
Component ablation of CVC-612. We validated the effectiveness of our module design through
ablation experiments on the CVC-612 dataset. As shown in Table 7, the results demonstrate that
each module contributes individually, and the integrated framework outperforms existing methods,
confirming the component effectiveness within our architecture. This validates the modules’ gener-
alizability across heterogeneous datasets.

Performance-effciency of subcomponent ablation. In addition to comparing the efficiency and
performance with other SOTA methods, as shown in Table 8, we conducted a module-wise ablation
study to analyze the trade-off between segmentation accuracy (Dice) and processing speed (FPS).
The table’s indicators further confirm that in automatic video polyp segmentation, HFSI and RMP
address different challenges: HFSI decouples frequency-spatial features, while RMP ensures spa-
tiotemporal consistency across frames. Their synergy enhances segmentation accuracy but impacts
real-time performance. In summary, HFSI enhances feature representation, while RMP stabilizes
temporal consistency, balancing global perception and local adjustment. Although this multidi-
mensional interaction reduces processing speed, the decrease in efficiency is acceptable given the
improved performance.

Table 7: Component ablation experiments on
the CVC-612 Dataset.

HFSI RMP
CVC-612

Sa Emn
φ Fω

β Dice

93.87 96.73 90.92 92.43

✓ 94.01 97.55 91.14 93.63

✓ 94.35 97.95 92.64 93.74

✓ ✓ 95.02 98.86 93.58 94.31

Table 8: Subcomponent ablation performance-
efficiency comparison on SUN-SEG-Easy Hard
set with 352 × 352 resolution.

Method
SUN-SEG-Hard

Dice GFlops Param.(M) FPS

w/o both 83.67 31.96 28.16 37.39

w/o HFSI 84.03 45.86 28.23 35.27

w/o RMP 85.27 32.87 28.47 32.73

w/ both 86.27 46.77 28.53 31.27

A.2 MORE VISUAL COMPARISON RESULTS

To demonstrate the superiority of our proposed method, we conduct visual comparisons with eight
state-of-the-art methods on CVC-612, including FSEL Sun et al. (2024), MSCAF Liu et al. (2023),
ZoomNext Pang et al. (2024), SLTNet Cheng et al. (2022), AutoSAM Shaharabany et al. (2023),
WeaklyPolyp Wei et al. (2023), PNS+ Ji et al. (2022), and SALI Hu et al. (2024). As shown in
Figure 13, the visual results demonstrate that our method outperforms previous state-of-the-art ap-
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proaches in polyp boundary segmentation, integrity preservation, and localization accuracy. This
demonstrates the method’s effectiveness on both SUN-SEG and CVC-612 datasets.

To illustrate the segmentation capability on continuous video streams, we sample four consecutive
frames at varying scales from the SUN-SEG dataset Ji et al. (2022) and compare our results with
several state-of-the-art methods, as shown in Figure 14.The SUN-SEG comparison clearly shows
that our method delivers more stable and consistently accurate segmentation across consecutive
frames than existing state-of-the-art approaches. Despite the dataset’s wide variations in lighting,
texture, and object shapes, the red, green, and yellow regions in the figures show our predictions
closely match the ground truth, demonstrating our approach’s robustness.

Figure 13: Visualization of module ablation on CVC-612 test set. Red, green and yellow represent
the GT, prediction and their overlapping regions, respectively.
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Figure 14: Visual comparison with SOTA methods on SUN-SEG. Red, green, and yellow represent
ground truth, prediction, and their overlapping regions, respectively.
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