
Towards Thinking-Optimal Scaling of Test-Time
Compute for LLM Reasoning

Wenkai Yang1∗ , Shuming Ma2, Yankai Lin1† , Furu Wei2
1Gaoling School of Artificial Intelligence, Renmin University of China

2Microsoft Research
{wenkaiyang, yankailin}@ruc.edu.cn
{shuming.ma, fuwei}@microsoft.com

Abstract

Recent studies have shown that making a model spend more time thinking through
longer Chain of Thoughts (CoTs) enables it to gain significant improvements in
complex reasoning tasks. While current researches continue to explore the benefits
of increasing test-time compute by extending the CoT lengths of Large Language
Models (LLMs), we are concerned about a potential issue hidden behind the current
pursuit of test-time scaling: Would excessively scaling the CoT length actually
bring adverse effects to a model’s reasoning performance? Our explorations on
mathematical reasoning tasks reveal an unexpected finding that scaling with longer
CoTs can indeed impair the reasoning performance of LLMs in certain domains.
Moreover, we discover that there exists an optimal scaled length distribution that
differs across different domains. Based on these insights, we propose a Thinking-
Optimal Scaling strategy. Our method first uses a small set of seed data with
varying response length distributions to teach the model to adopt different reasoning
efforts for deep thinking. Then, the model selects its shortest correct response
under different reasoning efforts on additional problems for self-improvement.
Our self-improved models built upon Qwen2.5-32B-Instruct outperform other
distillation-based 32B o1-like models across various math benchmarks, and achieve
performance on par with the teacher model QwQ-32B-Preview that produces the
seed data.3

1 Introduction

Recently, System-2 thinking [44] has become an important research area for enhancing the reasoning
capabilities of Large Language Models (LLMs). Unlike previous System-1 thinking systems [45, 35]
that perform fast thinking, such a slow thinking system aims to increase the test-time compute of
LLMs to make them think more thoroughly before responding to a question. OpenAI’ o1 model [28]
has demonstrated a promising potential in this direction. By incentivizing the model to employ longer
internal Chain of Thoughts (CoTs) [42] for thinking, o1 shows human-like reasoning capabilities,
including searching, reflecting, backtracking, and re-exploring in its reasoning process, and achieves
outstanding performance on complex reasoning tasks [13, 33].

Subsequently, a series of follow-up studies [30, 36, 11] have been proposed to imitate and explore
o1-like thinking systems. These studies try to scale the number of reasoning tokens of LLMs either
by distilling from existing o1-like models [14, 25, 26] or reinforcement learning [6, 15], and gain
significant improvements compared to earlier reasoning models [45, 35].

∗Work done during an internship at Microsoft Research.
†Corresponding Author
3Code, data and models are available at https://github.com/RUCBM/TOPS.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/RUCBM/TOPS

Behind the promising paradigm of test-time scaling, there is a few concurrent studies [3, 22] high-
lighting an efficiency issue of overthinking in existing o1-like models, where they tend to generate
an excessive number of tokens, even for simple questions that could be answered correctly with
just a few tokens. However, we are concerned about a more critical issue that could the excessive
pursuit of longer CoTs have negative impacts on the model’s reasoning performance? That is, besides
the efficiency issues, we aim to explore and study whether and how overly test-time scaling could
potentially impair the reasoning performance of LLMs, typically in the math domain.

To study the problem, we first calculate and compare the accuracies and used reasoning tokens
of several o1-like models and their corresponding System-1 thinking models on MATH500 [20]
and AIME20244 (see Figure 1). We find that subsequent o1-like models, QwQ-32B-Preview [30]
as an typical example, generate much more tokens but gain only limited improvements in model
performance. This preliminary exploration indicates that scaling to more reasoning tokens might not
consistently lead to better performance. Then, to fairly investigate the performance comparison of the
same base model after scaling with different lengths of CoTs, we conduct additional experiments
on LLaMA3.1-8B-Instruct [24] and Qwen2.5-32B-Instruct [29]. Specifically, we utilize QwQ-32B-
Preview [30] to generate and filter three types of reasoning paths with different lengths for the same set
of prompts. Then, we teach the base model to use different reasoning efforts (i.e., different numbers
of reasoning tokens) to solve a given problem based on learning on different subsets. Surprisingly,
we find that training with longer reasoning paths leads to worse performance especially in easier
tasks, and there exists an optimal reasoning effort that varies across tasks of different difficulty levels.
Our further analysis reveals that longer CoTs may contain more erroneous steps. Though including a
certain incorrect steps and subsequent reflective steps can teach the model how to correct errors in
inference, training on excessive erroneous steps can have a negative impact.

Based on the above findings, we propose a Thinking-OPtimal Scaling strategy (TOPS) that allows
LLMs to decide by themselves how many tokens are needed to solve a given problem. The motivation
is, if an LLM can already answer a question correctly under the given reasoning effort, increasing
the response length with additional tokens may have adverse effects as longer responses are more
likely to include erroneous steps. On the other hand, encouraging LLMs to spend more time thinking
brings benefits to tackling more challenging problems. Therefore, we first use a small set of o1-like
responses under different reasoning efforts (i.e., of varying lengths) to train a “tag” model, which
is used to generate responses for a large set of math problems under different reasoning efforts.
Then, we select the shortest correct response generated across all reasoning efforts given the same
problem to create a thinking-optimal dataset, which is used for the self-improvement of the base
model. Our self-improved model based on Qwen2.5-32B-Instruct achieves better performance
than existing distillation-based 32B o1-like models in various benchmarks with varying levels of
difficulty, including GSM8K [4], MATH500 and AIME2024. Furthermore, we perform iterative
self-improvement and obtain a reasoning model that achieves comparable performance to QwQ-32B-
Preview.

2 Related work

LLM Reasoning Leveraging the Chain-of-Thought (CoT) technique [42, 51], LLMs have
demonstrated impressive performance on various reasoning tasks [34, 33, 35]. CoT enables LLMs
to decompose the entire problem into several sub-goals and then reason step-by-step to achieve a
more reliable answer. Among various LLM reasoning tasks, mathematical reasoning has become
one of the most widely studied and important tasks. Current work on LLM math reasoning primarily
focuses on: synthesizing large-scale and diverse math data [49, 48, 17], constructing challenging
math reasoning benchmarks [8, 9], training powerful process reward models (PRMs) [20, 39, 36],
and designing more effective algorithms to improve math reasoning capabilities of LLMs [16, 12, 5].

Test-Time Scaling Recently, scaling test-time compute of LLMs has shown significant potential
for further improving their reasoning performance [1, 2]. Existing test-time scaling studies can be
divided into several categories: (1) Sampling-based scaling aims to increase the number of individual
reasoning paths of LLMs when solving a given problem. Then the most reliable answer is selected
from all the generated options using mechanisms such as majority voting [40], weighted majority
voting [18], or best-of-N selection [20]. (2) Tree search-based scaling expands reasoning paths by

4https://huggingface.co/datasets/AI-MO/aimo-validation-aime

2

https://huggingface.co/datasets/AI-MO/aimo-validation-aime

0 500 1000 1500 2000 2500 3000
Average Number of Tokens

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

gpt-4o-mini

gpt-4o

gemini-2.0-flash-exp

Qwen2.5-32B-Instruct

DeepSeek-V3-0324

o1-mini gemini-2.0-flash-thinking-exp-1219

QwQ-32B-Preview

DeepSeek-R1

Syetem-1 thinking models
Syetem-2 thinking models

(a) Results on MATH500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Average Number of Tokens

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

gpt-4o-mini

gpt-4o

gemini-2.0-flash-exp

Qwen2.5-32B-Instruct

DeepSeek-V3-0324

o1-mini

gemini-2.0-flash-thinking-exp-1219QwQ-32B-Preview

DeepSeek-R1

Syetem-1 thinking models
Syetem-2 thinking models

(b) Results on AIME2024

Figure 1: The accuracy and the average number of tokens for each model on MATH500 and
AIME2024. To ensure a fair comparison, we tokenized all model outputs using the Qwen2.5
tokenizer.

constructing tree-like trajectories, allowing LLMs to explore diverse options at each state and continue
reasoning along the most promising directions. Tree-of-Thoughts (ToT) [47] and Monte Carlo Tree
Search (MCTS) [43, 50, 37, 52] are two typical tree search-based test-time scaling methods. (3)
In-context search-based scaling enables LLMs to learn to search, backtrack and re-explore within
one single CoT path [7]. Recently, OpenAI’s o1 model [28] have made a significant breakthrough
in this line. It leverages reinforcement learning to scale the lengths of CoT to enable LLMs to
perform thorough thinking through reflection, verification and re-exploration when solving problems.
Following the same line, a series of studies [36, 6, 30, 11, 25, 14, 19, 46] have been proposed to scale
CoT lengths during inference time. Our work also primarily focuses on the scaling properties of
o1-like models.

We notice that there is a few concurrent studies [3, 22] highlighting that existing o1-like models
exhibit overthinking issues, often generating an excessive number of tokens for simple problems with
minimal benefit. Thus, they aim to shorten the CoT lengths of o1-like models while preserving their
performance. However, our work differs in that we aim to uncover a deeper and more critical issue:
scaling with more tokens can, in some cases, even degrade the model’s performance. Thus, our work
focuses on achieving optimal test-time scaling from base models in both aspects of effectiveness and
efficiency.

3 The impact of scaling efforts on the effectiveness of test-time scaling

3.1 Preliminary analysis on existing o1-like models

Though o1-like models has proven to be much more effective on reasoning tasks than previous System-
1 thinking models, we are curious about the scaling process behind the these o1-like models. That is,
we want to explore that: How effective has their scaling achieved compared to their corresponding
System-1 thinking models(e.g., QwQ-32B-Preview v.s. Qwen2.5-32B-Instruct)?

We first conduct a preliminary analysis on several existing typical o1-like models along with their
corresponding System-1 thinking models. Specifically, we choose o1-mini [28] v.s. gpt-4o/4o-
mini [27],5 Gemini2.0-Flash-Thinking-Exp.-1219 [11] v.s. Gemini2.0-Flash-Exp. [10], QwQ-32B-
Preview [30] v.s. Qwen2.5-32B-Instruct [29], and DeepSeek-R1 [6] v.s. DeepSeek-V3 [21] as our
experimental models. We calculate the accuracy and the average number of generated tokens of each
model on two typical benchmarks: MATH500 [20]: 500 high school math competition problems
across various subjects, sampled from MATH benchmark [13]; AIME2024: 30 challenging problems
from the American Invitational Mathematics Examination (AIME). To address the issue of token
counts not being directly comparable due to the different tokenizers used by different models, we
standardize by using Qwen2.5 tokenizer to tokenize the reasoning completions of different models

5Note that o1-mini and 4o/4o-mini do not have equivalent number of parameters, but we make a rough
comparison here.

3

Table 1: Data statistics (number of problems and average number of tokens in responses for each
type of reasoning effort) of three types of data samples under different reasoning efforts for training
each tag model.

Model #Problems
#Tokens

Low Medium High

LLaMA3.1-8B-Tag 1256 1532.32 2460.07 3647.50
Qwen2.5-32B-Tag 1312 1588.23 2535.65 3767.92

and then calculate the number of tokens. As the internal CoT of o1-mini is not available to users,
we use an estimation strategy based on the summary part, the number of reasoning tokens and total
number of completion tokens returned from the o1-mini model to estimate the number of tokens of
hidden CoT tokenized by Qwen2.5 tokenizer. Details and further discussions are in Appendix B. We
set the maximum number of generation tokens to 16,384 for each model in all evaluations.

We put the visualization results in Figure 1. As we can see, subsequent o1-like models (QwQ-
32B-Preview and Gemini2.0-Flash-Thinking) show less effective scaling effects compared with
o1-mini, as they generate much more tokens but gain less improvements when scaling from their
corresponding System-1 thinking models. QwQ-32B-Preview has the most severe issue in this regard.
This preliminary analysis suggests, to some extent, that excessively scaling to longer CoTs does not
maximize test-time scaling effects.

3.2 Deeper explorations on the scaling process of CoT length

The above analysis still faces a problem that the base models of different o1-like models are not
identical, making it unfairly to compare the impacts of scaled CoT lengths on test-time scaling
effects of different models. Therefore, we conduct experiments on LLaMA3.1-8B-Instruct [24] and
Qwen2.5-32B-Instruct [29] to fairly investigate the impact of the scaling efforts on the effectiveness
of test-time scaling. Specifically, we first use three system prompts (refer to Figure 7), corresponding
to different levels of reasoning effort (“Low”, “Medium” and “High”), to prompt QwQ-32B-Preview
to generate solutions of different numbers of tokens for the same set of math problems sampled from
NuminaMath [17]. We then filter out the problems that can be answered correctly under all three
reasoning efforts, along with the corresponding three reasoning paths of different lengths. However,
we find that QwQ-32B-Preview has relatively poor instruction-following abilities, reflected in that
the length distributions of the generated responses for the same question does not closely match the
specified system prompts (refer to the empirical evidence in Appendix G). Therefore, for a given
problem, we further reorder the three responses based on their lengths and keep them if their pairwise
length difference consistently exceeds 300 tokens. The length is determined either by LLaMA3.1
tokenizer or Qwen2.5 tokenizer depending on the chosen experimental model. Finally, we curate
a set of 1.3K problems, each accompanied by three o1-like responses of varying lengths. The data
statistics of each set for each model is shown in Table 1. We assign different system prompts (the
same in Figure 7) to each type of responses and train the base model on all three types of samples. By
doing so, we ensure the consistency between the base model and the training problems, allowing for
a fair comparison on the impacts of different scaling efforts on the effectiveness of test-time scaling.
We refer to the fine-tuned model as the “tag” model (LLaMA3.1-8B-Tag and Qwen2.5-32B-Tag).
During inference, we can use different system prompts to guide the tag model in applying varying
levels of reasoning effort to answer the questions.

The detailed training settings are put in Appendix E.1. For evaluation, besides MATH500 and
AIME2024 introduced before, we further include GSM8K [4] that contains 1319 grade school math
word problems. In the following, unless otherwise specified, we set the decoding temperature to 1.0
for all o1-like models, by following the recommended setting for o1 model.6 For System-1 thinking
models LLaMA3.1-8B-Instruct and Qwen2.5-32B-Instruct, we report the results for both decoding
temperatures with 1.0 and 0.0 for comprehensive comparison. Each result under 1.0 temperature is
averaged over 5 random seeds. The full results on LLaMA3.1-8B-Instruct and Qwen2.5-32B-Instruct
are shown in Figure 2 and Figure 3 respectively. We also display the performance of QwQ-32B-

6https://platform.openai.com/docs/guides/reasoning

4

https://platform.openai.com/docs/guides/reasoning

0 500 1000 1500 2000 2500
Average Number of Tokens

75

80

85

90

A
cc

ur
ac

y
(%

)

LLaMA3.1-8B-Instruct (Temp=0.0)
LLaMA3.1-8B-Instruct (Temp=1.0)
LLaMA3.1-8B-Tag-Low
LLaMA3.1-8B-Tag-Medium
LLaMA3.1-8B-Tag-High

(a) Results on GSM8K

0 1000 2000 3000 4000 5000
Average Number of Tokens

35

45

55

65

A
cc

ur
ac

y
(%

)

LLaMA3.1-8B-Instruct (Temp=0.0)
LLaMA3.1-8B-Instruct (Temp=1.0)
LLaMA3.1-8B-Tag-Low
LLaMA3.1-8B-Tag-Medium
LLaMA3.1-8B-Tag-High

(b) Results on MATH500

0 2000 4000 6000 8000 10000
Average Number of Tokens

0

5

10

15

A
cc

ur
ac

y
(%

)

LLaMA3.1-8B-Instruct (Temp=0.0)
LLaMA3.1-8B-Instruct (Temp=1.0)
LLaMA3.1-8B-Tag-Low
LLaMA3.1-8B-Tag-Medium
LLaMA3.1-8B-Tag-High

(c) Results on AIME2024

Figure 2: The accuracy and the average number of tokens of LLaMA3.1-8B-Instruct and LLaMA3.1-
8B-Tag under different reasoning efforts (“Low”, “Medium” and “High”) on different benchmarks
with varying levels of difficulty.

0 500 1000 1500 2000
Average Number of Tokens

85

90

95

100

A
cc

ur
ac

y
(%

)

Qwen2.5-32B-Instruct (Temp=0.0)
Qwen2.5-32B-Instruct (Temp=1.0)
Qwen2.5-32B-Tag-Low
Qwen2.5-32B-Tag-Medium
Qwen2.5-32B-Tag-High

(a) Results on GSM8K

0 500 1000 1500 2000 2500 3000 3500
Average Number of Tokens

80

85

90

95
A

cc
ur

ac
y

(%
)

Qwen2.5-32B-Instruct (Temp=0.0)
Qwen2.5-32B-Instruct (Temp=1.0)
Qwen2.5-32B-Tag-Low
Qwen2.5-32B-Tag-Medium
Qwen2.5-32B-Tag-High

(b) Results on MATH500

0 2000 4000 6000 8000 10000
Average Number of Tokens

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

Qwen2.5-32B-Instruct (Temp=0.0)
Qwen2.5-32B-Instruct (Temp=1.0)
Qwen2.5-32B-Tag-Low
Qwen2.5-32B-Tag-Medium
Qwen2.5-32B-Tag-High

(c) Results on AIME2024

Figure 3: The accuracy and the average number of tokens of Qwen2.5-32B-Instruct and Qwen2.5-
32B-Tag under different reasoning efforts (“Low”, “Medium” and “High”) on different benchmarks
with varying levels of difficulty.

Preview on all evaluation benchmarks when directly prompted with different prompts in Appendix H
for reference. We can draw several interesting conclusions from these results: (1) A small number
o1-like responses is already highly effective in enhancing the reasoning performance of LLMs.
This is also consistent with the previous findings [25, 14]. (2) Scaling with longer CoTs can bring
negative effects to the model’s reasoning performance in certain domains, especially on easy
tasks. For example, both LLaMA3.1-8B-Tag and Qwen2.5-32B-Tag perform worse under high
reasoning effort compared to the other two reasoning efforts, while consuming significantly more
tokens, particularly on GSM8K and MATH500. (3) There exists an optimal reasoning efforts
that varies across different tasks of varying difficulty levels. As we can see, low reasoning effort
consistently works best on GSM8K, while medium and high reasoning efforts are more beneficial
for harder question. Furthermore, we display the breakdown results of each model on MATH500
categorized by different problem levels in Appendix F, and the results also show the consistent
conclusions on the negative effect of excessively scaling CoT lengths. We also conduct additional
experiments on general reasoning tasks beyond mathematical reasoning to demonstrate that the above
findings hold true in other tasks as well. The detailed results and discussions are in Appendix J.

To further investigate the impact of scaling with varying CoT length distributions, we calculate the
distributions of answers of reasoning effort-conditioned models under different reasoning efforts.
Specifically, we calculate the average number of distinct answers in 5 samples per prompt under each
reasoning effort. The results are in Table 2. We also display the accuracy on each benchmark for
reference. We find a very interesting phenomenon. Generally, the reasoning effort that achieves the
best performance on a certain benchmark also leads to the lowest average number of distinct
answers per prompt. This indicates that, under the optimal thinking effort, the model can
generate the most consistent answers across multiple samplings without either underthinking
or overthinking.

3.3 Analysis on the adverse effects of excessive length scaling

Here, we take a deeper step to explore why training on longer CoTs leads to a decline in model’s
reasoning performance. We randomly selected 100 problems from the tag model’s training set along

5

Table 2: The distribution of distinct answers under different reasoning efforts along with the average
accuracy. We highlight the best accuracy and the lowest average number of distinct answers per
prompt.

Model
GSM8K MATH500 AIME2024

Accuracy #Answers Accuracy #Answers Accuracy #Answers

LLaMA3.1 models
LLaMA3.1-8B-Tag-Low 87.26 1.37 59.00 2.34 7.33 4.27
LLaMA3.1-8B-Tag-Medium 87.06 1.42 61.12 2.54 7.33 4.27
LLaMA3.1-8B-Tag-High 86.89 1.47 59.36 2.59 10.00 4.00

Qwen2.5 models
Qwen2.5-32B-Tag-Low 95.53 1.33 90.60 1.39 34.67 3.20
Qwen2.5-32B-Tag-Medium 94.33 1.14 91.48 1.36 42.00 3.13
Qwen2.5-32B-Tag-High 93.31 1.15 90.56 1.40 41.33 3.30

Low Medium High
Reasoning Effort

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

be
r o

f R
ea

so
ni

ng
 R

ou
nd

s

Avg. Number of Reasoning Rounds
Avg. Number of Reasoning Rounds Containing Erroneous Steps
Ratio Trend

0.00

0.05

0.10

0.15

0.20
R

at
io

 V
al

ue

Figure 4: The statistics of responses under differ-
ent reasoning efforts for training the tag models.

Model
Model

46.0

47.0

48.0

49.0

50.0

51.0

52.0

M
AT

H
50

0
A

cc
ur

ac
y

LLaMA3.1-8B-Instruct
LLaMA3.1-8B-Long-CoT (w/o loss masking)
LLaMA3.1-8B-Long-CoT (w/ loss masking)

Figure 5: Empirical results of loss masking on
erroneous steps. Evaluation temperature is 0.0.

with their responses under three different reasoning efforts. We first follow the existing study [3] to
use gpt-4o to determine the total number of reasoning rounds contained in each response. Each
reasoning round is defined as a complete reasoning process or verification process that contains a final
answer. Besides, we further use gpt-4o to determine the number of reasoning rounds that contain
erroneous steps or wrong final answers. The utilized prompt is shown in Appendix D. We visualize
the average number of reasoning rounds, the average number of erroneous reasoning rounds, and the
average ratio of erroneous reasoning rounds, on each problem under each reasoning effort in Figure 4.
Note that all evaluated responses have correct final answers.

First, we can see that the number of reasoning rounds consistently increases from low reasoning
effort to high reasoning effort. It could lead to the overthinking issue in reasoning models [3], where
redundant tokens are used to answer the question through repetitive verification. This, however,
should not affect the accuracy if all reasoning rounds are correct. Unfortunately, we observe a pattern
that the number and proportion of erroneous reasoning rounds also increase when the reasoning
effort becomes higher. Training the model on more wrong steps would bring adverse effects to
the model’s reasoning abilities, which can explain why scaling with high reasoning effort leads to
worse results. Therefore, we can conclude that while including a certain incorrect and reflective steps
can help the model learn to correct errors during inference, an excess of erroneous steps can have a
detrimental impact on model’s learning.

To further validate the above claim, we conduct controlled validation experiments about training the
model on erroneous reasoning steps with subsequent error corrections. Specifically, we first construct
long CoTs with reflection and correction from scratch. We obtain initial CoTs with incorrect answers
generated by LLaMA3.1-8B-Instruct on MATH training prompts, and use Qwen2.5-72B-Instruct to
critique them (i.e., identify the erroneous step and generate suggestions for correction). Then, we
enable LLaMA3.1-8B-Instruct to generate self-reflections and corrections based on the critiques, and

6

𝐸: 𝑒2
𝑄: ____
𝐴2: ___

𝐸: 𝑒𝑛
𝑄: ____
𝐴𝑛: ___

𝐸: 𝑒1
𝑄: ____
𝐴1: ___

……

𝑄1: ___ 𝑄𝑚: ___

𝐸: 𝑒1
𝐴11: ___

𝐸: 𝑒1
𝐴1𝑚: ___

𝐸: 𝑒2
𝐴22: ___

𝐸: 𝑒𝑛
𝐴𝑛2 : ___

𝐸: 𝑒2
𝐴2𝑚: ___

𝐸: 𝑒𝑛
𝐴𝑛𝑚: ___

…
…

…
…

Seed Data Under Different Reasoning Efforts

……

𝑄1: ___

𝑄𝑚: ___

Additional
Problems

…
…

Format
Imitation

Reasoning
Effort-
Conditioned
Generation

Self-
Improvement

Figure 6: The illustration of our Thinking-Optimal Scaling method. Our method includes three stages:
Format Imitation enables the base model to learn how to adopt different levels of reasoning effort
ei to perform System-2 thinking, using a small set of seed data. Reasoning Effort-Conditioned
Generation requires the model to apply System-2 thinking to a large set of problems under different
reasoning efforts. Self-Improvement select the shortest correct response for each problem among all
responses to fine-tune the base model to achieve thinking-optimal test-time scaling.

merge these with the initial responses to form long CoTs. We fine-tune LLaMA3.1-8B-Instruct on the
created long CoTs. In the results shown in Figure 5, we can observe that if we apply loss masking
to the tokens in the identified wrong steps (i.e., not calculating loss on these erroneous steps),
the performance is better compared to calculating loss on all steps/tokens. This further validates
our claim that training on erroneous steps can negatively impact model performance. Additional
experiments and empirical analysis are in Appendix I.

4 Thinking-optimal test-time scaling

The above analysis reveals that excessively increasing the response lengths of LLMs can result in
negative consequences. This motivates us that an optimal approach to achieve test-time scaling
is allowing the model to determine by itself the number of tokens needed to solve each problem.
Specifically, for a simple question, if the model can provide a correct answer within a certain
number of tokens, further extending the CoTs becomes suboptimal, as it may introduce unnecessary
overthinking or even additional erroneous steps into the reasoning process. Conversely, the model
should be encouraged to use more tokens for difficult problems if additional reasoning effort can help
it to obtain a more reliable and accurate answer.

Thus, we propose a Thinking-OPtimal Scaling (TOPS) strategy aiming to achieve more effective
and efficient test-time scaling for LLM reasoning. We define a System-2 thinking-optimal response
as the shortest correct response that the model can generate using System-2 thinking: fewer
tokens may lead to wrong answer while more tokens causes overthinking. Then, our method includes
three stages: Format Imitation, Reasoning Effort-Conditioned Generation, and Self-Improvement.
The illustration of our method is shown in Figure 6.

Format Imitation First, we require a small set of o1-like responses for a cold start, enabling the
model to learn the format of System-2 thinking patterns, including searching, reflecting, verification,
backtracking, etc. Preliminary results in Section 3.2 and previous studies [25, 14] have shown that
a small number of o1-like responses are sufficient for the model to effectively learn the format of
System-2 reasoning. Such a small set of seed data can be manually human-written or generated
by existing o1-like models. However, different from previous studies [25, 26] that use a fixed length
distribution of seed samples (i.e., directly generated by existing o1-like models), which may not be a
thinking-optimal distribution for our base model, we instead create the seed data containing responses
under different reasoning efforts (i.e., different length distributions). Specifically, we define a small
number of seed problems as Ps, and our goal is to curate a seed dataset Ds = Ds1 ∪ · · · ∪ Dsn ,
where Dsi = {(ei, x, yei)|x ∼ Ps} represents the responses to seed problems under a specific

7

reasoning effort ei. This follows the same procedure as data curation for the tag model in Section 3.2.
Then, we train the base model on this dataset to obtain the tag model that can apply different levels
of reasoning effort to perform System-2 thinking on a given problem:

θtag = argmax
θ

E(ei,x,yei
)∼Ds

[P (yei |ei, x,θ)]. (1)

Reasoning Effort-Conditioned Generation We then use the tag model to generate the solutions on
a large number of additional math problems Pa under different reasoning efforts ei:

yei ∼ π(·|ei, x;θtag), x ∼ Pa, (2)

where π(·|θtag) denotes the output distribution of the tag model. We select the shortest correct
solution ysc among all generations {ye1 , · · · , yen} as the thinking-optimal response for problem x,
and obtain a thinking-optimal self-improvement dataset DTOP = {(x, ysc)|x ∼ Pa)}.

Self-Improvement After obtaining the thinking-optimal dataset determined by the model itself, we
can use it to train the base model, enabling the base model to achieve better self-improvement on
System-2 thinking. Specifically, we perform Supervised Fine-Tuning (SFT) to the base model on
DTOP :

θTOP = argmax
θ

E(x,ysc)∼DTOP
[P (ysc|x,θ)]. (3)

5 Experiments and analysis

5.1 Experimental settings

Base Model We mainly display and compare the results of performing Thinking-Optimal Scaling on
Qwen2.5-32B-Instruct, as it serves as an appropriate base model for exploration on test-time scaling
according to previous works [30, 25, 26]. To validate the generalizability of our approach, we also
perform additional experiments on LLaMA3.1-8B-Instruct, and put the results in Section 5.4.

Datasets First, we directly use the model Qwen2.5-32B-Tag created in Section 3.2 as the tag model
for reasoning effort-conditioned generation. As mentioned before, this tag model is trained on the
seed data that contains 1.3K problems from a subset of NuminaMath, and totally 3.9K responses
under three types of reasoning efforts generated by QwQ-32B-Preview. We then use this tag model to
generate responses on an additional subset of NuminaMath containing extra 50K problems under
different reasoning efforts. On each problem, we sample only 1 response for each reasoning effort,
though we believe that performing multiple samplings could further enhance effectiveness. For each
problem, we select the shortest correct response among all three responses to the problem as the
thinking-optimal response. Finally, we incorporate the responses corresponding to low reasoning
effort from the seed data into the above generated dataset, resulting in a thinking-optimal dataset
of about 26K samples for self-improvement. We denote the self-improved model created by our
method as Qwen2.5-32B-TOPS. We then evaluate the performance of our model on three typical
math reasoning benchmarks: GSM8K, MATH500, and AIME2024. The additional results on general
reasoning tasks can be found in Appendix J.

Training and Evaluation Details In the SFT stage, the learning rate is 1 × 10−5, the batch size
is 96, and the number of epochs is 2. In inference, the decoding temperature is 1.0, the maximum
generation length is 16,384. We report the average accuracy across 5 random seeds in each
experiment. The standard deviation results are in Appendix K. In the evaluation of MATH500, we
also use gpt-4o to assist in identifying missed cases caused by format issues [8].

Baselines Besides the base model Qwen2.5-32B-Instruct, we compare our self-improved model with
several existing o1-like models that are based on the same base model: (1) QwQ-32B-Preview: One
of the most popular o1-like reasoning models developed by Qwen Team. (2) STILL-2-32B [25]:
A System-2 thinking model trained on 3.9K challenging math examples generated by QwQ-32B-
Preview and DeepSeek-R1-Lite7. (3) Sky-T1-32B-Preview [26]: The reasoning model trained on
17K examples generated by QwQ-32B-Preview, including 10K math examples. (4) Qwen2.5-32B-
Random: After the reasoning effort-based generation, we randomly select a correct solution on each
problem rather than the shortest one to form a thinking-suboptimal dataset, and train the base model
on this dataset.

7https://api-docs.deepseek.com/news/news1120

8

https://api-docs.deepseek.com/news/news1120

Table 3: The results of our self-improved (Qwen2.5-32B-TOPS) and further iteratively self-improved
models (Qwen2.5-32B-TOPS-Iter) compared to existing o1-like models using the same base model
on GSM8K, MATH500, and AIME2024. In each setting, the underlined value represents the best
result for System-1 thinking models, while the bold value indicates the best result for System-2
thinking models.

Model
GSM8K MATH500 AIME2024

Accuracy #Tokens Accuracy #Tokens Accuracy #Tokens

System-1 thinking models
Qwen2.5-32B-Instruct (Temp. = 0.0) 95.91 295.01 84.20 576.89 16.67 1407.43
Qwen2.5-32B-Instruct (Temp. = 1.0) 95.30 296.98 82.84 555.65 14.67 855.62

System-2 thinking models
QwQ-32B-Preview 95.23 761.01 92.02 2416.23 45.33 7636.63
STILL-2-32B 95.47 570.64 91.40 2005.28 45.33 6656.11
Sky-T1-32B-Preview 94.82 695.66 89.48 2022.07 35.33 5351.29
Qwen2.5-32B-Random 95.00 938.45 90.16 2670.19 39.33 7691.30
Qwen2.5-32B-TOPS (ours) 95.82 412.24 91.48 1883.29 43.33 7260.26
Qwen2.5-32B-TOPS-Iter-SFT (ours) 95.45 366.14 90.76 1701.11 44.00 6611.89
Qwen2.5-32B-TOPS-Iter-DPO (ours) 95.80 384.81 91.60 1731.72 46.00 6426.62

5.2 Main results

The results of each model are displayed in Table 3. Besides the accuracy, we also report the number
of CoT tokens used by each model on each dataset.8

First, we can see that the model trained under thinking-optimal samples (Qwen2.5-32B-TOPS)
consistently performs better than the model trained under thinking-suboptimal samples (Qwen2.5-
32B-Random). This helps to revalidate our motivation that scaling with shortest correct responses,
as determined by the base model itself using System-2 thinking, is the most effective approach to
achieve optimal test-time scaling. Second, compared to distillation-based models STILL-2-32B and
Sky-T1-32B-Preview, our self-improvement-based model Qwen2.5-32B-TOPS achieves better results
across the board, except for AIME2024, where it slightly underperforms STILL-2-32B. However,
note that STILL-2-32B uses a greater number of high-quality distilled samples (3.9K) including more
challenging problems from AIME1983-2023, whereas our model achieves comparable performance
using only 1.3K seed samples and effective self-improvement strategy.

Regarding the reasoning efforts (i.e., the number of reasoning tokens) used by each model to solve
different difficulty levels of tasks, we observe that Qwen2.5-32B-TOPS uses fewer tokens on easier
tasks like GSM8K compared to other models, effectively mitigating the issue of overthinking [3]. On
the other hand, it tends to spend more time thinking on harder problems such as AIME2024. The
comparison of reasoning tokens used by different models across various domains reflects our model’s
ability to exhibit adaptive reasoning depths.

5.3 Results of iterative self-improvement

To further enhance the reasoning performance of our model on challenging problems, we perform
iterative self-improvement on Qwen2.5-32B-TOPS. Specifically, we select additional 4500 MATH
problems [13] (which have not appeared in the previously used problems) and the problems from
AIME1983-2023. On each problem, we sample 8 responses from Qwen2.5-32B-TOPS. Then,
we select the shortest correct response among 8 responses as the chosen response. One iterative
self-improvement approach is to further supervised fine-tune Qwen2.5-32B-TOPS on the dataset
composed of all chosen responses (shortest correct responses), resulting in Qwen2.5-32B-TOPS-
Iter-SFT. Besides, we can also perform preference optimization. Specifically, if there are responses
with incorrect final answers, we select the longest incorrect response as the rejected response to
improve reasoning capability. Additionally, we include preference pairs where the rejected response
is the shortest wrong response if there exists a wrong response that is shorter than the shortest correct

8For STILL-2-32B and Sky-T1-32B-Preview, we only calculate the number of tokens in the thought part and
do not include the tokens in the summary part.

9

Table 4: The self-improvement results on LLaMA3.1-8B-Instruct. In each setting, the underlined
value represents the best result for System-1 thinking models, while the bold value indicates the best
result for System-2 thinking models.

Model
GSM8K MATH500 AIME2024

Accuracy #Tokens Accuracy #Tokens Accuracy #Tokens

System-1 thinking models
LLaMA3.1-8B-Instruct (Temp. = 0.0) 82.18 262.23 47.00 1801.76 6.67 5506.30
LLaMA3.1-8B-Instruct (Temp. = 1.0) 76.21 233.08 39.60 733.56 4.67 1691.88

System-2 thinking models
LLaMA3.1-8B-Random-SFT 87.94 1051.05 60.52 3627.23 4.67 8165.69
LLaMA3.1-8B-TOPS-SFT 88.54 571.10 61.28 3254.01 8.00 7392.59

response, to avoid causing the model to underthink. After obtaining the preference dataset, we
perform Direct Preference Optimization (DPO) [32] on Qwen2.5-32B-TOPS to get Qwen2.5-32B-
TOPS-Iter-DPO. Detailed experimental settings are in Appendix E.

The results of iterative self-improvement are in Table 3. As we can observe, further SFT is mainly
effective in shortening the CoT lengths but does not necessarily improve reasoning performance.
Preference optimization improves both the efficiency and the effectiveness, resulting in a reasoning
model that is comparable to QwQ-32B-Preview.

5.4 Results on LLaMA3.1-8B-Instruct

Here, we display the results of performing our Thinking-Optimal Test-Time Scaling strategy on
LLaMA3.1-8B-Instruct in Table 4. The experimental setups are consistent with that in the main experi-
ments above. The results demonstrate the generalizability of our method on other model architectures.

6 Conclusion

In this work, we aim to explore a potential issue under current pursuit of test-time scaling. Through
empirical analysis on mathematical reasoning tasks, we first demonstrate that overly long CoTs can
negatively impact the model’s reasoning performance in certain domains, emphasizing the need
for optimal CoT length scaling. To tackle this, we propose a Thinking-Optimal Scaling strategy,
which first leverages a small set of seed data to teach LLMs to adopt varying levels of reasoning
effort to perform System-2 thinking. Then, our approach allows models to identify the shortest
correct response for self-improvement, leading to more efficient and effective System-2 thinking.
Experimental results show that our self-improved and iteratively self-improved models, based on
Qwen2.5-32B-Instruct, outperform existing distillation-based o1-like models and achieve comparable
performance with QwQ-32B-Preview across various math benchmarks.

7 Limitations

There are some limitations in the current work: (1) Our analysis mainly focuses on the math
reasoning domain, because math tasks offer relatively accurate and reliable performance verification.
However, we believe investigating the potential impact of long CoTs in other domains is important,
which can be a promising direction in future work. We also provide some preliminary results in
the general reasoning domain in Appendix J. (2) This work primarily focuses on the SFT setting.
While investigating effective SFT and distillation is very important and practical—as highlighted in
concurrent studies [25, 38]—exploring the impact of CoT length in the reinforcement learning (RL)
setting is another compelling direction. We believe that our findings can be extended to RL-based
scaling. Specifically, since RL assigns positive rewards (e.g., 1.0) to all solutions with correct final
answers, shorter correct solutions with fewer erroneous reasoning steps should be preferred over
longer correct ones with more errors. Over-rewarding the latter may encourage the model to generate
incorrect intermediate steps first and rely on its imperfect self-correction ability to correct erroneous
steps, rather than producing the correct answer in one go.

10

Acknowledgements

We sincerely thank all the anonymous reviewers and (S)ACs for their valuable comments and
thoughtful suggestions. This work was supported by The National Natural Science Foundation of
China (No. 62376273 and No.U2436209) and Beijing Nova Program (No. 20240484568).

References
[1] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,

and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[2] Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more LLM calls all you need? towards the scaling properties of compound AI
systems. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=m5106RRLgx.

[3] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the
overthinking of o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

[4] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[5] Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo
Wang, Yuan Yao, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. Notion Blog.

[6] DeepSeek. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 1
2025. URL https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_
R1.pdf.

[7] Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

[8] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

[9] Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning,
Caroline Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al.
Frontiermath: A benchmark for evaluating advanced mathematical reasoning in ai. arXiv
preprint arXiv:2411.04872, 2024.

[10] Google. Gemini 2.0 flash experimental, 2024. URL https://deepmind.google/
technologies/gemini/flash/.

[11] Google. Gemini 2.0 flash thinking mode, 2024. URL https://ai.google.dev/
gemini-api/docs/thinking-mode.

[12] Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao
Yang. rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv
preprint arXiv:2501.04519, 2025.

[13] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

[14] Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia,
Yiwei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey–part 2: Surpassing o1-preview
through simple distillation, big progress or bitter lesson? arXiv preprint arXiv:2411.16489,
2024.

11

https://openreview.net/forum?id=m5106RRLgx
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://ai.google.dev/gemini-api/docs/thinking-mode
https://ai.google.dev/gemini-api/docs/thinking-mode
https://openreview.net/forum?id=7Bywt2mQsCe

[15] Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms, 1 2025. URL https:
//github.com/MoonshotAI/Kimi-k1.5/blob/main/Kimi_k1.5.pdf.

[16] Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-
dpo: Step-wise preference optimization for long-chain reasoning of llms. arXiv preprint
arXiv:2406.18629, 2024.

[17] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13, 2024.

[18] Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen.
Making language models better reasoners with step-aware verifier. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 5315–5333, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.291.
URL https://aclanthology.org/2023.acl-long.291/.

[19] Zongzhao Li, Zongyang Ma, Mingze Li, Songyou Li, Yu Rong, Tingyang Xu, Ziqi Zhang, Deli
Zhao, and Wenbing Huang. Star-r1: Spatial transformation reasoning by reinforcing multimodal
llms. arXiv preprint arXiv:2505.15804, 2025.

[20] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[21] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[22] Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun
Cao, and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning
pruning. arXiv preprint arXiv:2501.12570, 2025.

[23] Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-
reasoner: Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652,
2025.

[24] MetaAI. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024.

[25] Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

[26] NovaSky Team. Sky-t1: Train your own o1 preview model within $450. https://novasky-
ai.github.io/posts/sky-t1, 2025. Accessed: 2025-01-09.

[27] OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o.

[28] OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms.

[29] Qwen Team. Qwen2. 5: A party of foundation models. Qwen (Sept. 2024). url: https://qwenlm.
github. io/blog/qwen2, 5, 2024.

[30] Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://qwenlm.github.io/blog/qwq-32b-preview/.

[31] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, November 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

[32] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024.

[33] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. arXiv preprint arXiv:2311.12022, 2023.

12

https://github.com/MoonshotAI/Kimi-k1.5/blob/main/Kimi_k1.5.pdf
https://github.com/MoonshotAI/Kimi-k1.5/blob/main/Kimi_k1.5.pdf
https://aclanthology.org/2023.acl-long.291/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://openai.com/index/hello-gpt-4o
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b/

[34] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[35] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[36] Skywork-o1. Skywork-o1 open series. https://huggingface.co/Skywork, November
2024. URL https://huggingface.co/Skywork.

[37] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[38] Lin Sun, Guangxiang Zhao, Xiaoqi Jian, Yuhan Wu, Weihong Lin, Yongfu Zhu, Linglin
Zhang, Jinzhu Wu, Junfeng Ran, Sai-er Hu, et al. Tinyr1-32b-preview: Boosting accuracy with
branch-merge distillation. arXiv preprint arXiv:2503.04872, 2025.

[39] Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9426–9439, 2024.

[40] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

[41] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. Advances in Neural Information
Processing Systems, 37:95266–95290, 2024.

[42] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[43] Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis
of compute-optimal inference for problem-solving with language models. 2024.

[44] Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden,
Duy Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, et al. Towards system 2 reasoning
in llms: Learning how to think with meta chain-of-though. arXiv preprint arXiv:2501.04682,
2025.

[45] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng
Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward
mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

[46] Wenkai Yang, Jingwen Chen, Yankai Lin, and Ji-Rong Wen. Deepcritic: Deliberate critique
with large language models. arXiv preprint arXiv:2505.00662, 2025.

[47] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik R Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=5Xc1ecxO1h.

[48] Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

[49] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[50] Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4
level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394, 2024.

13

https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=N8N0hgNDRt

[51] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting
in large language models. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=5NTt8GFjUHkr.

[52] Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua
Luo, and Kaifu Zhang. Marco-o1: Towards open reasoning models for open-ended solutions.
arXiv preprint arXiv:2411.14405, 2024.

14

https://openreview.net/forum?id=5NTt8GFjUHkr

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of the paper are well summarized in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the section Limitations in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the detailed data generation and experimental settings in Sec-
tion 3.2, Section 5.1, and Appendix E to ensure the reproducibility of our experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have released the code and data. We have also provided the detailed
instructions to curate data and reproduce experiments in Section 3.2, Section 5.1, and
Appendix E.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the complete experimental settings in Section 5.1 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The standard deviation results are displayed in Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details are in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed and followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of our paper in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original owners of assets used in this work properly in
Section 3.2 and Section 5.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets. Our training and evaluation data is
based on existing math data.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have described in detail in Section 3.2, Section 3.3, and Section 5.1 how
we use LLMs to curate training data and perform numerical analysis.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Table 5: CoT token count returned from o1-mini API and estimated by Qwen2.5 tokenizer.

Method MATH500 AIME2024

o1-mini API 1122.07 4861.87
Qwen2.5 Tokenizer 1110.88 4972.08

A Impact statement

This work aims to explore the effectiveness and limitations of o1-like test-time scaling. Our goal
is to enhance both the efficiency and effectiveness of test-time scaling in a more thinking-optimal
way. These findings highlight the importance of adaptive reasoning efforts and provide a promising
direction for more effectively enhancing LLM reasoning capabilities.

B Details on estimating the number of tokens in hidden CoT of o1-mini by
Qwen2.5 tokenizer

In the preliminary analysis in Section 3.1, we use Qwen2.5 tokenizer to calculate the number of
tokens in the CoTs generated by each model for a fair comparison. However, o1-mini does not expose
the internal CoTs to users, but only shows the summary parts S, along with the number of reasoning
tokens no1

r and total number completion tokens no1
c (the sum of reasoning tokens and summary

tokens) measured by o1-mini tokenizer. Therefore, we choose to estimate the number of tokens in its
hidden CoTs measured by the Qwen2.5 tokenizer using S, no1

r and no1
c . Specifically, we denote the

number of tokens of the summary part measured by Qwen2.5 tokenizer as nqwen
s , then the estimated

number of tokens of hidden CoT by Qwen2.5 tokenizer can be calculated as nqwen
s × no1

r

no1
c −no1

r
.

We also display the comparison results on the CoT token count returned by the o1-mini API and the
number of tokens we estimated using the Qwen2.5 tokenizer in Table 5. As we can see, the numbers
do not differ significantly. Thus, we use the estimation results from the Qwen2.5 tokenizer in the
main text in order to make a fair comparison of the number of reasoning tokens used by different
models.

C Prompts for generating reasoning responses under different reasoning
efforts

We put the system prompts for QwQ-32B-Preview to generate responses under different reasoning
efforts in Figure 7.

D User prompt for gpt-4o to determine the number of (erroneous) reasoning
rounds

We display the user prompt for gpt-4o to help determine the number of total and erroneous reasoning
rounds in Figure 8.

E Experimental settings

E.1 Training settings for tag models

When creating two tag models, the learning rate is 1 × 10−5, the batch size is 32. The number
of epochs is 3 for Qwen2.5-32B-Tag and 5 for LLaMA3.1-8B-Tag. The training is performed on
8×NVIDIA H100 80G.

22

System Prompts for QwQ-32B-Preview under Different Reasoning Efforts
Low Reasoning Effort: You have extremely limited time to think and respond to the user’s query. Every
additional second of processing and reasoning incurs a significant resource cost, which could affect
efficiency and effectiveness. Your task is to prioritize speed without sacrificing essential clarity or accuracy.
Provide the most direct and concise answer possible. Avoid unnecessary steps, reflections, verification, or
refinements UNLESS ABSOLUTELY NECESSARY. Your primary goal is to deliver a quick, clear and
correct response.
Medium Reasoning Effort: You have sufficient time to think and respond to the user’s query, allow-
ing for a more thoughtful and in-depth answer. However, be aware that the longer you take to reason
and process, the greater the associated resource costs and potential consequences. While you should not
rush, aim to balance the depth of your reasoning with efficiency. Prioritize providing a well-thought-out
response, but do not overextend your thinking if the answer can be provided with a reasonable level of
analysis. Use your reasoning time wisely, focusing on what is essential for delivering an accurate response
without unnecessary delays and overthinking.
High Reasoning Effort: You have unlimited time to think and respond to the user’s question. There
is no need to worry about reasoning time or associated costs. Your only goal is to arrive at a reliable,
correct final answer. Feel free to explore the problem from multiple angles, and try various methods in
your reasoning. This includes reflecting on reasoning by trying different approaches, verifying steps from
different aspects, and rethinking your conclusions as needed. You are encouraged to take the time to
analyze the problem thoroughly, reflect on your reasoning promptly and test all possible solutions. Only
after a deep, comprehensive thought process should you provide the final answer, ensuring it is correct and
well-supported by your reasoning.

Figure 7: System prompts for QwQ-32B-Preview with varying levels of reasoning effort.

User Prompt for gpt-4o to Determine the Number of (Erroneous) Reasoning Rounds
You will be provided with a math problem and a solution generated by a reasoning model.
The model’s response may consist of multiple reasoning rounds.
One reasoning round is a part of the full model generation and is defined as a complete reasoning process
or verification process that explicitly contains the final answer.
Your task is to carefully analyze the response to determine the number of reasoning rounds it contains,
and identify how many of these solutions contain erroneous steps, including intermediate erroneous steps
or erroneous final answer that is different from the ground truth answer.
After you reasoning process, please give your final conclusions as “#### Number of rounds: <number>"
and “#### Number of wrong rounds: <number>".
Problem: {question}
Solution: {solution}
Ground Truth Answer: {answer}

Figure 8: User prompt for gpt-4o to determine the number of reasoning rounds.

E.2 Training settings in format imitation

In the format imitation stage, we perform SFT on the base model Qwen2.5-32B-Instruct on a small
subset of seed data containing 1.3K problems sampled from NuminaMath along with responses with
varying lengths for each problem. The statistics of the seed data is shown in Table 1. In SFT stage, the
learning rate is 1× 10−5, the batch size is 32, the number of epochs is 3. The training is performed
on 8×NVIDIA H100 80G.

E.3 Training settings in self-improvement

In the self-improvement stage, we perform SFT on Qwen2.5-32B-Instruct on the curated thinking-
optimal dataset for 2 epochs. The learning rate is 1× 10−5, and the batch size is 96. The training is
performed on 4×NVIDIA H100 80G.

E.4 Training settings in iterative self-improvement

In the iterative self-improvement stage, for Qwen2.5-32B-TOPS-Iter-SFT, the learning rate is 1×10−6,
the batch size is 32, and we set the training epoch to 1. For Qwen2.5-32B-TOPS-Iter-DPO, the
learning rate is 5× 10−7, the batch size is 32, the training epoch is 3. The training is performed on
8×NVIDIA H100 80G.

E.5 Evaluation settings

For all o1-like models, we set the decoding temperature to 1.0 and average the results over 5 random
seeds for each evaluation experiment. The maximum generation length is 16,384. All evaluations are
conducted on 4 × NVIDIA A100 80G.

23

Table 6: Breakdown results of tag models on MATH500 categorized by problem difficulty levels.

Model
Level-1 Level-2 Level-3 Level-4 Level-5

Acc. #Tokens Acc. #Tokens Acc. #Tokens Acc. #Tokens Acc. #Tokens

LLaMA3.1-8B-Tag-Low 92.09 1415.00 78.89 1702.68 68.38 2238.64 54.22 3386.63 32.24 4719.16
LLaMA3.1-8B-Tag-Medium 87.44 2123.17 79.11 2775.34 72.19 3541.26 57.81 4467.70 35.07 6267.16
LLaMA3.1-8B-Tag-High 87.44 2924.74 78.67 3561.78 71.62 4447.92 54.22 5242.71 32.69 6735.32

Qwen2.5-32B-Tag-Low 97.67 673.82 95.33 987.61 97.14 1098.93 90.31 1802.25 80.30 3330.60
Qwen2.5-32B-Tag-Medium 96.74 1757.15 96.22 1761.37 97.14 1983.42 90.94 2692.74 82.69 4344.62
Qwen2.5-32B-Tag-High 96.74 2077.88 95.33 2291.11 95.43 2479.56 89.84 3223.67 82.24 4659.30

Table 7: Raw length distributions (response length rankings) of different reasoning-effort prompted
responses on QwQ-32B-Preview.

Effort Longest % Middle % Shortest %

Low 15.2 18.3 66.5
Medium 36.4 45.4 18.2
Hight 48.4 36.2 15.4

F Breakdown results of tag models on MATH500

We display the breakdown results of tag models on MATH500 under different difficulty levels in
Table 6. The results also validate the claim that continuously increasing the reasoning effort
can indeed bring adverse effects, especially on lower-level problems (e.g., 92.09 (Low) -> 87.44
(Medium/High) and 97.67 (Low) -> 96.74 (Medium/High) on Level 1 problems for LLaMA3.1-8B-
Tag and Qwen2.5-32B-Tag separately).

G Response length distribution of QwQ-32B-Preview under different
reasoning effort-based system prompts

We put the initial response length distribution of different reasoning-effort prompted responses
on QwQ-32B-Preview in Table 7. As we can see, in nearly 15% of cases, the low reasoning-
effort prompted responses are even the longest among all three responses. This indicates that only
using direct prompting is unreliable to explore the impact of CoT length on reasoning performance.
Therefore, when training tag models, for each training problem, we reorder the responses to ensure
that the response lengths under different reasoning efforts follow an consistently increasing order
from low to medium to high. In such a controlled setting, we can fairly observe the impact of CoT
length on reasoning performance.

H Performance of QwQ-32B-Preview and QwQ-32B when directly prompted
with different reasoning effort-based prompts

Here, we display the performance of QwQ-32B-Preview [30] and QwQ-32B [31] on all three
evaluation benchmarks when directly prompted with different reasoning effort-based prompts. Since
QwQ-32B includes both reasoning and summary components in its responses and typically generates
much longer CoTs, we extended its max_seq_len to 32K to allow for sufficient reasoning and
summarization. The full results are in Table 8. These results re-validate our main claim: longer CoTs
may not necessarily lead to better performance.

24

Table 8: The performance of QwQ-32B-Preview and QwQ-32B on three benchmarks when directly
prompting the model with various reasoning effort-based prompts.

Reasoning Effort
GSM8K MATH500 AIME2024

Accuracy #Tokens Accuracy #Tokens Accuracy #Tokens

QwQ-32B-Preview
Low 93.95 418.26 90.24 1592.29 42.00 5152.97
Medium 93.56 844.32 89.16 2356.29 44.00 6413.97
High 92.78 1112.97 88.36 2684.87 41.33 6678.50

QwQ-32B
Low 96.56 568.49 95.76 2532.82 74.00 11390.70
Medium 96.50 1152.86 96.08 3708.79 78.00 12969.53
High 96.36 1752.29 95.80 4198.67 80.67 13194.29

Table 9: The performance of the model trained on data with high reasoning effort after filtering out
all solutions that are identified to contain erroneous steps.

Model
GSM8K MATH500 AIME2024

Accuracy #Tokens Accuracy #Tokens Accuracy #Tokens

Qwen2.5-32B-Tag-High 93.31 1820.17 90.56 3185.75 41.33 8753.87
Qwen2.5-32B-Tag-High-Filtered 94.87 1478.10 90.00 2783.98 36.33 8049.29

I Results of fine-tuning on samples after filtering out solutions with erroneous
steps

We conduct additional experiments on supporting the claim that including more erroneous rounds
in the training stage can lead to greater adverse effects. Specifically, we filter out those solutions
that contain erroneous steps (identified by GPT-4.1) under the high reasoning effort, and fine-tune
Qwen2.5-32B-Instruct on the filtered data, which yields Qwen2.5-32B-Tag-High-Filtered. The results
are in Table 9.

We have some interesting findings: (1) After removing samples containing erroneous rounds, the
trained model produces much shorter CoTs. The reason is that the solutions removed are usually
very lengthy as they contain more self-reflections and self-corrections, thus the average length of the
dataset after removing these samples is much shorter. (2) Removing samples containing erroneous
rounds brings significant performance improvement on GSM8K, while causing certain performance
degradation on harder benchmarks MATH500 and AIME2024. The reason is that after removing
those samples, the model cannot learn to effectively perform deeper thinking such as correcting the
errors it could make in previous rounds. GSM8K is relatively simple, so the model does not need to
engage in excessive reflection and correction. Therefore, removing these behaviors actually improves
model performance. On more challenging datasets, the advantages of longer reasoning chains that
include reflections and corrections become apparent. Moreover, by comparing with the results in
Figure 5 in the main text, we find that instead of directly removing correct solutions that contain
erroneous steps, a more effective approach is to apply loss masking specifically to the wrong steps.
The latter strategy allows the model to retain the ability to learn how to correct previous mistakes,
without explicitly learning from the erroneous steps themselves.

J Results on general reasoning tasks

Here, we additionally prompt QwQ-32B-Preview to generate responses under different reasoning
effort-based prompts on a subset of the WebInstruct-verified dataset [23], and curate a seed general
reasoning dataset that contains correct responses with varying reasoning efforts. We then fine-
tune Qwen2.5-7B-Instruct [29] on the seed dataset to get Qwen2.5-7B-Tag-General, and evaluate

25

Table 10: The performance of Qwen2.5-7B-based models on MMLU-Pro and GPQA-Diamond

Model
MMLU-Pro GPQA-Diamond

Accuracy #Tokens Accuracy #Tokens

System-1 thinking models
Qwen2.5-7B-Instruct (Temp. = 0.0) 52.46 401.38 34.85 592.73
Qwen2.5-7B-Instruct (Temp. = 1.0) 51.49 379.84 33.84 537.41

Tag models
Qwen2.5-7B-Tag-General-Low 56.00 1674.60 31.82 2808.88
Qwen2.5-7B-Tag-General-Medium 55.92 2341.27 36.87 3931.13
Qwen2.5-7B-Tag-General-High 55.81 2632.05 32.83 4238.11

System-2 thinking models
Qwen2.5-7B-Random-General 55.86 1960.87 34.34 3385.70
Qwen2.5-7B-TOPS-General (ours) 56.50 1788.74 38.38 3083.76

Table 11: The detailed standard deviation results on LLaMA3.1-8B-Instruct.

Model GSM8K MATH500 AIME2024

System-1 thinking models
LLaMA3.1-8B-Instruct (Temp. = 0.0) 82.18 (± 0.00) 47.00 (± 0.00) 6.67 (± 0.00)
LLaMA3.1-8B-Instruct (Temp. = 1.0) 76.21 (± 0.66) 39.60 (± 0.84) 4.67 (± 2.98)

System-2 thinking models
LLaMA3.1-8B-Random-SFT 87.94 (± 0.33) 60.52 (± 1.38) 4.67 (± 1.83)
LLaMA3.1-8B-TOPS-SFT 88.54 (± 0.26) 61.28 (± 0.73) 8.00 (± 1.83)

its performance on MMLU-Pro [41] and GPQA-Diamond [33] using the same reasoning effort-
conditioned prompting strategy as in Section 3.2. We only sample once for each prompt considering
the evaluation cost. The results are displayed in Table 10. The findings are consistent with the
results in the math reasoning domain that excessive scaling with longer CoTs can bring negative
effects to the model’s performance in general reasoning tasks. Also, the model needs more
reasoning effort to perform well on the more challenging task GPQA-Diamond.

Following the above setup, we then perform our thinking-optimal scaling on a held-out set of the
WebInstruct-verified dataset to get Qwen2.5-7B-TOPS-General and perform random scaling to get
Qwen2.5-7B-Random-General. The evaluation results in Table 10 show that our method can also
work well for general reasoning tasks.

K Standard deviation results

We put the detailed standard deviation results in Table 11 and Table 12 for reference.

26

Table 12: The detailed standard deviation results on Qwen2.5-32B-Instruct.

Model GSM8K MATH500 AIME2024

System-1 thinking models
Qwen2.5-32B-Instruct (Temp. = 0.0) 95.91 (± 0.00) 84.20 (± 0.00) 16.67 (± 0.00)

Qwen2.5-32B-Instruct (Temp. = 1.0) 95.30 (± 0.36) 82.84 (± 0.65) 14.67 (± 5.06)

System-2 thinking models
QwQ-32B-Preview 95.23 (± 0.39) 92.02 (± 0.87) 45.33 (± 3.80)

STILL-2-32B 95.47 (± 0.26) 91.40 (± 0.80) 45.33 (± 6.06)

Sky-T1-32B-Preview 94.82 (± 0.33) 89.48 (± 0.78) 35.33 (± 2.98)

Qwen2.5-32B-Random 95.00 (± 0.31) 90.16 (± 0.95) 39.33 (± 2.79)

Qwen2.5-32B-TOPS (ours) 95.82 (± 0.15) 91.48 (± 0.59) 43.33 (± 2.36)

Qwen2.5-32B-TOPS-Iter-SFT (ours) 95.45 (± 0.14) 90.76 (± 0.71) 44.00 (± 3.65)

Qwen2.5-32B-TOPS-Iter-DPO (ours) 95.80 (± 0.13) 91.60 (± 0.62) 46.00 (± 3.65)

27

	Introduction
	Related work
	The impact of scaling efforts on the effectiveness of test-time scaling
	Preliminary analysis on existing o1-like models
	Deeper explorations on the scaling process of CoT length
	Analysis on the adverse effects of excessive length scaling

	Thinking-optimal test-time scaling
	Experiments and analysis
	Experimental settings
	Main results
	Results of iterative self-improvement
	Results on LLaMA3.1-8B-Instruct

	Conclusion
	Limitations
	Impact statement
	Details on estimating the number of tokens in hidden CoT of o1-mini by Qwen2.5 tokenizer
	Prompts for generating reasoning responses under different reasoning efforts
	User prompt for gpt-4o to determine the number of (erroneous) reasoning rounds
	Experimental settings
	Training settings for tag models
	Training settings in format imitation
	Training settings in self-improvement
	Training settings in iterative self-improvement
	Evaluation settings

	Breakdown results of tag models on MATH500
	Response length distribution of QwQ-32B-Preview under different reasoning effort-based system prompts
	Performance of QwQ-32B-Preview and QwQ-32B when directly prompted with different reasoning effort-based prompts
	Results of fine-tuning on samples after filtering out solutions with erroneous steps
	Results on general reasoning tasks
	Standard deviation results

