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Abstract
Prevalent in many real-world settings such as
healthcare, irregular time series are challenging
to formulate predictions from. It is difficult to
infer the value of a feature at any given time when
observations are sporadic, as it could take on a
range of values depending on when it was last
observed. To characterize this uncertainty we
present EDICT, a strategy that learns an evidential
distribution over irregular time series in continu-
ous time. This distribution enables well-calibrated
and flexible inference of partially observed fea-
tures at any time of interest, while expanding
uncertainty temporally for sparse, irregular ob-
servations. We demonstrate that EDICT attains
competitive performance on challenging time se-
ries classification tasks and enabling uncertainty-
guided inference when encountering noisy data.

1. Introduction
Irregularly-sampled, multivariate time series data are com-
mon across many real-world applications, including health-
care (Jensen et al., 2014), meteorology (Shi et al., 2015),
and business (Batres-Estrada, 2015). These data are charac-
terized by missing and/or irregular observations, inducing
inherent uncertainty about the value of unobserved features.
Traditional machine learning (ML) approaches manage this
irregularity through imputation and resampling of the data
to impose full observations recorded at evenly spaced time
steps. However, the choice of resampling rate and how to
fill missing intervals can introduce unnecessary bias in the
data used to train models, limiting their reliability. To build
reliable predictive models from irregular data it is crucial
to model the distribution of the time series—conditioned
on sparse previous observations—to infer possible values
of unobserved features and allow the natural presentation
of the data to dictate what the model learns. Additionally,
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precise uncertainty estimates can help interpret predictive
confidence and assess the robustness of model predictions.

Prior approaches that attempt to quantify uncertainty over
irregular time series either stabilize a learned latent repre-
sentation of the data (De Brouwer et al., 2019; Fortuin et al.,
2020) or forecast future values (Stankeviciute et al., 2021;
De Brouwer et al., 2022; Sun and Yu, 2022) as a means
to identify possible outcomes of the current observed state.
However, these approaches either do not connect the esti-
mated representations with the reliability of downstream
predictions (De Brouwer et al., 2019; Sun and Yu, 2022),
or fail to provide continuous-time projections of missing
values in the time series (Fortuin et al., 2020; Stankeviciute
et al., 2021).

Rather than relying on indirect estimates of the predictive
distribution (Gal and Ghahramani, 2016b), efforts with a
recently introduced approach called evidential learning aim
to model the variance in predictive distributions directly,
formulated as an evidence acquisition process (Sensoy et al.,
2018; Malinin and Gales, 2018; Amini et al., 2020; Char-
pentier et al., 2020). These methods provide scalable and
calibrated uncertainty estimates but have only been devel-
oped for static, univariate supervised classification (Sensoy
et al., 2018) and regression (Amini et al., 2020; Meinert
and Lavin, 2021) problems. The extension of these tech-
niques to irregularly sampled time series presents nuanced
complexities due to the sporadic observations, high rates
of missingness, and data generation occurring through a
dynamic, continuous-time process.

In this work, we present a method to process multivariate ir-
regular time series by through a neural ODE (Kidger, 2021)
to construct a latent representation that is used to predict the
parameters of a higher-order probability distribution (Fig-
ure 1). Under this paradigm, the training data is assumed
to provide evidence for the predicted distribution and es-
timated uncertainties are associated with erroneous model
behavior or out of distribution input data. This evidential
distribution provides calibrated, temporally correlated un-
certainty estimates over the multivariate time series and
enables robust, uncertainty-guided classification using the
learned latent representation. In total, this work makes the
following contributions:
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Figure 1: Learning and deploying Evidential Distributions In Continuous Time (EDICT). Given a multivariate time
series, a continuous-time model is trained to predict the parameters of an evidential distribution that enables calibrated and
temporally correlated uncertainty estimation.

1) Formulation of an evidential learning approach for se-
quential, continuous-time problems;

2) A scalable method for inferring Evidential Distributions in
Continuous Time (EDICT), deriving uncertainty estimates
without the need for sampling during inference, Monte
Carlo estimation, or training on out-of-distribution data;

3) Evaluation of the inferred evidential distribution on both
interpolation and extrapolation settings for irregular time
series, demonstrating superior accuracy and calibration;

4) Demonstration of uncertainty-guided inference in clas-
sification settings, correcting for noisy observations to
stabilize predictions and improve performance.

2. Uncertainty Estimation with Evidential
Learning

Calibrated estimates of neural network (NN) uncertainty are
important for understanding how well the model will per-
form on unseen data, derive measures of confidence, as well
as providing feedback on data missingness and irregularity.
Bayesian methods have been used to characterize model
(e.g., epistemic) uncertainty by placing probabilistic priors
on NN parameters, using variational approximations and
Monte-Carlo sampling to estimate output variance (Kendall
and Gal, 2017). However, contemporary NNs are often too
large and complex for these methods to be feasible, with
additional challenges in choosing the right approximation
and priors on the parameters (Yao et al., 2019).

Rather than placing priors on network weights as with
Bayesian NNs, recent approaches place priors directly over
a Gaussian likelihood function of the network’s predic-
tions by framing model learning as an evidence acquisi-
tion process (Sensoy et al., 2018; Malinin and Gales, 2018;
Amini et al., 2020; Meinert and Lavin, 2021), motivated by
Dempster-Shafer theory (Shafer, 1976). In these approaches,
the NN produces the hyperparameters of the posterior dis-
tribution via maximum likelihood estimation (Charpentier
et al., 2020), where the support of the distribution is derived

directly from the training data. Thus, evidential learning
provides a scalable, well-calibrated uncertainty estimation
technique by eliminating the need for sampling-based or
variational approaches.

In this paper, we present a multivariate formulation of evi-
dential distributions for continuous-time NN models, termed
Evidential Distributions in Continuous Time (EDICT).
EDICT enables prediction of feature evolution as well
as calibrated model uncertainties over sequential observa-
tions made at irregular time intervals. To our knowledge,
EDICT is the first method to develop evidential distribu-
tions with corresponding measures of uncertainty over high-
dimensional features sets as well as in sequential settings.

3. Evidential Distributions in Continuous Time
In this section we formalize our problem statement and
outline the EDICT method, specifically focused on devel-
oping estimates of NN uncertainty for irregular time series.
This is done without the need for sampling during infer-
ence (Fortuin et al., 2020; Kingma et al., 2015), Monte
Carlo estimation (Gal and Ghahramani, 2016b;a), or train-
ing on out-of-distribution data (Hafner et al., 2020; Malinin
and Gales, 2018; Malinin et al., 2020) which facilitates far
more scalable uncertainty quantification.

3.1. Problem setup

We consider a D-dimensional irregular time series X(t)
with finite observation horizon T and infer a distribution
over the feature space, conditioned on previous observa-
tions, to forecast the possible values of any feature before it
is observed again. We assume that each time series X(t) is
measured at K time points t ∈ RK that may arise sporad-
ically, with some subset of the D features present at each
observation. Additionally, we assume that a representation
h(t) of the latent generating process of the observable time
series Xi(t) can be inferred in continuous time. After time
T has been reached, and the allowed observation window
has closed, we expect to formulate a prediction about some
target characteristic y of the time series.
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For convenience in modeling, we assume that X(t) is
drawn from a multivariate Normal distribution with mean
µ(t) ∈ RD and covariance Σ(t) ∈ RD×D such that
X(t) ∼ N (µ(t),Σ(t))1. We aim to model these unknown
functions by predicting hyperparameters of their generating
distribution using the learned continuous-time representa-
tion h(t) formed from prior observations of X(t). Specifi-
cally, we place priors on µ and Σ to flexibly account for the
possible variance among features of the observed time series
X(t), developing an evidential distribution in continuous
time. Next we describe:

i) How h(t) is updated in continuous time with neural
ODEs;

ii) How the evidential learning objective is used to formulate
continuous-time distributions;

iii) How the resulting Evidential Distribution in Continuous
Time (EDICT) can be used to guide the reweighting of
noisy and out-of-distribution observations;

iv) How h(t) inferred from EDICT can then be used to train
downstream classification models to predict underlying
characteristics or target values y of the time series X(t).

3.2. Continuous-time Representations of Irregular Time
Series

Our evidential learning objective maximizes the likelihood
of observing X(t), given the parameters ϕ of the generating
distribution and the prior observations X(l),∀ l < t:

max
ϕ

p(X(t) | ϕ, X(l)l<t).

We resolve conditional dependence on X(l)l<t by encod-
ing the observations in a continuous-time, recurrent latent
representation h(t). Continuous-time (CT) models for se-
quential processing of information were originally proposed
as an extension of recurrent NNs (Funahashi and Nakamura,
1993; Chow et al., 2000). Recently, deep learning models
utilizing differential equation solvers have extended these
ideas (Chen et al., 2018; Rubanova et al., 2019; Kidger,
2021), enabling a flexible basis for learning the latent dy-
namics of temporal observations, including those that are
irregularly sampled. CT models form a latent representation
h(t) of the dynamics underlying the data generating process
that is propagated between recorded observations.

To update h(t) once an observation has been made, we em-
ploy a GRU-inspired procedure (De Brouwer et al., 2019)
that (1) propagates h(t) between observations using a neu-
ral ODE fODE, and (2) adjusts h(t) with an approximate
Bayesian mechanism, fBayes, once an observation X(t[k])

1Time dependence of the parameters of the generating dis-
tribution is assumed through the remainder of this paper unless
necessary to establish context.

is made. Both of these mechanisms are represented as NNs.
To produce the parameters ϕ of the generating distribution
a third NN, fN (·) is used to map h(t) to ϕ. If needed, an
additional function fenc(·) may be used to process the set
of observed features X(t[k]) to improve the update to h(t).
Together, the process of propagating and updating the repre-
sentation h(t) given observations X(t[k]) is as follows:

1. Propagate h(t) over the interval between observations:
h(t−) = fODE(h(t), t[k]− t[k − 1])

2. Update h(t) once an observation is made:
h(t+) = fBayes(h(t−), fenc(X(t[k])))

3. Produce ϕ to infer the distribution over X(t) via:
ϕ = fN (h(t)),

where t− and t+ denote the time directly before and after
t[k]. We use this procedure to create a CT representation
of the irregular time series. The resulting representation is
then used to produce the hyperparameters of an evidential
distribution, as outlined in the next subsection.

3.3. Constructing EDICT

Estimating parameters of the evidential distribution
We assume the time series X(t) is drawn from a multi-
variate Normal distribution with mean µ and covariance
Σ: X(t) ∼ N (µ,Σ). We formulate the evidential distribu-
tion by placing priors on the parameters µ and Σ using a
conjugate prior, the Normal Inverse Wishart (NIW) distri-
bution. This entails placing a Gaussian prior on µ and an
Inverse-Wishart prior on Σ:

(µ,Σ) ∼ NIWϕ(µ,Σ|µ0, λ,Ψ, ν)

where µ ∼ N (µ|µ0, λ
−1Σ) and Σ ∼ W−1(Σ|Ψ, ν).

The parameters ϕ = {µ0, λ,Ψ, ν} of this evidential conju-
gate prior can be interpreted in terms of “virtual observa-
tions” (Jordan, 2009) in support of the evidence collected via
the training data. In our evidential learning framework, the
parameters ϕ are produced by a learned function fNIW(·)
of the CT representation h(t). Thus, any set of features
included with the next observation X(t[k]) will improve
the posterior estimates of the evidential distribution. The
parameters ϕ of the evidential distribution are inferred and
updated through time to approximate the full time series
X(t).

Within this evidential framework, the objective is to max-
imize the likelihood of observing X(t) given ϕ and prior
observations X(l),∀l < t. We formulate this using the
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evidential NIW prior as:

p(X(t) | ϕ, X(l)l<t) =∫∫
µ,Σ

p(X(t) | µ,Σ) NIW(µ,Σ | ϕ, X(l)l<t)

= Tst
(
µ0,

1 + λ

λ(ν −D + 1)
Ψ, ν −D + 1

∣∣∣∣ X(l)l<t

)
(1)

where Tst denotes the multivariate, D-dimensional t-
distribution (Meinert and Lavin, 2021)2. By predicting the
parameters ϕ using the prior observations X(l)l<t to en-
code and propagate h(t), we directly estimate the likelihood
p(X(t) |ϕ, X(l)l<t) without the need for sampling or other
complex inference techniques.

Using inferred NIW parameters to make predictions
By learning a CT representation (Section 3.2), produc-
ing h(t), and learning the NIW evidential distribution, we
can flexibly predict the values of X(t) at any time be-
fore the observation horizon T . With predicted parameters
ϕ = {µ0, λ,Ψ, ν} of the NIW distribution, predictions and
associated measures of uncertainty of missing features can
be made directly. These measures of uncertainty include
both irreducible stochasticity in the data distribution (i.e.,
the aleatoric uncertainty) and the accuracy of the model (i.e.,
the epistemic uncertainty):

Prediction : E[µ] = µ0 Aleatoric : E[Σ] =
Ψ

ν −D − 1

Epistemic : var[µ] =
Ψ

λ(ν −D − 1)

The epistemic uncertainty is determined by the variance of
the predictions formulated through the NIW. We provide a
demonstration of EDICT in Figure 2 using a 2D synthetic
dataset of anti-correlated periodic signals with decaying
amplitude and random phase shifts. Here, EDICT quickly
resolves the correct dynamics of the signals after a small
number of observations. EDICT smoothly propagates the
predicted uncertainty over intervals where no observations
are made, and appropriately contracts this estimate once an
observation is made.

Optimizing NIW parameters All modules that con-
tribute to the formation of EDICT (CT representation learn-
ing and prediction of ϕ) are optimized as a multi-task learn-
ing problem. First, we seek to maximize the model evi-
dence according to the observations of X(t). We do this by
minimizing the negative log-likelihood of the multivariate
t-distribution (Eqt. 1; LNLL). Second, we want to pro-
mote that the inferred NIW distribution covers the empirical
distribution of the recorded observations through a Kullback-
Leibler constraint (LKL). This forces the model to mimic a

2See Appendix C.2 and C.3 of Meinert and Lavin (2021)

Figure 2: Evidential uncertainty estimation in irregular
time series. EDICT accurately infers the distribution over
a 2D irregular time series, with temporal propagation of
uncertainty over intervals of time between observations.

Bayesian update (De Brouwer et al., 2019) when observa-
tions are made. Finally, the learned evidential distribution is
further regularized by reducing the inferred evidence when
the prediction is wrong (LR) (Amini et al., 2020). Alto-
gether our total objective for learning the continuous-time
evidential distribution is:

L = LNLL + β1LKL + β2LR (2)

where β1 and β2 are hyperparameters that modify the effect
of the two regularization terms. Details on this objective
(Section B) and on EDICT and its training (Section D) are
in the Appendix.

3.4. Downstream prediction with EDICT

With a well-calibrated evidential distribution in continuous
time, EDICT enables two key abilities in formulating down-
stream predictions for a target y given an input time series
X(t).

First, EDICT learns a rich representation of the latent dy-
namics of the time series, h(t), that is influenced by the
inferred evidential distribution and corresponding estimates
of uncertainty. Using this representation h(t), we can de-
velop expressive prediction models fCLF(h(t)) of the target
label y. We demonstrate this empirically through classifica-
tion experiments using various irregular time series datasets
(Section 4), with results in Section 5.2.

Second, EDICT learns an underlying distribution that pro-
vides an explicit measure of the likelihood of any future ob-
servation. Consider a deployment scenario where observed
features begin to shift out of distribution or become overly
noisy through time, common in persistent sensing settings.
When constructing a CT representation, the predicted mean
of the distribution “jumps” to cover these noisy observations,
resulting in an unstable representation h(t). To address this,
we design an algorithm that uses EDICT to infer how reli-
able an observation is and “correct” it, if needed, using the
predicted mean and variance as a form of reweighting. This
stabilizes the update of the CT representation and thereby

4



Continuous Time Evidential Distributions for Irregular Time Series

the predicted mean of the distribution. We designate this as
Evidential Distribution Guided Reweighting (EDGR) (Al-
gorithm 1). Using EDGR within EDICT allows for practical
use of the learned distribution in downstream classification
to provide uncertainty-guided predictions.

Algorithm 1 Evidential Distribution Guided Reweighting

1: EDGR(EDICT, T, η, Xi(t), hi(t))
2: for k = 1, . . . ,Ki do
3: // ODE evolution to t[k]
4: h(t−) = fODE(h(t), t[k]− t[k − 1])
5: // Predict NIW parameters, compute µ̂, σ̂
6: (Section 3.3)
7: // Check whether observation is OOD. If so, reweight
8: if ∥X(t[k])− µ̂∥ > η · σ̂ then
9: X(t[k]) = clip(µ̂− η · σ̂, µ̂+ η · σ̂)

10: end if
11: // Update h(t) with the observation X(t[k])
12: h(t+) = fBayes(h(t−), fenc(X(t[k])))
13: end for
14: // ODE evolution to T
15: h(T ) = fODE(h(t), T − t[K])
16: // Formulate a prediction for X(t)

17: ŷ = fCLF(h(T ))

EDGR establishes whether an observation X(t[k]) is noisy
enough to require reweighting if it deviates more than η ∗ σ̂
from the predicted mean µ̂, where η is a hyperparameter
to balance the stability of EDICT with reductions in the
contributions of noisy data. We show the utility of EDGR
through experiments with additive heteroskedastic noise of
increasing magnitude through time (Section 5.2).

4. Experiments
4.1. Datasets

We evaluate EDICT on one synthetic and four publicly
available irregular time series datasets (Table 1):

1. Synthetic: We sparsely sample 3 periodic features,
forming a binary prediction task. The outcome y is
informed by feature 1 or 2 with the third feature being
uninformative.

2. Gestures: The uWave dataset (Liu et al., 2009) con-
tains recordings of a three-axis accelerometer used to
“draw” 8 pre-defined templates. We subsample the data
to keep a random 10% of all observations.

3. Activity: The Human Activity dataset (Kaluža et al.,
2010) contains recordings of subjects performing various
physical activities, consisting of the 3D position of 4
monitors (12 features in total).

4. PhysioNet: The goal is to predict in-hospital mor-
tality for patients in the ICU. The task is provided by
the PhysioNet/Computing in Cardiology Challenge 2012
(Silva et al., 2012).

5. MIMICMort: The task is to predict in-ICU mortality
from labs and vitals. We use MIMIC-Extract (Wang
et al., 2020), which is derived from the MIMIC-III Clini-
cal Database (Johnson et al., 2016).

Table 1: Datasets used for empirical evaluations.

Dataset # Classes # Features # Samples

Synthetic 2 3 10,000
Gestures 8 3 4,478
Activity 7 12 10,486
PhysioNet 2 34 7,990
MIMICMort 2 49 24,391

Dataset details, including preprocessing procedures, are
contained in the Section C in the Appendix.

4.2. Baselines

For baseline comparison, we focus on methods that develop
measures of uncertainty based on the continuous-time ar-
rival of irregular observations. Our primary baseline is
GRU-ODE-Bayes (De Brouwer et al., 2019), which uses a
GRU-based ODE to evolve the hidden state continuously
between observations, while using a Bayesian update to
transform the hidden state at each observation. To our
knowledge, GRU-ODE-Bayes is the only method, prior
to our present work, that can provide predicted distributions
for continuous-time observations in multivariate, irregularly-
sampled time series.

To evaluate downstream classification, we also compare
against contemporary NN methods that handle irregular
time series for classification alone: (i) Interpolation Predic-
tion Network (IPN) (Shukla and Marlin, 2019), (ii) GRU-D
(Che et al., 2018), (iii) Set Functions for Time Series (SeFT)
(Horn et al., 2020). These methods do not produce un-
certainty estimates as EDICT does, but are included for
completeness.

4.3. Experimental Setup

All datasets are split into training, validation, and evaluation
subsets following a 70/10/20 split, stratified such that the
proportion of class labels is consistent among all subsets.
The same data splits are used when training EDICT and on
the downstream classification tasks. Results in Section 5 are
derived from the evaluation subset. We perform three types
of experiments to evaluate EDICT.

4.3.1. UNCERTAINTY EVALUATION AND CALIBRATION

As our primary empirical evaluation, we train EDICT mod-
els on each dataset using the loss shown in Equation 2, vary-
ing β1 and β2 among other hyperparameters (see Appendix,
Section D). Note that this procedure is unsupervised, i.e., it
does not make use of exogenously provided task labels but
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rather utilizes the sequentially gathered feature observations
themselves. We evaluate the quality of the predictions made
by EDICT and their accompanying uncertainty measures
via its evidential distribution, compared against GRU-ODE-
Bayes and its inferred distribution. We assess the following
metrics (Sun and Yu, 2022):

1. Coverage. We want inferred model uncertainties to be
well calibrated. For α ∈ [0, 0.5], we select the 1− 2α
confidence region of the distribution and compute the
fraction of observed data within it. We quantify this
measure of coverage with Expected Calibration Error
(ECE) (details in Appendix, Section D).

2. Efficiency. It is preferable for a calibrated model to
have small area (i.e., the width of the confidence in-
tervals). We plot the average width of the confidence
region over all α.

3. Forecasting error. We evaluate how far the mean of
the predictive distribution is from the actual observa-
tion by computing the Mean Squared Error (MSE).

We evaluate these metrics in both interpolation (Section D)
and extrapolation (Figure 3, Table 2) settings. We hold out
a random 10% of observations prior to time tcut. During
training, we only expose the model to the remaining data in
[0, tcut). We evaluate interpolation by evaluating with the
held-out data. For extrapolation, we use unobserved data
from [tcut, T ]. Each metric is calculated separately for each
time series, and a confidence interval over each metric is
generated as one standard deviation over the samples in the
dataset.

4.3.2. PERFORMANCE IN DOWNSTREAM
DECISION-MAKING

Next, we evaluate EDICT’s performance in downstream
classification tasks. We freeze the weights of the EDICT
model, and train a downstream linear classifier fCLF us-
ing the embedded latent representations h(t) of X(t). We
compute the accuracy of the predictions, and generate confi-
dence intervals by repeating this procedure with three ran-
dom seeds.

4.3.3. PREDICTION OVER NOISY OBSERVATIONS

To evaluate our method in a realistic scenario where the test
samples may be out of distribution from the training data
(e.g., due to sensor failure), we experiment with injecting
temporally compounding heteroskedastic noise into the test-
set observations with the degree of variance being a function
of time. For each dataset, a range of 10 noise levels are
chosen as the base rate for this exponentially compounding
amount of noise (details in the Section D).

We demonstrate the utility of EDICT for uncertainty-guided
classification by using EDGR (Section 3.4, Alg. 1) to

reweight observations identified as outliers. We compare
the performance of this method on fCLF AUROC against
base EDICT (i.e., no reweighting), as well as against an
alternative approach which clips observations based on the
data distribution’s population mean. In all experiments, we
use η = 1.96, corresponding to a 95% confidence interval.

5. Results
We first evaluate the quality of EDICT’s uncertainty bounds
over feature values and show that EDICT achieves better
calibration than GRU-ODE-Bayes on several datasets (Sec-
tion 5.1). EDICT’s performance in downstream classifica-
tion is then demonstrated to match current state of the art
baselines while also providing calibrated uncertainty met-
rics (Section 5.2). Finally, we illustrate the flexibility of
EDICT’s uncertainty intervals in accounting for noisy obser-
vations. We show that EDICT with EDGR outperforms the
the comparative baselines at high noise levels, particularly
in complex, real-world datasets (Section 5.3).

5.1. Evidential Distribution Calibration

In Figure 3 and Table 2, we compare the calibration
of the distributions predicted by EDICT and GRU-ODE-
Bayes when extrapolating beyond the observed data for the
Synthetic and MIMICMort datasets (comparisons for
all datasets, including interpolation results, can be found in
the Appendix, Section D). We find that EDICT has much
lower MSE than GRU-ODE-Bayes on Synthetic and
Gestures, and the MSEs are comparable on the remain-
ing three datasets when confidence intervals are taken into
account (Table 2). On the Synthetic dataset, EDICT
achieves greatly improved efficiency relative to GRU-ODE-
Bayes and exhibits strong calibration performance relative
to both the ideal and GRU-ODE-Bayes baseline cover-
age (Figure 3A) in all other datasets. On the real-world
MIMICMort dataset, EDICT demonstrates strong coverage,
indicating well-calibrated model uncertainties (Figure 3B).

Table 2: Extrapolation performance and calibration of
EDICT and GRU-ODE-Bayes.

EDICT GRU-ODE-Bayes

Dataset MSE ECE MSE ECE

Synthetic 0.009± 0.01 0.129± 0.08 0.696± 0.20 0.093± 0.78
Gestures 0.273± 0.02 0.066± 0.04 0.603± 0.12 0.054± 0.05
Activity 1.126± 0.72 0.127± 0.07 1.119± 0.76 0.085± 0.05
PhysioNet 1.326± 1.46 0.008± 0.07 1.160± 0.76 0.014± 0.01
MIMICMort 1.374± 2.68 0.066± 0.04 1.227± 0.94 0.009± 0.01

5.2. Downstream Classification

One major goal of learning effective latent representations
for irregularly sampled time series is to achieve strong per-
formance on some downstream task. To this end, we com-
pare the test-set AUROC of EDICT with a set of baselines
in classifying irregular time series (Figure 4; Appendix, Sec-
tion D.3). On the zero-noise classification task (train and test
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Figure 3: Calibration of EDICT on the extrapolation task. Comparison of the extrapolation calibration of the distribu-
tions predicted by EDICT and GRU-ODE-Bayes, in terms of coverage and efficiency, for the (A) Synthetic and (B)
MIMICMort datasets. Ideal coverage would mirror the black dotted line while lower CI width indicates more efficient
distributions. Both methods have comparable performance on MIMICMort, while EDICT has much better efficiency on
Synthetic.

samples drawn from the same distribution), EDICT matches
the performance of current standard approaches (Figure 4,
noise level 0). Critically, the majority of evaluated baselines
fail to provide uncertainty intervals over intermediate noise
values. Variations of EDICT and GRU-ODE-Bayes are the
only methods in Figure 4 that do so, indicating EDICT’s
ability to enable both strong downstream decision-making
and calibrated uncertainties. In high noise settings, all base-
lines have reduced performance where prediction quality
is near chance. Across all methods tested, EDICT is more
resistant to performance decay caused by noisy observations.
The performance demonstrated in Figure 4 suggests that the
latent h(t) learned by EDICT and directly influenced by its
evidential distribution – is more robust to these outlying,
noisy observations.

5.3. Correcting for Noisy Observations

One main advantage of EDICT over most baselines is the
ability to infer a distribution over feature values in contin-
uous time. Here, we demonstrate one utility of this dis-
tribution, by using it to clip values identified as outliers
in the presence of noisy data not seen during training. To
this end, we designed an algorithm, EDGR, that leverages
the learned evidential distribution to identify outliers and
reweight them according to the uncertainty of the observed
feature. In Figure 4 (and Appendix, Section D.3), we find
that EDICT with uncertainty-guided reweighting (EDICT w/
EDGR) allows the model to maintain robust performance for
high noise levels, especially for Synthetic, Gestures,
Physionet, and MIMICMort, where higher noise levels
cause all baseline models, including GRU-ODE-Bayes, to
fail.

Taking these results together, we observe that EDICT per-
forms best when there are relationships to be inferred among
all feature dimensions in continuous time. Of the exper-
iments presented in this work, four of the five datasets
have this characteristic, excepting Activity. The fea-
tures within the Activity time series are slightly disjoint

from one another and are not time aligned. Due to this, set-
based interpolation methods such as SeFT and IPN are better
suited for this dataset. Among all other datasets, we see that
embedding the irregular time series in a continuous-time
latent representation h(t) allows us to adequately account
for missing features when predicting the evidential distri-
bution. In these settings EDICT enables robust prediction
performance and the ability to leverage the distributional
estimates to mitigate OOD observations.

6. Related Work
Learning from irregular time series Irregular time se-
ries contain observations sampled at uneven times from
constantly-changing environments, representative of most
real-world settings. Such irregularity is challenging for
machine learning, especially when multiple variables are
observed simultaneously. Many traditional works tackle
irregularity through imputation, resampling the values of
an irregular series at a set of new, evenly spaced timesteps
(Lipton et al., 2016; Zheng et al., 2017; Che et al., 2018;
Li and Marlin, 2020; Mozer et al., 2017). While impu-
tation has proven useful in forecasting (Cao et al., 2018)
and classification (Che et al., 2018), there are serious draw-
backs. For instance, choosing a good resampling rate is
crucial (Hartvigsen et al., 2023), yet the optimal rate is often
unknown a priori. Furthermore, imputation can introduce
unnecessary bias, since irregularity is often natural. These
limitations have recently spurred major efforts on learning
continuous-time models of irregular time series.

Continuous-time models and uncertainty estimation
Continuous-time methods have been shown to learn the
latent dynamics of irregular time series (Morrill et al., 2022;
Kidger, 2021; Rubanova et al., 2019; Jia and Benson, 2019;
Hasani et al., 2021; Schirmer et al., 2022; Salvi et al., 2022;
Hasani et al., 2022). By providing access to representations
at any desired time, these models are more flexible than
their imputation-based precursors and are now the state-of-
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Figure 4: Classification performance in the presence of noisy observations. Test AUROC of each method on three binary
classification tasks at varying noise levels. We find that all variations of EDICT outperform the GRU-ODE-Bayes baseline at
high noise levels. Baseline methods denoted with (---) are not capable of generating uncertainty intervals over intermediate
feature values. Results for additional datasets and metrics can be found in Appendix D.3.

the-art approach to many problems. Originally grounded in
RNNs (Funahashi and Nakamura, 1993; Chow et al., 2000),
most recent approaches succeed by parameterizing differ-
ential equations with NNs (Kidger, 2021; Rubanova et al.,
2019; Jia and Benson, 2019). Despite recent advances, un-
certainty quantification for these continuous-time models
remains in its infancy (Graf et al., 2021), although there
have been successes estimating the distributions of discrete
time series (Rasul et al., 2021a;b; Yu et al., 2021). Indeed,
some works have included uncertainty for multivariate ir-
regular time series, especially through multi-task Gaussian
processes (Cheng et al., 2020; Fortuin et al., 2020; Ghassemi
et al., 2015). However, these approaches are notoriously dif-
ficult to scale to high dimensions and fall prey to the resam-
pling challenges native to imputation methods. Our work
directly addresses these needs by quantifying uncertainty
for continuous-time models while maintaining scalability as
a byproduct of using standard deep learning frameworks to
construct our evidential distributions.

7. Discussion
In this paper we introduce Evidential Distributions in Con-
tinuous Time (EDICT), a continuous-time formulation of
evidential deep learning for sequential and irregular time
series problems. EDICT enables temporally correlated esti-
mates of uncertainty over intervals of missing observations
and inconsistent measurement patterns, providing stability
to latent inference processes of the underlying data. EDICT
maintains distributional calibration on a variety of complex
datasets, while achieving competitive performance among
current state of the art time series classification algorithms.
Further, by virtue of the inferred evidential distribution,
EDICT enables improved robustness in the presence of
noisy observations, avoiding drastic degradation of model
performance through uncertainty-guided inference.

In contrast to traditional uncertainty quantification ap-
proaches in contemporary deep learning, EDICT forms its
distributions without the use of sampling, complex vari-
ational approximations, or training on out-of-distribution

data. Further, it encodes the observations of an irregular
time series without needing to make a priori assumptions
about how to best manage intervals of missingness. This
directly overcomes the need to construct imputation strate-
gies manually or to discretize the temporal component of
the observed data. As such, we propose EDICT as a flexi-
ble method for making predictions and inferring calibrated
uncertainties from irregular time series.

Limitations and Future Work The flexibility and scal-
ability of our approach holds promise for potential use in
challenging real-world scenarios where forecasting the evo-
lution of features is equally as important as making accurate
inference of their current values. Our proposed continuous-
time evidential distributions enable both objectives and may
provide a decision support framework for practical use by
domain experts. While promising, there are some distinct
limitations of EDICT. We did not test the method against
asymmetric noise models when evaluating the performance
of EDGR, the adaptive reweighting approach formulated as
a consequence of providing continuous-time measures of un-
certainty. Because of this, we cannot make comprehensive,
general claims about the applicabilty of EDICT and EDGR
across all manners of time series data. Future work will
evaluate EDICT’s robustness against various forms of noise.
Additionally, the methods used to propagate and update the
latent representation of the time series can result in entan-
glement of the predicted distributions over the observable
features. Future work will investigate whether enforcing a
disentanglement objective serves to improve EDICT and its
performance on downstream prediction tasks.

Contributions This work originated while TWK interned
with AA at MSR New England. Together, they conceived
of and developed the research. TWK carried out the data
processing, code development, and experimentation. HZ
supported the analysis and contributed to medical dataset
preprocessing. TH helped refine research directions, advised
on experiments, and helped implement baseline algorithms.
Led by TWK, all authors contributed to writing the paper.
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Appendix
A. Potential Negative Societal Impacts
There are several potential negative societal impacts of our
work. First, we emphasize that, without proper testing, the
implementation of EDICT in safety-critical prediction envi-
ronments is not guaranteed to ensure reliable performance.
We have provided an initial proof of concept that reliability
and robustness is improved by learning an evidential dis-
tribution in continuous time, yet our evaluations along this
dimension are limited in scope. Misuse and mis-deployment
of our method could result in negative societal impact. Sec-
ond, we acknowledge that training large machine learning
models may result in high power consumption and carbon
emissions, which we did not explicitly quantify in this work.
Finally, although EDICT provides robust and calibrated
uncertainty estimates, misinterpretation of these estimates
could lead to incorrect and mis-guided decisions, especially
in critical fields such as healthcare, potentially resulting in
real-world harm.

B. Formulation of the continuous-time
evidential distribution training objective

In this section, we highlight the formulation of the multi-
task objective used to learn the continuous-time evidential
distribution with the following components:

1. LNLL, Normal Inverse Wishart (NIW) posterior nega-
tive log likelihood

2. LKL, Kullback-Liebler divergence between the NIW
evidential distribution and the empirical distribution

3. LR, Evidential regularization

B.1. NIW Negative Log Likelihood

In this section we expand on Equation 1, showing the formu-
lation and how it is used to derive the NLL objective used
to maximize the model’s fit of the evidential distribution.

Recall that we assume the time series to be generated by a
multivariate normal distribution, parameterized by the mean
µ and covariance Σ. We place evidential priors on these
parameters using the Normal Inverse Wishart (NIW) since it
is conjugate with the assumed generating distribution. The
parameters of the NIW distribution are ϕ = {µ0, λ,Ψ, ν}
and can be interpreted as “virtual observations”. That is,
X(t) ∼ N (µ,Σ) and

(µ,Σ) ∼ NIWϕ(µ,Σ|µ0, λ,Ψ, ν)

where µ ∼ N (µ|µ0, λ
−1Σ) and Σ ∼ W−1(Σ|Ψ, ν).

We are interested in inferring the distribution of possible
values a time series may take at time t, given the NIW prior
and any previous observations. This takes the form:

p(X(t) |ϕ, X(l)l<t) =

∫∫
µ,Σ

p(X(t) | µ,Σ)NIW(µ,Σ |ϕ, X(l)l<t)

Since the NIW distribution is conjugate with the multivari-
ate normal, an analytic solution to this expression exists
and takes the form of a multivariate t-distribution (Murphy,
2007).

p(X(t) |ϕ, X(l)l<t) = Tst
(
µ0,

1 + λ

λ(ν −D + 1)
Ψ, ν −D + 1

∣∣∣∣ X(l)l<t

)
As mentioned in Section 3, the conditional dependence
on the observations of X(t) prior to time t are resolved
through the the propagation of the hidden representation h(t)
through the GRU-ODE component of the model that is then
used to produce the NIW parameters ϕ from fNIW(h(t)).
We can then derive the negative log likelihood of this t-
distribution in order to arrive at our objective. That is,

Tst
(
µ0,

1 + λ

λ(ν −D + 1)
Ψ, ν −D + 1

∣∣∣∣ X(l)l<t

)
=

Γ(ν−D+1
2 + D

2 )det(A)−1/2

Γ(ν−D+1
2 )(ν −D + 1)D/2πD/2

·

[
1 +

1

ν −D + 1
(X(t)− µ0)

⊺A−1(X(t)− µ0)

]− (ν−D+1)+D
2

=
Γ(ν+1

2 )det(A)−1/2

Γ(ν−D+1
2 )(ν −D + 1)D/2πD/2

·

[
1 +

1

ν −D + 1
(X(t)− µ0)

⊺A−1(X(t)− µ0)

]− ν+1
2

where A = Ψ
λ(ν−D+1) . Then, after taking the log, we arrive

at

= log

(
Γ(ν+1

2 )

Γ(ν−D+1
2 )

)
− 1

2
log (det(A))− D

2
(log (ν −D + 1) + log (π))

− ν + 1

2
log

([
1 +

1

ν −D + 1
(X(t)− µ0)

⊺A−1(X(t)− µ0)

])
= log

(
Γ(ν+1

2 )

Γ(ν−D+1
2 )

)
− 1

2
log(det(Ψ))

− D

2

(
log

(
1

λ(ν −D + 1)

)
+ log(ν −D + 1) + log(π)

)
− ν + 1

2
log
([
1 + λ(X(t)− µ0)

⊺Ψ−1(X(t)− µ0)
])

With some additional manipulation, the final form of the
negative log likelihood objective is:
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LNLL = − log

(
Γ(ν+1

2 )

Γ(ν−D+1
2 )

)
+

D

2
log
(π
ν

)
+

1

2
log (det(Ψ)) +

ν + 1

2
log
([
1 + λ(X(t)− µ0)

⊺Ψ−1(X(t)− µ0)
])

B.2. KL divergence

The KL divergence component of our objective is a con-
straint that forces the model to mimic a Bayesian update
following De Brouwer et al. (2019). The intention of this
constraint is to encourage the evidential distribution after
updating h(t−) to h(t+) (ppost) to remain close to the a
Bayesian posterior of the NIW distribution produced by
h(t−) (ppre) and the empirical distribution of the time series
(pobs). Thus, the target distribution is:

pBayes ∝ ppre · pobs

Thus, we have the KL divergence between ppost and pBayes

as this component of our objective:

LKL = DKL (pBayes||ppost)

B.3. Evidential Regularization

Following Amini et al. (2020), we want to minimize the
model evidence when the model produces errors in its pre-
diction of the features that have been observed. We design a
penalty term that minimizes the “virtual observations” (and
thereby expanding the uncertainty) of the evidential distri-
bution when the mean predictions of the distribution are in
error. To formulate this penalty we scale the L1 error of
the NIW distribution mean and the true observations by the
total evidence of the NIW distribution (Φ = (λ+ ν)). That
is,

LR = ||µ0 −X(t)||1 · (λ+ ν)

C. Data Details
C.1. Synthetic data generation

Synthetic: We generate a synthetic dataset consisting
of multivariate time series with 3 periodic features to form
a binary prediction task. The outcome y is informed by
feature 1 or 2 (depending on class 0 or 1 respectively) with
the third feature serving as a distractor, being correlated
with the uninformative feature. These features are sampled
such that observations are sparse.

Inspired by medical time series, we generate 10,000 batches
of periodic signals with randomized starting points and fre-
quencies. The underlying means of the period signals are
also class dependant. This dataset was constructed primarily
to qualitatively demonstrate the learned evidential distribu-
tions as well as develop a clear and controllable test-bed
for measuring the effects of noise applied to the data and

how the proposed EDICT w/ EDGR correction would add
robustness to the classification performance. A collection
of 3 such sequences are presented in Figure 5.

After generation, the signals are made irregular by masking
out no less than 75% of the features, with a single require-
ment that there is a least one feature that has an observation
contained in an initial observation window. We then split the
generated data into train/val/test subsets, ensuring to stratify
by the correlated/not-correlated label. We maintain 70% of
the generated data as a training set, 10% for validation, and
20% for the held out test set.

C.2. Data Processing and Information

C.2.1. UWAVE GESTURES

Gestures: The uWave gesture dataset (Liu et al., 2009)
consists of recordings of a three-axis accelerometer within a
hand-held device that human subjects used to “draw” simple
gesture patterns following pre-defined templates, divided
into 8 categories. We sub-sample the dataset to contain
a random 10% of all features. This data is provided as
a regularly sampled, dense timeseries with observations
at 100 Hz for 3.15 seconds. We subsample the dataset to
contain no more than 10% of the features in a particular
time series. We maintain 70% of the data as a training set,
10% for validation, and 20% for the held out test set. All
features were z-normalized based on the mean and standard
deviation of the training set.

C.2.2. HUMAN ACTIVITY DATASET

Activity: The Human Activity dataset (Kaluža et al.,
2010) contains time series of five individuals performing
various activities: walking, sitting, lying, etc. The data con-
sists of the 3D position of monitors attached to their belt,
chest and ankles (12 features in total). We followed the same
procedure as Rubanova et al. (2019) to prepare the data,
partitioning the lengthy time series into non-overlapping
windows and shifting the observed features so that no more
than three features were observed at the same time. We
maintain 70% of the data as a training set, 10% for valida-
tion, and 20% for the held out test set. All features were
z-normalized based on the mean and standard deviation of
the training set.

C.2.3. PHYSIONET

PhysioNet: The goal is to predict in-hospital mortality
for patients in the ICU. The task is provided by the Phys-
ioNet/Computing in cardiology challenge 2012 (Silva et al.,
2012). We follow the standard pre-processing protocol,
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Figure 5: Examples of the synthetic data. Here we demonstrate 3 sequences of 3 dimensions where the features are either
informative feature is either feature 1 or 2 depending on the class (0 or 1) while feature 3 serves as a distractor being
correlated with the uniformative feature.

removing outliers and ensuring that non-physical measur-
ments are discarded. We further aggregated observations
into 10-minute long intervals to reduce the length of the
time series for any one patient. We maintain 70% of the
data as a training set, 10% for validation, and 20% for the
held out test set. All features were z-normalized based on
the mean and standard deviation of the training set.

C.2.4. MIMIC

MIMICMort: The task is to predict in-ICU mortality from
labs and vitals. We use MIMIC-Extract (Wang et al., 2020),
which is derived from the MIMIC-III Clinical Database
(Johnson et al., 2016). We downloaded a pre-processed csv
of the baseline settings of the MIMIC-Extract tool, directly
from the repo. We further processed the data to remove
outliers and unify dimensions among features. Additionally,
we discarded all features that were more that 95% missing.
We maintain 70% of the data as a training set, 10% for
validation, and 20% for the held out test set. All features
were z-normalized based on the mean and standard deviation
of the training set.

D. Experimental and Model Details
D.1. Model details

To formulate the continuous-time evidential distribution we
leverage a set of connected neural modules. These are:

• fODE: the continuous-time model that propagates the
hidden representation of the time series between obser-
vations. Produces h(t−).

• fBayes: a recurrent module that is used to update h(t−)
to h(t+) following the encoding of collected features
the time series at time t.

• fenc: an encoding function of the observed features
X(t).

• fNIW: the function that produces the parameters of
the NIW evidential distribution from the hidden rep-
resentation h(t). Internal to this model are separate

submodules for each parameter of ϕ. That is, sepa-
rate small neural networks are used to produce each of
{µ0, λ,Ψ, ν}.

The relationship between these modules functionally is as
follows:

h(t−) = fODE(h(t), t[k]− t[k − 1])

h(t+) = fBayes (h(t−), fenc(X(t[k]))

ϕNIW = fNIW(h(t))

For convenience and to help ensure that Ψ is positive defi-
nite, we only produce the diagonal of the matrix from the
corresponding submodule and treat these outputs as the log-
variance for each feature dimension. Thus to form Ψ we
exponentiate the outputs from its corresponding submodule
and then create a diagonal matrix of the resulting vector.

For the experiments presented in this paper we use the fol-
lowing parameter settings.

• Internal to the fODE model, there is an initialization
layer that encodes static covariates of the time series
following the work of De Brouwer et al. (2019). This
initializes h(t) with a specified dimension chosen as
the hyperparameter. The internal layers of the fODE

module do not modify the size of this representation.

• The fBayes module takes the output of the function
fenc and maps the encoding to the hidden state using a
standard GRU cell (Cho et al., 2014).

• fenc maps the observed features of X(t) to a 25-
dimensional encoding.

• All submodules of fNIW are comprised of small 2-layer
neural networks that map h(t) to the parameters of the
NIW distribution. The internal hidden layer is set to
have 25 dimensions.

• When formulating predictions of whether the features
of the time series are correlated or not, we train a sep-
arate classifying function fclf that maps the hidden

14



Continuous Time Evidential Distributions for Irregular Time Series

representation h(t) to the binary prediction. We kept
fclf small, again utilizing a small 2-layer neural net-
work with the internal hidden layer having half as many
dimensions as h(t) to produce a bottleneck layer prior
to formulating the final predictions.

D.2. Experimental details

D.2.1. PRETRAINING EDICT

The training procedure for EDICT follows directly from
GRU-ODE-Bayes (De Brouwer et al., 2019) with some im-
portant adjustments to better reflect the inference task for the
multivariate evidential distribution. First, we exchanged the
linearized univariate version of the KL divergence metric,
replacing it with the appropriate Multivariate KL divergence
function. We additionally implemented the NIW NLL and
Evidential Regularization loss terms as outlined in Section B
of this Appendix.

While training EDICT to best infer the evidential distribu-
tion, we performed hyperparameter tuning for the following
variables:

β1 and β2 to account for the effect of the regularization
terms in the computation of the training objective. The
learning rate, training batch size, the number of training
epochs, the number of layers and hidden units in each neural
network component, and finally the dimension of h(t). We
performed this tuning for each dataset, selecting the model
that had the lowest interpolation MSE on the validation
dataset.

D.2.2. TRAINING CLASSIFICATION MODELS

We trained linear classification model on top of the latent
representation h(t) provided by EDICT as briefly outlined
in Section 3.1. We performed hyperparameter tuning for the
classification models by varying the learning rate, number
of training epochs, and batch size. We also trained separate
random initializations using the best hyperparameters with 3
separate seeds. The best performing classification model for
each dataset was selected based on validation set accuracy.

The noise applied to the evaluation data for each dataset
was generated by choosing from a pre-defined set of base in-
creasing noise rates, specified by the capacity of each dataset
to have classifiers have maximized predictive entropy. In
order to model the case laid out in the main body of the
paper, where the noise compounds over time. We developed
a time-dependent noise model that would generate gaussian
noise with increasing variance proportional to the time each
observation was made. In practice the generated noise was
sampled from a zero-mean gaussian with standard deviation
(”scale”) according to the following relationship:

scale = 0.1 ∗ levelt[k].

D.2.3. EXPECTED CALIBRATION ERROR

To compute the Expected Calibration Error (ECE (Nixon
et al., 2019)), we select twenty values of 1 − 2α in a grid
between 0 and 1. For each value, we compute the fraction
of data points covered by the confidence region, subtract
1 − 2α, and take the absolute value. As each bin has the
same number of samples, we compute the ECE by taking
the unweighted average.

D.3. Additional Results

D.3.1. CALIBRATION OF THE INFERRED
DISTRIBUTIONS

In Table 3 we present the full calibration results, for both
interpolation and extrapolation predictions made using
the distributions inferred using EDICT and GRU-ODE-
Bayes (De Brouwer et al., 2019), respectively.

In Figures 6 – 10 we present the calibration comparison
between EDICT and GRU-ODE-Bayes for all datasets.

D.3.2. CLASSIFICATION PERFORMANCE

In Table 4 we present the full classification results for the
test accuracy metric, comparing EDICT to several base-
lines and ablations. In Table 5, we compare all methods
for datasets that contain a binary prediction task. We see
that as the noise level increases, generally model perfor-
mance decreases. However when applying reweighting,
either with EDGR or using the population mean, that the
performance of EDICT recovers and happens to outperform
all the baselines on three of the five datasets (Synthetic,
MIMIC, Physionet).

In Figures 11– 15 we present all of the classification perfor-
mance overviews for each dataset.

EDICT performs best when there are relationships to be
inferred among all feature dimensions in continuous time.
Of the experiments presented in this work, four of the five
datasets have this characteristic, excepting Activity. By
construction, the features within the Activity time se-
ries are slightly disjoint from one another and are not time
aligned (there are four blocks of three features each, corre-
sponding to a 3-axis accelerometer, combined into a time
series with some offset after each block). Due to this, set-
based interpolation methods such as SeFT and IPN are bet-
ter suited for this dataset. In other datasets, we see that
embedding the irregular time series in a continuous-time
latent representation h(t) allows us to adequately account
for missing features when predicting the evidential distri-
bution. This enables robust prediction performance and the
ability to leverage the distributional estimates to mitigate
OOD observations.
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Figure 6: Calibration of EDICT for the synthetic dataset. Comparison of the extrapolation and interpolation calibration
of the distributions predicted by EDICT and GRU-ODE-Bayes.

Figure 7: Calibration of EDICT for the Gestures dataset. Comparison of the extrapolation and interpolation calibration
of the distributions predicted by EDICT and GRU-ODE-Bayes.

Figure 8: Calibration of EDICT for the Activity dataset. Comparison of the extrapolation and interpolation calibration of
the distributions predicted by EDICT and GRU-ODE-Bayes.

Figure 9: Calibration of EDICT for the PhysioNet dataset. Comparison of the extrapolation and interpolation calibration
of the distributions predicted by EDICT and GRU-ODE-Bayes.
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Figure 10: Calibration of EDICT for the MIMICMort dataset. Comparison of the extrapolation and interpolation
calibration of the distributions predicted by EDICT and GRU-ODE-Bayes.

Figure 11: Classification performance comparison on the Synthetic Dataset

Figure 12: Classification performance comparison on the Gestures Dataset
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Figure 13: Classification performance comparison on the Activity Dataset

Figure 14: Classification performance comparison on the Physionet Dataset

Figure 15: Classification performance comparison on the MIMIC Dataset
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Table 3: Calibration of EDICT and GRU-ODE-Bayes

EDICT GRU-ODE-Bayes

Interpolation Extrapolation Interpolation Extrapolation
Dataset MSE ECE MSE ECE MSE ECE MSE ECE

Synthetic 0.124± 0.29 0.083± 0.049 0.009± 0.01 0.129± 0.077 0.769± 0.40 0.068± 0.05 0.696± 0.20 0.093± 0.78
Gestures 0.188± 0.02 0.077± 0.01 0.273± 0.02 0.066± 0.04 0.767± 0.48 0.064± 0.03 0.603± 0.12 0.054± 0.05
Activity 1.083± 0.78 0.120± 0.07 1.126± 0.72 0.127± 0.07 1.229± 0.92 0.084± 0.05 1.119± 0.76 0.085± 0.05
PhysioNet 1.293± 1.26 0.011± 0.01 1.326± 1.46 0.008± 0.07 1.216± 0.72 0.029± 0.01 1.160± 0.76 0.014± 0.01
MIMICMort 1.464± 2.70 0.051± 0.03 1.374± 2.68 0.066± 0.04 1.507± 3.48 0.010± 0.01 1.227± 0.94 0.009± 0.01

Table 4: Test-set accuracy (%) of each method on each dataset for varying levels of noise. Confidence intervals are computed
as the standard deviation over three random seeds.

Dataset Noise Level EDICT EDICT w/ EDGR EDICT w/ Pop. Mean GRU-ODE-Bayes GRU-D IPN SeFT

Synthetic

0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
1 99.9 ± 0.0 100.0 ± 0.0 99.9 ± 0.0 100.0 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
2 99.4 ± 0.2 100.0 ± 0.0 99.4 ± 0.2 97.2 ± 0.5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
3 91.0 ± 0.9 99.6 ± 0.2 91.9 ± 0.7 84.5 ± 0.9 98.6 ± 0.3 97.7 ± 0.0 100.0 ± 0.0
4 74.5 ± 0.9 96.3 ± 0.6 77.0 ± 0.6 70.3 ± 0.7 86.8 ± 1.1 84.3 ± 0.1 97.9 ± 0.1
5 63.3 ± 1.5 91.0 ± 0.6 66.4 ± 1.5 60.6 ± 1.7 71.6 ± 0.8 68.5 ± 1.6 80.6 ± 0.7
6 57.7 ± 1.6 86.5 ± 0.9 60.0 ± 2.0 55.5 ± 1.4 62.1 ± 0.8 59.4 ± 1.7 63.1 ± 0.7
7 54.4 ± 1.6 82.7 ± 0.8 56.8 ± 2.3 53.7 ± 1.8 57.2 ± 1.1 55.9 ± 1.0 56.1 ± 0.7
8 52.8 ± 1.8 79.8 ± 0.9 54.9 ± 2.1 52.3 ± 1.3 54.4 ± 0.8 53.6 ± 1.3 53.4 ± 0.6
9 52.1 ± 1.4 77.1 ± 1.0 53.4 ± 1.8 51.7 ± 1.1 53.0 ± 0.9 52.5 ± 1.3 52.0 ± 0.5

Gestures

0 92.3 ± 0.3 92.5 ± 0.2 92.2 ± 0.3 77.6 ± 0.4 76.2 ± 1.4 84.9 ± 1.6 84.6 ± 0.7
1 84.5 ± 0.3 84.7 ± 0.2 84.4 ± 0.4 63.4 ± 3.2 75.4 ± 1.7 84.3 ± 1.7 84.4 ± 0.9
2 79.4 ± 0.3 79.5 ± 0.3 79.5 ± 0.4 42.1 ± 3.9 72.7 ± 2.4 82.1 ± 1.9 83.3 ± 1.2
3 73.8 ± 0.6 73.9 ± 0.8 74.0 ± 0.9 28.9 ± 3.1 64.4 ± 1.5 75.5 ± 1.8 80.7 ± 1.7
4 67.5 ± 1.5 67.7 ± 1.2 67.6 ± 1.3 25.3 ± 8.9 51.9 ± 2.5 62.8 ± 2.3 75.1 ± 3.1
5 58.9 ± 1.6 59.7 ± 1.7 59.0 ± 1.9 18.9 ± 0.9 38.3 ± 0.7 47.7 ± 2.1 68.6 ± 2.1
6 51.6 ± 2.4 53.2 ± 1.7 52.3 ± 2.1 17.3 ± 0.7 27.8 ± 1.8 33.5 ± 1.0 61.0 ± 4.0
7 43.8 ± 1.4 46.1 ± 1.6 44.7 ± 1.7 15.8 ± 0.6 20.9 ± 1.2 25.2 ± 1.2 52.8 ± 6.2
8 37.1 ± 1.1 39.8 ± 1.9 39.1 ± 1.8 14.9 ± 0.7 17.9 ± 0.6 21.3 ± 1.3 44.5 ± 8.3
9 32.8 ± 1.1 35.0 ± 1.6 35.2 ± 2.0 14.3 ± 0.5 16.1 ± 1.1 18.6 ± 0.8 37.2 ± 9.4

Activity

0 77.9 ± 0.2 78.2 ± 0.3 77.9 ± 0.1 82.0 ± 0.1 61.1 ± 1.1 88.2 ± 0.0 77.9 ± 0.1
1 60.5 ± 0.7 62.7 ± 1.3 60.6 ± 0.5 60.0 ± 0.9 61.1 ± 1.1 79.8 ± 0.4 72.9 ± 0.7
2 50.7 ± 0.8 55.2 ± 0.8 51.8 ± 0.4 49.6 ± 0.8 61.1 ± 1.1 71.8 ± 2.1 64.6 ± 0.7
3 44.8 ± 0.8 50.4 ± 0.5 46.1 ± 1.6 44.6 ± 0.8 61.1 ± 1.1 65.3 ± 0.8 58.1 ± 0.2
4 41.0 ± 1.4 46.9 ± 0.7 42.8 ± 2.2 41.9 ± 0.4 61.1 ± 1.1 60.4 ± 1.5 53.3 ± 1.0
5 38.6 ± 1.1 44.5 ± 0.8 40.7 ± 2.1 40.2 ± 0.6 61.1 ± 1.1 56.3 ± 1.7 50.4 ± 0.9
6 36.9 ± 0.4 42.3 ± 1.7 38.8 ± 2.3 38.7 ± 1.0 61.1 ± 1.1 52.8 ± 1.8 47.6 ± 1.5
7 35.7 ± 0.6 40.9 ± 1.5 37.5 ± 2.4 37.5 ± 0.7 61.1 ± 1.1 50.3 ± 1.6 44.8 ± 0.9
8 35.1 ± 0.7 39.6 ± 1.6 37.2 ± 0.7 36.6 ± 0.9 61.1 ± 1.1 48.1 ± 1.6 42.2 ± 0.6
9 34.3 ± 1.1 38.4 ± 1.6 36.8 ± 0.0 35.9 ± 0.8 61.1 ± 1.1 46.0 ± 1.2 40.0 ± 0.5

PhysioNet

0 85.9 ± 0.0 86.0 ± 0.1 86.0 ± 0.1 87.1 ± 0.0 87.7 ± 0.2 87.5 ± 0.1 86.0 ± 0.0
1 86.0 ± 0.1 86.0 ± 0.1 86.0 ± 0.1 86.3 ± 0.3 62.0 ± 0.4 86.0 ± 0.3 86.0 ± 0.0
2 86.0 ± 0.1 86.0 ± 0.1 86.0 ± 0.1 85.1 ± 0.2 59.9 ± 0.7 63.3 ± 0.7 86.0 ± 0.0
3 86.0 ± 0.2 86.0 ± 0.0 85.9 ± 0.1 84.6 ± 0.1 61.1 ± 1.1 65.8 ± 0.6 86.0 ± 0.0
4 85.3 ± 0.2 85.9 ± 0.1 85.6 ± 0.2 84.3 ± 0.3 61.9 ± 0.3 65.7 ± 0.5 86.0 ± 0.0
5 83.8 ± 0.1 85.6 ± 0.2 85.3 ± 0.1 84.3 ± 0.2 62.2 ± 0.4 65.6 ± 0.8 86.0 ± 0.0
6 81.5 ± 0.4 85.7 ± 0.1 85.0 ± 0.3 84.4 ± 0.1 62.8 ± 1.0 66.0 ± 1.2 86.0 ± 0.0
7 78.5 ± 0.1 85.7 ± 0.1 84.8 ± 0.2 84.4 ± 0.1 63.5 ± 0.6 66.6 ± 1.2 86.0 ± 0.0
8 77.2 ± 0.2 85.8 ± 0.1 84.8 ± 0.2 84.4 ± 0.1 63.8 ± 0.9 66.5 ± 1.2 86.0 ± 0.0
9 76.1 ± 0.1 85.8 ± 0.2 84.8 ± 0.2 84.4 ± 0.1 64.0 ± 0.9 66.5 ± 1.0 86.0 ± 0.0

MIMICMort

0 92.7 ± 0.1 93.3 ± 0.1 93.1 ± 0.0 93.6 ± 0.1 93.7 ± 0.1 93.4 ± 0.1 81.2 ± 0.2
1 92.7 ± 0.1 93.3 ± 0.1 93.2 ± 0.1 93.4 ± 0.0 93.5 ± 0.2 93.3 ± 0.2 80.7 ± 0.1
2 92.8 ± 0.1 93.3 ± 0.1 93.2 ± 0.1 92.1 ± 0.1 91.5 ± 0.4 92.9 ± 0.2 74.2 ± 0.4
3 92.7 ± 0.2 93.2 ± 0.2 93.1 ± 0.2 78.6 ± 0.4 82.2 ± 0.5 87.3 ± 0.5 13.4 ± 0.3
4 92.3 ± 0.3 92.9 ± 0.2 92.7 ± 0.1 62.7 ± 0.1 80.0 ± 0.9 66.4 ± 0.6 7.5 ± 0.0
5 91.4 ± 0.3 92.5 ± 0.4 92.2 ± 0.3 58.8 ± 0.4 80.1 ± 1.1 52.4 ± 1.3 9.2 ± 0.0
6 89.0 ± 0.1 91.3 ± 0.3 91.6 ± 0.3 58.7 ± 0.6 80.4 ± 0.8 47.7 ± 1.5 8.5 ± 0.2
7 83.5 ± 0.7 88.9 ± 0.3 90.8 ± 0.1 58.7 ± 0.7 80.4 ± 0.7 45.9 ± 1.6 7.2 ± 0.0
8 74.2 ± 0.4 85.8 ± 0.2 90.2 ± 0.2 58.7 ± 0.7 80.6 ± 0.7 45.4 ± 1.2 7.2 ± 0.0
9 63.9 ± 0.7 82.5 ± 0.0 89.8 ± 0.2 58.4 ± 0.8 80.8 ± 0.5 45.2 ± 1.5 7.2 ± 0.0
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Table 5: Test-set AUROC (%) of each method on each binary classification dataset for varying levels of noise. Confidence
intervals are computed as the standard deviation over three random seeds.

Dataset Noise Level EDICT EDICT w/ EDGR EDICT w/ Pop. Mean GRU-ODE-Bayes GRU-D IPN SeFT

Synthetic

0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
3 97.0 ± 0.5 100.0 ± 0.0 97.8 ± 0.3 93.6 ± 0.4 99.8 ± 0.2 99.7 ± 0.0 100.0 ± 0.0
4 83.4 ± 1.1 99.6 ± 0.2 86.9 ± 0.9 79.3 ± 0.9 93.0 ± 0.8 92.1 ± 0.1 99.7 ± 0.0
5 69.4 ± 1.1 97.4 ± 0.4 74.3 ± 1.2 67.2 ± 1.2 77.9 ± 0.3 75.7 ± 0.6 86.2 ± 0.6
6 61.0 ± 1.0 94.3 ± 0.7 65.6 ± 1.1 59.8 ± 1.5 67.0 ± 0.7 65.1 ± 0.8 65.4 ± 0.7
7 56.5 ± 0.9 90.8 ± 0.8 60.5 ± 1.3 55.8 ± 1.5 60.7 ± 0.9 59.5 ± 0.8 56.9 ± 0.9
8 54.3 ± 0.8 87.6 ± 1.0 57.3 ± 1.2 53.7 ± 1.4 57.3 ± 0.9 56.6 ± 0.9 53.7 ± 0.8
9 53.0 ± 0.7 84.7 ± 1.3 55.3 ± 1.3 52.5 ± 1.4 55.3 ± 0.8 54.6 ± 0.8 51.9 ± 0.7

PhysioNet

0 69.9 ± 0.1 69.7 ± 0.1 69.7 ± 0.1 79.2 ± 0.2 83.0 ± 0.1 82.7 ± 0.1 68.3 ± 0.1
1 69.7 ± 0.3 69.6 ± 0.2 69.5 ± 0.3 69.4 ± 2.5 55.0 ± 0.8 79.7 ± 0.4 66.1 ± 0.5
2 69.1 ± 0.6 68.9 ± 0.4 68.9 ± 0.5 53.5 ± 3.3 50.6 ± 1.2 57.5 ± 1.2 52.4 ± 2.4
3 67.4 ± 0.9 67.2 ± 0.7 67.2 ± 0.7 52.0 ± 3.5 50.6 ± 1.5 51.1 ± 0.9 44.0 ± 2.3
4 64.2 ± 1.3 64.3 ± 1.0 64.5 ± 0.9 51.5 ± 3.5 50.4 ± 1.3 50.9 ± 0.9 46.1 ± 0.3
5 60.4 ± 1.7 61.3 ± 2.1 61.6 ± 1.3 51.5 ± 3.4 50.5 ± 1.0 50.8 ± 1.0 45.6 ± 0.5
6 57.7 ± 2.0 58.8 ± 3.1 59.2 ± 2.0 51.5 ± 3.5 50.7 ± 1.0 51.2 ± 1.3 49.7 ± 0.5
7 56.5 ± 2.0 57.5 ± 3.0 57.9 ± 2.4 51.4 ± 3.5 50.5 ± 0.7 51.4 ± 1.1 49.9 ± 0.0
8 55.8 ± 1.9 56.7 ± 2.7 57.3 ± 2.4 51.5 ± 3.5 50.7 ± 0.7 51.3 ± 1.3 49.7 ± 0.1
9 55.6 ± 1.9 55.2 ± 2.5 57.2 ± 2.3 51.5 ± 3.5 50.7 ± 0.8 51.3 ± 1.1 49.8 ± 0.0

MIMICMort

0 83.9 ± 0.1 83.2 ± 0.0 83.1 ± 0.1 88.5 ± 0.1 89.6 ± 0.1 86.7 ± 0.0 74.4 ± 0.1
1 83.9 ± 0.1 83.2 ± 0.1 83.2 ± 0.2 88.2 ± 0.2 89.2 ± 0.2 86.6 ± 0.1 74.4 ± 0.0
2 83.8 ± 0.2 83.1 ± 0.1 83.2 ± 0.3 83.7 ± 0.3 83.1 ± 0.8 85.7 ± 0.5 72.5 ± 0.1
3 83.6 ± 0.3 82.8 ± 0.2 83.0 ± 0.4 69.0 ± 0.4 63.7 ± 1.8 77.8 ± 0.7 58.0 ± 0.4
4 82.7 ± 0.5 82.0 ± 0.3 82.2 ± 0.4 56.2 ± 0.6 55.0 ± 1.7 64.7 ± 1.4 51.4 ± 0.6
5 80.6 ± 0.5 80.0 ± 0.4 80.4 ± 0.4 52.3 ± 0.7 52.3 ± 1.2 56.8 ± 1.7 49.4 ± 0.5
6 76.9 ± 0.3 76.4 ± 0.4 77.7 ± 0.4 51.4 ± 1.0 51.5 ± 0.8 53.4 ± 2.0 50.4 ± 0.6
7 71.9 ± 0.5 71.5 ± 0.7 74.9 ± 0.6 51.0 ± 1.3 51.2 ± 0.4 51.9 ± 1.9 50.2 ± 0.2
8 66.7 ± 0.9 66.8 ± 1.1 72.0 ± 0.6 50.9 ± 1.4 51.0 ± 0.7 51.2 ± 1.8 50.0 ± 0.0
9 61.5 ± 0.3 63.5 ± 1.3 70.4 ± 0.6 50.6 ± 1.2 51.0 ± 0.8 51.0 ± 1.8 49.9 ± 0.0
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