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Abstract

We propose a new multiple instance learning (MIL) method called Causal ATTention
Multiple Instance Learning (CATTMIL) to alleviate the dataset bias for more accurate
classification of whole slide images (WSIs). There are different kinds of dataset bias due to
confounders that are rooted in data generation and/or pre-training dataset of MIL. Con-
founders might mislead MIL models to learn spurious correlations between instances and
bag label. Such spurious correlations, in turn, impede the generalization ability of mod-
els and hurt the final performance. To fight against the negative impacts of confounders,
CATTMIL exploits the causal intervention using the front-door adjustment with a Causal
ATTention (CATT) mechanism. This enables CATTMIL to remove the spurious corre-
lations so as to estimate the causal effect of instances on the bag label. Unlike previous
deconfounded MIL methods, our CATTMIL does not need to approximate confounder
values. Therefore, CATTMIL is able to bring further performance boosting to existing
schemes and achieve the state-of-the-art in WSI classification. Extensive experiments on
classification of the two widely-used datasets of TCGA-NSCLC and CAMELYON16 show
CATTMIL’s effectiveness in suppressing the dataset bias and enhancing the generalization
capability as well.

Keywords: Causal intervention, front-door adjustment, multiple instance learning, whole
slide image classification

1. Introduction

Multiple instance learning (MIL), a kind of weakly supervised learning method, has shown
its effectiveness in the computer-aided analysis of whole slide images (WSIs) Li et al. (2021);
Shao et al. (2021). The analysis of WSIs plays an important role in healthcare research
nowadays Mahmood et al. (2020). A WSI is generated from a WSI scanner, which projects
a tissue on a biopsy slide into a gigapixel image while preserving the information of the
original tissue structure He et al. (2012); Shao et al. (2021). As the size of a WSI ranges
from 100 million to 10 billion pixels, much larger than a natural image Qu et al. (2023), it
is infeasible to directly apply models of deep learning trained from natural images to WSIs.
Therefore, the current prevailing pre-processing paradigm for WSIs is to divide a WSI into
thousands of non-overlapping small patches. After pre-processing, the slide-level label is
kept but the patch-level label of each patch is unavailable in most cases. Subsequently,
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Figure 1: Illustration of differences in data generation. In patches of WSIs, positive in-
stances are stained with the pink color, whereas negative instances appear to be
the purple color. In MIL, a bag is positive if there exists at least one positive
instance and negative if all instances in the bag are negative.

WSI-related tasks, such as classification and survival analysis, can be formulated as the
MIL problem.

Specifically, a WSI is regarded as a bag, and the patches of the WSI are treated as
instances in MIL. In general, MIL methods first perform feature extraction for patches
as the instance features, and then aggregate the features for the WSI as the bag-level
prediction. Among different kinds of MIL methods, the most recent are global attention-
based MIL Li et al. (2021); Shao et al. (2021); Xiang and Zhang (2023). Such MIL methods
have demonstrated prominent performance improvement in most WSI-related tasks. They
adopt a global attention-based network as the feature aggregator that allows these MIL
methods to identify cross-instance correlations so as to exploit more useful information to
learn.

There is a critical problem that needs to be paid attention to in MIL methods for
WSI-related tasks: dataset bias. Specifically, there are two types of factors, called con-
founders Pearl et al. (2016) from the causal perspective, collectively contributing to this
dataset bias problem. These two classes of confounders are rooted in data generation and/or
pre-training dataset, depicted as follows. (1) Confounders in data generation: Due to the
differences in data generation, in patches of WSIs, positive instances are stained with the
pink color, whereas negative instances appear to be the purple color, as shown in Fig. 1. The
prevalence of pink positive instances and purple negative instances in the training set makes
an MIL classification model exploit such co-occurrence to predict the bag label. When given
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Figure 2: The causal graph for MIL. H: bag’s instance feature embeddings, Y : bag label,
C: confounders, Z: mediator. (a) The causal graph without the mediator. (b)
The causal graph after back-door adjustment by cutting off the directed edge
H ← C. (c) The causal graph with the mediator. (d) The causal graph after
front-door adjustment by cutting off the directed edge H → Z.

a positive test bag containing more purple instances than pink instances, the model may
tend to infer that the bag is negative. Such a prediction is wrong since the model correlates
color to the bag label. (2) Confounders in pre-training dataset: Most MIL models use fixed
instance feature embeddings extracted by a pretrained network Li et al. (2021); Shao et al.
(2021). The pretrained network is kept after pre-training while the dataset for pre-training
is discarded. Studies Yang et al. (2023) have shown that this process introduces the dataset
bias from the pre-training dataset into MIL and the bias cannot be estimated any more
since the dataset has been dropped. In MIL, confounders mislead models to learn the spu-
rious correlations between instances and the bag label, which is apparently harmful to the
final prediction. To alleviate the negative impacts of the dataset bias in MIL, there have
been a series of MIL methods being proposed Lin et al. (2023); Zhang et al. (2020). These
methods greatly benefit from causal intervention Pearl et al. (2016) and causal effect.

Nevertheless, previous works need an extra training stage to approximate the values
of confounders or identify stable instances. Even worse, few MIL methods consider the
bias introduced by confounders in pre-training dataset. In fact, as confounders cannot be
enumerated and maybe most of them are unknown, it is difficult or impossible to accurately
approximate the values of confounders Liu et al. (2023).

Therefore, it is extremely challenging to achieve unbiased classification. In this paper, we
propose a new bag-level MIL method called Causal ATTention Multiple Instance Learning
(CATTMIL) to address the aforementioned challenges. As shown in Fig. 2(c), we formulate
the causal relations among the confounders C, instancesH, and the bag label Y into a causal
graph. Inserting a mediator Z between H and Y , we set up a front-door path H → Z → Y
in the causal graph for the bag-level MIL. The front-door path provides a feasible way to
exploit the causal intervention based on the front-door adjustment Pearl et al. (2016). With
the front-door adjustment, CATTMIL can alleviate the confounding effect caused by the
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confounders and estimate the causal effect of instances on the bag label without the need
to approximate the value of the two types of confounders.

We evaluate CATTMIL on classification of two public WSI datasets, CAMELYON16
and LUSC-NSCLC. Our further ablation studies demonstrate the significant effectiveness
of interventional training. The main contributions of our work are summarized as follows:

• A causal graph is proposed for the analysis of causal relations. Correspondingly, the
front-door adjustment causal intervention is conducted to remove spurious correlations
introduced by the confounders.

• With the front-door adjustment, CATTMIL is able to suppress the dataset bias with-
out the need of an extra traning stage to approximate the value of confounders,
whereas previous schemes do need approximation of confounders.

• CATTMIL can be employed as an add-on to general global attention-based MIL meth-
ods by only attaching an attention branch to the global attention-based MIL model.
In this paper, CATTMIL has been instantiated on two baseline models. Extensive
experiments have been conducted with CATTMIL, showing its effectiveness in sup-
pressing confounders and the distinct performance improvement to baselines.

2. Related Work

2.1. Multiple Instance Learning Methods

MIL methods can be generally divided into two categories: instance-level and bag-level
MIL methods. Instance-level MIL methods Hou et al. (2016); Lerousseau et al. (2020)
obtain the final bag prediction through either the maximum pooling or the mean pooling
of the instance probabilities. Bag-level MIL methods Ilse et al. (2018); Lu et al. (2020);
Li et al. (2021); Shao et al. (2021); Xiang and Zhang (2023) aggregate instance feature
embeddings in a bag into a bag feature embedding and then train a classifier upon the bag
feature embedding for the bag-level prediction. Despite the simplicity, instance-level MIL
methods have been demonstrated to exhibit inferior performance compared with bag-level
MIL methods Zhang et al. (2022).

Recently, attention mechanisms have been the mainstream of bag-level MIL methods,
where the bag feature embedding is obtained by summing the instance feature embeddings
using attention scores as weights. Methods of this kind differ in the ways to generate
attention scores and can be generally divided into two categories. The first category is
local attention-based methods, in which ABMIL Ilse et al. (2018) utilizes an attention-based
aggregation operator to assign the attention score to each instance embedding and CLAM Lu
et al. (2020) further improves ABMIL with a clustering task by pulling instances with the
highest and the lowest attention scores apart. Local attention-based MIL methods have
obtained significant improvements and robustness. However, they typically treat instances
in the bag as independent and do not consider the correlations between instances. In
contrast, the second category comprehensively considers the correlations among different
instances within the same bag and it is usually referred to as global attention-based methods.
The following are representative example methods. DSMIL Li et al. (2021) adopts non-local
pooling and obtains attention scores based on the cosine distance between each instance
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to the critical instance. TransMIL Shao et al. (2021) utilizes a transformer encoder with
Nyström Attention Xiong et al. (2021) to encode the mutual correlations between instances.
ILRA-MIL Xiang and Zhang (2023) uses an iterative low-rank attention feature aggregator
to encode cross-instance correlations. Our goal is to improve the global attention-based
MIL methods with CATTMIL.

2.2. Causal Inference

Causal inference Pearl et al. (2016) has attracted increasing attention in various computer
vision tasks, such as long-tailed classification Tang et al. (2020); Zhu et al. (2022), vision-
language tasks Abbasnejad et al. (2020); Niu et al. (2021) and so on, for its strong ability
to learn the causality between cause and effect. As for MIL classification, StableMIL Zhang
et al. (2020) identifies stable instances and adds an instance to a bag as a treatment to
address distribution change. IBMIL Lin et al. (2023) assumes that the confounder Pearl
et al. (2016) are observable and then suppresses the bias by the back-door adjustment Pearl
et al. (2016). Our CATTMIL uses the front-door adjustment Pearl et al. (2016) to remove
spurious correlations and alleviate the dataset bias.

3. Method

The objective of CATTMIL is to mitigate the dataset bias for WSI classification. Our
model is built upon the global attention-based MIL model and the focus of our model is
to build a Causal ATTention (CATT) mechanism in the aggregator. Fig. 3 presents the
overall framework of the proposed model, consisting of two stages. Stage 1 is the process of
instance feature embedding extraction and global dictionary construction. Stage 2 trains the
aggregator and classifier interventionally. In the following subsections, we give a problem
formulation and then introduce the details of our method from the causal lens.

3.1. Problem Formulation

We take MIL for the binary classification as an example. Suppose D = {Xi}Ni=1 is a dataset
containing N bags, and each bag Xi = {xi,j}ni

j=1 contains ni instances, where each instance

xi,j ∈ Rh×w×d is a patch of size h × w × d. Let {yi,j}ni
j=1 be the instance labels, the bag

label Yi is given by:

Yi =


0, iff

∑
j

yi,j = 0

1, otherwise

(1)

where yi,j ∈ {0, 1}, Yi ∈ {0, 1}. The bag label is positive if there exists at least one positive
instance and negative if all instances in the bag are negative. In weakly supervised MIL, the
instance labels in positive bags in the training set are unknown. Specially, for multi-class
MIL classification, Yi ∈ {0, 1, · · · ,m}, where m denotes the number of cancer subtypes.
MIL aims to predict the bag label accurately.

Bag-level MIL methods typically comprise three modules: a feature extractor f(·), a
feature aggregator σ(·), and a classifier φ(·). A general procedure for bag-level MIL methods
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Figure 3: An overview of our proposed Causal ATTention Multiple Instance Learning
(CATTMIL). In stage 1: First, the instance feature embeddings are extracted by
a pretrained feature extractor f(·). Then, the global dictionary is constructed by
applying a mean pooling operation on the instance feature embeddings to obtain
the mean of feature embeddings and running K-means to partition these feature
embeddings into clusters. In stage 2: The instance feature embeddings from the
same bag and global feature embeddings from the global dictionary are fed to the
aggregator σ(·) with the CATT mechanism. Then, the two output vectors of the
aggregator are concatenated to obtain the final bag feature embedding, which is
taken as the input for the classification by the MLP classifier φ(·).

consists of three steps: (1) The feature extractor projects each instance xi,j into an instance
feature embedding hi,j = f(xi,j), where hi,j ∈ R1×d1 and d1 denotes the dimension of
the instance feature embedding. ImageNet-pretrained ResNet He et al. (2016) and self-
supervised learning-based models pretrained on histopathological images are commonly
used as the feature extractors Ciga et al. (2020); Li et al. (2021); Shao et al. (2021). Hi =
{hi,j}ni

j=1 denotes a bag of instance feature embeddings. (2) The aggregator aggregates
the instance feature embeddings from the same bag Hi to obtain a bag feature embedding
bi = σ(Hi), where bi ∈ R1×d2 and d2 is the dimension of the bag feature embedding. (3)
The Multilayer Perceptron (MLP) head, acting as the classifier, utilizes the bag feature
embedding bi to predict the bag label Ŷi = φ(bi) ∈ {0, 1}. For clarity, i is ignored in Fig. 3.

3.2. Causal Graph for Multiple Instance Learning

To study the influence of confounders on the bag-level prediction and determine the esti-
mation of the causal effect of instances on the bag label, we construct a causal graph for
MIL to analyze the causal relations among instances, bag label, and confounders, as shown
in Fig. 2(a). The causal graph contains three nodes: H: bag’s multiple instance feature
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embeddings, Y : bag label, and C: confounders. The directed edge represents a causal
relation between two nodes: cause → effect.

H → Y : The aggregation of the bag’s instance feature embeddings infers the bag label.
C → H: The confounders rooted in data generation and pre-training dataset have a

causal effect on the bag’s instance feature embeddings.
C → Y : The bag label is affected by the confounders. This is because MIL is trained

with instance feature embeddings-bag label pairs, which maps the information inherited
from confounders into the bag label inevitably.

In the causal graph, the confounders C cause a spurious correlation between H and Y
via the back-door path H ← C → Y . The back-door path generates the bias when using the
conventional training objective P (Y |H). The back-door adjustment offers a tool for us to
eliminate the spurious correlation by cutting off the directed edge H ← C and calculating
the likelihood P (Y |H, c) within each stratum c of C if C is observable, where c denotes
the value of the confounders C. The interventional training objective P (Y |do(H)) can be
calculated as:

P (Y |do(H)) =
∑
c

P (Y |H,C = c)P (C = c). (2)

However, confounders in pre-training dataset are not accessible after pre-training. Be-
sides, confounders in data generation are extremely complex and difficult to identify. There-
fore, we can not apply the back-door adjustment to MIL directly. To address this problem,
we adopt the front-door adjustment to calculate P (Y |do(H) even when confounders C are
unobservable. In the following, we will explain why the front-door adjustment work and
show how to implement the front-door adjustment.

3.3. Causal Intervention via Front-door Adjustment

To deploy front-door adjustment, an additional mediator Z is inserted between H and Y
to construct a front-door path H → Z → Y in the causal graph for MIL, as shown in
Fig. 2(c). A global attention-based model selects important information from the instance
feature embeddings H to predict the bag label Y :

P (Y |H) =
∑
z

P (Z = z|H)P (Y |Z = z), (3)

where z denotes the selected knowledge from mediator Z.
To deconfound H → Z → Y , we first calculate two partial effects P (Z|do(H)) and

P (Y |do(Z)). Then we chain them together to get the causal effect of H on Y :

P (Y |do(H)) =
∑
z

P (Z = z|do(H))P (Y |do(Z = z)). (4)

For P (Z = z|do(H)), the back-door path H ← C → Y ← Z between H and Z is
naturally blocked due to the collider C → Y ← Z, then we have:

P (Z = z|do(H)) = P (Z = z|H). (5)
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Figure 4: The structure of the causal attention module, which estimates Ĥ and Ẑ to im-
plement the front-door adjustment.

For P (Y |do(Z = z)), the back-door path Z ← H ← C → Y can be blocked by control-
ling H or C due to the chain Z ← H ← C or the confounding H ← C → Y . Since C is
unavailable, we have to control H to cut off Z ← H and block the back-door path, then we
have:

P (Y |do(Z = z)) =
∑
i

P (H = Hi)P (Y |H = Hi, Z = z). (6)

After chaining two partial effects together, the intervention distribution P (Y |do(H))
can be calculated as:

P (Y |do(H))

=
∑
z

P (Z = z|do(H))P (Y |do(Z = z))

=
∑
z

P (Z = z|H)
∑
i

P (H = Hi)P (Y |H = Hi, Z = z).

(7)

To implement front-door adjustment causal intervention into the bag-level MIL frame-
work, we parameterize P (Y |H,Z) as a network φ(·) followed by a Softmax layer that im-
plements P (Y |H,Z) as:

P (Y |H,Z) = Softmax(φ(H,Z)). (8)

However, it is costly to compute P (Y |do(H)), as a tremendous large number of samples
representing H and Z need to be sampled and fed into the network. To solve this problem,
we employ Normalized Weighted Geometric Mean (NWGM) Xu et al. (2015) to absorb
the outer sampling into the network. As a result, it needs to perform network forwarding
operation only once to get the estimation P (Y |do(H)):

P (Y |do(H)) ≈ Softmax(φ(Ĥ, Ẑ)), (9)
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Dataset CAMELYON16 LUSC-NSCLC

Subtype / LUSC LUAD

No. WSIs 399 1046

No. training WSIs 270 836

No. test WSIs 129 210

No. patches per bag 11,500 5,000

Table 1: Dataset statistics for classification.

in which,

Ĥ =
∑
i

P (H = Hi|ϕ1(H))Hi,

Ẑ =
∑
z

P (Z = z|ϕ2(H))z,
(10)

where Ĥ and Ẑ denote the estimation of H and Z respectively. ϕ1(·) and ϕ2(·) denote the
network mapping functions.

Both Ĥ and Ẑ can be calculated by an attention network, in which ϕ1(·) and ϕ2(·)
denote query embedding functions. The attention network, jointly estimating Ĥ and Ẑ, is
called Causal ATTention (CATT). The structure of CATT is shown in Fig. 4. We take the
computation of Ĥ as an example. Since it is time-prohibitive to sample all the possible bags’
instance feature embeddings to compute Ĥ, we first apply the mean pooling operation on
each bag’s instance feature embeddings in the training set to obtain a feature embedding.
Then we use K-means over all the feature embeddings, partitioning the feature embeddings
into clusters. The centroid of each cluster represents a global feature embedding gk, where
gk ∈ R1×d1 and d1 is the dimension of the global feature embedding. Finally, we obtain
a global dictionary with K global feature embeddings in the shape of K × d. Let HL

represent the local instance feature embeddings that come from the current input bag and
HG represent the global feature embeddings that come from the global dictionary. The
attention branch estimating Ĥ takes HL and HG as inputs and conditions global feature
embeddingsHG on the local feature embeddingsHL. The attention branch can be expressed
by the Q-K-V operation:

Input : Q = HL,K = HG, V = HG,

Prob : AG = Softmax((QWQ)(KWK)T ),

Output : Ĥ = AG(VWV ),

(11)

where WQ, WK , WV ∈ Rd1×d1 are trainable parameter matrices and each attention vector

aG in AG approximates the probability P (H = Hi|ϕ1(H)). Similarly, Ẑ can be estimated
as Ĥ by setting Q = K = V = HL in the other attention branch. Attention vector aL in
AL estimates the probability P (Z = z|ϕ2(H)). After that, Ĥ and Ẑ are concatenated to
estimate P (Y |do(H)).

4. Experimental Results on Classification

We designed our experiments to answer the following questions:
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• Can CATTMIL improve global attention-based MIL methods (see Fig. 5(c)), such as
DSMIL Li et al. (2021) and TransMIL Shao et al. (2021), with different pretrained
feature extractors (see Fig. 5(b)) for both balanced and unbalanced datasets (see Table
2 and Fig. 5(a))?

• What is the proper size of the global dictionary (see Fig. 5(d))?

• How does the implementation of the front-door adjustment affect the performance
(see Table 3)?

• Can sharing parameters between the two attention branches be useful for CATTMIL
(see Table 3)?

• Does CATTMIL work in a greener and more efficient way than IBMIL Lin et al.
(2023) (see Table 4.6)?

4.1. Datasets

To cover balanced and unbalanced datasets, we choose TCGA-NSCLC and CAMELYON16
as datasets. Some statistical facts of chosen datasets are listed in Table 1. TCGA-NSCLC
includes two subtype projects, i.e., Lung Squamous Cell Carcinoma (LUSC) and Lung
Adenocarcinoma (LUAD). The dataset is divided into 836 training slides and 210 test
slides following DSMIL. We directly use the patches released by DSMIL following IBMIL.
There are roughly 5.2 million patches at ×20 magnification, with an average of about 5,000
patches per bag. CAMELYON16 is a dataset proposed for metastasis detection in breast
cancer, including 270 training slides and 129 test slides. After pre-processing, a total of
about 4.6 million patches at ×20 magnification, about 11,500 patches per bag are obtained.

4.2. Baselines and Evaluation Metrics

The CATTMIL can be applied to global attention-based MIL methods. Here we apply
CATTMIL and IBMIL to two baselines that perform best so far: DSMIL and TransMIL.
Then we compare CATTMIL with baselines w/o causal intervention and baselines w/ IB-
MIL. To assess the performance of the models in classification on WSI, we use accuracy
and area under the curve (AUC) as the evaluation metrics. As CATTMIL is employed as
an add-on to global attention-based bag-level MIL methods and the patch-level label of
each patch is unavailable in most cases, patch-level performance is neither the focus nor the
evaluation metric.

4.3. Implementation Details

To validate the universality of the proposed method and to compare with IBMIL fairly, we
select ResNet-18 He et al. (2016), CTransPath Wang et al. (2022), and ViT-small Doso-
vitskiy et al. (2021) as the backbone network of the feature extractor. The ResNet-18
is pretrained on ImageNet, the CTransPath is pretrained with semantically-relevant con-
trastive learning (SRCL), and the ViT-small is pretrained with MoCo V3 Chen et al. (2021).
The dimension of the instance feature embeddings is 512, 768, and 384 respectively. For the
LUSC-NSCLC dataset, our proposed models are optimized for 50 epochs with a batch size
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Method
Performance

TCGA-NSCLC CAMELYON16

Accuracy AUC Accuracy AUC

R
es
N
et
-1
8

Im
a
g
eN

et
p
re
tr
ai
n
ed DSMIL

77.62 86.88 77.52 73.75
+IBMIL 80.00 87.19 76.74 72.98
+CATTMIL 84.92 (±0.72) 91.38(±1.08) 77.78(±1.61) 75.99(±0.46)

TransMIL
85.24 90.70 75.97 72.83

+IBMIL 85.24 92.54 79.07 79.44
+CATTMIL 91.90(±0.83) 96.40(±0.23) 76.36(±0.54) 74.29(±0.36)

C
T
ra
n
sP

at
h

S
R
C
L

DSMIL
90.95 97.13 89.15 93.26

+IBMIL 91.43 97.51 91.47 95.20
+CATTMIL 92.38(±0.48) 97.90(±0.18) 93.80(±0.78) 96.27(±0.50)

TransMIL
91.90 95.55 94.57 95.88

+IBMIL 93.81 97.24 96.12 97.00
+CATTMIL 94.92(±0.55) 97.98(±0.28) 94.31(±0.44) 97.81(±0.29)

V
iT

M
oC

o
V
3 DSMIL

90.00 95.40 81.40 82.27
+IBMIL 90.48 96.20 82.17 83.77
+CATTMIL 94.53(±0.33) 98.06(±0.04) 90.95(±0.89) 92.25(±1.89)

TransMIL
93.81 96.67 93.80 94.38

+IBMIL 94.29 97.98 93.80 95.20
+CATTMIL 94.60(±0.55) 98.04(±0.07) 94.77(±1.66) 97.26(±0.77)

Table 2: Main results (%) on TCGA-NSCLC and CAMELYON16. The best evaluation
performance is shown in boldface.

of 1. The Adam optimizer in DSMIL+CATTMIL has parameters β1 = 0.9, β2 = 0.99, and
ϵ = 1e−4. The Lookahead optimizer in TransMIL+CATTMIL is employed with a learning
rate of 5e-5. The size of the global dictionary is set as 32. For the CAMELYON16 dataset,
our proposed models are optimized for 50 epochs with a batch size of 1 and a learning rate
of 1e-4, except that DSMIL+CATTMIL is trained for 200 epochs to converge with ViT-
small as the feature extractor. The Adam optimizer in DSMIL+CATTMIL has parameters
β1 = 0.9, β2 = 0.95, and ϵ = 1e − 8. The Lookahead optimizer in TransMIL+CATTMIL
is employed with a weight decay of 1e-8 and a learning rate of 1e-4. The size of the global
dictionary is set as 16. Other settings are followed with their official codes. We retrain
CATTMIL five times with different random seeds to report the mean and standard deriva-
tion of the evaluation performance on the test set. We perform all the experiments using
PyTorch 1.13.1 on Ubuntu 20.04 with a single NVIDIA GeForce GTX 4090 GPU with 24
GB memory.

4.4. Comparison with Baselines

The classification results using different feature extractors on CATTMIL, baselines w/ IB-
MIL, and baselines w/o causal intervention are reported in Table 2, where the best evalua-
tion performance is shown in boldface.

As shown in Table 2, compared with baselines w/o causal intervention, CATTMIL
obtains about 3.02% improvement in accuracy and 2.99% improvement in AUC. It proves
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Figure 5: The average gain in AUC (%) (a) on datasets, (b) with pretrained feature ex-
tractors on TCGA-NSCLC, (c) on global attention-based MIL methods. ”w/o
CI” denotes ”compared with baselines without causal intervention”. ”w/ BD”
denotes ”compared with baselines with the back-door adjustment”. (d) Ablation
study of the size of the global dictionary.

that CATTMIL can effectively mitigate the dataset bias in the inference stage. On the
other hand, compared with baselines w/ IBMIL, CATTMIL has better performances with
2.05% improvement in accuracy and 1.64% improvement in AUC. It indicates that the front-
door adjustment of CATTMIL is more effective than the back-door adjustment of IBMIL.
Such observation is consistent with the discussion in section 3.2: When the confounders are
unobservable, the front-door adjustment is a better choice.

In TCGA-NSCLC, positive slides contain large portions of the tumor over the whole
tissue region (averagely >80% per slide). Among all global attention-based MIL meth-
ods with different feature extractors, CATTMIL achieves leading performance. As shown
in Fig. 5(a), the average gain of AUC is 2.96% and 1.85% compared with baselines w/o
causal intervention and baselines w/ the back-door adjustment respectively. What is more,
for every feature extractor, CATTMIL improves the average performance compared with
baselines w/ IBMIL, as shown in Fig. 5(b). Due to that TCGA-NSCLC is a relatively
balanced dataset, the improvement is mainly the result of suppressing the bias introduced
by the confounders in pre-training dataset. In particular, CATTMIL significantly improves
the performance of models with ResNet-18 as the feature extractor. The reason is that
ResNet-18 is pretrained on natural images, which is different from histopathological im-
ages, while CTransPath and ViT-small are self-supervised pretrained on histopathological
images, which have alleviated the bias to some degree during pre-training. In CAME-
LYON16, each positive slide contains only a small portion of the tumor (averagely <10%
per slide), thus there is a highly imbalanced distribution of positive and negative instances
in a positive bag. Despite imbalanced distribution, CATTMIL still obtains leading perfor-
mance in 5 of 6 cases. In detail, CATTMIL achieves 3.07% higher in AUC than baselines
w/o causal intervention and 1.47% higher in AUC than baselines w/ the back-door adjust-
ment, as shown in Fig. 5(a). The above observations demonstrate that causal intervention
via the front-door adjustment indeed mitigates the bias introduced by confounders in data
generation and pre-training dataset without the need to approximate the confounders.
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Setting Precision Recall Accuracy AUC

baseline 81.98 86.25 80.00 87.19

K=4 86.37 85.52 84.44 91.02
K=8 86.17 86.74 85.24 91.43
K=16 86.44 86.60 85.71 91.42
K=32 87.35 85.29 84.92 91.38

⊕ 87.35 85.29 84.92 91.38
+ 84.27 83.90 81.91 89.75
- 86.24 85.63 84.44 90.37

w/o sharing 87.35 85.29 84.92 91.38
w/ sharing 83.97 86.09 83.18 90.00

Table 3: Results (%) of ablation on model design variants. The best evaluation performance
is shown in boldface.

As shown in Fig. 5(c), both DSMIL and TransMIL w/ the front-door adjustment outper-
form baselines on average. It indicates that CATTMIL is universal to global attention-based
MIL methods and consistently enhances their performance. Besides, the improvement of
DSMIL is greater than that of TransMIL. This is probably due to that the structure of
DSMIL is simpler than TransMIL, making DSMIL easier to suffer from the negative im-
pacts of the confounders.

Overall, CATTMIL consistently improves all global attention-based MIL methods with
all feature extractors on both datasets, which demonstrates the effectiveness and universality
of CATTMIL.

4.5. Ablation on Model Design Variants

In this section, we ablate the important design elements in the proposed method. Experi-
ments are conducted on the TCGA-NSCLC dataset with ResNet-18 as the feature extractor
and DSMIL as the backbone of the aggregator.

Size of the global dictionary. We study the effect of different sizes of the global
dictionary. The results are shown in Fig. 5(d) and Table 3. We observe that the performance
of our method is quite stable with the size of the global dictionary K varying from 4 to 32,
which indicates that we do not need to elaborately tune this hyper-parameter.

Implementation of the front-door adjustment. We study how different implemen-
tations of front-door adjustment affect the effectiveness of the proposed method. Specifi-
cally, given Ĥ and Ẑ, we explore three different ways to combine them, denoted as Ĥ ⋆ Ẑ,
where ⋆ ∈ {⊕,+,−}. ⊕ is concatenation. +/− is element-wise addition/subtraction. The
results are summarized in Table 3. We can see that all these implementations can boost
the performance. Such observation underscores the effectiveness of the proposed method.
Among the three combining modes, the concatenation mode performs the best. The reason
is that the concatenation mode may maintain original information from Ĥ and Ẑ better
after combining them. Therefore, Ĥ ⊕ Ẑ is fed into the MLP classifier in experiments.

Sharing parameters. We investigate the effect of sharing parameters between two
attention branches. The results are shown in Table 3. Sharing the parameters makes the
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Method Time (h) Accuracy AUC

DSMIL 1.83 77.62 86.88
+IBMIL 3.67 80.00 87.19
+CATTMIL 1.81 84.92 91.38

Table 4: Time comparison of different methods.

performance decrease by 1.74% (from 84.92% to 83.18%) in accuracy and 1.38% (from
91.38% to 90.00%) in AUC. This observation suggests that Ĥ and Ẑ do not need to stay in
the same representation space. Therefore, the parameters of the two branches are designed
to be independent in our model.

4.6. Computational Cost Analysis

To evaluate the efficiency of our method, we compare the training time of IBMIL and
CATTMIL on the TCGA-NSCLC dataset. The comparison results are shown in Table 4.6.
We can train the CATTMIL about 2.0x faster than IBMIL. This is because CATTMIL does
not need an extra stage of retraining aggregator to approximate the confounders. These
experiments, combined with the results in Table 2, verify that our approach can achieve
outstanding performance with impressive training efficiency.

5. Conclusion

In this paper, we first introduce a causal graph to analyze causal relations. Then we
employ the causal intervention for a comprehensive analysis of deconfounded multiple in-
stance learning (MIL). With these analysis, we propose a method called Causal ATTention
Multiple Instance Learning (CATTMIL) using the front-door adjustment to alleviate the
confounding effect. Extensive experiments on classification have been conducted on global
attention-based MIL methods. The results show that CATTMIL can remove the spuri-
ous correlations between instances and the bag label and boost the performance of global
attention-based MIL methods. Our future research direction is designing a general MIL
framework based on the front-door adjustment to adapt to both global attention-based and
local attention-based MIL methods.
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