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Abstract

With the rapid development of deep learning, the sizes of deep neural networks are getting
larger beyond the affordability of hardware platforms. Given the fact that neural networks are
often over-parameterized, one effective way to reduce such computational overhead is neural
network pruning, by removing redundant parameters from trained neural networks. It has
been recently observed that pruning can not only reduce computational overhead but also can
improve empirical robustness of deep neural networks (NNs), potentially owing to removing
spurious correlations while preserving the predictive accuracies. This paper for the first time
demonstrates that pruning can generally improve L∞ certified robustness for ReLU-based
NNs under the complete verification setting. Using the popular Branch-and-Bound (BaB)
framework, we find that pruning can enhance the estimated bound tightness of certified
robustness verification, by alleviating linear relaxation and sub-domain split problems. We
empirically verify our findings with off-the-shelf pruning methods and further present a new
stability-based pruning method tailored for reducing neuron instability, that outperforms
existing pruning methods in enhancing certified robustness. Our experiments show that
by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under
standard training, and up to 24.5% under adversarial training on the CIFAR10 dataset. We
additionally observe the possible existence of certified lottery tickets in our experiments that
can match both standard and certified robust accuracies of the original dense models across
different datasets. Our findings offer a new angle to study the intriguing interaction between
sparsity and robustness, i.e. interpreting the interaction of sparsity and certified robustness
via neuron stability. Codes will be fully released.

1 Introduction

Neural Network (NN)-based framework is a strong general solution to many problems, yet many of these
solutions remain impractical for real-world applications of low fault tolerance. A slight perturbation in the
raw input sensory data could completely change the predicting behaviors of the networks. Furthermore,
researchers have shown that various kinds of targeted adversarial attacks can easily fool the neural networks
Szegedy et al. (2013); Goodfellow et al. (2014), which poses threat to many deep learning applications.
Fortunately, researchers introduced formal methods to verify neural network behaviors, which made it possible
to mathematically derive the prediction bound of a neural network w.r.t. a certain input, and thus evaluate
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the certified robustness of the neural network. For example, in the image classification task, given an input
image with some perturbation, if the lower bound of the output probability of the correct label is higher than
the upper bound of probabilities of other incorrect labels, we say the model is certifiably robust w.r.t. this
image sample. The goal of the neural network verification is to estimate the bounds as accurate as possible.

In this paper, we are concerned about the certified robustness w.r.t. L∞ input perturbations under the
complete verification setting, where the verifier should output the exact bounds given the input domain
C, rather than some relaxation of C, given sufficient time. Despite its theoretical appeal, the complete
verification of neural networks is known to be a challenging NP-hard problem Katz et al. (2017); Weng et al.
(2018), mainly due to the non-linear activation functions in neural networks, such as Sigmoid and ReLU. The
popular Branch-and-Bound (BaB) framework Bunel et al. (2017) utilized the feature of ReLU activations
and adopted the classical divide-and-conquer method to solve the complete verification problem. It branches
the bound computation into multiple sub-domains recursively on ReLU nodes and computes the bounds
on each sub-domain respectively. The time complexity of this framework is exponential, and typically has
pre-set time limit for each sample verification.

Several verifiers Xu et al. (2020b); Wang et al. (2021) based on the BaB framework were later proposed
for efficient complete verification. The core problem addressed in these methods is how to estimate the
pre-activation bound (i.e. propagated input bounds of the non-linear activation layers) as tight as possible
given limited time. To approach this, they use Linear-Relaxation based Perturbation Analysis (LiRPA) to
relax non-linear bound propagation with linear ones and use GPU-accelerated BaB methods to further tighten
the estimated bounds as much as possible. However, the estimated bound is still loose, mainly because
(1) an efficient linear relaxation of multiple non-linear activation layers is loose both empirically Salman et al.
(2019) and theoretically Katz et al. (2017); Weng et al. (2018), where tightening the relaxation requires an
exponential number of linear constraints which is inefficient Tjandraatmadja et al. (2020); and (2) the BaB
framework requires solving an exceedingly large number of sub-domains (which is exponential in the worst
case Katz et al. (2017)) to provide a tight bound, so in practice we often solve only a part of the sub-domains
which yields a loose bound.

Recent efforts Fu et al. (2021); Gui et al. (2019); Hu et al. (2020); Ye et al. (2019); Jordao & Pedrini (2021);
Xiao et al. (2018) reveal that proper network pruning can empirically enhance neural network robustness
to adversarial attacks. We take one step further to argue that pruning can also be utilized to improve the
estimated bound tightness of certified robustness verification, by alleviating linear relaxation and sub-domain
split problems. Improving empirical robustness (as a surrogate of “ground-truth" robustness) and verification
tightness can together lead to overall measurable certified robustness, and we find that existing pruning
schemes can already co-achieve both. Moreover, inspired by the fact that sparsity can eliminate unstable
neurons and improve non-linear neuron stability for verification Xiao et al. (2018), we present a new stability-
based pruning method, that even outperforms existing pruning methods on improving certified robustness.
Our main contributions are outlined below:

• For the first time, we demonstrate that pruning can generally improve certified robustness w.r.t. L∞
input perturbations. We analyze pruning effects from the perspectives of both improving ground-
truth robustness of the model and the verification bound tightness, and empirically validate it with
extensive pruning methods and training schemes.

• As pruning can be utilized to improve non-linear neuron stability, we propose a novel regularizer for
pruning called NRSLoss (see Figure 2) that effectively regularizes the neuron stability and outperforms
existing pruning methods in enhancing certified robustness.

• Our experiments validate the above proposals by presenting verification results under various settings.
For example on the CIFAR10 dataset, under certified training, existing pruning methods as well as
our proposed NRSLoss-based pruning boost the certified accuracy for 1.6-7.1% and 8.2% respectively;
under adversarial training, they boost the certified accuracy for 12.5-24.5%.
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2 Related Work

2.1 Incomplete and complete NN verification

Neural Network verification is a critical issue for developing trustworthy and safe AI. Existing verifiers can be
divided into either incomplete or complete verifiers. Complete verifiers can typically produce tighter bound
than incomplete verifiers, but consume much larger computational resources than incomplete verifiers. Typical
incomplete verifiers are based on duality Dvijotham et al. (2018); Raghunathan et al. (2018) and linear
approximations Weng et al. (2018); Wong & Kolter (2018); Zhang et al. (2018a), whereas existing complete
verifiers are based on satisfiability modulo theories (SMT) Katz et al. (2017); Ehlers (2017), mixed integer
programming (MIP) Tjeng et al. (2017), convex hull approximation Müller et al. (2021), or Branch-and-Bound
(BaB) Bunel et al. (2017); Xu et al. (2020b); Wang et al. (2021).

Traditional complete verifiers such as SMT and MIP are computationally expensive and hard to parallelize. To
this end, a series of verifiers based on the BaB framework were recently proposed for efficient and parallelizable
complete verification. Auto-LiPRA Xu et al. (2020a) was an early incomplete verifier and certified trainer,
that relaxes ReLU non-linearity with a tight linear relaxation. Following that, Fast-and-Complete algorithm
Xu et al. (2020b) proposed to combine auto-LiRPA with BaB for tighter bound estimation and use LP solver
for completeness check, which is a GPU-parallelizable complete verification method. Beta-CROWN Wang
et al. (2021) further extended Fast-and-Complete algorithm by replacing the LP completeness check with
optimizable constraints based on the Lagrange function, and improved the verification efficiency.

2.2 Neural network pruning

Pruning removes the redundant structures in NNs and reduces the size of parameter numbers from the
computation graph of NNs. It not only constitutes an important class of NN model compression methods but
also can act as a regularizer for NN training which can improve the performance w.r.t. original unpruned
networks. The pruning process can be conducted at different levels or granularities, such as parameter-level
Frankle & Carbin (2018); Zhang et al. (2018b); Ma et al. (2020), filter-level Luo et al. (2018); Li et al. (2016);
Roy et al. (2020) and layer-wise Wang et al. (2018); Wu et al. (2018); Zhang et al. (2019). Especially, Lottery
Ticket Hypothesis (LTH) Frankle & Carbin (2018) claims the existence of independently trainable sparse
subnetworks that can match or even surpass the performance of dense networks. Such sparse subnetworks
called “winning tickets", can be obtained by simple iterative parameter-level pruning.

2.3 Pruning and robustness

Recently, several works Ye et al. (2019); Gui et al. (2019); Jordao & Pedrini (2021) have revealed that proper
network pruning can empirically improve the robustness of a trained NN, potentially due to removing spurious
correlations while preserving the predictive accuracies. Fu et al. (2021) found that randomly initialized
robust subnetworks with better adversarial accuracy than dense model counterparts can be found by IMP.
Xiao et al. (2018) was the first work to inject sparsity during NN training, with the primary goal to speed
up certified verification. It considered only weight magnitude pruning, and did not generally demonstrate
sparsity to improve the achievable L∞ certified robustness. HYDRA Sehwag et al. (2020) incorporated the
robustness loss as a pruning objective, and showed such a robustness-aware pruning scheme can lead to high
NN sparsity without much robust accuracy loss. Besides studying incomplete certified verification, HYDRA
did not specifically analyze what benefits pruning brings for verification, while our NRSLoss-based pruning
is explicitly motivated by reducing unstable neurons and tightening the estimated bound in the complete
verification. Han et al. (2021) proposed that superficial neurons that contribute significantly to the feature
map values in shallow layers were highly localized and are more prone to adversarial patches. Hence they
used pruning to remove superficial neurons and improved certified defense against adversarial patches – an
orthogonal goal to our work.
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3 Methodology

In this paper, following prior works on certified robustness, we focus on non-linear feed-forward neural
networks with ReLU activations. In this section, we first analyze what benefits would network pruning
brings to certified robustness and verification, and then introduce the specific pruning methods we test in our
experiments.

3.1 Preliminary

3.1.1 Unstructured and Neuron Pruning

Network pruning is one of the most effective model compression paradigms for deep neural network, by
removing redundant parameters or neurons from over-parameterized neural networks, and many of them focus
on pruning learnable weight parameters. Existing weight pruning methods can be divided to unstructured
pruning and neuron pruning, depending on whether weights are pruned individually or by group. For
unstructured pruning, individual weights that connect two channels (neurons) of adjacent layers are removed;
for neuron pruning, all input and output weights associated with certain channels are removed.

Each of these two pruning paradigms has its advantages and disadvantages over the other. Unstructured
pruning can better preserve the performance of the original dense networks due to pruning flexibility on
individual weights, but is hard to realize real hardware acceleration during inference. In contrast, the hardware
compression during inference for neuron pruning can be easily implemented due to the removal of entire
channels, but has less pruning flexibility compared to unstructured pruning, which would generally lead to
worse performance that unstructured pruning. In this paper, we investigate the influence of both unstructured
and neuron pruning on certified robustness and are interested in both the performance gain and the reduction
of computational overhead brought by pruning.

3.1.2 Lottery Ticket Hypothesis(LTH)

The lottery ticket hypothesis Frankle & Carbin (2018) states that a randomly initialized dense neural
network contains at least one subnetwork (i.e. by pruning the parameters of the dense network) that has the
same initialization of the unpruned parameters and can match the test performance of the dense network
after training for at most the same iterations as the dense network, and such subnetworks are called the
winning tickets of the dense network. To find these winning tickets, they propose Iterative Magnitude
Pruning(IMP) algorithm: Firstly, start from a dense initialization W0, and then train the network until
convergence to weight Wt. Then we determine the ρ percent smallest magnitude weights in |Wt| and create a
binary mask m0 that prunes these. Then retrain the pruned network from the same initialization weight
W0 ⊙ m0 to convergence. Iterating this procedure will produce subnetworks with different sparsity, among
which certain subnetworks can match the test performance of the original dense network, i.e. the winning
tickets.

3.1.3 ReLU Neuron Stability

The illustration of ReLU neuron stability is demonstrated in Figure 1. The ReLU activation function is zero
when input value is less than 0, and an identity function when input value is no less than 0. As shown in the
Figure 1, h(i)

j means the pre-activation value of jth ReLU neuron at ith layer of the network. g(i)
j means the

corresponding value after passing the ReLU neuron. l(i)
j and u(i)

j refers to the lower bound and upper bound
of the pre-activation u(i)

j w.r.t. certain input perturbation. Figure 1(a) and Figure 1(d) are unstable neurons
where l(i)

j and u(i)
j has different signs, while Figure 1(b) and Figure 1(c) are stable neurons where l(i)

j and u(i)
j

has the same sign. The yellow areas in Figure 1(a) and Figure 1(d) refer to the bounded area of "triangle"
relaxation and linear relaxation, respectively. As shown in Figure 1(a), the lower and upper bounds of g(i)

j

will be the intersection of the orange line and the bound of the yellow triangle, and the horizontal location
of the orange line will vary from l(i)

j to u(i)
j as the input varies within the given perturbation scale. The

drawback of the triangle relaxation during bound propagation is that the lower bound of g(i)
j is not linear.
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Figure 1: (Figure source from Xu et al. (2020b))) Illustration of the stability of ReLU neuron and linear
relaxation. For certain network input with perturbations, (b) and (c) demonstrate stable neurons since their
lower and upper pre-activation bounds are on the same side of the Y axis, while (a) and (d) demonstrate
unstable neurons since the two bounds are on the different sides of the Y axis. (a) and (d) also show different
relaxation methods: (a) is “triangle” relaxation and (d) is the LiRPA-based linear relaxation Xu et al. (2020a).

LiRPA-based linear relaxation (1(d)) addresses this issue by replacing the non-linear lower bound with an
dynamic linear lower bound which is a line passing through the origin with an optimizable slope between
[0,1]. For more details about neuron stability and bound relaxation, please refer to Xu et al. (2020b).

3.2 What factors influence L∞ certified robustness?

Up to now, with state-of-the-art robust training method and certified verifier, the measurable bound of a
trained non-linear neural network is influenced by two major factors:

3.2.1 The ground-truth bound of the network

This is mainly decided by the training method. For example, certified training usually provides much higher
certified robustness than adversarial training, which is demonstrated in our experiments. In this paper, we
ideally hope pruning has positive or no influences on the normal training process, e.g. the influences of
pruning-related regularizer to normal gradient back-propagation. Besides, the model size, i.e. the parameter
number also matters, which is important in this paper since we can use pruning to reduce parameter number.
Intuitively, with more parameter numbers, the bound of the network output tends to be looser. With network
pruning, we can heuristically tighten the bound of the network since the network has fewer parameters.

3.2.2 Estimated bound tightness of the verifier

This refers to the closeness of the estimated bound of the verification to the ground truth bound of the
network, and it reflects the performance of the verifier. Since existing certified verifiers usually have a very
large computational overhead to verify even a single sample, in practice, we are concerned about the bound
tightness a verifier can reach given a limited verification time.

Although efficient certified verification for non-linear neural networks has made rapid progress in recent years,
the bound tightness, running speed and affordable network capacity on limited hardware resources still have
huge space awaiting to be improved. Specifically, we identify two major problems that influence the bound
tightness:

• Neuron Stability and Verification Speed. As mentioned in the introduction, BaB is the main-
stream framework of existing certified verification methods. The bound tightness is largely influenced
by how many unstable neurons have been branched given a limited time. (Please refer to Section
3.1.3 for the explanation of neuron stability). The verifier would need to visit more sub-domains by
branching on unstable neurons within limited time, and thus the verification speed matters.

• Linear Relaxation. To facilitate bound computation, many recent verifiers Wang et al. (2021); Xu
et al. (2020b); Wong & Kolter (2018); Zhang et al. (2018a); Singh et al. (2019), utilize the linear
relaxation method for unstable ReLU neurons, as we illustrated in Section 3.1.3. Normally, if an
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unstable neuron has not been branched by BaB, then this neuron gets linearly relaxed during bound
propagation, which will also loosen the bound tightness of the verifier.

3.3 What benefits for certified robustness can we expect from pruning?

Network pruning can bring many benefits to problems as mentioned in Section 3.2, outlined as follows:

• Reducing parameter number. It can tighten bound propagation directly. Both neuron and
unstructured pruning can reduce parameter number and the bound propagation becomes tighter
after pruning. Take the widely used bound propagation method for linear layers(e.g. convolution
and full-connected layer)——Interval Bound Propagation (IBP) for computing L∞ bounds as an
example, its computation can be formulated as follows:

µi−1 =
z̄i−1 + zi−1

2

ri−1 =
z̄i−1 − zi−1

2
µi = Wµi−1 + b

ri = |W|ri−1

zi = µi − ri

z̄i = µi + ri

(1)

Eq. 1 computes the linear bound propagation for ith linear layer of the network, where z̄i−1 and
zi−1 are the input lower and upper bounds of ith linear layer, and z̄i and zi are the corresponding
output lower and upper bounds, respectively. W and b denote the weight and bias of the linear layer.
The difference between output upper and lower bound equals 2|W|rk−1. By network pruning, the
weight matrix W becomes sparser, and thus the difference between output upper and lower bound
tends to become smaller, and thus the overall output bound of the network would be tightened.

• Reducing unstable neurons. By reducing the number of unstable neurons, we can reduce the
number of linear relaxations and sub-domain splits needed by the verification process, which can
also directly tighten the bound and accelerate the verification process as well. However, for most
existing pruning methods, reducing unstable neurons is not an explicitly designated goal, but rather
a possible side effect.

• Real hardware acceleration with structural sparsity. If adopting neuron pruning, we can
eliminate channels which will concretely reduce the network width on the hardware implementation
level. This can accelerate verification and even make resource-intensive verification possible on larger
models.

Those possible benefits are further entangled with each other. For empirical evaluation of these benefits, we
simply follow the classical criteria: to evaluate the certified accuracy, time and memory consumption, and
network width/depth that can be verified after pruning.

3.4 Pruning methods

In this section, we test a range of off-the-shelf pruning methods for improving certified robustness. For each
pruning method, unless otherwise mentioned, we combine it with iterative pruning with weight rewinding
Frankle & Carbin (2018), as we find iterative pruning with weight rewinding generally enhances performance
compared to finetune-based pruning or one-shot pruning in our experiments.

3.4.1 Existing pruning methods

In unstructured pruning, for simplicity, we only prune the weights of convolutional layers and ignore linear
layers. We pick several representative methods including: 1) Random Pruning: pruning weights randomly,

6



Published in Transactions on Machine Learning Research (03/2023)

stability

3
2

1
0

1
2

3 1.5
1.0

0.5
0.0

0.5
1.0

1.5

0.75
0.50
0.25

0.00
0.25
0.50
0.75

(a) RSLoss

stability

3
2

1
0

1
2

3 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(b) NRSLoss

lower bound

3
2

1
0

1
2

3

up
pe

r b
ou

nd

3
2

1
0

1
2

3

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(c) NRSLoss(γ = 0.5)

lower bound

3
2

1
0

1
2

3

up
pe

r b
ou

nd

3
2

1
0

1
2

3

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

(d) NRSLoss(γ = 1) (i.e. RSLoss)
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(f) NRSLoss(γ = 4)

Figure 2: (a)(b) The landscape of RSLoss and NRSLoss with varied stability and BN channel weight γ.
Stability means the stability of a ReLU neuron, i.e. the pre-activation lower bound times upper bound. γ is
the corresponding channel weight of Batch-Normalization layer, whose magnitude denotes the importance
of each channel. The NRSLoss is high when the neuron is unstable and the corresponding channel has low
importance. (c)-(f) The sample landscape of NRSLoss with varied lower and upper pre-activation bounds
given different fixed γ. With the growth of γ that implies channel(neuron) importance, the NRSLoss gets
increasingly suppressed.

which is used for sanity checks in our experiments. 2) Lottery ticket hypothesis (LTH), or denoted as IMP
Frankle & Carbin (2018): pruning weights with the smallest magnitudes, the most standard pruning scheme.
3) SNIP Lee et al. (2018): pruning weights with least loss sensitivity w.r.t. percentile magnitude change.
4) TaylorPruning (TP) Evci (2018): saliency-based pruning via a first-order Taylor approximation. 5)
HYDRA Sehwag et al. (2020): learnable mask-based pruning that minimizes the robustness loss empirically.
The original HYDRA pruning uses adversarial loss to select the pruning mask, in certified training setting,
we will adapt the adversarial loss to certified loss.

For neuron pruning, we choose two methods: 1) StructLTH Anonymous (2022): a structured variant of
LTH recently proposed, by using IMP first then ranking channels by their total magnitudes in remaining
weights from high-to-low. Then we prune lowest-ranked channels and refill the IMP-pruned weights in the
remaining channels. 2) Network Slimming Liu et al. (2017): for batch normalization (BN) Ioffe & Szegedy
(2015) layers, we have:

y = x − E[x]√
V ar[x] + ϵ

∗ γ + β (2)

Network slimming enforces the L1-norm regularizer on γ and prune channels with the smallest γ magnitudes.

3.4.2 Stability-based Pruning

In the context of certified robustness, we wish to eliminate unstable neurons as much as possible, such that the
estimated bound tightness of the verification can be improved. Pruning is a natural choice to accomplish this
goal. Next, we first introduce a criterion that measures the degree of neuron stability of a given network, and
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then introduce an effective stability-based regularizer and corresponding unstructured and neuron pruning
methods.

Formally, we denote [l(i)
j , u(i)

j ] as bound interval of the pre-activation value of j-th ReLU neuron at i-th layer.
We want to measure not only the number of unstable ReLU neurons with bound intervals crossing the zero
point but also to what extent the instability is. To address this problem, we propose to use −l(i)

j · u(i)
j to

measure the degree of instability of this neuron. It is easy to know that if we keep the bound interval width
u(i)

j − l(i)
j unchanged, then −l(i)

j · u(i)
j reaches maximum when l(i)

j = −u(i)
j , which means maximal instability

given the same bound interval width. And thus, we simply use the average of this criterion to denote the
total degree of instability of the network:

instability =
∑

i

∑
j

−l(i)
j · u(i)

j (3)

Similar to this criterion, Xiao et al. (2018) proposed a regularizer named RS Loss to regularize ReLU stability
and improved certified robustness. The RS Loss is defined as:

lrs
j = − tanh(1 + lj · uj) (4)

This loss can be naturally used to optimize the instability criterion, as the tanh wrapper provides smooth
gradients. However, we empirically find that for deep networks, batch-normalization (BN) Ioffe & Szegedy
(2015) layers, which are placed before ReLU layers, are necessary for the training convergence of pruned
subnetworks. In this way, the performance of the RS Loss regularizer is insignificant, because it passes
gradients to γj(i.e. the BN weight of channel j) and affects the training process, and the optimization space
is relatively small due to the BN constraint. However, we find the pre-BN bounds (i.e. the input bounds
of BN layers) to be very flexible. Thus, instead of regularizing the pre-activation bounds using RS Loss,
we propose an alternative of Normalized RS Loss (NRSLoss) to directly regularize the pre-BN bounds,
normalized from pre-activation bounds:

lnrs
j = − tanh(1 + lj · uj

γ2
j

). (5)

Since the magnitudes of lj and uj are scaled from pre-BN bounds by the factor of γj , NRSLoss essentially
computes RS Loss on the pre-BN bounds lj/γj and uj/γj . During training, the NRSLoss is combined with the
original loss with an empirical coefficient. Note that we stop the gradients back-propagated from NRSLoss
to γj , to ensure stable training, especially for pruned subnetworks. Since NRSLoss uses IBP to compute
the neuron bounds, it has the same computational complexity as a forward pass of the neuron network.
Therefore, it does not bring extra complexity to the training and pruning process. It also has no influence for
verification since NRSLoss regularizer will only be used during iterative training and pruning stage.

The loss landscape of NRSLoss is shown in Figure 2. Note that the stability term is essentially 0 − instability.
From the loss landscape, we can interpret NRSLoss from another perspective: it penalizes neurons with high
instability and low channel importance; when the instability increases, it takes larger channel importance to
suppress NRSLoss.

We empirically find that combining NRSLoss as a training regularizer with pruning weights based on the
least weight magnitude criterion is the most effective in most cases. We call this pruning scheme IMP+NRS:
we first apply NRSLoss during training to regularize the network stability; then we apply magnitude-based
pruning to remove weights that are not important for both robustness loss and stability loss.

We stress the two-fold novelty of NRSLoss as follows:

• It takes into account both neuron importance and stability (see Figure 2). In NRSLoss, the magnitude
of BN channel weight γj denotes the importance of each channel. The NRSLoss is high when the
neuron is unstable and the corresponding channel has low importance. In contrast, the RSLoss is

8



Published in Transactions on Machine Learning Research (03/2023)

irrelevant to channel importance, which might lead to imposing too much regularization on important
neurons.

• It also disentangles the influence of stability regularization with the BN layers, via eliminating the
magnitude scaling effect to the pre-activation bounds brought by the channel weight γ. In this way,
BN layers can still be learned normally to control the gradients and thus it causes significantly less
negative influences to the training performance.

In our experiments, we show in Figure 5 that both RSLoss and NRSLoss can reduce network instability,
however, since RSLoss only optimizes towards network stability while NRSLoss takes into account of both
neuron importance and stability to avoid imposing too much regularization on important neurons, and causes
less negative influences to the gradient flow of BN layers. Therefore, NRSLoss-based pruning can always
achieve better performance than RSLoss-based pruning as we show in experiments.

4 Experiments

In this section, we evaluate all introduced pruning methods with different training schemes and perturbation
scales, and try to address three major questions: (1) Can existing pruning methods improve L∞ certified
robustness generally? (2) How can NRSLoss-based pruning improve certified robustness? (3) Can we find
the existence of certified lottery tickets, i.e., sparse subnetworks after pruning that can restore not only the
original performance but also certified robustness?

Based on our experiment findings, we also provide more ablation studies to further rationalize our claims.
In light of whether pruning keeps effective for certified robustness at scale, we conduct experiments on the
downscaled 64x64 ImagenetChrabaszcz et al. (2017) with incomplete verifications, please refer to Appendix D
for more details. Finally, we briefly summarize our experimental findings with several interesting takeaways.

4.1 Experiment Setup

Table 1: The feedforward model architecture in our experiments. ConvBlock(in,out,k,s) refers to the
composition of (convolution layer, BN layer, ReLU layer) where the convolution layer has in input channels,
out output channels, k×k kernel size and s strides. Note that for the FashionMNIST task which takes greyscale
images instead of RGM images as input, we modify the input channel number of the first convolutional layer
from 3 to 1, and modify the input units of the first FC layer from 2048 to 1152 accordingly. The parameter
count of this model is 6.7M.

Input
ConvBlock(3,32,3,1)
ConvBlock(32,64,4,2)
ConvBlock(64,64,3,1)
ConvBlock(64,128,4,2)
ConvBlock(128,128,4,2)

FC(2048,100)
ReLU

FC(100,10)
Output

4.1.1 Dataset and Network architecture

Across our experiments, we choose 3 classification datasets, FashionMNIST Xiao et al. (2017), SVHN Netzer
et al. (2011), and CIFAR10 Krizhevsky et al. (2009) as the benchmark datasets. We introduce them as
follows:
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• FashionMNIST: FashionMNIST is an MNIST-like greyscale image classification dataset by replacing
hand-written digits with fashion items, which are more difficult to classify. It has a training set
of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image,
associated with a label from 10 classes. We use the first 200 samples from the testing dataset for
verification.

• SVHN: SVHN is a dataset consisting of Street View House Number images, with each image
consisting of a single cropped digit labeled from 0 to 9. Each example is a 32x32 RGB image. We
use the first 200 samples from the testing dataset for verification.

• CIFAR10: CIFAR10 is a dataset consisting of 10 object classes in the wild, and each class has 6000
samples. This dataset is commonly used in prior works in complete verification, following Wang
et al. (2021), we choose the ERAN test set Singh et al. (2019) which consists of 1000 images from the
CIFAR10 test set. Note that we only use the first 200 samples in the ERAN test set for verification
efficiency.

Note that we don’t use larger datasets such as CelebA Liu et al. (2015) and Imagenet, mainly because
training on larger datasets typically require larger network size to achieve good performance. For our choosed
datasets, we use a 7-layer CNN as the benchmark model, whose architecture is shown in Table 1. It follows
the standard feed-forward CNN structure as in prior works on complete verification Xu et al. (2020b); Wang
et al. (2021); Shi et al. (2021). This model has 6.7M parameters and is the largest network that can be fitted
in a GPU with 24GB memory for complete verification and can also achieve good baseline performance on
our chosen benchmarks. We empirically find that varying the network depth and width doesn’t significantly
change the relative performance of different pruning methods, therefore we only use this largest network
across our experiments for considerations of both model scale and hardware resource constraint.

The design follows the cifar10-model-deep setting in Wang et al. (2021), but is wider, deeper, and has BN
layers.

4.1.2 Pruning methods

We try different setups of hyperparameters for unstructured and neuron pruning. For unstructured pruning
methods, we follow the default setting in Frankle & Carbin (2018) and set the iterative weight pruning rate
to 0.2, and prune 16 times with re-training; for neuron pruning methods, we keep a similar pruning speed. 1

We set the NRSLoss weight to 0.01 and set the L1-norm regularizer weight to 0.0001 following Liu et al.
(2017). For RS Loss and NRS Loss-based unstructured pruning, we train with these losses and pruning with
IMP, as Section 3 introduced, denoted as IMP+RS and IMP+NRS. We also test training with NRSLoss and
pruning with HYDRA, denoted as HYDRA+NRSLoss, to demonstrate the effectiveness of NRSLoss as a
regularizer.

4.1.3 Training methods

To demonstrate the general effectiveness of network pruning, we choose SOTA adversarial and certified
training methods:

Adversarial training: we choose the advanced FGSM+GradAlign Andriushchenko & Flammarion (2020) as
the adversarial training method (we denote it as FGSM for conciseness hereinafter). The learning rate is set
to 0.01, and we use Stochastic Gradient Descent with 0.9 momentum and 0.0005 weight decay as optimizer.
All GradAlign-related hyperparameters follow Andriushchenko & Flammarion (2020).

Certified training: we choose auto-LiRPA Xu et al. (2020a) under CROWN-IBP + Loss Fusion setting.
The learning rate is set to 0.001, and we use Adam with a weight decay of 0 for RSLoss and NRSLoss-based
pruning and 0.00001 for other pruning methods. For the bound computation of NRSLoss and RSLoss, we
use the bound produced by auto-LiRPA during certified training and use IBP during adversarial training.

1Note that for HYDRA pruning, the semi-supervised training scheme which exploits extra unlabeled data as in Sehwag et al.
(2020) is NOT used in our experiments, for a fair comparison.
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auto-LiRPA essentially uses IBP to compute bounds when input perturbation reaches a maximum during
training and uses IBP constantly during testing. As we find the results to be unstable for certified training,
we use five different random seeds, 100, 200, 300, 400 and 500 to initialize the training process, and then
average the results of the same iterations. This is different from adversarial training where we only run one
experiment.

We replace the standard IMP with weight rewinding Frankle & Carbin (2018) with each training method and
each pruning method, and output the pruned subnetworks with different sparsity during iterative pruning and
re-training. For each training method and each pruning method, we use one of the SOTA certified verifier
Beta-CROWN Wang et al. (2021) to obtain the final accuracy of the subnetworks. For more experimental
details, please refer to Appendix A.

4.1.4 Verifier and Evaluation Criterion

For each training method and each pruning method, we use one of the SOTA complete verifier Beta-CROWN
Wang et al. (2021) to obtain the final accuracy of the subnetworks. Beta-CROWN is a highly GPU-parallelized
verification framework and has SOTA performance in terms of bound tightness and verification speed. We
choose ERAN benchmark Bak et al. (2021) which contains 1000 test images, and test on the first 200 images
to reduce the time budget, since we note that there are no difference on average by comparing testing 1000
images and the first 200 images. We set the timeout of each test image to 300 seconds. We test the standard,
adversarial, and verified accuracies, as well as time and GPU memory consumption of each model. We run
the verifications using one NVIDIA RTX A6000 GPU card.
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Figure 3: Verified Accuracy v.s. iterative pruning times (which can be converted to compression rate) on
CIFAR10 dataset. (a) is unstructured pruning under auto-LiRPA training, (b) is neuron pruning under
auto-LiRPA training (Note that PRUNE_TIMES@0.11 means iterative pruning epochs with 0.11 channel
pruning rate), (c) is unstructured pruning under FGSM. We move neuron pruning under FGSM to Figure 10
in Appendix due to page limit. Note that for FGSM setting, we use CROWN verifier instead of Beta-CROWN
due to long verification time on Beta-CROWN. We observe signifcant improvement of verified accuracy for
FGSM training mainly because pruning under adversarial training significantly trades verified accuracy with
benign accuracy compared to pruning under certified training.

4.2 Experiment Results and Analysis

For the 3 benchmark datasets, the comprehensive experiment results under ϵ = 2/255 are shown in Table 2,
and the sample curves of Verified Accuracy v.s. iterative pruning times with seed 100 are shown in Figure 3.
For each model, we verify all subnetworks produced by iterative pruning and report the best-verified accuracy
and other corresponding evaluation metrics. We then choose several representative pruning methods that
either have good performance or distinctive motivations or are important baselines, and evaluate them under
different perturbation scales on the CIFAR10 dataset, as shown in Table 3. We also conduct a experiment to
validate that weight-rewinding Frankle & Carbin (2018) is better than finetuning Sehwag et al. (2020) for
improving certified robustness, as shown in Section B.2. The results of Random Pruning are omitted from

11



Published in Transactions on Machine Learning Research (03/2023)

Table 2: Comparisons of subnetwork robustness and verification time for different training and pruning
methods on FashionMNIST, SVHN, and CIFAR10 datasets. std, adv, ver, t refer to standard accuracy(%),
adversarial accuracy(%), verified accuracy(%) and time consumption (s/sample), respectively. Note that the
remain ratio refers to remaining weights for unstructured pruning, and remaining channels for neuron pruning,
respectively. Note that for HYDRA pruning, we replace the adversarial loss in HYDRA with certified loss for
Auto-LiRPA setting.

Training Method FGSM auto-LiRPA

Dataset Pruning
Method

Remain
Ratio std adv ver t

Remain
Ratio std ver t

Fashion
-MNIST
ϵ = 0.1

Dense 1 85.2 81.2 1.5 298.3 1 77.2 68.8 7.23
IMP 0.03 80.2 75.3 39.0 85.9 0.07 78.1 73.5 7.17
SNIP 0.03 81.2 77.3 36.5 96.3 0.80 77.5 71.3 4.82
TP 0.03 80.3 76.1 35.3 92.3 0.32 79.4 73.5 6.60

HYDRA 0.03 81.5 77.2 33.5 105.9 0.51 79.1 73.3 6.60
HYDRA+NRS 0.03 80.3 76.7 36.5 105.3 0.03 81.5 74.2 8.90

IMP+RS 0.03 79.3 72.2 37.0 94.1 0.41 80.5 72.5 6.21
IMP+NRS 0.03 81.2 74.9 41.5 78.4 0.05 80.5 74.0 6.06

StructLTH 0.35 80.5 78.3 22.5 143.0 0.80 80.0 72.4 6.14
Slim 0.35 80.7 78.3 31.0 105.0 0.32 78.5 71.8 2.96

SVHN
ϵ = 2/255

Dense 1 94.8 89.2 2.0 294.2 1 76.3 62.0 6.68
IMP 0.03 92.3 84.4 31.0 188.3 0.16 82.0 67.3 6.65
SNIP 0.03 92.4 84.3 29.1 204.4 0.32 82.5 66.5 5.93
TP 0.03 92.4 84.2 28.5 197.3 0.21 83.0 67.3 5.12

HYDRA 0.03 91.2 82.7 41.5 146.3 0.64 79.5 66.3 8.75
HYDRA+NRS 0.03 89.8 81.1 40.5 144.2 0.55 82.0 66.0 4.02

IMP+RS 0.03 85.6 75.9 25.2 179.2 0.03 83.5 65.7 6.52
IMP+NRS 0.03 92.1 83.2 33.5 153.2 0.08 86.0 68.3 6.06

StructLTH 0.27 87.7 78.0 33.0 159.1 0.55 82.2 65.9 3.71
Slim 0.35 89.7 78.7 35.5 151.8 0.63 84.0 65.3 7.77

CIFAR10
ϵ = 2/255

Dense 1 82.4 68.6 1.5 278.9 1 54.1 43.0 6.68
IMP 0.03 62.2 55.4 23.5 135.3 0.13 61.0 50.1 6.65
SNIP 0.03 61.5 55.1 22.5 128.4 0.04 59.8 48.4 6.67
TP 0.03 59.7 55.4 24.0 132.4 0.05 59.9 47.6 6.02

HYDRA 0.03 60.4 55.4 23.5 132.2 0.11 60.5 48.3 8.75
HYDRA+NRS 0.03 54.9 48.4 25.0 132.2 0.05 58.0 49.0 8.75

IMP+RS 0.03 60.2 54.2 23.5 134.4 0.13 58.6 46.3 6.52
IMP+NRS 0.03 60.7 51.0 25.0 131.2 0.21 62.2 51.2 6.06

StructLTH 0.35 55.6 48.3 14.0 143.7 0.55 57.5 44.6 3.71
Slim 0.35 56.9 49.6 26.0 72.9 0.79 59.2 47.5 5.65

Table 2 and 3 since its standard accuracies are very poor and non-competitive (some can be found in Figure
3 (a) for illustration purpose). We also provide additional results of 2 different architectures using the same
hyperparameter setting on CIFAR10 as shown in Appendix B.3, which shows that the relative performance
of different pruning methods is stable across these 2 tested architectures. We next present the result analysis.

4.2.1 Can existing pruning methods improve certified robustness?

From Table 2 and Table 3, we observe general improvements in certified robustness brought by pruning, both
under FGSM and auto-LiRPA settings. Specifically, Table 2 shows that under the auto-LiRPA setting, existing
pruning methods can improve verified accuracies for 2.5 − 5.2% on FashionMNIST, 3.3 − 6.3% on SVHN,
1.6 − 7.1% on CIFAR10, respectively and improve standard accuracies for 0.3 − 3.3% on FashionMNIST,
3.2 − 9.7% on SVHN, 3.4 − 8.1% on CIFAR10 respectively, among which IMP consistently outperforms
other existing pruning methods, with highest improvements of both standard and verified accuracies. This
demonstrates that pruning can generally improve L∞ certified robustness. Moreover, under certified training,
this improvement comes with no extra trade-off such as standard accuracy. We also observe that on more
realistic datasets (SVHN, CIFAR10), the improvements under certified training are significantly bigger than
that of the synthetic dataset (FashionMNIST).
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Table 3: Verified accuracies of different pruning and robust training methods and perturbation scales ϵ under
auto-LiRPA setting. Note that for HYDRA pruning, we replace the adversarial loss in HYDRA with certified
loss.We also provide the performance curves with varying compression rate when ϵ=8/255 in Figure 8 in
Appendix. std, ver, t mean standard accuracy, verified accuracy and verification time, respectively.

ϵ 2/255 8/255
Pruning

type
Pruning
Method

Remain
Ratio std ver t

Remain
Ratio std ver t

Dense 1 54.1 43.0 6.68 1 36.1 29.3 5.83

Unstru-
ctured

IMP 0.13 61.0 50.1 6.65 0.13 35.0 29.8 5.11
SNIP 0.04 59.8 48.4 6.67 0.21 34.0 29.5 6.73
TP 0.05 59.9 47.6 6.02 0.32 33.5 28.8 6.84

HYDRA 0.11 60.4 48.3 8.75 0.11 34.5 29.5 6.36
HYDRA+NRS 0.05 58.0 49.0 8.75 0.21 34.0 30.3 5.98

IMP+RS 0.13 58.6 46.3 6.52 0.64 35.0 28.0 4.39
IMP+NRS 0.21 62.2 51.2 6.06 0.51 39.0 31.5 4.32

Structured StructLTH 0.55 57.5 44.6 3.71 0.63 34.6 29.4 3.51
Slim 0.79 59.2 47.5 5.65 0.70 35.9 29.8 3.86

Under the FGSM setting, there are great improvements in verified accuracies with different pruning methods
ranging from 21.0 − 40.0% on FashionMNIST, 23.2 − 39.5% on SVHN, and 12.5 − 24.5% on CIFAR10,
respectively, among which IMP+NRS, HYDRA and Network Slimming (Slim) obtain highest verified
accuracy on FashionMNIST, SVHN, and CIFAR10, respectively. We also observe an obvious trade-off of
standard/adversarial accuracy v.s. verified accuracy, i.e. with the big increase of verified accuracy after
pruning, the standard and adversarial accuracies drop significantly. To explain this trade-off, we visualize the
ratio of unstable neurons of different pruning methods, as shown in Figure 6 in Appendix. We find that the
ratio of unstable neurons generally decreases as the sparsity gets higher, this is compliant with that neuron
stability is important for certified robustness. However, if all neurons become stable, the whole network
will become a linear function, which in turn withholds the standard accuracy. Hence the standard/verified
accuracy trade-off is essentially the stability/expressiveness trade-off of the network. Nevertheless, this
trade-off is not obvious under the auto-LiRPA setting since the training objective of auto-LiRPA incorporates
standard accuracy.

Across different datasets, we observe general improvement brought by pruning for certified robustness, which
consolidates our conclusion that pruning can generally improve L∞ certified robustness. In particular,
NRSLoss-based pruning can outperform other pruning methods consistently under certified training and
achieves competitive performance under adversarial training, which demonstrates the effectiveness of NRSLoss
regularizer and the pruning scheme of IMP+NRS, as we explained in the methodology.

Resource Consumption: It can be observed from Table 2 and 3 that unstructured pruning tends
to produce better performance than neuron pruning. However, neuron pruning has the advantage over
unstructured pruning that it brings real hardware acceleration for certified verification, especially given
that the computational overhead is a significant bottleneck for verifying large neural networks even with
highly GPU-parallelized verifiers such as Beta-CROWN. We show an overview of the time and peak GPU
memory consumption of neuron pruning under different pruning stages as in Figure 4. We can see that for
every 3 prunings, which increases about 30% channel sparsity, the time consumption for models trained
with auto-LiRPA can reduce by about 50%, whereas for models trained with FGSM can reduce by about
60 − 80%. We also observe that GPU memory consumption can be greatly reduced at high channel sparsity.
The reduction in GPU memory consumption is even more important given the GPU memory bottleneck for
complete verification of large neural networks. Furthermore, for these pruning methods, we observe similar
high performing sparsity under different random seeds as shown in Figure 9 in Appendix, which means we do
not need to verify every sparsity one by one to pick out the best sparsity, and it is crucial for accelerating the
verification process in practice. We further discuss some bottleneck factors as we move towards verifying
large networks with our introduced methods in Appendix C.
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Figure 4: The mean verification time and average GPU memory consumption for neuron pruning methods on
CIFAR10 dataset under CROWN mode. X-axis means the number of pruning iterations with 0.11 channel
pruning rate. Note that we don’t do such test on complete verification of Beta-CROWN mode which is time
consuming but has highly similar trend to the results under CROWN mode.

4.2.2 How does NRSLoss-based pruning outperform other pruning methods?

From Table 2 and 3, we observe that IMP+NRS outperform other pruning methods under auto-LiRPA setting.
Take the CIFAR10 dataset as an example, with 2/255 perturbation, IMP+NRS improves certified accuracy
for 8.2% and standard accuracy for 8.1%; with 8/255 perturbation, IMP+NRS improves certified accuracy for
2.9% and standard accuracy for 2.3%. Notably, IMP+NRS achieves both the highest standard and verified
accuracies, since the training objective of auto-LiRPA incorporates standard accuracy. By comparing HYDRA
setting and HYDRA+NRSLoss setting, we observe NRSLoss can improve the verified accuracy for HYDRA
pruning in FashionMNIST and CIFAR10 dataset, and has better standard/verified accuracy trade-off under
certified training for SVHN dataset. We thus conclude that NRSLoss regularizer is effective for HYDRA
pruning in most cases and is effective for IMP pruning for all cases we have tested. To demonstrate that
the performance improvements of NRSLoss indeed come from stability-based regularization as discussed
in Section 3, we visualize the pre-activation network instability (as proposed in Section 3) in Figure 5. We
observe that the RS Loss and NRS Loss-based pruning have significantly lower instability compared to IMP,
and the instability decreases as the sparsity gets higher, which proves that pruning with NRSLoss and RSLoss
regularizer can decrease network instability, hence improving the certified robustness. It can also be observed
that the RSLoss has lower instability than NRSLoss, however, since NRSLoss eliminates the gradients from
BN layer, the RSLoss actually gets lower instability by influencing BN layers, which in turn would hurt
normal training, and thus hurt overall performance. The advantage of NRSLoss can also be interpreted using
the NRSLoss landscape as shown in Figure 2. Compared to RSLoss, NRSLoss takes account of the channel
importance, so that using NRSLoss can avoid regularizing neurons that are in the important channels. From
these results, we can again conclude that neuron stability is important for certified robustness, in particular,
IMP+NRS motivated by improving neuron stability is effective for improving certified robustness.
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Figure 5: Network instability v.s. iterative pruning times of pre-activation and pre-BN forward pass values.
The bounds are computed under 2/255 input perturbation using auto-LiRPA and the whole test set of
CIFAR10. Note that we omit the curves of SNIP, TP and HYDRA for simplicity as they are almost coincident
with the IMP curve.

We note that the literature results as in Wong et al. (2018) are better than the results reported in Table 2
and 3. In fact, it is achieved by using incomplete verifications on much larger neural networks (scaling the
network size can improve the results), whereas we focus on the exploring the pruning effect for complete
verifications because complete verifications give better (higher and exact) certified robustness results than
incomplete verifications. However, existing complete verifiers are unable to verify these large networks as in
Wong et al. (2018), due to OOM problem. For complete verification, our designed test network is the largest
one that can be verified with complete verifiers on a GPU with 24GB memory.

4.2.3 Possible existence of certified lottery tickets.

As a possible finding, we demonstrate the possible existence of certified lottery tickets in our experiments,
that generalizes the lottery ticket hypothesis Frankle & Carbin (2018) to certified robustness. Specifically,
from Table 2, we observe that all pruning methods under certified training across all 3 datasets can find
certified lottery tickets that can match both standard and verified accuracies to the original dense models,
and most of the pruning methods can produce certified lottery tickets that significantly outperform original
dense networks. From Table 3, we see that certified lottery tickets can be found on most pruning methods
with a bigger perturbation scale except for random pruning and IMP+RS. From Figure 3(a), we observe that
except for unstructured pruning (except for random pruning), certified lottery tickets occur almost in every
sparsity. The above findings may reveal the possible existence of certified lottery tickets.

4.2.4 How should we choose pruning methods for certified robustness?

Generally, we would recommend IMP and IMP+NRS for performance concerns because they have the best
verified accuracy under certified training across different datasets, and we recommend Network Slimming for
efficiency concerns because its neuron pruning nature can essentially reduce the computational overhead of the
complete verification. We empirically find that the relative performance of our tested pruning methods under
certified training is similar to that under standard training. We conjecture that this is because an important
goal of most pruning methods is causing a minimal negative influence on the training objective function,
and this objective function is benign accuracy under standard training and verified accuracy under certified
training, respectively. These pruning methods also implicitly regularize the network stability and bound
tightness as stated in Section 3.3, which leads to general improvement compared to dense baselines. However,
our proposed NRSLoss-based pruning explicitly regularizes network stability which makes it outperform other
pruning methods.
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4.3 Summary of Findings

In our experiments, we find that pruning can generally improve L∞ certified robustness for neural networks
trained with different robust training methods and observe the possible existence of certified lottery tickets.
Under adversarial training, we observe a significant trade-off between standard and verified accuracies with
different pruning methods, but under certified training, pruning can improve both standard and verified
accuracies. From our experiments, we know that RSLoss and NRSLoss are both effective at regularizing
network stability but NRSLoss is better for imposing less regularization on more important neurons and
removing the negative influence of stability regularization for BN layers. From Figure 4, we observe that
neuron pruning can considerably reduce the computational overhead of complete verification for neural
networks.

5 Conclusion

In this paper, we demonstrate that pruning can generally improve L∞ certified robustness, both for adversarial
and certified training. We analyze some important factors that influence certified robustness, and offer a new
angle to study the intriguing interaction between sparsity and robustness, i.e. interpreting the interaction of
sparsity and certified robustness via neuron stability. In particular, we find neuron stability to be crucial
for improving certified robustness, on which motivation we propose the novel NRSLoss-based pruning that
outperforms existing pruning methods. We also observe the existence of certified lottery tickets. We believe
our work has revealed the relationships between pruning and certified robustness, which can shed light on
future research to design better sparse networks with certified robustness.
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Figure 6: The ratio of unstable neurons v.s. pruning times of different pruning methods under FGSM setting.
We empirically find that all pruning methods have similar curves in this figure, so we sample 3 curves to
demonstrate for simplicity. Note that PRUNE_TIMES@0.2 means the iterative pruning epochs with 0.2
pruning rate, and we reuse this notation hereafter.
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A Experiment details

FGSM and auto-LiRPA share some common hyperparameters. The batch size is set to 128, and we clip the
norm of gradients to a maximum of 8. We train 200 epochs in one pruning iteration for each experiment, with
a learning rate decay factor of 0.1 at 140 and 170 epochs. We set the input perturbation ϵ as Linf -norm ball to
0.1 for the FashionMNIST dataset and 2/255 for SVHN and CIFAR10 datasets, and gradually increase ϵ from
0 to 2/255 starting from 11th epoch and until 80th epoch. We also scale the perturbation to 8/255 to validate
the effectiveness of pruning under bigger perturbations. The training epochs under 8/255 perturbation is set
to 300. After each pruning iteration, we rewind the remaining weights to initial states and reset the optimizer
with the initial learning rate and ϵ.

B Ablation

In this section, we conduct 2 ablation studies mainly on the CIFAR10 dataset to further consolidate our
claims.
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Figure 7: Comparison of finetuning and weight-rewinding verified accuracy v.s. pruning times under auto-
LiRPA setting.

Table 4: Comparison of auto-LiRPA and Fast-IBP on CIFAR10 dataset. Note that for HYDRA pruning, we
replace the adversarial loss in HYDRA with certified loss.

Training Method auto-LiRPA FastIBP
Pruning

type
Pruning
Method

Remain
Ratio std ver t

Remain
Ratio std ver t

Dense 1 54.1 43.0 6.68 1 56.0 43.5 8.42
IMP 0.13 61.0 50.1 6.65 0.04 63.5 53.0 6.17

HYDRA 0.11 60.5 48.3 8.75 0.13 64.0 51.0 6.56
IMP+RS 0.13 58.6 46.3 6.52 0.17 61.5 47.0 5.98

IMP+NRS 0.21 62.2 51.2 6.06 0.17 64.0 54.0 5.94
Structured Slim 0.79 59.2 47.5 5.65 0.44 56.0 46.5 5.53

B.1 Comparison of pruning under different certified training methods

In our main experiments, we choose the auto-LiRPA as the certified training method. The reason we choose
this method is based on its training efficiency and competitive performance, and its training efficiency mainly
comes from the loss fusion technique as proposed in Xu et al. (2020a). The training efficiency is important
in our experiments because we use iterative training and pruning, which boosts the overall training time
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to 16 times longer. We notice that the certified training methodShi et al. (2021) (denoted as FastIBP
in the following context) with SOTA performance (i.e. SOTA verified accuracy) claims that loss-fusion
has a negative influence on the performance and thus doesn’t adopt it in their method. We empirically
find that without loss-fusion, the training speed of FastIBP is 4 times slower than auto-LiRPA. We thus
choose auto-LiRPA as the certified training method in our main experiments. However, we here present
a comparison of results (see Table 4) of these 2 certified training methods on the CIFAR10 dataset and
pruned with several pruning methods, to demonstrate that the improvement of certified robustness brought
by pruning is consistent with different certified training methods. The hyperparameter settings are the same
as mentioned in our main experiments. From Table 4, we observe better performance can be obtained with
FastIBP, and standard/verified accuracies are consistently improved with different pruning methods, among
which IMP+NRS still achieves the best performance.

B.2 Comparison of finetuning and weight-rewinding for pruning

We empirically find that after each pruning, rewinding the network parameters to their initial states as in
Frankle & Carbin (2018) produces better performance than finetuning the parameters as in Sehwag et al.
(2020). Specifically, we follow the experiment setup as in Section 4.1, except that for finetuning mode we
don’t re-initialize the learning rate after pruning. The results are demonstrated in Figure 7. We observe that
the finetuning-based pruning always produces worse performance than weight rewinding-based pruning, and
its accuracy tends to collapse at 3rd pruning iteration. Therefore we conclude that weight-rewinding-based
pruning is more effective than finetuning-based pruning for certified robustness.
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Figure 8: Verified Accuracy v.s. iterative pruning times with 8/255 perturbation on CIFAR10 dataset. (a) is
unstructured pruning under auto-LiRPA training with 0.2 element-wise pruning rate, (b) is neuron pruning
under auto-LiRPA training with 0.11 channel-wise pruning rate.
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Figure 9: Verified accuracy v.s. iterative pruning times under different random seeds with auto-LiRPA
training. (a) is IMP pruning and (b) is IMP+NRS pruning.
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Table 5: Comparison of CNN-7L and ResNet-18-NR on CIFAR10 dataset.

Architecture CNN-7L ResNet-18-NR
Pruning

type
Pruning
Method

Remain
Ratio std ver t

Remain
Ratio std ver t

Dense 1 54.1 43.0 6.68 1 53.5 42.4 5.31

Unstru-
ctured

IMP 0.13 61.0 50.1 6.65 0.21 59.5 49.1 5.67
SNIP 0.04 59.8 48.4 6.67 0.17 57.2 47.4 5.21
TP 0.05 59.9 47.6 6.02 0.05 56.8 46.2 6.18

HYDRA 0.11 60.4 48.3 8.75 0.13 58.7 47.0 5.96
HYDRA+NRSLoss 0.05 58.0 49.0 8.75 0.05 57.2 47.5 6.12

IMP+RS 0.13 58.6 46.3 6.52 0.44 56.2 46.0 6.87
IMP+NRS 0.21 62.2 51.2 6.06 0.11 60.3 49.6 5.92

Structured StructLTH 0.55 57.5 44.6 3.71 0.70 56.2 43.4 4.10
Slim 0.79 59.2 47.5 5.65 0.79 58.6 46.0 4.54

B.3 Comparision of different architecture

We provide supplemental results on comparing the performance of 2 different architectures using the introduced
methods on CIFAR10 dataset. Besides the 7-layer feed-forward CNN (namely CNN-7L) we adopt in the
main experiments, we also test the recently provided ResNet-18 network (narrowed version) as in the official
alpha-beta-CROWN repo2, and double its network width which leads to 4 times of parameter number. Due
to the fact that network depth has more influence on GPU memory occupation, our modified version of
ResNet-18 (namely ResNet-18-NR) has the biggest width that can be fitted in 24GB GPU memory, despite
that it has smaller parameter number than CNN. We follow the same hyperparmeter setting as in Table 2,
and the results are shown in Table 5. We observe that the relative performance is stable across different
pruning methods when we change the network architecture, and IMP+NRS pruning still achieves the best
performance.

C will the size of the network or dataset hinder the introduced pruning and
verification process?

SOTA complete verification methods such as the Alpha-beta-CROWN we use in this paper have exponential
GPU memory consumption due to the BaB framework, so as the network size grows (especially when growing
deeper), the complete verification would be harder to be completed due to the hardware constraint. Larger
dataset typically requires larger networks to achieve good performance, so the verification would also be
indirectly affected by dataset size. This is a common problem faced by vanilla certified training. However, for
subnetworks obtained by neuron pruning during certified training, this problem can be relieved (See Figure 5
for example). For training and inference efficiency, our proposed regularizer has the same complexity with
a forward pass of the network since we use IBP to compute the neuron bounds, therefore the training and
inference stage of the model with our proposed regularizer won’t be affected by the network or dataset size.

D Is pruning effective for certified robustness at scale?

In light of exploring whether pruning would be effective for certified robustness at scale, we conduct experiments
on the downscaled 64x64 ImageNet Chrabaszcz et al. (2017), following the experiment setting in Table 4
from Xu et al. (2020a). Specifically, there are 1,000 class labels and the L∞ input perturbation scale is set to
1/255. We use WideResNet trained with auto-LiRPA and iterative pruning, and also verify using auto-LiRPA
incomplete verifier since complete verifiers have OOM issue on WideResNet. The results are shown in Table
6. We observe consistent improvements across different pruning methods even when is verified accuracies are

2https://github.com/Verified-Intelligence/alpha-beta-CROWN/blob/main/complete_verifier/exp_configs/cifar_resnet18.yaml
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Figure 10: Verified Accuracy v.s. iterative pruning times on CIFAR10 dataset of neuron pruning under
FGSM training.

Table 6: The incomplete verification results on downscale ImageNet, following the experiment seeting in Table
4 from Xu et al. (2020a). The perturbation ϵ is 1/255 and the tested network is WideResNet. The model is
trained and (incompletely) verified with Auto-LiRPA. std, adv, ver refer to standard accuracy, adversarial
accuracy obtained with PGD attack, and verified accuracy .

Dense IMP TP SNIP HYDRA HYDRA
+NRS

IMP
+RS

IMP+
NRS

Struct
-LTH Slim

Remain
Ratio 1 0.21 0.51 0.32 0.32 0.21 0.40 0.13 0.55 0.35

std 83.77 86.18 85.57 86.30 85.78 85.96 84.12 86.32 84.76 85.48
adv 81.74 84.23 83.89 84.14 83.67 83.53 83.10 84.64 82.90 83.74
ver 91.27 93.22 92.43 92.66 92.35 92.75 92.07 93.80 91.43 91.27

already high. Our proposed NRSLoss-based pruning still remains competitive among all pruning methods we
tested.
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