
FoMo - Formula and Model Generation for
Learning-Based Formal Methods

Colin Shea-Blymyer
Houssam Abbas

sheablyc@oregonstate.edu
houssam.abbas@oregonstate.edu

Oregon State University
Corvallis, Oregon, USA

Abstract
This paper presents a tool that can generate system model
and temporal logic formula pairs such that the formula is
satisfied or unsatisfied as desired. Large amounts of indepen-
dent and identically distributed data is needed for the devel-
opment of machine learning approaches in formal methods.
However, existing data sets of system models and specifica-
tions were hand-designed to challenge existing algorithms
for formal methods, and so these data sets represent only
a small subset of problems. Learning-based approaches to
formal methods require training data drawn from a broader
distribution. In this work we introduce a tool called “FoMo”
(for “Formula and Model”) that generates system models
from graph distributions and can sample a specification lan-
guage to generate properties. FoMo includes functions to
generate pairs of formulas and satisfying or unsatisfying
system models, and to generate traces from systems. The
tool has features for working with linear temporal logic, and
with weighted automata. We demonstrate the use of this
tool by training a neural network to jointly embed formulas
and models to allow for model checking as a classification
task. The capabilities offered by FoMo allow researchers to
generate system models and properties according to many
research needs, and helps provide machine learning systems
with generated, multi-modal data sets.

CCS Concepts: • Computing methodologies→ Neural
networks; • Theory of computation→ Verification by
model checking; Logic and verification;Modal and temporal
logics.

Keywords: datasets, formal methods, neurosymbolic reason-
ing

1 Introduction
As cyber-physical systems become larger, and more com-
plex, the need to verify their safety and security has not
diminished. However, many important formal methods for
verification struggle to scale well with the increasing size
of these systems. This crucial issue has seeded interest in
machine learning (ML) based methods for verification.
Earlier works that aimed to scale formal methods with

statistical methods relied on making statistical claims based

on samples drawn from a problem [5]. Modern ML-based
methods have used recurrent neural networks [7], graph
neural networks [10], and transformers [6, 12] to learn to
solve problems in formal methods. In [7] and [12], neural
networks are used to improve control tasks. A transformer
is trained to produce a satisfying trace given an LTL formula
in [6], and [10] presents a graph neural network to perform
model checking.

Each of these previous works used a different sets of tools
to generate large sets of data. This means that new research
in this area would have to cobble together new sets of tools
to create training data.
We introduce FoMo (short for “Formula and Model”) as

a first step towards solving these data requirements with
a single tool, and demonstrate its use by training a neural
network to perform LTL model checking. FoMo is a tool
written in python with three main components that generate:

• System Models from a graph distribution and set of
atomic propositions. Optionally, theymay beweighted,
or made to satisfy a given LTL formula.

• Formulas in LTL from a given set of atomic proposi-
tions that are made to be satisfied or to be unsatisfied
by a given system model.

• Traces from a system model.

These components can be used in concert to generate
data sets of formulas and traces that satisfy them, pairs of
formulas and system models labeled with the satisfaction
relation between them, system models and lists of formulas
they satisfy, etc. The code for this tool is available at https:
//github.com/sabotagelab/FoMo.

2 Inputs and Outputs of FoMo
FoMo has three primary output types: formulas, systems, and
traces. Formulas and traces are represented as strings, and
systems are Automaton objects. A function exists to generate
each of these outputs. Further, two functions exist to generate
sets of formulas and systems for certain ML training tasks.

2.1 Generating Models
The generate_automaton function takes a desired number
of states, a probability that a transition exists between any

https://orcid.org/0000-0002-8597-2233
https://orcid.org/0000-0002-8096-2618
https://github.com/sabotagelab/FoMo
https://github.com/sabotagelab/FoMo


DAV ’23, July 16, 2023, Paris, France Shea-Blymyer and Abbas

e

c

a,c,b

e,b,g

b

g,f

f,c,d

0

1

2 3

4

5 6

-1

0
-2 0

-3

-3

-1

2

2

-3

2

2

-1

0

-1 0

(a) An example system model generated by generate_automaton.

(!f) U c
(b) An example formula generated by generate_formula.

Figure 1. Example outputs from FoMo

two states, a list of strings that defines the atomic propo-
sitions that can label a state, and the maximum number of
labels a state can have. Optionally, the function can also take
a string representing an LTL formula and a Boolean value
that defines a satisfaction relationship between the formula
and the model. This function returns an Automaton object.
FoMo generates a graph from the Erdős-Rényi distribu-

tion designated by this function’s first two arguments using
igraph [2]. Then the function labels each state with a random
number of randomly selected atomic propositions (between
1 and the designated maximum). If a formula was given, then
FoMo uses rejection sampling to select a model that has the
designated satisfaction relationship with that formula.

Model Generation Example. The weighted automaton
in Figure 1a is the result of calling generate_automaton for
7 vertices, an edge probability of 0.3, AP symbols ‘a’ through
‘g’, between 1 and 3 symbols per state, and edge weights as
integers from [−3, 3).

2.2 Generating Formulas
The generate_formula function takes an Automaton object,
a list of strings that defines the atomic propositions available
to a formula, amaximum formula length, and a Boolean value
that defines the desired satisfaction relationship between the
Automaton object and the generated formula. This function
returns a string representing a random LTL formula that
respects the given inputs.

FoMo uses SPOT [4] to generate a formula with the given
atomic propositions and maximum length. The function then
performs rejection sampling to ensure the formula has an
appropriate length and the specified satisfaction relationship.
Model checking is done with nuXmv [1].

Formula Generation Example. The formula in Figure
1b is the result of calling generate_formula for the automa-
ton in Figure 1a, its same set of atomic propositions, and a
maximum formula parse tree size of 7.

2.3 Generating System Traces
The generate_trace function takes an Automaton object,
the required length for the trace, and a discount factor for the
discounted sum of weights accumulated along the trace. The
function returns a list of transitions taken, the discounted
sum of weights on those transitions, and a list of atomic
propositions as they were encountered by the random walk.

2.4 Generating Training Data
The generate_mfl_entry function and generate_
contrastive_mfl_entry function both take a list of strings
that defines the atomic propositions available to formulas
and systems, a desired number of states for systems, a prob-
ability that a transition exists between any two states, the
maximum number of labels a state can have, and a maxi-
mum formula length. Additionally, generate_contrastive
_mfl_entry takes a number to specify how many systems
should be generated that do not satisfy the generated formula.
generate_mfl_entry generates a system model as a matrix
representation, a formula, and a Boolean value indicating if
themodel satisfies the formula. generate_contrastive_mfl
_entry generates a system model matrix, a formula that the
model satisfies, and a given number of system models that
do not satisfy the formula.

It takes about a minute to produce 10,000 contrastive data
entries with formulas and systems in a similar form as the
examples shown so far.

3 Data Distribution
An example use case for FoMo is training an ML algorithm
to perform model checking. The algorithm would take two
inputs (a system modelM, and a formula 𝜙), and output 1 if
M |= 𝜙 , and 0 otherwise. To train this algorithm, many thou-
sands of formulas, models, and their satisfaction relationship
would have to be generated. To demonstrate the distribution
of formulas generated by FoMo, we generated 216 pairs of sys-
tem models and formulas using the generate_mfl_entry
fucntion. Half of the formulas were selected at random to
be satisfied by its paired system model, while the other half
were selected to be unsatisfied. This allows us to produce a
balanced data set with some interesting statistical properties.
Models were sampled from the Erdős-Rényi distribution,
with 20 states, a connection probability of 0.3, 11 atomic
propositions, and a maximum of 11 labels per state.
The summary statistics (Table 1) show that satisfied for-

mulas and unsatisfied formulas exhibit similar numbers of
production rules, terminals, operators, and atomic propo-
sitions. Figure 2 provides further detail on the number of



FoMo - Formula and Model Generation for Learning-Based Formal Methods DAV ’23, July 16, 2023, Paris, France

0 5 10 15 20 25 30 35
Formula length

0

250

500

750

1000

1250

1500
Nu

m
be

r o
f f

or
m

ul
as

Satisfied
Unsatisfied

Figure 2. Overlapping histograms of formula lengths, mea-
sured by the number of terminal symbols. Satisfied formulas
are plotted in blue, and unsatisfied formulas in orange. Bars
with blue tops (as in the bar for length 4) indicate that more
satisfied formulas had that number of terminals; and more
unsatisfied formulas did if orange. In the case of formulas
for length 4, this chart shows that fewer than 750 unsatisfied
formulas had exactly 4 terminals, but almost 1000 satisfied
formulas did.

Table 1. Average number (with standard deviation) of pro-
duction rules, terminal symbols, operators, and atomic propo-
sitions per each formula generated.

all formulas satisfied formulas unsatisfied formulas
production rules 26.90 (13.11) 26.62 (13.12) 27.18 (13.10)
terminals 16.66 (7.25) 16.30 (7.30) 16.59 (7.19)
operators 7.12 (3.08) 6.86 (3.07) 7.38 (3.07)
atomic propositions 4.28 (1.61) 4.41 (1.62) 4.15 (1.59)

terminals among satisfied and unsatisfied formulas. We can
see, for example, that smaller formulas are more likely to be
satisfied on this distribution of system models.

4 Neural Model Checking
Using the data generated by the generate_contrastive_
mfl_entry, we train a transformer model [11] to embed
models and formulas in the same latent space, and a head to
perform the classification task of model checking. The em-
bedding network is a BERT encoder model [3] trained with
contrastive loss [8]. We used 4 hidden layers and 4 attention
heads, an embedding size (hidden size) of 128, and a learning
rate of 3 × 10−3. The training data consists of 131072 entries,
each composed of one LTL formula, one system that satisfies
the formula, and 5 systems that do not satisfy the formula.
The data has 4 atomic propositions, the formulas are length
7, and the systems have 10 states, and up to 4 atomic propo-
sitions on each state. The network was trained for 64 epochs
with a batch size of 32 and 32 gradient accumulation steps.
The classification head is composed of two fully connected
layers connected by ReLU activations, and was trained with
cross entropy loss independently of the embedding network
for 10 epochs. We evaluated the network with graphs from
the Barabasi distribution to avoid the inclusion of training
examples in the evaluation set.

The encoder model achieved a training loss of 1.04, and an
evaluation loss of 1.31. The classification head achieved an
accuracy of 69% at a loss of 0.63. Though the embedding net-
work seemed to struggle with generalizing, the performance
of the classification head suggests that the embeddings con-
tain some useful information. We expect that further fine-
tuning of the embedding network, using larger data sets
with more contrastive examples would lead to better gener-
alization of the embedding network and performance in the
model checking head.

5 Conclusion
FoMo can be used to generate data sets to train and test
learning-based formal methods algorithms. By combining
function to generate formulas, system models, and traces,
users can produce data sets of labeled pairs of formulas and
systems, traces that satisfy a given formula, or systems that
don’t satisfy a given formula.
We have shown that such data can be used to train a

model that jointly embeds formulas and models. Such net-
works could be used to perform tasks such as formula search,
or model repair by interpolating between embeddings of
specifications and systems.

We would like to expand the functionality of FoMo along
multiple directions. The addition of support for more speci-
fication languages and associated system models would en-
able a broader class of learning-based algorithms, and could
promote better generalization of such algorithms. A better
selection of distributions to draw automata from would im-
prove the robustness of algorithms trained on data generated
by FoMo, and would allow users to better model their an-
ticipated use-case. Works such as [9] use GANs to sample
harder-to-solve specification problems, and we would like
to apply similar techniques to the generation of automata as
well. The development of sampling methods that go beyond
rejection sampling could increase the performance of FoMo,
allowing for larger, more complex data sets to be generated.

References
[1] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Grig-

gio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri,
and Stefano Tonetta. 2014. The nuXmv symbolic model checker. In
International Conference on Computer Aided Verification. Springer,
334–342.

[2] Gabor Csardi, Tamas Nepusz, et al. 2006. The igraph software package
for complex network research. InterJournal, complex systems 1695, 5
(2006), 1–9.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[4] Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Flo-
rian Renkin, Alexandre Gbaguidi Aisse, Philipp Schlehuber-Caissier,
Thomas Medioni, Antoine Martin, Jérôme Dubois, Clément Gillard,
et al. 2022. From Spot 2.0 to Spot 2.10: What’s New?. In International
Conference on Computer Aided Verification. Springer, 174–187.



DAV ’23, July 16, 2023, Paris, France Shea-Blymyer and Abbas

[5] Radu Grosu and Scott A Smolka. 2005. Monte carlo model check-
ing. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 271–286.

[6] Christopher Hahn, Frederik Schmitt, Jens U Kreber, Markus N Rabe,
and Bernd Finkbeiner. 2020. Teaching temporal logics to neural net-
works. arXiv preprint arXiv:2003.04218 (2020).

[7] Wataru Hashimoto, Kazumune Hashimoto, and Shigemasa Takai. 2022.
STL2vec: Signal temporal logic embeddings for control synthesis with
recurrent neural networks. IEEE Robotics and Automation Letters 7,
2 (2022), 5246–5253.

[8] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yong-
long Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan.
2020. Supervised contrastive learning. Advances in neural information
processing systems 33 (2020), 18661–18673.

[9] Jens U Kreber and Christopher Hahn. 2021. Generating sym-
bolic reasoning problems with transformer gans. arXiv preprint
arXiv:2110.10054 (2021).

[10] Prasita Mukherjee, Haoteng Yin, Susheel Suresh, and Tiark Rompf.
2022. OCTAL: Graph Representation Learning for LTL Model Check-
ing. arXiv preprint arXiv:2207.11649 (2022).

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural information processing
systems 30 (2017).

[12] Yaqi Xie, Fan Zhou, and Harold Soh. 2021. Embedding symbolic tempo-
ral knowledge into deep sequential models. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 4267–4273.

Received 3 May 2023


	Abstract
	1 Introduction
	2 Inputs and Outputs of FoMo
	2.1 Generating Models
	2.2 Generating Formulas
	2.3 Generating System Traces
	2.4 Generating Training Data

	3 Data Distribution
	4 Neural Model Checking
	5 Conclusion
	References

