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ABSTRACT

Recent advances in Multimodal Large Language Models (MLLMs) have substan-
tially improved GUI grounding tasks. However, the following challenges still exist
in prior methods: (1) They predict coordinates as discrete tokens in an autoregres-
sive text generation paradigm, which constrains grounding accuracy and leads to
sub-optimal inference efficiency; (2) Their predictions are restricted to predefined
element sets, and lack the ability to comprehensively parse the entire interface,
thereby impeding the versatility and generalizability required for downstream ap-
plications. To address these challenges, we introduce Grounding GUI Anything
(GGA), an efficient end-to-end framework that enables semantically-aware and
fine-grained interface parsing with continuous coordinate decoding. By bridging
the MLLM with a dedicated regression-based decoder, the enhanced visual and
textual representations are jointly leveraged to regress target coordinates within a
continuous spatial domain. This design overcomes the quantization and sequential
limitations of traditional discrete token modeling, thus enhancing both localization
accuracy and inference speed. Furthermore, to improve robustness and mitigate
hallucination, we incorporate a rejection mechanism that enables the model to
identify non-existent elements. To facilitate systematic evaluation, we introduce
ScreenParse, a comprehensive benchmark designed to assess the structural per-
ception capabilities of GUI grounding models across diverse real-world scenar-
ios. Extensive experiments on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding
and ScreenParse benchmarks demonstrate that GGA consistently achieves supe-
rior performance compared to existing state-of-the-art methods. All resources will
be made publicly available for future research.

1 INTRODUCTION

GUI-oriented MLLMs are capable of integrating visual and textual data to understand and interact
with graphical user interfaces, providing a solid foundation for creating GUI agents. GUI agents
have the potential to autonomously operate a wide range of devices, thereby transforming human-
computer interaction from an entirely manual process to automated and delegated workflows. Since
most of the training data for general MLLMs are natural images, their perception ability on GUI
images is insufficient, which limits their effectiveness in GUI-specific contexts. Natural images
often contain complex scenes with diverse objects and backgrounds, whereas GUI images are more
structured, featuring elements like texts, buttons, and input boxes that have specific functions and
layouts. For GUI scenario perception and advanced tasks, ideal GUI MLLMs not only need to
understand the ever-changing and high information-density interfaces on various devices, but also
exactly perform basic operations, such as understanding the semantics of interface elements and
outputting precise coordinates.

To improve the GUI perception, recent works (Cheng et al., 2024; Xu et al., 2024; Gou et al., 2024)
attempt to employ pre-trained MLLMs as backbone. Specifically, they almost all adopt textual
autoregressive modeling to generate coordinates as a sequential stream of discrete tokens, as pre-
sented in Figure 1 (left). Although these methods have made some progress in GUI perception,
they also have some limitations. (1) Generating coordinates as a sequence of discrete tokens fails
to holistically perceive the spatial configuration of GUI elements and tends to yield sub-optimal
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Figure 1: Comparison of the coordinate generation between prior methods (left) and ours
(right). We utilize features instead of multiple discrete tokens to obtain continuous coordinate
values, thereby improving the precision of grounding and speeding up the inference. In fact, a
special [VG] token (the red token) represents coordinates of a bounding box in our method.

localization accuracy. The reason is that this autoregressive mechanism is originally designed for
natural language generation and the discrete tokens can hardly represent the geometric information
of localization. Besides, token-by-token prediction manner of high-precision coordinates could be a
bottleneck when rapid response time is required. (2) Previous models may return incorrect locations
or generate irrelevant responses when a non-existent element is required to be located, leading to
failures in downstream tasks, which can significantly impact user experience and system reliabil-
ity, as illustrated in Figure 2 (left). (3) They only focus on locating and interacting with specified
elements and ignore providing a detailed parsing perception1 of broader context and relationships
between elements on the entire user interface, which can refer to Figure 2 (right). To a certain extent,
these three points limit the development of a more powerful and robust GUI MLLM.

To address the aforementioned limitations, we propose a novel end-to-end model, called Ground-
ing GUI Anything (GGA), which can achieve robust grounding of specified elements and detailed
parsing of the entire user interface within a model simultaneously. Specifically, we design a route-
then-predict framework to efficiently process both vision and language information, consisting of an
MLLM, a token router, a vision adapter, a coordinate decoder, and an additional element matcher
for the training phase only. The output tokens from the MLLM are classified by the token router
into text tokens and visual grounding tokens. Text tokens are decoded into element semantics, while
visual grounding tokens, combined with visual features from the vision adapter, are processed by the
coordinate decoder for localization. Instead of treating the coordinates as multiple discrete tokens in
previous GUI models, the lightweight coordinate decoder adds a special [VG] token. And we com-
bine the special token and the continuous characteristic of image space to provide higher-precision
grounding ability and more efficient inference, as shown in Figure 1(right). Then, the element
matcher is utilized to ensure that element semantics from the instruction and candidate coordinates
are correctly matched for multi-target grounding and parsing of user interfaces. Besides, we also
introduce [REJ] token to represent elements that do not exist in the user interface. When [REJ]
tokens appear, their coordinate decoding process is skipped straightforwardly, avoiding unnecessary
computations and hallucination. To provide a detailed evaluation of our method, we construct a
large-scale GUI parsing dataset, ScreenParse, which consists of 500K training samples. Leveraging
self-constructed parsing datasets, we train our model for parsing to extract a comprehensive repre-
sentation of all elements, including their semantics and corresponding locations, empowering our
model with parsing capability on the entire user interface. Specifically, we conduct extensive eval-
uation on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding, and ScreenParse benchmarks, and our
proposed GGA consistently achieves superior performance compared to state-of-the-art methods.

To summarize, our contributions are listed as follows: (1) We propose a novel end-to-end model
Grounding GUI Anything (GGA), which can realize robust grounding of specified elements and
detailed parsing of the entire user interface within a model simultaneously by adding specialized
[REJ] and [VG] tokens. (2) We compress multiple discrete coordinate tokens into a single spe-
cialized [VG] token and use coordinate decoder for combining vision feature and special token to
substantially shorten inference time, which can also improve the accuracy for coordinate-related
tasks, thereby benefiting a wider range of downstream applications. (3) To provide a comprehensive

1The parsing task means that the model grounds all elements in the GUI interface, including icons and texts.
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Please provide the position of command in this user 
interface : transfer money, scan QR code, play the music.

transfer money box1
scan QR code box2
play the music doesn’t exist on the interface

(a) Multi-target Grounding and Rejection of Non-existent Elements Grounding

Please parse all elements in this user interface.

add new place icon1
AC010ML的家 text1
6 devices text2
…
Scenes icon10
Scenes text19
Me icon11
Me text20

(b) Screenshot Parsing

add new place icon1
AC010ML的家 text1

choose place icon2
6 devices text2

…
Scenes icon14
Scenes text21

Me icon15
Me text22

box1box2

scan QR code box2
play the music box3

      Missing targets, and providing irrelevant 
outputs for non-existent targets.

Ours

OursQwen2.5-VL

      Correctly handling all elements in command.
Missing elements, 
redundant elements, 
and locating deviations.

Parsing all elements 
accurately.

Qwen2.5-VL
box3

Figure 2: Qualitative illustration. Our method delivers robust predictions with high grounding pre-
cision, whereas Qwen2.5-VL exhibits missing values, redundant elements and locating deviations.

evaluation, we construct a large-scale GUI parsing dataset, ScreenParse, consisting of 500K sam-
ples. We also conduct extensive experiments on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding
and ScreenParse benchmarks to verify the superior performance of our proposed GGA.

2 RELATED WORKS

2.1 GENERAL MLLMS

Recent years have witnessed rapid progress in General MLLMs. GPT-4V (Yang et al., 2023) and
Gemini (Team et al., 2023) boosted performance via massive web-scale data and reinforcement
learning from human feedback, achieving strong zero-shot visual understanding and reasoning.
Later, open-source models such as LLaVA (Liu et al., 2023), Qwen-VL (Bai et al., 2023) and In-
ternVL (Chen et al., 2024c) leveraged instruction-tuning on curated datasets to align LLMs with
visual inputs efficiently. They fused vision encoders and language decoders end-to-end, supporting
diverse modalities including audio and video. Despite these advances, general MLLMs are mainly
trained on natural images rather than GUI images, exhibiting limited perceptual capability in GUI-
specific scenarios.

2.2 MLLMS FOR GUI GROUNDING

To achieve GUI grounding tasks, several representative works (Cheng et al., 2024; Gou et al., 2024;
Wu et al., 2024; Yang et al., 2024; You et al., 2024; Xu et al., 2024; Qin et al., 2025) have explored
to fine-tune MLLMs with large-scale text-position pairs extracted from user interfaces. Seeclick
(Cheng et al., 2024) achieved automatic GUI perception solely based on user interfaces for the first
time, and proposed a multi-platform benchmark to evaluate GUI grounding. Ferret-UI series (You
et al., 2024; Li et al., 2024) used a dynamic resolution strategy to magnify the interface details
to enhance visual perception. Aguvis (Xu et al., 2024) and UI-TARS (Qin et al., 2025) collected a
large amount of annotated data and utilized reasoning paradigms to achieve stronger GUI perception
capabilities. To fully utilize the semantic and location information of elements in the user interface,
OmniParser (Wan et al., 2024) leveraged powerful expert models to extract icons and texts, after
which GPT-4V (Yang et al., 2023) was applied to generate the functionality or semantics of each
element. Although they have made some progress, the following issues still exist: (1) Their way of
modeling coordinates is discrete and sequential prediction, sacrificing both grounding precision and
inference speed. (2) When an element does not exist on the interface, they generate false responses
(grounding hallucination) rather than correct rejections. (3) They cannot achieve parsing on the
entire interface or require the use of additional tools to complete parsing in a non-end-to-end method.
We propose an end-to-end and continuous modeling of coordinates framework to enable parsing all
elements from a user interface and deal with non-existent elements correctly, providing a high-
precision, efficient and effective perception of GUI interfaces.

3 METHOD

To develop the ability of MLLM-based GUI perception, we introduce Grounding GUI Anything
(GGA), an end-to-end framework capable of robustly localizing specified elements and compre-
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Coordinate 
Decoder

🔥
decode buy the tickets null

play the music 
[0.75, 0.85, 0.82, 0.88]
check my account 
[0.85, 0.11, 0.96, 0.16]

visualize

Please provide the position of command: buy the tickets, 
play the music, check my account.

Element
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Text Token
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Inference Only
Train & Inference

❄ LoRA🔥

LoRA🔥

user interface

Figure 3: Overall architecture of Grounding GUI Anything (GGA). A token router first classifies
output tokens of the MLLM into text and special tokens ([VG] and [REJ]). Text tokens are handled
by the MLLM. Features of [VG] tokens and vision-adapter features are jointly decoded for exact
coordinates, while [REJ] tokens are discarded. An element matcher aligns predicted elements with
ground truth during training to avoid the variance in the generated element order.

hensively parsing the entire user interface simultaneously. The overall architecture of Grounding
GUI Anything (GGA) is illustrated in Figure 3. Specifically, the model adopts a route-then-predict
architecture that processes vision and language streams through an MLLM, a token router, a vision
adapter, a coordinate decoder, and an element matcher used only during training. Tokens produced
by the MLLM are separated into textual tokens and visual grounding tokens by the token router.
Textual tokens are decoded into element semantics, whereas visual grounding tokens, combined
with image features from the vision adapter, are input to a lightweight coordinate decoder. Then
the decoder regresses continuous coordinates via special [VG] tokens, yielding higher localization
accuracy and improved inference efficiency compared to discrete token generation. During training,
the element matcher ensures correct alignment between predicted semantics and candidate coor-
dinates, enabling multi-target grounding and parsing. In addition, [REJ] tokens are introduced to
represent non-existent elements, allowing their coordinates to be skipped during decoding, which
reduces unnecessary computation and suppress hallucination.

3.1 MODEL ARCHITECTURE

MLLM. The MLLM serves as the backbone for jointly processing user instructions and GUI inter-
faces, providing unified semantic representations for subsequent grounding and parsing tasks. The
user instruction Tinstruction and the interface I are first processed by an fine-tuned MLLM FMLLM

to obtain semantic features ftoken as

ftoken = FMLLM (I, Tinstruction). (1)

Token Router. To decouple spatial grounding from token-by-token generation, we introduce a token
router that partitions the MLLM-generated tokens into semantic tokens and localization tokens. The
routing decision is based on token-level logits to identify two categories of localization tokens: [VG]
tokens indicating bounding boxes of target elements, and [REJ] tokens representing non-existent tar-
gets. [REJ] tokens are discarded to prevent unnecessary coordinate computation, while [VG] tokens
proceed to the coordinate decoding stage. Semantic tokens are handled via the MLLM’s standard
autoregressive text generation to produce human-readable descriptions of interface elements.

Vision Adapter. Instead of relying on a large-scale external vision encoder to augment the model’s
perception, we leverage the MLLM’s internal vision encoder FViE and introduce a lightweight,
task-specific vision adapter Fadapter . This adapter fine-tunes the original visual representations for
GUI-oriented localization, producing enhanced visual features fvision as:

fvision = Fadapter (FViE (I)). (2)
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By aligning the adapted visual features with textual reasoning in the MLLM, this design provides
efficient visual-semantic integration while retaining consistency with the backbone’s latent space.

Large Language Model

input

[VG] feature
[VG]

vision feature

Transformer 
Block ×N

FFN

0.75, 0.85, 0.82, 0.88

Figure 4: Illustration of continuous coordinate
decoding in Grounding GUI Anything.

Coordinate Decoder. To overcome the
grounding quantization and inference effi-
ciency limitations of token-by-token coordinate
generation in existing GUI MLLMs, we intro-
duce a lightweight coordinate decoder for di-
rect regression of continuous values. For each
[VG] token, we extract its final-layer embed-
ding from the MLLM as the text feature, and
pair it with the GUI-specific visual features
from the vision adapter. The coordinate de-
coder Fdecoder then outputs the bounding box
coordinates OBBox via:

OBBox = Fdecoder (ftoken[V G]
, fvision). (3)

This approach bridges the discrete-to-continuous gap in coordinate-related tasks: (1) Higher preci-
sion: avoiding quantization errors inherent in vocabulary-based coordinate prediction. (2) Compu-
tational efficiency: compressing multiple coordinate tokens into a single special token, substantially
reducing inference latency for both grounding and parsing tasks. More details of the Coordinate
Decoder are presented in Appendix.

Element Matcher. We adopt an element matching strategy that integrates semantic similarity and
bounding-box IoU into a unified score, enabling alignment of predicted and ground-truth elements
based on both meaning and spatial consistency. This ensures each ground-truth element is paired
with its nearest predicted counterpart, yielding two benefits: (1) The loss is computed only between
semantically and spatially aligned pairs, avoiding penalization for output ordering. (2) The model
gains robustness to diverse interface layouts and element arrangements, improving generalization to
real-world GUI scenarios. Further details of the matching algorithm are provided in Section 3.2.

3.2 TRAINING OBJECTIVES

To train the framework on complex tasks with multiple types of instructions rather than just a sim-
ple grounding task, we elaborately design a set of objectives to ensure stable convergence during
training. The output could be multiple elements with their corresponding bounding boxes and there
might exist inconsistency between the output order and ground-truth element order of elements. In
contrast to closed-set matching in DETR (Carion et al., 2020), which aligns predicted boxes with
ground-truth via classification scores and spatial overlap, we adopt an open-form matching strategy
tailored for GUI grounding in MLLMs. Specifically, predicted elements are paired with ground-
truth annotations by jointly considering semantic similarity and bounding-box IoU within a unified
assignment objective, followed by optimization of the corresponding element-wise losses.

Let y = {(ti, bi)} denote the ground-truth set of elements and ŷ =
{
(t̂i, b̂i)

}
the set of predictions.

ti and t̂i are the semantic feature of the text for the ith element, while bi and b̂i represents its
bounding box. To find a match for ground truth element yi, we search the set of predictions using a
matching cost:

σ =

{
argmin

j
Cmatch(yi, ŷj) if Cmatch(yi, ŷj) > µ,

∅ otherwise,

where Cmatch = λIoULIoU (bi, b̂j) + λsemLsem(ti, t̂j),

(4)

where µ is the threshold to evaluate whether two elements match. And µ is experimentally set to
0.55. After finding a match for each ground truth element, we use cross-entropy loss for the text,
Smooth-L1 loss and IoU loss (Rezatofighi et al., 2019) for the bounding box:

Li = λCELCE(ti, t̂σ) + λL1LL1(bi, b̂σ) + λIoULIoU (bi, b̂σ). (5)
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Since each element contains semantic and coordinate optimization, for a ground truth set with Ngt

elements the total loss is defined as:

L =

Ngt∑
i

Li (6)

These training objectives help with more stable learning from complex tasks with an indefinite
number of elements. The model can better handle the challenges posed by varying numbers of
elements in different user interfaces, leading to improved performance and robustness.

4 BENCHMARK

4.1 DATA COLLECTION AND ANNOTATION

We construct a parsing benchmark spanning diverse domains and application scenarios to en-
sure variability in interface design, functionality, and complexity. Building upon the open-source
ScreenSpot benchmark (Cheng et al., 2024), we re-annotate all interface instances with element
types, semantic labels, and bounding boxes. To further broaden the coverage of user interface styles
and languages, we additionally annotate a collection of interfaces from widely used Chinese appli-
cations using the same annotation protocol. The detailed statistics of our proposed ScreenSpot can
be found in Appendix.

We construct the benchmark using a semi-automatic pipeline that combines expert models with
manual verification for quality control. Icon elements are identified using the open-domain detector
Grounding DINO (Liu et al., 2024b), and textual elements are extracted via PaddleOCR (Authors,
2020). Redundant bounding boxes are removed using non-maximum suppression (NMS), and miss-
ing semantics are supplemented by a pre-trained MLLM. All annotations are manually reviewed to
correct potential errors in both bounding boxes and semantic labels. The dataset comprises 1000
English and Chinese interfaces in equal proportion (500 each), with an average of 36 annotated
elements per interface, and the annotation pipeline along with examples is illustrated in Figure 5.

4.2 EVALUATION METRICS

Grounding 
DINO

Paddle 
OCR

icon1 [0.084,0.019,0.140,0.048]
…
icon5 [0.740,0.714,0.919,0.806] 
icon6 [0.088,0.901,0.902,0.963]

Detected Icons

🦕

Step 1: NMS
Step 2: MLLM Semantics

Step 3: Human Checkicon1 return [0.084,0.019,0.140,0.048]
text1 Dashboard [0.076,0.078,0.426,0.120]
text2 Focus mode [0.456,0.078,0.911,0.120]
text3 Put your phone away [0.167,0.617,0.823,0.656]
…
icon5 add a new focus time [0.740,0.714,0.919,0.806]
text11 Tap to try (1 min) [0.369,0.856,0.622,0.879]
icon6 Turn on Focus mode [0.088,0.901,0.902,0.963]
text12 Turn on Focus mode [0.287,0.921,0.706,0.947]

Dashboard [0.076,0.078,0.911,0.120]
Focus mode [0.456,0.078,0.911,0.120]
…
Turn on Focus mode [0.287,0.921,0.706,0.947]

Detected Texts

Figure 5: Semi-automatic pipeline and examples of data
annotation in ScreenParse. Element types, semantics,
bounding boxes for all elements are annotated.

Bounding Box Performance. Two
complementary metrics are employed
to evaluate bounding-box perfor-
mance in GUI parsing: element re-
call, defined as the proportion of
ground-truth elements correctly lo-
calized, and element precision, de-
fined as the proportion of predicted
elements that correspond to ground-
truth instances. High recall reflects
the model’s capacity to detect the ma-
jority of existing elements, whereas
high precision indicates that most lo-
calized elements are correct, thereby
reducing false positives.

Semantics Performance. Semantic
Similarity (SemSim) is introduced to
evaluate the alignment between pre-
dicted and ground-truth element se-
mantics for matched bounding boxes,
encompassing both textual and icon
descriptions. This metric reflects the model’s capability to generate semantically faithful descrip-
tions of localized elements, which is essential for tasks requiring deep GUI comprehension, such as
intelligent user interaction and context-aware assistance.
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Table 1: Quantitative comparison on ScreenSpot and ScreenSpot-v2. The best and second best
performance are marked, where “-” indicates that the information cannot be obtained due to missing
values or API usage and “∗” means that additional private datasets of undisclosed size were used.

Model # Data Mobile Desktop Web Avg. Time(s)
Text Icon Text Icon Text Icon

ScreenSpot
GPT-4o - 22.6 24.5 20.2 11.8 9.2 8.8 18.3 -
Claude Computer Use - - - - - - - 83.0 -
Gemini 2.0 (Project Mariner) - - - - - - - 84.0 -
Qwen2.5-VL-7B - 97.1 81.2 86.6 70.0 87.4 78.6 84.9 0.763
InternVL2.5-8B - 82.8 58.5 47.4 28.6 47.4 26.7 48.6 0.812
CogAgent-18B 400K 67.0 24.0 74.2 20.0 70.4 28.6 47.4 1.112
SeeClick-9.6B 1M 78.0 52.0 72.2 30.0 55.7 32.5 53.4 0.872
OmniParser - 93.9 57.0 91.3 63.6 81.3 51.0 73.0 -
UGround-7B 1.3M 82.8 60.3 82.5 63.6 80.4 70.4 73.3 0.821
OS-Atlas-7B 2.3M 93.0 72.9 91.8 62.9 90.9 74.3 82.5 0.782
Aguvis-7B 1M 95.6 77.7 93.8 67.1 88.3 75.2 84.4 0.791
GUI-Actor-7B 9.6M 94.9 82.1 91.8 80.0 91.3 85.4 88.3 0.797
UI-TARS-7B 18.4M∗ 94.5 85.2 95.9 85.7 90.0 83.5 89.5 0.741
GGA-8B 515K 96.9 86.8 95.9 85.3 91.4 84.6 90.2 0.173

ScreenSpot-v2
OpenAI Operator - 47.3 41.5 90.2 80.3 92.8 84.3 70.5 -
GPT-4o + OmniParser-v2 - 95.5 74.6 92.3 60.9 88.0 59.6 80.7 -
Qwen2.5-VL-7B - 99.0 84.4 87.6 65.7 90.2 79.8 86.5 0.756
InternVL2.5-8B - 84.5 58.3 48.5 30.0 43.6 27.1 48.7 0.793
CogAgent-18B 400K 69.3 27.0 75.8 20.7 74.4 31.5 52.8 1.104
SeeClick-9.6B 1M 78.4 50.7 70.1 29.3 55.2 32.5 55.1 0.864
UGround-7B 1.3M 84.5 61.6 85.1 61.4 84.6 71.9 76.3 0.805
OS-Atlas-7B 2.3M 95.2 75.8 90.7 63.6 90.6 77.3 84.1 0.774
Aguvis-7B 1M 95.5 81.5 93.3 77.9 91.0 77.8 87.3 0.779
UI-TARS-7B 18.4M∗ 96.9 89.1 95.4 85.0 93.6 85.2 91.6 0.733
Jedi-7B 1.3M 96.9 87.2 95.9 87.9 94.4 84.2 91.7 0.763
GGA-8B 515K 98.5 90.6 96.1 85.5 94.8 86.6 92.0 0.168

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. Our training data is composed of open-source English datasets and self-annotated Chi-
nese datasets, including 515k training samples in the fields of mobile, desktop and web (See more
details in Section A.1). Furthermore, to optimize training efficiency and enhance model robust-
ness, we implemented a multi-target instruction paradigm, wherein each training instance randomly
encompasses multiple objectives, departing from the conventional single-target approach.

Baselines. We compare the proposed GGA with various baselines, including closed-source com-
mercial models GPT-4o (Hurst et al., 2024), Claude Computer Use (Anthropic, 2024), Gemini 2.0
(Project Mariner) (GoogleDeepmind, 2024), as well as open-source basic models Qwen2.5-VL se-
ries (Bai et al., 2025), InternVL2.5 series (Chen et al., 2024b) and academic GUI models SeeClick
(Cheng et al., 2024), OmniParser series (Wan et al., 2024; Yu et al., 2025), CogAgent (Hong et al.,
2024), AgentCPM-GUI (Zhang et al., 2025), Aguvis (Xu et al., 2024), OS-Atlas (Wu et al., 2024),
UGround (Gou et al., 2024), GUI-Actor (Wu et al., 2025), Jedi (Xie et al., 2025) and UI-TARS (Qin
et al., 2025).

Implementation details. In our work, we use InternVL2.5-8B as the backbone FMLLM , and the
vision adapter Fadapter is an MLP module with channels [4096, 2048, 1024, 256]. The coordinate
decoder is a transformer-based architecture with cross-attention mechanism where the dimension
of hidden states is 256, and it finally regresses to the coordinates through a decoding head. We
adopt 8 NVIDIA 80G A100 to train the whole framework, and the vision encoder is unfrozen during
training. LoRA (Hu et al., 2022) is applied to fine-tune both vision and language parts in MLLM,
with lora-rank r and lora-alpha α set to 16 and 32. We also adopt CosineLRScheduler as the learning
rate scheduler, where the learning rate and warmup ratio are set to 3e−5 and 0.03 respectively. In
the training process, λIoU and λsem in element matcher are both set to 1.0 in Eq. 4, while λCE , λL1

and λIoU in Eq. 5 are set to 2.0, 4.0 and 1.0 respectively. More details can be found in Appendix.
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Table 2: Quantitative comparison on CAGUI-Grounding. The best and second best performance
are marked. The results demonstrate that our method exhibits strong multilingual GUI grounding
performance.

Model Func2Box Text2Box Avg. Time(s)

GPT-4o 22.1 19.9 21.0 -
GPT-4o (grounding) 44.3 44.0 44.2 -
Qwen2.5-VL-7B 59.8 59.3 59.6 2.512
InternVL2.5-8B 17.2 24.2 20.7 2.684
OS-Atlas-7B 53.6 60.7 57.2 2.542
UI-TARS-7B 56.8 66.7 61.8 2.373
Aguvis-7B 60.8 76.5 68.7 2.578
AgentCPM-GUI-8B 79.1 76.5 77.8 2.691
GGA-8B 83.2 82.9 83.1 0.632

Table 3: Quantitative comparison on ScreenParse. The best and second best performance are
marked, where “-” indicates the time consumption cannot be obtained because of API usage.

Model English Chinese Time(s)
Recall Precision SemSim Recall Precision SemSim

GPT-4o 5.7 11.7 0.586 4.9 7.8 0.406 -
Claude Computer Use 17.1 35.3 0.758 19.3 31.0 0.511 -
Qwen2.5-VL-7B 18.8 36.6 0.596 25.0 52.6 0.854 0.534
Qwen2.5-VL-72B 22.9 43.7 0.685 42.4 70.5 0.867 2.748
InternVL2.5-8B 11.7 30.4 0.615 28.6 47.9 0.812 0.558
InternVL2.5-78B 20.4 38.6 0.628 40.8 66.4 0.836 2.822
Jedi-7B 34.7 46.9 0.721 7.8 12.6 0.578 0.568
GGA-8B 77.2 77.9 0.918 87.1 89.5 0.946 0.154

5.2 MAIN RESULTS

Quantitative Comparison of Grounding. We evaluate GUI grounding on three benchmarks:
(1) ScreenSpot: a single-step grounding benchmark covering multiple platforms; (2) ScreenSpot-
v2 (Wu et al., 2024): a re-annotation version based on ScreenSpot that corrects some coordinate and
instruction errors; (3) CAGUI-Grounding (Zhang et al., 2025): a Chinese mobile text and function
grounding evaluation benchmark. GGA employs a transformer-based coordinate decoder to fuse vi-
sual and textual features for direct continuous coordinate regression, outperforming autoregressive
baselines in both accuracy and efficiency. As shown in Table 1 and Table 2, GGA achieves state-of-
the-art results while using a substantially smaller dataset, delivers the fastest inference speed, and
exhibits strong adaptability to multilingual interfaces and varied instruction types.

Quantitative Comparison of Parsing. To evaluate the model’s global perception of both the se-
mantics and spatial coordinates of user interface elements, we evaluate on the proposed ScreenParse
benchmark, which contains English and Chinese interfaces. Average inference time per predicted
element is measured using the transformer framework on an NVIDIA A100 (80G). As shown in
Table 3, GGA delivers superior parsing performance across diverse interfaces. In contrast, commer-
cial and other large-scale models detect only a limited set of elements, resulting in lower recall and
precision and reduced semantic similarity, indicating deviations in their understanding of element
semantics. By decoupling the semantic and spatial components of the parsing task and incorporating
an element matcher to ensure correct alignment during training, our approach achieves substantial
gains in accuracy and recall over baselines, while markedly reducing per-element inference time.

Analysis of Hallucination Suppression. Previous GUI grounding methods typically localize a
single or few queried elements by directly generating bounding boxes, without a global verifica-
tion mechanism, making them prone to hallucination where plausible but non-existent elements are
predicted. In contrast, Grounding GUI Anything (GGA) achieves parsing the semantics and coordi-
nates of all present elements for the first time, enabling explicit existence checks before localization.
To evaluate hallucination suppression, we construct a hallucination-sensitive split from ScreenParse
by sampling queries for non-existent elements and measure performance using Rejection Accuracy
(RA). The split contains 1,000 query–GUI pairs evenly divided between English and Chinese in-
terfaces. As shown in Table 4, GGA achieves the highest RA, demonstrating that comprehensive
parsing significantly mitigates grounding hallucinations in MLLMs.
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Table 4: Quantitative comparison of hallucination suppression. Our method attains the highest
Rejection Accuracy, suggesting that the incorporation of global semantically-aware parsing is in-
strumental in suppressing hallucination for GUI grounding.

Model Rejection Accuracy (RA)

GPT-4o 56.8
Claude Computer Use 59.4
Qwen2.5-VL-7B 63.4
InternVL2.5-8B 60.1
UGround-7B 8.7
OS-Atlas-7B 9.8
Aguvis-7B 10.2
GUI-Actor-7B 21.5
UI-TARS-7B 16.9
Jedi-7B 30.7
GGA-8B 80.2

Table 5: Ablation study. For conciseness, we primarily focus on results on ScreenSpot-v2 and
ScreenParse. Values in parentheses indicate the percentage change relative to the original model.

Model ScreenSpot-v2 ScreenParse

Text Avg. Icon Avg. Recall Avg. Precision Avg. SemanticSim Avg.

full model 96.5 87.6 82.2 83.7 0.932
w/o coordiante decoder 91.9 (-4.8%) 82.2 (-6.2%) 77.6 (-5.6%) 78.2 (-6.6%) 0.930 (-0.2%)
w/o vision adapter 22.1 (-77.1%) 17.8 (-79.7%) 5.4 (-93.4%) 4.6 (-94.5%) 0.915 (-1.8%)
w/o element matcher 95.7 (-0.8%) 87.1 (-0.6%) 72.5 (-11.8%) 73.4 (-12.3%) 0.814 (-12.7%)
w/o parsing dataset 96.0 (-0.5%) 87.0 (-0.7%) 20.2 (-75.4%) 39.2 (-53.2%) 0.751 (-19.4%)

5.3 ABLATION STUDY

Impact of Coordinate Decoder. The second row of Table 5 shows that our decoupled framework
surpasses the autoregressive paradigm across benchmarks, corroborating that modeling coordinates
through continuous spatial features regression enables more effective coordinate-related process in
MLLMs.

Impact of Vision Adapater. The third row of Table 5 reveals that removing the visual adapter
and relying solely on text features with self-attention for coordinate regression leads to a substantial
accuracy drop. This highlights the necessity of rich visual–feature interactions for effective local-
ization of user interface elements.

Impact of Element Matcher. The fourth row of Table 5 shows that removing the element matcher
reduces parsing accuracy, largely due to the inherent randomness of MLLM generation and target
mismatches. This underscores the element matcher’s importance in aligning model outputs with the
ground truth, thereby alleviating the need for strictly consistent output ordering.

Impact of Parsing Dataset. Incorporating an annotated parsing dataset markedly strengthens the
model’s global structural perception. As shown in the fifth row of Table 5, this addition yields
substantial gains in parsing GUI interfaces, while also bringing slight improvements to overall GUI
grounding performance.

6 CONCLUSION

In this paper, we propose Grounding GUI Anything (GGA), a route-then-predict framework that
decouples the semantic understanding and spatial localization of GUI elements. The framework
employs a specialized coordinate decoder that directly regresses locations in a continuous feature
space rather than serializing them into discrete coordinate tokens via autoregressive text decod-
ing. This design yields state-of-the-art performance across GUI grounding and parsing benchmarks
and achieves the highest inference efficiency. Meanwhile, a rejection mechanism is introduced to
enhance robustness against grounding hallucination. Furthermore, we present ScreenParse, a com-
prehensive parsing benchmark that systematically evaluates models’ ability to predict the semantics
and locations of all GUI elements, providing a foundation for future research on global structural
perception in MLLMs.
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A APPENDIX

A.1 DATA COMPOSITION DETAILS

Our training data consists of two parts, which is shown in Table 6. One part is an aggregated
open-source English dataset. Due to the huge amount of such data, we ultilized a deduplication
filtering method based on image and instruction similarity. Ultimately, we obtained 400K samples
covering various platforms in the following dataset: SeeClick (Cheng et al., 2024), AMEX (Chai
et al., 2024), AndroidWorld (Rawles et al., 2024), UIBERT (Bai et al., 2021), FineWeb (Penedo
et al., 2024), MultiUI (Liu et al., 2024a), OS-Atlas (Wu et al., 2024), GUIEnv (Chen et al., 2024a)
and AutoGUI (Li et al., 2025), as well as a parsing dataset annotated on 5K interfaces. The other
part is to annotate 100K grounding and 10K parsing training samples on various Chinese interfaces
we collected.

Table 6: Overview of the utilized training datasets in Grounding GUI Anything, where “∗” indicates
the open-source dataset.

Grounding Parsing Total

English Chinese English Chinese

# Samples 400K∗ 100K 5K 10K 515K

A.2 ARCHITECTURE OF COORDINATE DECODER

The coordinate decoder in our approach is implemented as a transformer-based module, which in-
gests multimodal features and performs internal interactions to regress continuous coordinate values.
The architecture detail of coordinate decoder is shown in Figure 6. In contrast to text autoregressive
generation form, our method transforms discrete tokens into continuous coordinate representations
and fully exploits multimodal information during the localization stage, thereby enhancing ground-
ing accuracy.

Figure 6: Architecture of the proposed coordinate decoder. Hidden text features from the LLM
part and enhanced image features from the vision adapter are fused via multi-stage self- and cross-
attention to produce updated multimodal representations. A decoder cross-attention module then
maps these representations into continuous coordinate space through a box head, supervised with
Smooth-L1 and IoU loss. By regressing coordinates directly in a continuous feature space—rather
than serializing them into discrete coordinate tokens via autoregressive text generation—this design
improves localization accuracy and significantly reduces inference latency.
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Figure 7: Convergence curves of evaluation metrics with respect to the number of training
steps. Compared with training strategy using text autoregressive generation on the same basic
model, our method has faster convergence in the second stage and higher Recall/Precision per-
formance.

A.3 TWO-STAGE TRAINING PROCESS

In our proposed method, we employ a two-stage progressive training strategy:

• During the first stage, training is restricted exclusively to grounding task, enabling the
model to develop robust GUI localization capabilities, while simultaneously optimizing a
randomly initialized grounding decoder.

• During the second stage, training is conducted using both a subset of the grounding an-
notations and the complete parsing dataset. This joint optimization further enhances the
model’s GUI perception capabilities.

Our empirical analysis reveals that, since the grounding decoder has been sufficiently optimized
during the first training phase, the model primarily concentrates on acquiring the parsing-specific
generation patterns during the second stage, eliminating the necessity for substantial additional op-
timization of the grounding decoder. This approach leads to faster convergence compared to the text
autoregressive paradigm, and the convergence comparison of evaluation metrics with the number of
training steps is shown in Figure 7.

A.4 INSTRUCT EXISTING MODELS FOR PARSING

For existing open-source models, we employed various prompts to stimulate their interface pars-
ing capabilities, and all evaluation results are reported based on the corresponding best-performing
prompts. However, as a result of extensive fine-tuning on domain-specific datasets, some open-
source academic models have exhibited diminished responsiveness to parsing instructions and are
generally unable to generate parsing outputs. The prompt template tried to utilize to assess the
models’ parsing capabilities is presented as follows.

Parsing Prompt Example 1: Parse the semantics of all elements on the interface and their
corresponding box coordinates in the format of [[x1,y1,x2,y2]], including all icons and texts.

Parsing Prompt Example 2: Parse the short description of all elements (including icons and
texts) on the interface and their corresponding coordinates. The format of the coordinates is
[[x1,y1,x2,y2]]. The following is an example output:
icon: play music [[x1,y1,x2,y2]]
text: search for my favorites [[x1,y1,x2,y2]]
text: Today’s Hot Songs [[x1,y1,x2,y2]]
icon: play the next song [[x1,y1,x2,y2]]
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(a) For English interface, Grounding GUI Any-
thing achieves accurate multi-target grounding ac-
curacy and rejection.

(b) For English interface, Qwen2.5-VL-7B
showed locating deviations and false positives of
non-existent elements.

(c) For Chinese interface, Grounding GUI Any-
thing achieves accurate multi-target grounding ac-
curacy and rejection.

(d) For Chinese interface, while Qwen2.5-VL-7B
achieved correct rejection, it has obvious ground-
ing deviations.

Figure 8: The performance of our method and Qwen2.5-VL-7B on multi-target grounding with
rejection mechanism.

A.5 MORE DEMONSTRATIONS OF GROUNDING GUI ANYTHING

We present an analysis of existing basic model Qwen2.5-VL-7B (Bai et al., 2025) and Grounding
GUI Anything with respect to grounding and parsing capability. We provide additional demon-
strations of our method to further illustrate superior understanding and localization performance on
multilingual interfaces with robustness and reliability, where the grounding task is shown in Figure
8, and the parsing task is shown in Figure 9.

A.6 USE OF LLMS

In this work, we used OpenAI’s GPT-5 solely for language polishing to improve the clarity, gram-
mar, style and readability of the paper. The model was not involved in any core aspects of the
research, including the motivation, novel ideas, and experimental design; all scientific contributions
are entirely original.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Parsing results on English interfaces. (b) Parsing results on Chinese interfaces.

Figure 9: For both Chinese and English interfaces, Grounding GUI Anything demonstrates the
ability to accurately parse all elements, including icons and texts. In contrast, Qwen2.5-VL-7B
exhibits certain limitations, including the omission of certain elements and locating deviations.
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