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Abstract. Segmentation of organs and tumors from abdominal com-
puted tomography (CT) scans is crucial for cancer diagnosis and sur-
gical planning. Since traditional segmentation methods are subjective
and labor-intensive, deep learning-based approaches have been intro-
duced recently which incur high computational costs. This study pro-
poses an accurate and efficient segmentation method for abdominal or-
gans and tumors in CT images utilizing a partially-labeled abdominal
CT dataset. Fine nnU-Net was used for the pseudo-labeling of unlabeled
images. And the Label Fusion algorithm combined the benefits of the
provided datasets to build an optimal training dataset, using Swift nnU-
Net for efficient inference. In online validation using Swift nnU-Net, the
dice similarity coefficient (DSC) values for organs and tumors segmenta-
tion were 89.56% and 35.70%, respectively, and the normalized surface
distance (NSD) values were 94.67% and 25.52%. In our own efficiency ex-
periments, the inference time was an average of 10.7 seconds and the area
under the GPU memory time curve was an average of 20316.72MB. Our
method enables accurate and efficient segmentation of abdominal organs
and tumors using partially labeled data, unlabeled data, and pseudo-
labels. This method could be applied to multi-organ and pan-cancer seg-
mentation in abdominal CT images under low-resource environments.

Keywords: Label Fusion · Abdominal CT · Segmentation · Partially
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1 Introduction

In the medical field, the precise segmentation of organs and tumors in abdom-
inal images from medical imaging modalities, such as computed tomography
(CT), magnetic resonance imaging (MRI), constitutes a pivotal and indispens-
able undertaking. This crucial process plays a pivotal role in the diagnosis and
management of cancer, encompassing both treatment planning and execution, as
well as ongoing patient monitoring [8]. Patient-specific anatomical models based
on segmentation are used in the surgical planning phase and during surgical pro-
cedures. Especially CT should accurately segment multiple organs and tumors
in the abdominal region within a CT image, owing to its critical use in many
medical diagnoses. However, due to low-contrast binary CT images [24], tradi-
tional manual segmentation can be subjective when outlining soft tissues, such
as organs [5], resulting in inconsistent results and significant labor and expertise.
Based on these limitations, recent research trends have focused on deep-learning-
based methods, such as nnU-Net [15], UNETR [10], EfficientSeg [25], V-Net [19],
and Med3D [2], to segment multiple organs and tumors in the abdominal region
of CT images. Furthermore, to intricately segment the complex structures of
the abdomen and tumors, models based on convolutional neural networks are
equipped with sophisticated architectures designed. However, these findings are
limited to specific organs and their associated tumors, including liver and kidney
tumors [9,12]. Comprehensive studies addressing the segmentation of multiple
organs and tumors throughout the abdomen are limited. Furthermore, producing
fully labeled datasets still relies on traditional annotation techniques, focusing
on expensive supervised and semi-supervised learning [16]. Consequently, studies
based on partial labels, in which only some images are annotated, are becoming
increasingly important [27].
Most deep-learning-based medical image analysis tasks focusing on high-resolution,
large-capacity three-dimensional image data and high-performance models re-
quire considerable computational time and graphical processing unit (GPU) re-
sources [3]. However, owing to the possibility of an urgent surgery, hospitals
should promptly provide accurate segmentation results.
Thus, FLARE22 focused on a semi-supervised segmentation task that required a
fully labeled dataset for multiple organs, whereas FLARE23 extended the topic
to a partial-label segmentation task for multiple organs and tumors. Addition-
ally, it provides partially labeled and unlabeled images. Moreover, pseudo-labels
generated by models from FLARE22, which had demonstrated superior accuracy
for the entire image set, are also being offered.
In this study, we propose a method to perform fast and accurate segmentation
of abdominal organs and tumors based on the nnU-Net, which has attracted
attention for overall medical image segmentation problems. Compared to con-
ventional U-Net, nnU-Net is a model with wider scalability in medical image
analysis, which has an encoder-decoder structure similar to U-Net and applies
techniques such as skip connections. Variables in this nnU-Net that impact ac-
curacy and efficiency were identified and adjusted to construct our model. Our
methodology consists of a ’Fine nnU-Net’ designed to make precise predictions
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for high-quality pseudo-labeling of unlabeled images, a ’Label Fusion Algorithm’
that combines different types of labels to create meaningful labels, and a “Swift
nnU-Net” that is lightly optimized for fast inference. For efficient prediction,
we adopted methods proposed in FLARE22 such as the efficient sliding window
technique [14].

Our contributions are as follows:

– Utilization and Advancement of nnU-Net: We propose an enhanced-
accuracy segmentation method for abdominal organs and tumors based on
the pivotal nnU-Net in the medical image segmentation field.

– Effective Label Processing Methodology: To effectively combine var-
ious labels, we propose Fine nnU-Net for high-quality pseudo-labeling for
unlabeled images by leveraging partially annotated images and Label Fu-
sion Algorithm.

– Optimization in Low-Resource Environment: Using the optimized
“Swift nnU-Net,” we enable fast inference and suggest model optimizations
to function efficiently even in limited computational resource environment.

Fig. 1. Overall framework of the proposed method (a) Pseudo-label unlabeled images
with Fine nnU-Net, which is designed to perform fine segmentation, and the pseudo-
labels created by our Team Snuhmedisc are called Pseudo-labels S1, S2, and S3, re-
spectively. (b) Create Final Labels to be used in the final model based on the algorithm
designed by our team using the provided or generated labels. (c) Train Swift nnU-Net,
a final model designed to make efficient inference based on the Final Labels created for
all images, including unlabeled images.
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2 Method

In this study, we designed two 3D nnU-Nets for effective training and inference.
Our framework consists of three steps, as depicted in Fig. 1. (a) using the Fine
nnU-Net to perform pseudo-labeling on unlabeled images; (b) applying the La-
bel Fusion Algorithm to build the training dataset of the final model; and (c)
training the Swift nnU-Net based on the final dataset and performing an efficient
inference. Each nnU-Net model has adjustable hyperparameters to improve its
accuracy and efficiency.
We used three labels provided by FLARE23. (1) Partial Labels, which were par-
tially labeled out of 14 classes consisting of 13 organs and 1 tumor; (2) Pseudo-
labels A, based on the model of Team Aladdin5 [22], which had the highest dice
similarity coefficient (DSC) in FLARE22; and (3) Pseudo-labels B, based on the
model of Team Blackbean [14], which had the highest normalized surface dis-
tance (NSD). Example images and descriptions of each label are shown in Fig. 2.

Fig. 2. Examples of the three types of labels provided for the training dataset: (a)
Slice #68 image from Case #FLARE23_0030, (b) Partial Labels, which are only par-
tially annotated for 14 classes, (c) Pseudo-labels A for 13 organs generated from Team
Aladdin5’s model with the best DSC on FLARE22, and (d) Pseudo-labels B for 13
organs generated from Team Blackbean’s model with the best NSD on FLARE22.

2.1 Preprocessing

Preprocessing was performed using similar techniques as those for nnU-Net. The
preprocessing cropped the image to include crucial regions or regions of interest,
resampling to ensure that all image pixels were equally spaced according to the
target spacing, and normalization to ensure consistency in the intensity range of
pixels in the image. On the other hand, we didn’t conduct any postprocessing
in our settings.
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2.2 Proposed Method

Fine nnU-Net The Fine nnU-Net is a model designed to generate high-quality
pseudo-labels S1, S2, and S3 for unlabeled images and is trained with Partial
Labels. Precise segmentation is crucial because the generated pseudo-labels are
used as training data for the final model through the Label Fusion Algorithm.
The hyperparameters of nnU-Net was tuned to effectively perform the segmen-
tation of abdominal organs and tumors in abdominal CT scans. The values used
in the Fine nnU-Net are listed in Table 1.

Table 1. Fine nnU-Net Hyperparameters

Base number of features 32
Patch size [56, 224, 224]
Target spacing [2.50, 0.80, 0.80]
Number of stages 6
Convolution kernel sizes [[3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3]]
Pooling operation kernel sizes [[1,2,2], [2,2,2], [2,2,2], [2,2,2], [1,2,2]]

Label Fusion Algorithm The Label Fusion Algorithm presented in this study
was designed to collect the benefits of the provided datasets to form a complete
dataset suitable for final training. The label data used were partial labels, which
contain the tumor class, compared to other labels, such as pseudo-labels A and
B, which ensure high performance for 13 organs, and pseudo-labels S1, S2, and
S3, which were generated by our team from the three latest models of Fine nnU-
Net. They are the models saved after 1000, 950, and 900 epochs. All algorithmic
processing was centered on the nonzero mask regions of the provided pseudo-
labels, allowing precise analysis of the abdominal region.
The Label Fusion Algorithm is designed as a different algorithm for each provided
label of labeled and unlabeled images, which is divided into two parts as follows;
the detailed flowchart is shown in Fig. 3.

(a) Algorithm for Labeled Images

• Organs (class 1-13)

1. Pseudo-labels A and B was used because of their proven performance
for organs. The organ labels are fused using a union operation, and
the union operation is chosen because both pseudo-labels are gener-
ated from the models with the best DSC and NSD.

2. If pseudo-labels A and B mark different organs in a particular pixel,
majority voting is performed by referring to the corresponding pixel
values of the partial labels.
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3. If all three labels (pseudo-labels A and B, and partial labels) point
to different organs, the pixel is assigned to the background class.

• Tumors (class 14)

1. Overlay the tumor labels with partial labels over the organ labels
generated in the previous step.

(b) Algorithm for Unlabeled Images

• Organs (class 1-13)

1. Perform a union operation on classes 1-13 of pseudo-labels A and B
in the same manner as in labeled image processing.

2. If pseudo-labels A and B represent different organs in a particular
pixel, majority voting is performed by referring to the corresponding
pixel value in pseudo-label S1.

3. If all three labels (pseudo-labels A, B, and S1) pointed to different
organs, the pixel was assigned to the background class.

• Tumors (class 14)

1. Perform majority voting based on the tumor labels in pseudo-labels
S1, S2, and S3.

2. Overlay the resulting tumor labels over the organ labels generated
in the previous step.

Swift nnU-Net In this study, the Swift nnU-Net was proposed to achieve
fast inference speed and efficient computation in a low-resource environment by
modifying the existing nnU-Net structure and hyperparameters. Training was
performed using the final labels for the entire image generated by the Label
Fusion Algorithm. The detailed values of the model are listed in Table 2.

Table 2. Swift nnU-Net Hyperparameters

Base number of features 24
Patch size [32, 128, 192]
Target spacing [3.00, 1.50, 1.50]
Number of stages 4
Convolution kernel sizes [[3,3,3], [3,3,3], [3,3,3], [3,3,3]]
Pooling operation kernel sizes [[1,2,2], [2,2,2], [2,2,2]]
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Fig. 3. Overall flowchart of Label Fusion Algorithm. (a) For labeled images, majority
voting for organs is performed; (b) for unlabeled images, majority voting for organs
and tumor is performed.
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3 Experiments

3.1 Dataset and evaluation measures

The FLARE23 dataset including TCIA [4], LiTS [1], MSD [21], KiTS [11,13],
autoPET [7,6], TotalSegmentator [23], and AbdomenCT-1K [18] comprises mul-
tiracial, multicenter, multidisease, multiphase, and multivendor CT images col-
lected from over 30 medical centers under the license permission. The training
dataset consisted of 4,000 images, of which 2,200 were labeled images with partial
labels, and the remaining 1,800 were unlabeled images.
The partial labels consisted of 14 classes, 13 organs and 1 tumor, but only
limited targets were annotated. This partial labeling setup is consistent with
real-world applications because many medical institutions only focus on specific
organs or tumors. The annotation process used ITK-SNAP [26], nnU-Net [15],
and MedSAM [17].
In addition, two types of pseudo-labels were provided, generated based on models
that performed well in FLARE22 on all 4000 training images and consisting of
classes for 13 organs. Because last year’s challenge was to segment only 13 organs
without tumor class, the validation dataset consisted of 100 images and 400 test
datasets.
These evaluation measures can be classified as accuracy and efficiency. The eval-
uation metrics related to accuracy are the DSC, which shows the overlap between
the ground truth and the prediction, and the NSD, which shows the similarity
between the outer boundaries of the ground truth and the prediction. The DSC
and NSD for the 13 organ classes and the DSC and NSD for the tumor class
were separated and used as evaluation metrics.
The efficiency-related evaluation metrics included the running time and area
under the GPU memory-time curve. The running time was 15 s for each case,
and the GPU consumption reached 4 giga byte (GB).

3.2 Implementation details

Data augmentation We used augmentation techniques such as elastic de-
formation, rotation, scaling, brightness and contrast adjustment, and gamma
transformation during the training process. Moreover, we applied test time aug-
mentation (TTA) only for inference in the Fine nnU-Net.

Environment settings The development environment and requirements are
presented in Table 3.
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Table 3. Development environments and requirements

System Ubuntu 18.04.6 LTS
CPU AMD EPYC 7402 2P 24-Core Processor CPU@2.8GHz
RAM 64×8GB; 3200MT/s
GPU (number and type) One NVIDIA RTX A6000 D6 48GB
CUDA version 11.3
Programming language Python 3.7.13
Deep learning framework torch 1.12.0, torchvision 0.13.0
Specific dependencies nnU-Net 1.7.0
Code

Training protocols The training protocols of Fine nnU-Net and Swift nnU-Net
are listed in Table 4. and 5. respectively.

Table 4. Training protocols for Fine nnU-Net

Network initialization "He" normal initialization
Batch size 2
Patch size 56×224×224
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule reduced by 10% every 200 epochs
Training time 40 hours
Number of model parameters 87.22M
Number of flops 497T
CO2eq 5.7kg

Table 5. Training protocols for Swift nnU-Net

Network initialization "He" normal initialization
Batch size 2
Patch size 32×128×192
Total epochs 1500
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule reduced by 17.81% every 200 epochs
Training time 15.43 hours
Number of model parameters 3.15M
Number of flops 62.17G
CO2eq 2.20kg
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4 Results and Discussion

4.1 Quantitative results on validation set

In this study, an experiment was conducted to verify the effectiveness of using
unlabeled images with the proposed Label Fusion Algorithm. Based on our base-
line model, we compared the training results with the Label Fusion Algorithm on
2200 labeled images with those on all 4000 images, including unlabeled images.
Furthermore, when using the entire image, the performance improved by 0.56%
in DSC and 0.22% in NSD for organs, and 9.85% in DSC and 6.57% in NSD for
tumors. The results are presented in Table 6.

Table 6. Unlabeled images ablation study

Target
Labeled Only With Unlabeled

DSC(%) NSD(%) DSC(%) NSD(%)

Liver 97.20 98.33 97.27 98.70

Right Kidney 93.11 94.67 93.14 93.65

Spleen 96.49 98.11 95.71 97.66

Pancreas 83.85 95.57 84.17 95.84

Aorta 95.34 98.35 95.36 98.81

Inferior vena cava 90.43 92.33 91.66 93.71

Right adrenal gland 82.48 95.39 83.74 95.80

Left adrenal gland 81.73 94.08 83.78 95.15

Gallbladder 83.10 83.59 82.83 83.48

Esophagus 80.96 92.10 81.64 93.00

Stomach 92.66 96.42 93.06 96.31

Duodenum 80.83 94.29 82.86 95.32

Left kidney 92.20 93.83 92.46 92.47

Tumor 26.15 19.46 36.00 26.03

Organs Average 88.49 94.39 89.05 94.61

Total Average 84.04 89.04 85.26 89.71

After verifying the effectiveness of using unlabeled images, we conducted experi-
ments on hyperparameters that could balance the efficiency and accuracy for all
4000 images. The experimental results, based on the determined hyperparame-
ters, are listed in Table 7. and Table 8.



Fine and Swift nnU-Nets with Label Fusion 11

Table 7. Final DSC, NSD results for validation set

Target Public Validation Online Validation
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 97.42 ± 0.68 98.63 ± 1.67 97.23 98.28
Right Kidney 94.16 ± 6.89 93.81 ± 8.89 93.39 92.82
Spleen 96.37 ± 2.21 97.42 ± 5.09 95.99 97.37
Pancreas 85.74 ± 5.42 96.84 ± 4.77 84.26 95.82
Aorta 94.96 ± 3.05 98.63 ± 3.21 95.31 98.95
Inferior vena cava 91.84 ± 4.06 94.39 ± 4.58 91.55 93.98
Right adrenal gland 88.05 ± 4.04 98.60 ± 1.54 87.20 98.25
Left adrenal gland 87.94 ± 3.45 98.00 ± 2.33 86.65 96.69
Gallbladder 83.12 ± 24.77 84.58 ± 26.01 82.02 83.18
Esophagus 80.76 ± 16.32 91.47 ± 15.71 81.54 92.50
Stomach 92.83 ± 4.78 95.32 ± 6.71 93.23 95.92
Duodenum 82.31 ± 7.41 94.65 ± 5.33 82.90 94.93
Left kidney 92.45 ± 9.56 91.48 ± 11.93 92.96 92.06
Tumor 38.38 ± 32.01 27.61 ± 25.53 35.70 25.52
Organs Average 89.84 ± 8.70 94.90 ± 7.60 89.56 94.67
Total Average 86.17 ± 17.65 90.10 ± 20.61 85.71 89.73

Table 8. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G)

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 27.41 2626 20535
0051 (512, 512, 100) 18.13 2060 21754
0017 (512, 512, 150) 20.39 2060 21826
0019 (512, 512, 215) 32.95 2060 23259
0099 (512, 512, 334) 20.82 2060 22904
0063 (512, 512, 448) 24.9 2060 27210
0048 (512, 512, 499) 26.48 2060 29680
0029 (512, 512, 554) 30.57 2060 32723
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4.2 Qualitative results on validation set

Examples of the segmentation results based on the Swift nnU-Net are shown in
Fig. 4. These are the final segmentation results after training with 4000 datasets
using the Label Fusion Algorithm and applying strategies for fast inference. In
Cases 7 and 77, all large and small organs and tumors were well segmented. How-
ever, for Case 13, insignificant tumors were not well predicted, and for Case 67,
predicting tumors in organs that do not belong to the 13 organs being segmented
is challenging.

Fig. 4. Qualitative results of our Swift nnU-Net. Examples of good segmentation of
organs and tumors were Case #FLARE23_0007 and Case #FLARE23_0077, whereas
challenging cases were Case #FLARE23_0013 and Case #FLARE23_0067.
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4.3 Segmentation efficiency results on validation set

Efficiency experiments on the final submitted Docker were conducted using a
GPU: One NVIDIA GeForce RTX 3070 8G, CPU: AMD Ryzen 7 5800X 8-Core
Processor CPU@3.80GHz, RAM:16×4GB; 3200MT/s. Segmentation efficiency
was measured using the official evaluation code for 100 validation cases, and the
results are listed in Table 9.

Table 9. Efficiency evaluation results of our submitted docker. All metrics reported
are the average values on 100 validation cases

Time Max GPU Memory AUC GPU Time
10.7s 3344.9MB 20316.72MB

4.4 Results on final testing set

Based on our methodology, experiments were conducted on 400 final testing sets.
In terms of efficiency, the inference time was an average of 14.03 seconds and
the AUC GPU Time was 15400MB. In terms of accuracy, the DSC values for
organs and tumors segmentation were 89.83% and 37.36%, respectively, and the
NSD values were 95.00% and 24.53%. Table 10 and Table 11 show the detailed
results.

Table 10. Final DSC, NSD results for testing set

Target Testing
DSC(%) NSD (%)

Liver 96.27 96.95
Right Kidney 93.94 93.09

Spleen 96.05 97.61
Pancreas 87.93 96.83

Aorta 95.37 99.52
Inferior vena cava 92.10 95.14

Right adrenal gland 83.41 96.18
Left adrenal gland 84.06 95.60

Gallbladder 80.91 83.76
Esophagus 86.32 96.46
Stomach 93.19 95.84

Duodenum 85.38 95.84
Left kidney 92.81 92.15

Tumor 37.36 24.53
Organs Average 89.83 95.00
Total Average 86.08 89.96
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Table 11. Final efficiency for testing set

Time AUC GPU Time
14.03s 15400MB

4.5 Limitation and future work

The main limitation of this study was the low performance of tumor segmenta-
tion compared to that of organs. Because the features of tumors were obtained
using only partially labeled data than fully labeled data, this limited the abil-
ity to achieve high performance for tumor segmentation. In future work, we
will investigate techniques for improving the performance of tumor segmenta-
tion, particularly for abdominal organ and tumor segmentation problems in a
partially labeled environment.

5 Conclusion

This study aimed to address the problem of abdominal organ and pan-cancer
segmentation in CT images using partially labeled datasets, unlabeled images,
and pseudo-labels in medical imaging, where generating fully labeled datasets
is challenging. The Fine nnU-Net and Label Fusion Algorithm for the precise
pseudo-labeling of unlabeled images and the Swift nnU-Net for efficient inference
were proposed. Experiments for accuracy and efficiency verified the effectiveness
of the proposed method, its utilization of partial labels, unlabeled images, and
efficient inference strategies. Our proposed methodology with innovative frame-
work will be a crucial step towards more precise and efficient approaches for
medical imaging environment with low computational resource.
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Table 12. Checklist Table. Please fill out this checklist table in the answer column.
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Corresponding author is marked Yes
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background, related work, and motivation Yes
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Pre-processing 4
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Efficiency evaluation results are provided Table 8, 9
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Limitation and future work are presented Yes
Reference format is consistent. Yes


