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ABSTRACT

Feature fusion is beneficial to object detection tasks in two folds. On one hand,
detail and position information can be combined with semantic information when
high and low-resolution features from shallow and deep layers are fused. On the
other hand, objects can be detected in different scales, which improves the robust-
ness of the framework. In this work, we present a Multi-Scale Fusion Module
(MSFM) that extracts both detail and semantical information from a single input
but at different scales within the same layer. Specifically, the input of the module
will be resized into different scales on which position and semantic information
will be processed, and then they will be rescaled back and combined with the mod-
ule input. The MSFM is lightweight and can be used as a drop-in layer to many
existing object detection frameworks. Experiments show that MSFM can bring
+2.5% mAP improvement with only 2.4M extra parameters on Faster R-CNN
with ResNet-50 FPN backbone on COCO Object Detection minival set, out-
performing that with ResNet-101 FPN backbone without the module which ob-
tains +2.0% mAP with 19.0M extra parameters. The best resulting model achieves
a 45.7% mAP on test-dev set. Code will be available.

1 INTRODUCTION

Object detection is one of the fundamental tasks in computer vision. It requires the detector to
localize the objects in the image using bounding boxes and assign the correct category to each of
them. In recent years, deep convolutional neural networks (CNNs) have seen great success in object
detection, which can be divided into two categories: two-stage detectors, e.g., Faster R-CNN (Ren
et al., 2015), and one-stage detectors, e.g., SSD (Liu et al., 2016). Two-stage detectors have high
localization and recognition accuracy, while one-stage detectors achieve high inference speed (Jiao
et al., 2019). A typical two-stage detector consists of a backbone, a neck, a Region Proposal Network
(RPN), and a Region of Interest (ROI) head (Chen et al., 2019). A backbone is a feature extractor
usually pre-trained on ImageNet dataset (Deng et al., 2009). A neck could be a Feature Pyramid
Network (FPN) (Lin et al., 2017a) that fuses the features from multiple layers. A RPN proposes
candidate object bounding boxes, and a ROI head is for box regression and classification (Ren et al.,
2015). Compared to two-stage detectors, one-stage detectors propose predicted bounding boxes
directly from the input image without the region proposal step, thus being more efficient (Jiao et al.,
2019).

One of the key challenges in object detection is to solve the two subtasks, namely localization and
classification, coordinately. Localization requires the network to capture the object position accu-
rately, while classification expects the network to extract the semantic information of the objects.
Due to the layered structure of the CNNs, detail and position-accurate information resides in shal-
low but high-resolution layers; however, high-level and semantically strong information exists in
deep but low-resolution layers (Long et al., 2014). Another key challenge is scale invariance that the
detector is expected to be capable of handling different object scales (Liu et al., 2016).

Feature Fusion is beneficial to object detectors in solving the two challenges. On one hand, through
multi-layer fusion (Chen et al., 2020), detail and position information can be combined with seman-
tic information when high and low-resolution features from shallow and deep layers are fused. On
the other hand, by fusing the results from different receptive fields (Yu & Koltun, 2016) or scales
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(Li et al., 2019) via dilated convolutions or different kernel sizes (Szegedy et al., 2014), objects can
be detected in different scales, which improves the robustness of the model.

In this paper, we present a Multi-Scale Fusion Module (MSFM) that extracts both detail and seman-
tical information from a single input but at different scales within the same layer. Specifically, the
input of the module will be resized into different scales on which position and semantic informa-
tion will be processed, and then they will be rescaled back and combined with the module input.
The MSFM is lightweight and can be used as a drop-in layer to many existing object detection
frameworks, complementing shallow and deep layers with semantic and position information.

Experiments show that MSFM can bring +2.5% mAP improvement with only 2.4M extra parameters
on Faster R-CNN with ResNet-50 FPN backbone on COCO Object Detection (Lin et al., 2014)
minival set, outperforming that with ResNet-101 FPN backbone without the module which
obtains +2.0% mAP with 19.0M extra parameters. When applied on other frameworks, it also shows
about +2.0% mAP improvement, which show its generalizability. The best resulting model achieves
a 45.7% mAP on test-dev set.

2 RELATED WORK

2.1 MULTI-LAYER FEATURE FUSION

FPN (Lin et al., 2017a) is the de facto multi-layer feature fusion module in modern CNNs to com-
pensate for the position information loss in the deep layer and lack of semantic information in
shallow layers. By upsampling the deep features and fusing them with shallow features through a
top-down path, it enables the model to coordinate the heterogenous information and enhances the
robustness. NAS-FPN (Ghiasi et al., 2019) designs a NAS (Zoph & Le, 2017) search space that
covers all possible cross-layer connections, the result of which is a laterally repeatable FPN struc-
ture sharing the same dimensions between its input and output. FPG (Chen et al., 2020) proposes
a multi-pathway feature pyramid, representing the feature scale-space as a regular grid of parallel
bottom-up pathways fused by multi-directional lateral connections. EfficientDet (Tan et al., 2020)
adopts a weighted bi-directional feature pyramid network for multi-layer feature fusion. M2Det
(Zhao et al., 2018) presents a multi-level feature pyramid network, fusing the features with the
same depth and dimension from multiple sequentially connected hourglass-like modules to generate
multi-scale feature groups for prediction. Similar structures can also be seen in DSSD (Fu et al.,
2017), TDM (Shrivastava et al., 2016), YOLOv3 (Redmon & Farhadi, 2018), and RefineDet (Zhang
et al., 2017).

2.2 MULTI-BRANCH FEATURE FUSION

In Inception (Szegedy et al., 2014), kernels on Inception Module branches have different sizes,
which makes the output of the module contain different receptive fields. However, a large kernel
contains a large number of parameters. Instead, dilated convolution allows a kernel to have an
enlarged receptive field while keeping the parameter size unchanged. MCA (Yu & Koltun, 2016)
utilizes dilated convolutions to systematically aggregate multi-scale contextual information. Going
even further, TridentNet (Li et al., 2019) lets multiple convolutions share the same weight but with
different dilation rates to explore a uniform representational capability.

3 MULTI-SCALE FUSION MODULE

In this section, we present our Multi-Scale Fusion Module (MSFM) and the possible configurations
when inserting it into existing frameworks.

3.1 MODULE DEFINITION

An instantiation of MSFM is shown in Figure 1a. It can be formulated as follows:

M(x) = x+ U{C[F1(S(x)), F2(S(x)), ..., Fn(S(x))]}
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where x is the module input, M(x) is the module output, S() is the squeeze module that makes the
input x thinner, Fn() is the operation on n-th branch, C() is the combination function, and U() is
the unsqueeze module which will restore the depth of the branch output to make it the same as x.
The branch operation Fn() can be represented as below:

Fn(a) = R−1
n (CGNn,i(CGNn,i−1(...(CGNn,1(Rn(a))))))

where a = S(x) is the result of squeeze module, Rn() is the resize function on n-th branch, CGNn,i

is the i-th {Conv2D ⇒ GroupNormalization ⇒ NonLinearity} operation on n-th branch,
R−1

n is the resize function to restore the feature dimension (height and width).

To make the module lightweight, we utilize a bottleneck-like (He et al., 2015) structure where the
module input will first be thinned channel-wise, then fed into the branches. Branch input is resized
using bilinear interpolation, and the same method is used when resizing the feature back to its
original size. All the 3x3 convolutions on the branches have the padding=1 to keep the spatial
dimension unchanged, and the number of the output channel is the same as that of the input channel
as well. We choose ReLU as the nonlinearity activation in the MSFM. By default, MSFM is inserted
in stages 2, 3, and 4 for ResNet backbones (He et al., 2015).
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1x1, BN

3x3, GN, N ...

Resize 3x3, GN, N Resize-13x3, GN, N ...

Resize 3x3, GN, N Resize-13x3, GN, N ...

...

x

(a) MSFM.
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256-d

after_conv1
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(b) Residual Bottleneck.

Figure 1: MSFM and Residual Bottleneck. BN=Batch Normalization (Ioffe & Szegedy, 2015),
N=NonLinearity, GN=Group Normalization (Wu & He, 2018), 1x1=1x1 Convolution, 3x3=3x3
Convolutional with padding=1.

3.2 CONFIGURATIONS

MSFM acts as a drop-in layer to existing frameworks. To show several possible configurations when
inserting it into an object detector, we take as an example inserting it into a ResNet backbone. A
Residual Bottleneck (He et al., 2015) in ResNet (He et al., 2016) is shown in Figure 1b. Some
tunable hyperparameters we can configure are listed in Table 1.

Table 1: Tunable hyperparameters

Name Description

Position Insertion position of the MSFM, after conv1, after conv2 or after conv3
Scales Scales used to resize the module input on all the branches
Ratios Squeeze ratios used by the first 1x1 Conv to make the module input thinner
Norm group Number of groups to separate the channels into for Group Normalization
Conv number Number of {Conv2D, Group Normalization, Nonlinearity} on each branch
Fusion type Combination method used to fuse the branch results, add or concatenation

4 EXPERIMENTS

To evaluate the proposed module, we carry out experiments on object detection and instance seg-
mentation tasks on COCO (Lin et al., 2014). Experimental results demonstrate that the MSFM can

3



Under review as a conference paper at ICLR 2021

enhance the performance of common two-stage object detection frameworks with very light com-
putational overhead.

4.1 EXPERIMENTS SETUP

We perform hyperparameter tuning on Faster R-CNN with ResNet-50 FPN backbone (Ren et al.,
2015). Unless otherwise stated, the backbone of the framework being mentioned is ResNet-50
FPN. To test the generalizability of MSFM, experiments are also conducted on Faster R-CNN with
ResNet-101 FPN backbone (Ren et al., 2015), Mask R-CNN (He et al., 2017), Cascade R-CNN
(Cai & Vasconcelos, 2017), Grid R-CNN (Lu et al., 2018), Dynamic R-CNN (Zhang et al., 2020),
RetinaNet (Lin et al., 2017b), Reppoints (Yang et al., 2019), and Faster R-CNN with ResNet-50 FPN
and Deformable Convolution on c3-c5 (Dai et al., 2017). We carry out our experiments on object
detection and instance segmentation tasks on COCO (Lin et al., 2014), whose train set contains 118k
images, minival set 5k images, and test-dev set 20k images. Mean average-precision
(mAP) scores at different boxes and mask IoUs are adopted as the metrics when evaluating object
detection and instance segmentation tasks.

Our experiments are implemented with PyTorch (Paszke et al., 2019) and MMDetection (Chen et al.,
2019). The input images are resized such that the shorter side is no longer than 800 pixels. and the
longer side is no longer than 1333 pixels. All the models are trained on 8 GPUs with 2 images per
GPU. The backbone of all models are pretrained on ImageNet classification dataset (Deng et al.,
2009). Unless otherwise stated, all models are trained for 12 epochs using SGD with a weight decay
of 0.0001, and a momentum of 0.9. The learning rate is set to 0.02 initially and decays by a factor
of 10 at the 8th and 11th epochs. Learning rate linear warmup is adopted for first 500 steps with a
warmup ratio of 0.001.

4.2 ABLATION STUDIES

The ablation studies are performed on COCO 2017 (Lin et al., 2014) minival set.

Unless otherwise stated, the MSFM in the following experiments has the default configuration: the
insertion position is after conv3, the resize scales of three branches are 0.5, 0.7, and 1, respectively,
the squeeze ratios are 16, 32, and 64 for stage 2, 3, and 4 of ResNet-50 (He et al., 2015), respectively,
the number of groups in Group Normalization (Wu & He, 2018) is 16, only one {Conv2D, Group
Normalization, Nonlinearity} operation is adopted on all branches, and the method to combine the
branch results is add.

4.2.1 SCALES

As can be seen from Table 2 Scales part, small scales (3S=[0.5, 0.7, 1], 5S=[0.5, 0.6, 0.7, 0.85, 1])
are helpful for detecting large objects, while large scales (3L=[1, 1.4, 2]) can enhance the detection
of small objects. Compared to only using small or large scales, using compound scales (4=[0.5,
0.7, 1.4, 2], 5=[0.5, 0.7, 1, 1.4, 2]) turn out to be the optimal option, which can achieve better
overall performance. This indicates that simultaneously generating and inserting detail and semantic
information to the same layer is beneficial.

4.2.2 RATIOS

We compare the effect of different squeeze ratios for different insertion positions, shown in Table 2
Ratios part. For position=after conv3, as we increase the ratios, the model will experience more
information loss but less computational overhead; therefore, the ratios of 16, 32, and 64 for stages 2,
3 and 4, respectively, can be a good trade-off between information loss and computational overhead.
For postion=after conv1 (norm group=8), MSFM is not sensitive to the change of ratios. We guess
that it might be because the channel number is already so low after conv1 that changing its channel
number will have no further effect.

4.2.3 NORM GROUP

We explore the optimal group number for Group Normalization (Wu & He, 2018) when inserting
into different positions. As we can see from the Norm group part in Table 2, the best group number
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Table 2: Ablation Studies

Name AP AP50 AP75 APs APm APl #Param
Faster-RCNN R50 FPN 37.4 58.4 40.4 21.4 41.0 47.9 41.5M

Name Scales AP AP50 AP75 APs APm APl #Param

Scales

3S 38.8 60.0 42.3 22.6 42.6 49.9 42.9M
5S 38.9 60.1 42.3 23.0 42.4 50.3 43.1M
3L 38.6 59.8 41.8 23.0 42.6 49.5 42.8M
4 39 60.3 42.3 22.2 42.8 49.7 43.0M
5 38.9 59.9 42.4 22.7 42.7 50.3 43.1M

Name Ratios Pos AP AP50 AP75 APs APm APl #Param

Ratios

8,16,32 3 39.1 60.1 42.6 22.8 42.8 50.4 44.9M
16,32,64 3 38.8 60.0 42.3 22.6 42.6 49.9 42.9M
32,64,128 3 38.7 59.8 42.0 22.5 42.5 50.1 42.1M
4,8,16 1 38.9 60.0 42.3 22.7 42.5 50.3 42.1M
8,16,32 1 38.9 59.9 42.5 22.1 42.6 50.5 41.8M
16,32,64 1 38.9 59.8 42.4 22.9 42.7 50.1 41.6M

Name #Group Pos AP AP50 AP75 APs APm APl #Param

Norm
group

4 3 38.7 59.8 42.4 22.5 42.4 49.8 42.9M
8 3 38.9 59.8 42.1 22.2 42.5 50.4 42.9M
16 3 38.8 60.0 42.3 22.6 42.6 49.9 42.9M
32 3 39.1 60.2 42.5 23.0 42.8 50.3 42.9M
1 2 38.6 59.5 42.0 22.4 42.1 50.2 41.6M
4 2 38.8 59.8 42.3 22.9 42.1 50.4 41.6M
8 2 38.7 59.8 42.0 22.5 42.6 50.0 41.6M
1 1 38.5 59.4 42.4 22.1 42.3 49.8 41.6M
4 1 38.8 59.8 42.5 22.8 42.4 50.0 41.6M
8 1 38.9 59.8 42.4 22.9 42.7 50.1 41.6M

Name #Conv Scales AP AP50 AP75 APs APm APl #Param

Conv
num

1 3S 39.1 60.2 42.5 23.0 42.8 50.3 42.9M
2 3S 39.2 60.3 42.5 22.6 42.8 50.7 43.2M
2* 5 38.9 60.2 42.2 23.3 42.7 50.3 43.3M
2 5 39.6 60.6 43.4 23.7 43.1 51.3 43.7M
2* 3L 38.9 60.2 42.4 23.1 42.8 50.2 43.1M
2 3L 39.0 60.2 42.6 23.3 42.6 49.9 43.2M
2* 4 39.2 60.3 42.6 23.2 43.0 50.6 43.2M
2 4 39.2 60.1 42.7 22.7 42.9 50.6 43.5M

Name Type Pos AP AP50 AP75 APs APm APl #Param

Fusion
type

add 3 38.8 60.0 42.3 22.6 42.6 49.9 42.9M
cat 3 39.0 60.2 42.3 22.3 42.8 50.5 43.8M
add 1 38.9 59.8 42.4 22.9 42.7 50.1 41.6M
cat 1 39.1 60.1 42.7 23.2 42.7 50.7 41.7M

for after conv3, after conv2 and after conv1 are 32, 4, and 8, respectively. Because the channel
number is much larger for after conv3 compared to after conv1 and after conv2, the group number
for Group Normalization (Wu & He, 2018) is much larger for after conv3.

4.2.4 CONV NUM

All the experiments of Conv num in Table 2 are conducted with Norm group=32. 2* indicates that
only the branches with scales larger than 1 have 2 {Conv2D, Group Normalization, Nonlinearity}
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operations. As we can see, the model with scale=[0.5, 0.7, 1, 1.4, 2] and conv num=2 achieves the
best performance. What’s more, all the models of conv num=2 achieves better or at least comparable
performance with that of conv num=2*, which indicates that a coordinate representational power
among all the branches is important, even though they do not have the same receptive field size.

4.2.5 FUSION TYPE

As two typical feature fusion operations, add and concatenation are alternatives. We compare their
effects in the models of position=after conv1 and the ones of position=after conv3. The results in
Table 2 show that concatenation is slightly better than add.

4.2.6 MULTI-POSITION INSERTION

According to the experiment results and analysis above, we carry out a multi-position insertion
ablation study, in order to see the effect of MSFM being inserted in multiple positions. All the ex-
periments in this part have the following configurations for all the models: the resize scales of all
the branches are 0.5, 0.7, 1, 1.4, and 2, the squeeze ratios for stage 2, 3, and 4 are 16, 32, and 64, re-
spectively, the number of {Conv2D, Group Normalization, Nonlinearity} operations on all branches
is 2, and the combination method is add. The number of groups used in Group Normalization (Wu
& He, 2018) is 8, 4, and 32 for after conv1, after conv2, and after conv3, respectively. As can be
seen from the results in Table 4, the combination of after conv2 and after conv3 turns out the best
configuration, which we will use as the default configuration when applying the MSFM to other
frameworks.

Table 3: Mutli-position insertion

Position AP AP50 AP75 APs APm APl #Param
1, 2 39.3 60.2 42.8 23.1 43.0 50.9 41.8M
1, 3 39.3 60.2 42.8 22.9 43.2 50.7 43.9M
2, 3 39.9 61.0 43.5 23.5 43.7 51.6 43.9M

1, 2, 3 39.3 60.4 42.6 22.8 42.9 50.6 44.0M

Table 4: Mutli-position insertion for object detection. * indicates with MSFM.

Framework AP AP50 AP75 APs APm APl #Param

Faster R-CNN 37.4 58.4 40.4 21.4 41.0 47.9 41.5M
Faster R-CNN* 39.9 61.0 43.5 23.5 43.7 51.6 43.9M
Cascade R-CNN 40.4 58.7 44.2 22.7 43.8 53.0 69.2M

Cascade R-CNN* 42.6 61.5 46.6 24.9 46.3 56.3 71.5M
Grid R-CNN 39.1 57.3 42.3 22.5 43.0 50.0 64.3M

Grid R-CNN* 41.2 60.0 44.4 24.0 45.0 52.2 66.7M
Dynamic R-CNN 38.9 57.5 42.5 21.4 42.5 51.4 41.5M

Dynamic R-CNN* 40.6 59.3 44.3 23.8 43.7 53.8 43.9M
Faster R101 FPN 39.3 60.0 42.8 22.2 43.5 51.3 60.5M
Faster R101 FPN* 41.2 62.1 44.9 23.6 45.5 53.9 65.8M

RetinaNet 36.4 55.3 38.8 20.7 40.0 47.1 37.7M
RetinaNet* 38.7 58.1 41.4 22.7 42.5 50.9 40.1M

Faster R-CNN Dconv 41.2 62.5 45.1 24.1 44.8 54.8 42.1M
Faster R-CNN Dconv* 42.1 63.6 46.0 25.3 45.7 54.8 44.4M

Reppoints 36.8 56.5 39.6 20.8 41.0 48.6 36.6M
Reppoints 38.5 58.7 41.5 22.4 43.2 50.4 38.9M

Mask R-CNN 38.1 58.6 41.6 21.7 41.5 49.3 44.2M
Mask R-CNN* 40.3 61.1 43.9 23.1 44.0 52.4 46.5M
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Table 5: Mutli-position insertion for instance segmentation. * indicates with MSFM.

Framework APm APm
50 APm

75 APm
s APm

m APm
l #Param

Mask R-CNN 34.5 55.5 37.0 18.0 37.6 46.9 44.2M
Mask R-CNN* 36.3 57.9 38.8 19.2 39.8 49.2 46.5M

4.3 RESULTING MODELS

To test the generalizability of the proposed MSFM, we apply it to multiple frameworks. The results
are shown in Table 4 and Table 5. For a fair comparison, all baseline models are re-trained. As
we can see, there is a consistent improvement in the following models when the MSFM is applied,
which demonstrates that the MSFM can be used as a drop-in layer for many existing object detection
frameworks. Notice that when MSFM is applied to Faster R-CNN with ResNet FPN backbone (Ren
et al., 2015), the performance of the model even surpasses the one with ResNet-101 FPN backbone.
It indicates that adding the MSFM to existing frameworks is more efficient than just adding more
convolutional layers.

We also train a Cascade R-CNN with ResNet-101 FPN backbone for 24 epochs using multi-scale
training and submit the results to the evaluation server. The result in Table 6 shows it achieves a
45.7% mAP on the test-dev set.

Table 6: Result of Cascade R-CNN with ResNet-101 FPN backbone trained for 24 epochs with
multi-scale training.

Dataset APm APm
50 APm

75 APm
s APm

m APm
l #Param

minival 45.4 64.3 49.6 27.8 49.3 58.9 93.4M
test-dev 45.7 65.0 49.8 27.4 48.7 57.1

5 CONCLUSION

In this paper, we have presented a Multi-Scale Fusion Module (MSFM) that extracts both detail
and semantical information from a single input but at different scales within the same layer. Ab-
lation studies have demonstrated that MSFM can bring +2.5% mAP improvement with only 2.4M
extra parameters on Faster R-CNN with ResNet-50 FPN backbone on COCO Object Detection
minival set, outperforming that with ResNet-101 FPN backbone without the module which ob-
tains +2.0% mAP with 19.0M extra parameters. The best resulting model on Cascade R-CNN with
ResNet-101 FPN backbone achieved a 45.7% mAP on COCO Object Detection test-dev set.

REFERENCES

Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: delving into high quality object detection.
CoRR, abs/1712.00726, 2017. URL http://arxiv.org/abs/1712.00726.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

Kai Chen, Yuhang Cao, Chen Change Loy, Dahua Lin, and Christoph Feichtenhofer. Feature pyra-
mid grids, 2020.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. CoRR, abs/1703.06211, 2017. URL http://arxiv.org/abs/
1703.06211.

7

http://arxiv.org/abs/1712.00726
http://arxiv.org/abs/1703.06211
http://arxiv.org/abs/1703.06211


Under review as a conference paper at ICLR 2021

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 248–255.
IEEE Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848.

Cheng-Yang Fu, W. Liu, Ananth Ranga, Ambrish Tyagi, and A. Berg. Dssd : Deconvolutional single
shot detector. ArXiv, abs/1701.06659, 2017.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. NAS-FPN: learning scalable feature pyramid archi-
tecture for object detection. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 7036–7045. Computer Vision Foun-
dation / IEEE, 2019. doi: 10.1109/CVPR.2019.00720.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. CoRR, abs/1603.05027, 2016. URL http://arxiv.org/abs/1603.05027.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR,
abs/1703.06870, 2017. URL http://arxiv.org/abs/1703.06870.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng, and Rong Qu. A survey
of deep learning-based object detection. CoRR, abs/1907.09408, 2019.

Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware trident networks for
object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
common objects in context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/
1405.0312.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017a.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. CoRR, abs/1708.02002, 2017b. URL http://arxiv.org/abs/1708.
02002.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C. Berg. Ssd: Single shot multibox detector. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling (eds.), Computer Vision – ECCV 2016, pp. 21–37, Cham, 2016. Springer
International Publishing. ISBN 978-3-319-46448-0.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. CoRR, abs/1411.4038, 2014. URL http://arxiv.org/abs/1411.4038.

Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, and Junjie Yan. Grid R-CNN. CoRR, abs/1811.12030,
2018. URL http://arxiv.org/abs/1811.12030.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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