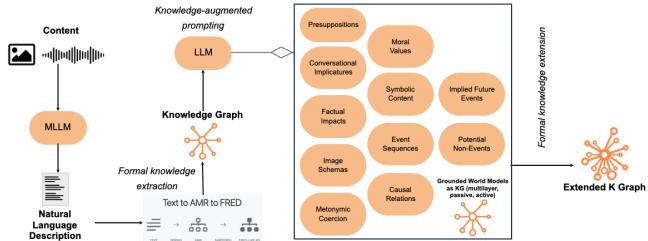


# Neurosymbolic Graph Enrichment for Grounded World Models

Stefano De Giorgis<sup>1</sup>, Aldo Gangemi<sup>2,3</sup>, and Alessandro Russo<sup>2</sup>


<sup>1</sup> Vrije Universiteit, Amsterdam, Netherlands

[s.degiorgis@vu.nl](mailto:s.degiorgis@vu.nl)

<sup>2</sup> Institute for Cognitive Sciences and Technologies - National Research Council (CNR-ISTC), Italy

<sup>3</sup> Department of Philosophy - University of Bologna, Italy

The work, published on IPM - Information Processing and Management journal<sup>4</sup>, presents Polanyi, a novel neuro-symbolic framework that addresses a current challenge in artificial intelligence: developing systems capable of reasoning about complex real-world scenarios with human-like comprehension. While Large Language Models (LLMs) excel at pattern recognition and generation, and knowledge-based systems provide structured reasoning capabilities, neither approach alone sufficiently captures the multifaceted nature of human understanding required for Grounded World Models (GWMs) [2, 5]. Our approach bridges this gap by leveraging LLMs not as expert systems but as reactive engines to extract implicit contextual commonsense knowledge.



**Fig. 1.** Polanyi's hybrid knowledge enrichment pipeline.

The framework implements a modular pipeline that transforms multimodal inputs (text or images) into enriched knowledge graphs through several key stages: (1) multimodal LLMs generate natural language descriptions from images, (2) the Text2AMR2FRED tool [3] converts descriptions into Abstract Meaning Representation (AMR) graphs and subsequently into OWL-RDF knowledge graphs with alignments to public resources like WordNet [8], PropBank [6], and DOLCE [1], and (3) LLMs iteratively extend these base graphs with implicit knowledge across 11 distinct heuristics. The 11 heuristics capture diverse aspects of tacit knowledge essential for human-like understanding. The list

<sup>4</sup> <https://www.sciencedirect.com/science/article/pii/S030645732500069X>

includes: *Presuppositions*, based on previous background knowledge; *Conversational Implicatures* [4], which often contributes in making sense of incomplete information in linguistic exchanges; *Factual Impact*, which grounds linguistic entities to factual knowledge; *Image Schemas*, basic building blocks of cognition which grounds our way of conceiving the world in our sensori-motor bodily perception [7]; *Metonymic Coercions*, which allows understand propositions whose truth value would be zero, but differ from metaphorical speech grounding for the partwhole relation; *Moral Value Driven Coercion*, applied everyday in appraisal and moral evaluative processes, values nudge our daily behavior; *Symbolic Coercion*, in Peirce terminology [9], used to anchor meaning to various entities of the world; *Event Sequences*, determinant in our plan-making capability and ability to design plausible scenarios and outcomes; *Causal Relations*, establishing relations of cause-effect between processes and events, to avoid either having only (i) temporal sequences and (ii) statistical correlation; *Implied Future Events*, a specification of Event Sequences, for temporal projection in the future; and *Implied Non-Events*, an infinite set of events, but, referring to the Frame problem, focusing on those more closely related to a specific Event Sequence. We conducted comprehensive evaluation across three experiments using rigorous methodologies. Experiment 1 demonstrated the complete pipeline on sports imagery, generating a base graph, and extending it with LLM enrichment iterations, ranging from 12 to 63 triples per heuristic. Human evaluation using 5-point Likert scales revealed high plausibility mean ratings ( $\mu > 3.0$ ) for all heuristics, with Factual Impact, Conversational Implicatures, and Moral Value-driven Coercions achieving particularly strong performance ( $\mu > 4.29$ ). Logical validation using Hermit reasoner confirmed structural integrity across all generated graphs. Experiment 2 adopted LLMs as judges, and compared knowledge generation capabilities across three state-of-the-art models (Claude 3.5 Sonnet, GPT-4o, Mistral Large 2) using the same base scenario. Results revealed significant productivity variations, with Mistral generating over 100 triples for certain heuristics while maintaining consistent quality. Self-coherence analysis showed Claude and Mistral achieving robust consistency ( $>0.8$ ), while inter-model agreement remained moderate (Krippendorff's  $\alpha < 0.5$ ), indicating distinct but valid evaluation criteria across architectures. Finally, Experiment 3 validated practical applicability through a downstream task predicting plausible future events from 12 recent New York Times articles. Our system achieved 100% precision in capturing LLM predictions while providing a Structure Multiplication Factor of 2.74, demonstrating superior semantic granularity compared to natural language predictions. The framework's modular architecture offers significant advantages over monolithic approaches: individual components can be updated independently, enabling integration of advances in LLMs, AMR parsing, and entity linking without system-wide modifications. This design ensures adaptability to diverse domains while maintaining transparency and interpretability through inspectable intermediate outputs.

## References

1. Stefano Borgo, Roberta Ferrario, Aldo Gangemi, Nicola Guarino, Claudio Masolo, Daniele Porello, Emilio M Sanfilippo, and Laure Vieu. Dolce: A descriptive ontology for linguistic and cognitive engineering. *Applied ontology*, 17(1):45–69, 2022.
2. Jay W Forrester. Counterintuitive behavior of social systems. *Theory and decision*, 2(2):109–140, 1971.
3. Aldo Gangemi, Arianna Graciotti, Antonello Meloni, Andrea Giovanni Nuzzolese, Valentina Presutti, Diego Reforgiato Recupero, Alessandro Russo, and Rocco Tripodi. Text2AMR2FRED, a Tool for Transforming Text into RDF/OWL Knowledge Graphs via Abstract Meaning Representation. In *Proceedings of the ISWC 2023 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located with 22nd International Semantic Web Conference (ISWC 2023)*, 2023.
4. HP Grice. Logic and conversation. *Syntax and semantics*, 3, 1975.
5. David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.
6. Paul R Kingsbury and Martha Palmer. From treebank to propbank. In *LREC*, pages 1989–1993, 2002.
7. George Lakoff, Mark Johnson, et al. *Philosophy in the flesh: The embodied mind and its challenge to western thought*, volume 640. Basic books New York, 1999.
8. George A Miller. *WordNet: An electronic lexical database*. MIT press, 1998.
9. Charles Sanders Peirce and Justus Buchler. Logic as semiotic: The theory of signs. *Philosophical Writings of Peirce, ed. Justus Buchler (New York: Dover, 1955)*, page 100, 1902.