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Abstract001

The advent of 1-bit large language models002
(LLMs), led by BitNet b1.58, has spurred inter-003
est in ternary LLMs. Despite this, research and004
practical applications focusing on efficient edge005
inference for ternary LLMs remain scarce. To006
bridge this gap, we introduce Bitnet.cpp, an in-007
ference system optimized for BitNet b1.58 and008
ternary LLMs. Given that mixed-precision ma-009
trix multiplication (mpGEMM) constitutes010
the bulk of inference time in ternary LLMs, Bit-011
net.cpp incorporates a novel mpGEMM library012
to facilitate sub-2-bits-per-weight, efficient and013
lossless inference. The library features two014
core solutions: Ternary Lookup Table (TL),015
which addresses spatial inefficiencies of previ-016
ous bit-wise methods, and Int2 with a Scale017
(I2_S), which ensures lossless edge inference,018
both enabling high-speed inference. Our exper-019
iments show that Bitnet.cpp achieves up to a020
6.25x increase in speed over full-precision base-021
lines and up to 2.32x over low-bit baselines, set-022
ting new benchmarks in the field. Additionally,023
we expand TL to element-wise lookup table024
(ELUT) for low-bit LLMs in the appendix, pre-025
senting both theoretical and empirical evidence026
of its considerable potential. Bitnet.cpp is pub-027
licly available at https://anonymous.4open.028
science/r/Bitnetpaper, offering a sophisti-029
cated solution for the efficient and practical030
deployment of edge LLMs.031

1 Introduction032

In recent years, large language models have gar-033

nered widespread attention due to their exceptional034

performance across a variety of tasks. However,035

the growing demand for efficient deployment on036

edge devices, particularly driven by data privacy037

concerns, poses challenges due to the limited com-038

putational power and bandwidth of these devices.039

To address these challenges, model compression040

techniques are frequently employed. Notable ex-041

amples benefiting from such techniques include042
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Figure 1: A comparison of end-to-end inference speeds
on a 100B ternary LLM. (bx) represents the bits per
weight, where x denotes specific value. "N/A" indicates
that the tested CPU cannot host the specified model size
with the given kernel.

Gemini-Nano (Team et al., 2024) and Phi3-mini 043

(Abdin et al., 2024), both designed for mobile and 044

personal devices. Furthermore, recent advance- 045

ments by BitNet b1.58 (Wang et al., 2023; Ma et al., 046

2024) represent a significant development in edge 047

LLM inference, introducing 1-bit LLMs by quantiz- 048

ing all weights to ternary values therefore reducing 049

the bits per weight (bpw) to 1.58, while preserving 050

accuracy comparable to full-precision LLMs. Sub- 051

sequent releases of ternary LLMs, including TriLM 052

(Kaushal et al., 2024), Llama3-8B-1.58 (Mekkouri 053

et al., 2024), and BitNet a4.8 (Wang et al., 2024a), 054

have demonstrated the effectiveness and applicabil- 055

ity of ternary architectures, thereby extending the 056

boundaries of the 1-bit era. Despite the burgeoning 057

interest in ternary LLMs, the conversion of their 058

theoretical benefits into practical advantages during 059

inference is still understudied. 060

To fill this gap, we aim to enhance the perfor- 061

mance of ternary LLMs edge inference by optimiz- 062

ing mpGEMM (e.g., 8-bit activation and 1.58-bit 063

weight). However, the non-integer bpw charac- 064
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Figure 2: An example to demonstrate lossless inference for BitNet b1.58 with Bitnet.cpp, (X) is anonymized.

teristic of ternary weights conflicts with the rules065

for computer memory access alignment, thus pos-066

ing challenges in designing a sub-2-bit-per-weight,067

efficient edge mpGEMM for ternary LLMs. Cur-068

rently, TQ1_0 in llama.cpp(lla) utilizes 1.69 bits069

to store ternary weights, but it is slower compared070

to TQ2_0 and T-MAC(Wei et al., 2024), which071

use 2 bits to maintain alignment. Moreover, prior072

implementations of mpGEMM have not achieved073

lossless inference for BitNet b1.58, as they fail074

to fully align with BitNet b1.58 training schemes075

during inference.076

To address these issues, we develop Bitnet.cpp,077

which incorporates a novel mpGEMM library. Our078

key idea is to avoid intricate bit-level manipulations079

by directly operating the weight elements when080

designing mpGEMM, while strictly aligning with081

BitNet b1.58 training schemes. Based on our ideas,082

the library not only resolves spatial inefficiencies,083

but also surpasses existing solutions in terms of per-084

formance (Figure 1), achieving lossless inference085

for BitNet b1.58 (Figure 2). To this end, our work086

makes several contributions:087

• First, we conduct a comprehensive survey of cur-088

rent cutting-edge mpGEMM methods and iden-089

tify their limitations when applied to ternary090

LLMs. (Section 2)091

• To overcome these limitations, we design and im-092

plement a ternary mpGEMM library incorporat-093

ing our innovative kernels, TL and I2_S, which094

we integrate into Bitnet.cpp. This library facili-095

tates fast and lossless inference through element-096

wise design and precise alignment with training097

schemes. (Section 3)098

• We evaluate Bitnet.cpp on multiple edge de-099

vices and demonstrate that it achieves a up to100

6.25x speedup compared to state-of-the-art base-101

lines, while realizing lossless inference for Bit-102

Net b1.58. (Section 4)103

• Finally, in the appendix, we extend TL beyond 104

ternary LLMs, to element-wise lookup table 105

(ELUT) for low-bit LLMs. We perform both the- 106

oretical (Appendix A) and practical (Appendix 107

B) analyses of ELUT, demonstrating its high effi- 108

ciency and untapped potential. (Appendix C). 109

2 Ternary LLM & mpGEMM on Edge 110

In this section, we present a detailed examination of 111

the characteristics of ternary LLMs and introduce 112

a systematic taxonomy of current edge mpGEMM 113

methods, as illustrated in Figure 3. We aim to 114

delineate the limitations of existing mpGEMM ap- 115

proaches in handling ternary LLMs, informed by 116

our comprehensive survey, with the objective of 117

guiding future optimizations. 118

2.1 Ternary LLM: Features 119

Ternary Weights A distinctive characteristic of 120

ternary LLMs is that the weights in the transformer 121

layers are ternary, allowing only three possible val- 122

ues: {-1, 0, 1}. Consequently, the information 123

content of these weights is approximately 1.58 bits 124

per weight, as calculated by log(3)/ log(2). This 125

substantial compression not only markedly reduces 126

the model size, but also enables opportunities for 127

further optimization with existing mpGEMM meth- 128

ods, such as those employed in llama.cpp and T- 129

MAC. 130

Lossless Inference for BitNet b1.58 BitNet b1.58 131

performs ternary quantization on weights and int8 132

per-tensor quantization on activations during train- 133

ing. Based on this, if the training constraints are 134

preserved during inference, lossless inference can 135

be achieved for BitNet b1.58, as shown in Figure 136

2. 137

2.2 mpGEMM on Edge: Definitions 138

MAD-based and LUT-based We classify edge 139

mpGEMM methods into two computational strate- 140

gies: multiply-then-add (MAD)-based and 141

2



TLT-MAC

QX_0
QX_K

TQX_0

MAD-based

LUT-based

Element-wiseBit-wise

I2_S

Figure 3: A taxonomy of mpGEMM solutions for
ternary LLMs on edge devices. TL and I2_S are inte-
grated in Bitnet.cpp, while QX and TQX are integrated
in llama.cpp.

lookup table (LUT)-based. The MAD-based strat-142

egy performs dot product calculations, while the143

LUT-based strategy employs lookup tables to store144

precomputed values, thereby enabling rapid accu-145

mulation via table lookups.146

Bit-wise and Element-wise Edge mpGEMM meth-147

ods are additionally classified based on the fun-148

damental unit of computation into Bit-wise and149

Element-wise categories. Bit-wise methods pro-150

cess data at the bit level, focusing solely on bit op-151

eration without considering the attributes of weight152

elements, precluding non-integer bits per weight.153

In contrast, element-wise methods perform compu-154

tations at the element level, taking into account the155

distinct properties of each weight element, which156

enables non-integer bits per weight.157

2.3 mpGEMM on Edge: Taxonomy (Figure 3)158

Bit-wise LUT-based (Up left) Recent research159

by T-MAC has shown that bit-wise LUT-based160

methods significantly outperform MAD-based ap-161

proaches in edge inference, particularly emphasiz-162

ing their efficiency for low-bit LLMs. However,163

when applied to ternary LLMs, these bit-wise LUT-164

based methods exhibit spatial inefficiencies, lead-165

ing to a substantial performance decline in environ-166

ments with limited bandwidth.167

Bit-wise MAD-based (Down left) As a foun-168

dational framework for LLM edge inference,169

llama.cpp has pioneered several low-bit edge170

mpGEMM methods, predominantly bit-wise MAD-171

based, including the QX_0 and QX_K series. For172

instance, Q2_K utilizes the K-quants method to173

quantize weights to 2 bits, thereby ensuring the uni-174

versality and correctness of the quantization. How-175

ever, the application of Q2_K to ternary weights176

introduces complications: in addition to wasted 177

space, maintaining accuracy with K-quants neces- 178

sitates a multi-step dequantization process prior to 179

performing the dot product, consequently increas- 180

ing the overall latency. 181

Element-wise MAD-based (Down right) In fact, 182

llama.cpp introduces two element-wise MAD- 183

based methods for ternary LLMs: TQ1_0 and 184

TQ2_0, with bits per weight of 1.69 and 2.06, re- 185

spectively. These methods leverage the ternary 186

nature of the weights to avoid the multi-step de- 187

quantization required by K-quants, thereby signif- 188

icantly boosting performance. Despite these ad- 189

vancements, the lack of support for tensor-wide 190

quantization means llama.cpp relies on per-block 191

quantization with a static block length of 256 for 192

activations (e.g., Q8_K). To accommodate this lim- 193

itation, TQX_0 also utilizes the block quantization 194

scheme. However, this approach is inconsistent 195

with the computational methods used during Bit- 196

Net b1.58 training, thus hindering TQX_0 from 197

achieving lossless inference. 198

3 Methodology 199

Kernel type bpw Lossless
TL1_0 LUT-based 2 ×
TL1_1 LUT-based 2 ✓
TL2_0 LUT-based 1.67 ×
TL2_1 LUT-based 1.67 ✓
I2_S MAD-based 2 ✓

Table 1: Bitnet.cpp ternary mpGEMM library.

This section addresses the limitations of existing 200

edge mpGEMM methods, as previously discussed, 201

through the design and implementation of a novel 202

ternary mpGEMM library, summarized in Table 1. 203

We aim to showcase our pioneering techniques for 204

efficient edge inference of ternary LLMs, focusing 205

on two key dimensions: fast and lossless. 206

3.1 Fast Edge Inference 207

For MAD-based methods, llama.cpp has imple- 208

mented TQ1_0 and TQ2_0, which facilitate rapid 209

ternary LLM edge inference. However, the current 210

bit-wise approach for LUT-based methods does 211

not fully exploit the potential of ternary LLMs 212

for fast edge inference. Consequently, we have 213

developed the element-wise LUT-based (ELUT) 214

mpGEMM, which not only reduces bpw but also 215

addresses the spatial inefficiencies inherent in bit- 216
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Figure 4: A simple example to explain the differences between various methods for completing mpGEMM when
K = 4: (1) represents the MAD-based solution, where the result is obtained via the dot product; (2) represents
the bit-wise LUT-based solution, where the weights are split into different bit indices, and the result is obtained
by performing a lookup in the LUT, followed by bit-shifting and accumulation; (3) represents the element-wise
LUT-based solution, where all possible values of the weights are enumerated to obtain the index, and the result is
obtained by performing a lookup in the LUT, followed by accumulation. Ax refers to the xth bit in weight A. In (2),
g = 4 and b = 2; whereas in (3) g = 2 and C = 3.

wise methods through element-wise mirror con-217

solidation. To effectively implement ELUT in218

ternary LLMs, noted as TL, we mitigate issues219

such as misaligned memory access through signed-220

unsigned weight splitting, overcome hardware in-221

struction support deficiencies with 1bit sign oper-222

ation, and resolve misaligned block computations223

via block-fitting weight splitting. This subsection224

will elaborate on our design and implementation225

strategies. For an in-depth analysis of the reasons226

behind ELUT’s acceleration and its broader im-227

plications beyond ternary LLMs, please refer to228

Appendix A.229

3.1.1 Design: TL230

Element-wise LUT-based mpGEMM The bit-231

wise LUT-based mpGEMM, designed for gener-232

ality, uses 2-bit storage for ternary weights, lead-233

ing to space inefficiency, thus negatively affecting234

speed. To overcome these limitations, we intro-235

duce an element-wise LUT-based mpGEMM ap-236

proach. In the following, we delineate the key dis-237

tinctions among MAD-based, bit-wise LUT-based,238

and element-wise LUT-based mpGEMM methods.239

R =
K∑
i←1

AiWi (1)240

241

R =
b∑

i←1

K/g∑
j←1

Look-up(bLUTj ,Wij) (2)242

243

R =

K/g∑
i←1

Look-up(eLUTi,Wi) (3)244

245
W ∈ Z, |W | = C (4)246

Consider a simple GEMM computation involv- 247

ing two input matrices: A (1, K) and B (K, 1). 248

As shown in Equation 1, MAD-based mpGEMM 249

computes the result using the dot product. In 250

LUT-based mpGEMM, the conventional approach 251

employs a bit-wise representation of the LUT, as 252

shown in Equation 2, where b denotes the bit-width 253

of the weight (2 for ternary weights, as 3 < 22), 254

and g represents the group size. The bit-wise LUT 255

(bLUT ) has a size of bg. By relaxing the bit-width 256

restriction and adopting an element-wise represen- 257

tation of the LUT, as shown in Equation 3, a finer- 258

grained expression is obtained. In this case, the 259

element-wise LUT (eLUT ) has a size of Cg, where 260

C denotes the cardinality of the weight set (3 for 261

ternary weights). Figure 4 illustrates a simple ex- 262

ample highlighting these differences. 263

Element-wise Mirror Consolidation (Wei et al., 264

2024) introduced the concept of mirror consolida- 265

tion, positing that during LUT enumeration, half of 266

the values for bg are inversely related to the other 267

half, effectively halving the LUT size. Extending 268

this concept to Cg results in what we term element- 269

wise mirror consolidation. For the element-wise 270

LUT-based solution, due to the 128-bit SIMD reg- 271

ister instruction length (e.g., AVX2 vpshufb), Cg is 272

constrained to a maximum of 16 (16×int8 = 128). 273

Without element-wise mirror consolidation, the 274

maximum value of g for ternary LLMs remains 275

at 2, maintaining the same bpw as the bit-wise 276

LUT-based method (4 bits for 2 weights, 32 < 24). 277

However, employing element-wise mirror consol- 278

idation increases the maximum g to 3, thus com- 279

pressing bpw to 1.67 (5 bits for 3 weights, 33

2 < 24). 280
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Figure 5: The TL2 design uses signed-unsigned weight splitting. First, a 4-bit index weight is used to look up
the table and obtain the unsigned result. Then, the corresponding 1-bit sign weight is applied to perform the sign
operation on the unsigned result, yielding the final output.

Consequently, we have developed two practical de-281

signs for TL. We refer to the design with g = 2282

as TL1 and the design with g = 3, which incorpo-283

rates element-wise mirror consolidation, as TL2.284

Algorithm 3 details the design of TL1, while Algo-285

rithm 4 outlines that of TL2.286

3.1.2 Implementation: TL287

Signed-Unsigned Weight Splitting To implement288

element-wise mirror consolidation, we introduce289

signed-unsigned weight splitting, where we use a290

separate 1-bit sign weight to store the sign of the291

enumeration, and a 4-bit index weight to store the292

corresponding LUT index for unsigned enumera-293

tion. It is evident that using continuous 5-bit stor-294

age for 3 weights would cause severe memory ac-295

cess misalignment. Since LUT-based mpGEMM is296

inherently memory-intensive, the additional mem-297

ory accesses caused by misalignment would signif-298

icantly degrade performance. In contrast, signed-299

unsigned weight splitting allows three weights to300

be represented using 5 bits, adhering to the element-301

wise approach, while simultaneously avoiding mis-302

alignment issues in computation and memory ac-303

cess. Figure 5 demonstrates the detailed compu-304

tation flow of TL2, using signed-unsigned weight305

splitting. 306

1bit Sign Operation Determining the sign of the 307

value indexed from the LUT using only 1 bit is 308

challenging, as values are represented in two’s com- 309

plement, and the design must ensure compatibility 310

with SIMD instructions. 311

x = sign⊕ (sign + x)

x ∈ int8, sign ∈ {0, 1}
(5) 312

After evaluating multiple methods, we selected the 313

approach presented in Equation 5 to address the 314

issue. This sequence of operations, which includes 315

the XOR and ADD operations, enables the sign to 316

be determined by a single bit and is fully compat- 317

ible with both the AVX2 and NEON instructions. 318

When the bit of sign is 0, the result remains un- 319

changed; otherwise, the result is converted to its 320

negative value. 321

Block-fitting Weight Splitting The TL series em- 322

ploys an LUT-centric data layout for mpGEMM 323

to address inefficiencies in memory storage and 324

access, as introduced by T-MAC. When adopting 325

this layout, it is crucial to ensure that the minimal 326

compute blocks align precisely with the weight ma- 327

trix. As illustrated on the left side of Figure 6, for 328

TL1, the block length BK must be divisible by the 329
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Figure 6: The computation sequences for TL1 and TL2. The left side represents TL1, and the right side represents
TL2. Arrows indicate the order of computation, with the smallest computational unit being the compute block. M
and K refer to the dimensions of the weights. bm× by refers to the number of weights involved in the minimal
compute block. bm can be selected from 16 or 32. In TL1, by is 256

bm , and in TL2, by is 192
bm .

matrix dimension K. This condition is easily met330

in TL1, as g = 2, meaning K only needs to be a331

multiple of 2. However, the situation differs for332

TL2. Most LLM weight shapes do not have K as333

a multiple of 3 when using TL2, where g = 3. To334

address this, we introduce block-fitting weight split-335

ting, which statically divides the weight into two336

parts to fit the blocks. After splitting, as shown on337

the right side of Figure 6, one portion of the weight,338

with dimensions ThreeK = ⌊ K
BK3⌋ × BK3, is339

computed using TL2, while the remaining portion,340

TwoK = K − ThreeK, is computed using TL1.341

By applying block-fitting weight splitting, we re-342

solve the block mismatch issue without requiring343

additional padding, thereby preventing potential344

latency increases.345

3.2 Lossless Edge Inference346

To achieve lossless inference for BitNet b1.58, this347

subsection first identifies the gaps between existing348

methods and lossless inference. It then presents349

innovative approaches for achieving lossless in-350

ference using both MAD-based and LUT-based351

methods.352

3.2.1 Design & Implementation: TL353

Since table lookups require SIMD instructions oper-354

ating on 8-bit data, a potential conflict arises when355

enumerating sums that might overflow if stored in356

8-bit integers. T-MAC addresses this issue by quan-357

tizing the accumulated sum to int8; however, this358

approach introduces additional losses, preventing359

lossless inference. To resolve this, we introduce the360

pack-and-unpack technique. First, we maintain the361

sums as int16 without additional quantization and 362

split the int16 enumerated sums into two parts us- 363

ing the pack instruction. Then, during the indexing 364

process, we apply the table lookup twice. After- 365

ward, we use the unpack instruction to concatenate 366

the two parts, ultimately obtaining the desired int16 367

result. Kernels that utilize typical additional quan- 368

tization are TL1_0 and TL2_0, whereas those that 369

use the pack-and-unpack technique are TL1_1 and 370

TL2_1. 371

3.2.2 Design & Implementation: I2_S 372

Due to inconsistency with training schemes, ex- 373

isting element-wise MAD-based methods do not 374

enable lossless inference for BitNet b1.58. In Bit- 375

net.cpp, I2_S is designed based on the element- 376

wise approach, adhering strictly to the ternary 377

weight and per-tensor int8 activation quantization 378

settings of BitNet b1.58 training, thereby ensur- 379

ing lossless inference. Furthermore, I2_S performs 380

comparably with TQ2_0 and supports mpGEMM 381

dimensions K that are multiples of 128, while 382

TQ2_0 only supports multiples of 256. As a re- 383

sult, we have optimized the MAD-based solutions 384

and integrated the implementation into Bitnet.cpp. 385

4 Experiments 386

We evaluated the performance of Bitnet.cpp for 387

end-to-end edge inference for ternary LLM. Com- 388

pared to state-of-the-art methods, Bitnet.cpp signif- 389

icantly improves ternary LLM edge inference per- 390

formance across different CPU architectures and 391

model sizes under the sub-2-bits-per-weight condi- 392

tion. For quality evaluation, compared to Float16, 393
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Figure 7: End-to-end performance for inference on multiple model sizes, specific details of the model size are
referenced in (Wang et al., 2024b). Here, (bx) denotes the bpw value, where x represents the respective bpw.
Detailed performance information can be found on Table 7.

TL1_0 and TL2_0 exhibit negligible loss, whereas394

I2_S, TL1_1, and TL2_1 achieve lossless in BitNet395

b1.58.396

4.1 Speed Evaluation397

4.1.1 Devices398

We conducted a performance evaluation of Bit-399

net.cpp on two devices: the Apple M2 Ultra and400

the Intel i7-13700H. These devices represent the401

ARM and x86 architectures, respectively, covering402

most edge devices and ensuring broad applicability403

and reliable performance results for Bitnet.cpp.404

4.1.2 Baselines405

We conducted experiments from two perspectives:406

lossless inference and fast inference. For the loss-407

less inference aspect, we chose llama.cpp Float16408

as the baseline and compared it with I2_S from409

Bitnet.cpp. This comparison evaluates the lossless410

inference performance of Bitnet.cpp, demonstrat-411

ing its improvements in both accuracy and speed.412

For the fast inference aspect, we conducted ex-413

periments based on the two features of TL2_0:414

element-wise and LUT-based. llama.cpp includes415

two element-wise MAD-based solutions, TQ1_0416

and TQ2_0. To neutralize the effect of bpw, TQ1_0,417

which has a bpw nearly identical to TL2_0, was418

selected for comparison. This comparison aims 419

to evaluate the performance differences between 420

MAD-based and LUT-based solutions. For T-MAC, 421

a bit-wise LUT-based solution, the 2-bit kernel was 422

selected for comparison with TL2_0 to assess per- 423

formance differences between element-wise and 424

bit-wise methods. 425

4.1.3 End-to-end Inference Speed 426

We evaluated the token generation speed of Bit- 427

net.cpp and observed a significant speed advan- 428

tage across different CPU architectures and model 429

sizes compared to baselines. As illustrated in Fig- 430

ure 7, I2_S achieves up to a 6.25x speedup com- 431

pared to Float16, demonstrating that Bitnet.cpp 432

provides a comprehensive advantage in both accu- 433

racy and speed. Furthermore, TL2_0 outperforms 434

T-MAC by up to 2.32x on the Intel i7-13700H and 435

by up to 1.19x on the Apple M2 Ultra, indicating 436

a notable improvement in LUT-based mpGEMM 437

performance. Moreover, TL2_0 surpasses TQ1_0, 438

with up to 1.33x speedup on the Intel i7-13700H 439

and 1.65x on the Apple M2 Ultra, further improv- 440

ing performance in element-wise mpGEMM with 441

bpw below 2. As detailed in Table 7, TL2_0 442

reaches 7.45 tokens/s on the Apple M2 Ultra and 443

1.69 tokens/s on the Intel i7-13700H, outperform- 444
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ing previous ternary kernels in 100B ternary LLM445

inference on edge devices. These findings highlight446

the significant inference benefits of Bitnet.cpp.447

4.2 Quality Evaluation448

We used the bitnet_b1_58-large1 model and the449

perplexity2 tool from llama.cpp for quality eval-450

uation. For baselines, Float16 and Q4_0 from451

llama.cpp were selected for comparison with Bit-452

net.cpp. For tasks, we used WikiText2(Merity et al.,453

2016) to measure perplexity (the lower, the bet-454

ter), HellaSwag(Zellers et al., 2019) and Wino-455

Grande(Sakaguchi et al., 2021) to measure accu-456

racy (the higher, the better). As shown in Table 2,457

both TL1_0 and TL2_0 achieve nearly identical458

perplexity compared to Float16 on WikiText2 and459

maintain accuracy comparable to Float16 on Wino-460

Grande and HellaSwag. I2_S, TL1_1, and TL2_1461

exhibit lossless performance relative to Float16462

across all tasks. These results indicate that the loss463

introduced by Bitnet.cpp is negligible.464

Method
WikiText2 Winograd HellaSwag
Perplexity↓ Accuracy↑ Accuracy↑

Float16 11.29 55.32 43.0

Q4_0 11.57 55.09 42.25

TL1_0 11.30 55.32 43.0

TL2_0 11.30 55.32 43.0

TL1_1 11.29 55.32 43.0

TL2_1 11.29 55.32 43.0

I2_S 11.29 55.32 43.0

Table 2: End-to-end inference quality.

5 Related Work465

LUT-based mpGEMM Previous research has ex-466

plored the application of LUT-based mpGEMM in467

deep learning. (Ganji et al., 2023) employs LUT-468

based mpGEMM to accelerate computations in con-469

volutional neural networks, while (Davis Blalock,470

2021; Tang et al., 2023) utilize this approach to471

process vector-quantized activations. For LLM in-472

ference, (Park et al., 2024; Maleki, 2023) apply473

LUT-based GEMM on GPUs. However, in prac-474

tice, these methods are often slower than MAD-475

based approaches, such as (cut; bit), due to the476

inefficiency of rapid table access on GPU.477

1https://huggingface.co/1bitLLM/bitnet_b1_
58-large

2https://github.com/ggerganov/llama.cpp/tree/
master/examples/perplexity

LLM Inference FlashAttention (Dao et al., 2022; 478

Dao, 2023) introduces an innovative approach to 479

GPU attention kernel design. VLLM (Kwon et al., 480

2023) and TensorRT-LLM (trt) have optimized 481

end-to-end inference performance using system- 482

atic techniques. Powerinfer (Song et al., 2024; Xue 483

et al., 2024) proposes novel strategies that intel- 484

ligently balance workloads across heterogeneous 485

devices, improving overall inference efficiency. 486

LLM Quantization Post-training quantization 487

(PTQ) refers to converting a full-precision LLM 488

to a low-precision without retraining, with related 489

works including (Xiao et al., 2023; Lin et al., 2024; 490

Chee et al., 2023; Frantar et al., 2023; Dettmers 491

et al., 2023, 2022; Shao et al., 2024). However, 492

PTQ inevitably results in quantization loss. In con- 493

trast, Quantization-Aware Training (QAT) effec- 494

tively avoids this issue. QAT involves retraining 495

a pretrained model to obtain a quantized model, 496

thus mitigating quantization loss. Relevant works 497

include (Liu et al., 2023; Chen et al., 2024; Du 498

et al., 2024). BitNet B1.58 adopts QAT, creating 499

conditions for lossless inference in the system. 500

6 Conclusion 501

In this paper, by optimizing mpGEMM, we ad- 502

dress the inefficiencies caused by the conflicts of 503

non-integer bpw in ternary LLMs with memory ac- 504

cess alignment rules, and enable lossless inference 505

for BitNet b1.58. Our key idea is to utilize a finer- 506

grained element-wise scheme instead of bit-wise, 507

and consistent with BitNet b1.58 training schemes. 508

Based on our key ideas, we develop Bitnet.cpp, 509

featuring TL, the first element-wise LUT-based 510

mpGEMM kernel for ternary LLMs, and I2_S, the 511

first lossless MAD-based kernel for BitNet b1.58. 512

The practical outcomes of our research are notewor- 513

thy. We have demonstrated that Bitnet.cpp achieves 514

up to 6.25x speedup compared to baselines and pro- 515

vided lossless inference for BitNet b1.58. To en- 516

hance the generality of our research, we extended 517

the TL to ELUT for low-bit LLMs, highlighting its 518

efficiency and potential. This paper presents exten- 519

sive work on optimizing edge inference for ternary 520

LLMs from both algorithmic and engineering per- 521

spectives. It offers the research community new 522

insights into handling ternary and non-integer bpw 523

weights, shows the practical advantages of ternary 524

LLMs and presents the industry with innovative so- 525

lutions for deploying fast, lossless LLMs on edge 526

devices. 527
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Limitations528

Bitnet.cpp has the following limitations:529

• Bitnet.cpp currently only provides a practical so-530

lution for ternary LLM inference on edge devices.531

In the future, we plan to extend the Bitnet.cpp532

to offer efficient inference solutions for ternary533

LLMs across multiple devices.534

• Bitnet.cpp is specifically designed for ternary535

LLMs, with a relatively narrow range of appli-536

cable model architectures. In response to this,537

we have expanded the element-wise LUT-based538

(ELUT) method to cover low-bit ranges in the539

appendix. However, it still lacks support from540

actual LLMs other than ternary ones.541

• Bitnet.cpp does not discuss in detail the accel-542

eration specifics of LLMs during the prefilling543

stage, as there has been a shift in the resource544

bottleneck from being memory-bound during the545

decoding stage to computation-bound during the546

prefilling stage. Therefore, the original optimiza-547

tion methods are no longer applicable, and we548

will continue to explore optimization methods549

for the prefilling stage.550
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In the appendix, we extend the concept of727

element-wise LUT-based solutions beyond ternary728

LLMs, analyzing its capabilities and potential from729

a more general perspective.730

A Insight731

In this section, we will analyze the computational732

complexity and memory access complexity of the733

element-wise LUT-based (ELUT) mpGEMM algo-734

rithm. Based on this analysis, we will compare our735

results with those of MAD-based solutions and bit-736

wise LUT-based solutions, drawing the conclusion737

that the ELUT algorithm exhibits comprehensive738

advantages in both computation and memory ac-739

cess compared to previous algorithms.740

A.1 Complexity741

In general, mpGEMM requires two steps to com-742

plete: the preprocessing stage and the accumulation743

stage. As shown in Algorithm 1, for the MAD-744

based solution, the preprocessing stage involves745

quantizing the floating-point activations to integers,746

with a computational complexity of O(NK) and747

a memory access complexity of O(NK). In the748

accumulation stage, the MAD-based solution per-749

forms element-wise multiplication and accumula-750

tion for the K corresponding elements across M751

rows and N columns, resulting in a computational752

complexity of O(MNK) and a memory access753

complexity of O(MNK).754

As shown in Algorithm 2, for ELUT, the pre-755

processing stage involves first performing quan-756

tization to quantize the floating-point activations757

into NK/g groups, and then enumerating the Cg758

possible values within each group to construct759

the Lookup Table. The computational complex-760

ity of this process is O(NKCg/g), and the mem-761

ory access complexity is also O(NKCg/g). In762

the accumulation stage, ELUT performs lookup763

and accumulation operations group by group.764

The computational complexity of this process is765

O(MNK/g), while the memory access complex-766

ity is O(MNKCg/g) because the entire Lookup767

Table must be loaded for each group.768

Through theoretical analysis, we can identify769

several interesting insights. First, ELUT has770

an advantage over the MAD-based solution in771

terms of computational complexity for LLM infer-772

ence. The overall computational complexity of the773

MAD-based solution is O(MNK), while ELUT is774

max(O(NKCg/g), O(MNK/g)). This implies775

Algorithm 1: MAD-based mpGEMM
Input: Activation A of shape N,K
Input: Weights W of shape M,K,

W ∈ Z, |W | = C
Output: Result matrix R of shape M,N
/* C-complexity → Computational

Complexity */
/* M-complexity → Memory Access

Complexity */
/* Phase1 : Preprocessing */
/* C-complexity : O(NK) /

M-complexity : O(NK) */
1 Aq = Quantization(A)
/* Phase2 : Accumulation */
/* C-complexity : O(MNK) /

M-complexity : O(MNK) */
2 for m,n← 1 to M,N do
3 R[n,m] =

∑K
k=1(Aq[n, k] ∗W [m, k])

4 end
/* Overall C-complexity : O(MNK)

*/
/* Overall M-complexity : O(MNK)

*/

Algorithm 2: ELUT mpGEMM
Input: Activation A of shape N,K
Input: Weights W of shape M,K,

W ∈ Z, |W | = C
Input: Group size g
Output: Result matrix R of shape M,N
/* C-complexity → Computational

Complexity */
/* M-complexity → Memory Access

Complexity */
/* Phase1 : Preprocessing */
/* C-complexity : O(NKCg/g) /

M-complexity : O(NKCg/g) */
1 Aq = Tbl-quantization(A)
2 LUTA = Table-setup(Aq)
/* Phase2 : Accumulation */
/* C-complexity : O(MNK/g) /

M-complexity : O(MNKCg/g) */
3 for m,n← 1 to M,N do
4 R[n,m] =∑K/g

k=1 Lookup(LUTA[n, k],W [m, k])

5 end
/* Overall C-complexity :

max(O(NKCg/g), O(MNK/g)) */
/* Overall M-complexity :

O(MNKCg/g) */
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that as long as Cg < M and g > 1, ELUT requires776

fewer computations for mpGEMM. In LLMs, the777

value of M , i.e., the hidden size, is generally large.778

In contrast, the C value for ternary LLMs is only779

3 and g is only 2 or 3. Therefore, ELUT is com-780

putationally more efficient than the MAD-based781

solution.782

However, ELUT has a disadvantage in terms783

of memory access complexity compared to the784

MAD-based solution. The memory access com-785

plexity of the MAD-based solution is O(MNK),786

while the LUT-based solution has a memory ac-787

cess complexity of O(MNKCg/g). In practical788

implementations, we employ optimization tech-789

niques such as element-wise mirror consolidation790

and LUT-centric data layout to reduce memory ac-791

cess complexity, thereby significantly mitigating792

the overhead caused by memory access.793

A.2 Compared to MAD-based: More794

Practical795

In fact, when deploying LLMs on current edge de-796

vices, we often face the limitation of using only a797

very small number of threads. Under such circum-798

stances, the constraints on computational resources799

are maximized, making computational complex-800

ity a critical factor. In contrast, due to the limited801

number of threads, memory access is unlikely to802

reach bandwidth limits. In this context, ELUT,803

with its computational complexity being only 1
g of804

that of the MAD-based solution in most cases, is805

expected to outperform the MAD-based solution806

in real-world inference scenarios for LLMs. There-807

fore, ELUT is more suitable for deployment in808

practical scenarios than the MAD-based solution.809

A.3 Compared to Bit-Wise : More810

Fine-grained811

C g bpwb bpwe

3 3 2 1.67
4 2 2 2
5 2 3 2.5
... ... ... ...

Table 3: A comparison table of bpw from bit-wise and
element-wise for different weight cardinality. C repre-
sents the weight cardinality, g indicates to group size,
bpwb denotes bit-wise bpw, bpwe refers to element-wise
bpw.

Although we have demonstrated that ELUT out-812

performs MAD-based solutions in terms of perfor-813

mance with low thread counts, the bit-wise LUT- 814

based solution also exhibits this advantage. The 815

advantage of the ELUT method over the bit-wise 816

method lies in its finer granularity of LUTs, shifting 817

from bit-based to element-based, ensuring a more 818

information-preserving compression of weights. 819

Returning to the computational complexity, in 820

most cases, the computational complexity of the 821

LUT method is O(MNK/g). For ternary LLMs, 822

when g = 3, the complexity is reduced by a factor 823

of 1
6 compared to g = 2. In terms of memory 824

access complexity, since mirror consolidation is 825

used when g = 3, we can compute the memory 826

access complexity for g = 2 and g = 3 as follows. 827

O(
MNK32

2
) = O(

MNK33/2

3
) 828

Based on this, since the bpw when g = 3 is ap- 829

proximately 1/6 lower than when g = 2 and mem- 830

ory access complexity is similar, we observe that 831

when using the ELUT method on ternary LLMs in- 832

ference, both computation and memory access are 833

reduced compared to the bit-wise method. Simi- 834

larly, as Table 3 shown, the same conclusion can be 835

extended to the case where C ̸= 2n. This provides 836

theoretical guidance for TL implementation. 837

B Analysis 838

B.1 Memory-Computation Trade-off 839

Decoding 840

During the execution of a kernel, the execution 841

speed is determined by both instruction compu- 842

tation speed and data access speed. The instruc- 843

tion computation speed is related to the computa- 844

tional complexity, instruction types, and the depth 845

of the pipeline, while the data access speed de- 846

pends on the memory access complexity, locality, 847

and the type of memory being accessed. The ker- 848

nel execution speed is ultimately determined by the 849

smaller of these two values. Naturally, we refer 850

to computation-related consumptions as compu- 851

tation consumptions and data-access-related con- 852

sumptions as memory consumptions. Thus, op- 853

timizing kernel performance is essentially a pro- 854

cess of exploring the compute-memory trade-off. 855

In fact, ELUT outperforms previous approaches 856

in achieving a better trade-off, resulting in perfor- 857

mance improvements. This can be clearly observed 858

from both the compute and memory perspectives 859

by analyzing performance gap for TQ1_0 and T- 860

MAC with TL2_0. 861
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Figure 8: Multi-threaded end-to-end inference performance of the 3.8B model on Intel i7 13700H.

B.2 Towards Memory: Compared to T-MAC862

In the previous section, we provided a detailed theo-863

retical analysis of the LUT-based solution, showing864

that the memory access complexity of ELUT and T-865

MAC is equivalent, but with a lower bpw, resulting866

in reduced memory access requirements. In the fol-867

lowing, we validate this conclusion with practical868

examples.869

In fact, TL2_0 has an advantage over T-MAC870

in terms of bpw, which enhances the performance871

ceiling of memory-intensive LUT-based solutions872

to some extent. As a result, significant performance873

improvements are observed, particularly in low874

bandwidth environments. As shown in Figure 8 (b),875

TL2_0 achieves a performance improvement over876

T-MAC in a multi-threaded environment. Notably,877

the performance of TL2_0 continues to improve as878

the number of threads reaches 5, while the speed879

of T-MAC begins to decline. This indicates that880

TL2_0 reaches the memory-bound state later than881

T-MAC, thereby raising the performance ceiling.882

B.3 Towards Compute: Compared to TQ1_0883

In the previous section, we theoretically verified884

that ELUT exhibits lower computational complex-885

ity compared to the MAD-based solution. To en-886

sure a fair comparison, we selected TQ1_0, which887

has a bpw almost identical to that of TL2_0, for888

the comparative experiment. The results show that889

LUT-based solutions offer an advantage over MAD-890

based solutions in terms of computation-related891

consumption, leading to a significant performance892

improvement. As shown in Figure 8 (a), the shape893

of performance curves of TL2_0 and TQ1_0 in894

a multi-threaded environment are nearly identi-895

cal, with TL2_0 consistently outperforming TQ1_0896

across all threads. This further supports our conclu- 897

sion that LUT-based solutions have an advantage 898

over MAD-based solutions in computation-related 899

consumption, resulting in a significant performance 900

increase. 901

C Potential 902

After evaluating the performance of ELUT, we 903

have observed that it has a comprehensive advan- 904

tage over other methods. However, we believe that 905

ELUT has not yet reached its theoretical perfor- 906

mance limit. In the following, we will analyze the 907

hardware limitations affecting ELUT and estimate 908

its theoretical performance in the absence of such 909

constraints. This analysis aims to explore the poten- 910

tial of ELUT and provide insights for future hard- 911

ware designs targeting low-bit LLMs inference. 912

C.1 Bandwidth 913

Bandwidth is the data transfer rate between mem- 914

ory and the processor, and it also determines the 915

execution rate of kernels. Considering that ELUT 916

has a higher memory access complexity than the 917

MAD-based solution, bandwidth has a significant 918

influence on overall end-to-end inference speed. As 919

shown in Figure 7, it is evident that TL2_0 demon- 920

strates a more pronounced acceleration effect on 921

T-MAC for Intel i7-13700H compared to Apple M2 922

Ultra. The main reason for this phenomenon lies in 923

the significant difference in maximum bandwidth 924

between the two edge devices. In fact, the Apple 925

M2 Ultra has a maximum bandwidth exceeding 926

800 GB/s, while the maximum bandwidth of the 927

Intel i7-13700H is less than 100 GB/s. As shown 928

in Figure 10, we used PCM (PCM) tool to measure 929

the token throughput and bandwidth at different 930

13
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Figure 10: Throughput and Bandwidth curve, tested
with bitnet-b1.58-large on intel core i5-13400F.

thread counts and compared them side by side. It931

is clear that the shape of token throughput and932

bandwidth curves are nearly identical. When the933

thread count reaches 4, the token throughput also934

reaches its maximum value due to the saturation935

of the bandwidth, causing the end-to-end inference936

speed to reach its peak. Therefore, we can conclude937

that the maximum bandwidth limits the potential of938

ELUT. Building on this, as shown in Figure 9, we939

estimated the end-to-end inference speed when the940

bandwidth is increased. We anticipate that, with941

the increase in maximum bandwidth, ELUT will942

reach the memory-bound state later, resulting in a943

higher end-to-end inference speed, with the upper944

bound still determined by the theoretical maximum945

bandwidth. This estimation validates our theoret-946

ical analysis of ELUT. Moreover, we are pleased947

to note that there is currently a trend towards in-948

creasing the bandwidth of edge devices, which will949

further unlock the potential of ELUT.950

C.2 Instructions Throughput951

SIMD instructions are commonly used to imple-952

ment kernels on CPUs, as SIMD allows a single953

instruction to process multiple data elements simul-954

taneously, achieving computation parallelism and955

acceleration. For SIMD instructions, two metrics956

determine the performance of the instruction: in-957

struction throughput, which determines the number958

of instructions that can be completed in a single959

clock, and instruction latency, which determines960

the number of clocks required to complete a sin-961

gle instruction. On modern CPUs, since MAD962

operations are widely used, common architectures963

such as x86 and ARM have made specific opti-964

mizations to ensure high instruction throughput965

for these operations (as shown in Table 4). For 966

example, in the x86 architecture with AVX2 in- 967

structions, a single MAD instruction can complete 968

an int8 multiply-accumulate operation and con- 969

vert the result to int16. However, for ELUT, we 970

need to use three types of instructions—TBL (table 971

lookup), ADD (accumulation), and CVT (type con- 972

version)—to accomplish the same task. Although 973

the AVX documentation 3 states that the latency of 974

the MAD instruction is 5 cycles, which is greater 975

than the latency of the TBL instruction, both in- 976

structions have the same throughput. This implies 977

that, under reasonable pipeline scheduling, the the- 978

oretical completion time for MAD and TBL in- 979

structions is the same. We validated this on an Intel 980

i5-13400F, where the completion time for a single 981

MAD instruction was 3.77 ns, and for a single TBL 982

instruction, it was 3.70 ns, which is nearly identical. 983

However, since the table lookup must be followed 984

by addition and conversion (TBL+ADD+CVT), 985

this sequence inevitably leads to a reduction in 986

throughput. We observed that completing the same 987

task with TBL+ADD+CVT took 6.20 ns, approxi- 988

mately 68% longer than the raw latency of a single 989

MAD instruction. This highlights that, in terms of 990

throughput, the table lookup followed by the accu- 991

mulation method suffers significant performance 992

loss due to insufficient hardware support. 993

In previous work, (Mo et al., 2024; Xie et al., 994

2024) was implemented in hardware on GPUs and 995

FPGAs, respectively, as solutions similar to ELUT, 996

and they achieved performance improvements over 997

MAD-based solutions. This suggests that provid- 998

ing better hardware support for ELUT on edge 999

3https://www.intel.com/content/www/us/en/docs/
intrinsics-guide/index.html
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Instruction Set LUT-based MAD-based
AVX2 _mm256_shuffle_epi8 _mm256_maddubs_epi16
NEON vqtbl1q_u8 vmlal_s8 / vmull_s16 + vaddq_s32

Table 4: Core instructions in AVX2 and Neon for LUT-based and MAD-based mpGEMM.

devices is highly promising. As shown in Figure1000

9, we estimated the performance of ELUT with1001

hardware support, and the results indicate a signif-1002

icant performance boost when bandwidth is not a1003

bottleneck. We sincerely hope that the exploration1004

of ELUT’s potential can inspire future hardware1005

designs to fully unlock ELUT’s capabilities.1006

C.3 Register Length1007
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Figure 11: Register length and raw latency relationship
graph.

The length of registers also imposes a limitation1008

on the performance of ELUT. Taking AVX2 as an1009

example, the lookup width of the TBL SIMD in-1010

struction is 128 bits, which means that it can look1011

up 16 int8 values in one operation. Clearly, from1012

an element-wise perspective, all the possible values1013

of Cg that we enumerate need to be covered in a1014

single lookup. Otherwise, we would need to use a1015

bit-wise approach, performing bit-by-bit lookups,1016

which sacrifices the memory access benefits ob-1017

tained from the element-wise method. For example,1018

in the case of ternary LLMs, with the limitation of1019

128-bit register length, we can enumerate at most1020
33

2 possible values in the lookup table, which re-1021

stricts g ≤ 3. Assuming we disregard the limitation1022

of instruction length, we simulate a longer instruc-1023

tion length using the original instructions without1024

considering precision. As shown in Figure 11, as1025

the length of SIMD registers increases, the number1026

of enumerable g values grows, thereby significantly1027

reducing computational complexity. Theoretically, 1028

when Cg = M , the computational complexity in- 1029

troduced by enumerating LUTs surpasses that of 1030

table lookup and accumulation, and further increas- 1031

ing the length of SIMD registers no longer yields 1032

additional benefits. It is significant that the g val- 1033

ues we can currently enumerate are still far from 1034

the intersection point. Therefore, increasing the 1035

register length provides a definite benefit in terms 1036

of computational complexity. This also indicates 1037

that the potential of ELUT has not yet reached its 1038

theoretical limit. 1039

D Statement 1040

Bitnet.cpp facilitates lossless inference for ternary 1041

LLMs on edge devices, ensuring that the output 1042

tokens remain consistent between training and in- 1043

ference phases. This consistency mitigates the risk 1044

of potential harm from unexpected outputs during 1045

inference. The scientific artifacts employed in this 1046

research are utilized strictly for scholarly purposes 1047

and in compliance with their respective licensing 1048

agreements. Specifically, Wikitext2 is governed 1049

by the CC BY-SA 4.0 license, llama.cpp and Hel- 1050

laSwag by the MIT License, WinoGrade by the 1051

CC-BY license, and PCM by the BSD-3-Clause 1052

License. Anonymization within this paper was 1053

facilitated through the upload of code to an anony- 1054

mous repository and the anonymization of sensitive 1055

names in images. 1056
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E TL Algorithm1057

Unpack Pack
-1 -1 0000
-1 0 0001
-1 1 0010
0 -1 0011
0 0 0100
0 1 0101
1 -1 0110
1 0 0111
1 1 1000

Table 5: TL1 Kernel transforms every two full-precision weights into 4-bit index and performs LUT computation.

Algorithm 3: TL1 mpGEMM
Input: Activation A of shape N,K
Input: Weights W of shape M,K
Output: Result matrix R of shape M,N

1 IndexWeight = PreprocessWeights(W, M, K)
2 LUT = PreCompute(A, N, K)
3 for n,m← 1 to N,M do
4 R[n,m] =

∑K/2
k=1 Lookup(LUT, IndexWeight, n,m, k)

5 end
6 Function PreCompute(A,N,K):
7 for n, k ← 1 to N,K/2 do
8 for i← 1 to 32 do

/* Unpack shows in Table 5 */
9 LUT [n, k, i] = Unpacki(A[n, 2k], A[n, 2k + 1])

10 end
11 end
12 return R

13 Function PreprocessWeights(W,M,K):
14 for m, k ← 1 to M,K/2 do

/* Pack shows in Table 5 */
15 IndexWeight[m, k] = Pack(W [m, 2k],W [m, 2k + 1])

16 end
17 return IndexWeight

16



Unpack Pack
-1 -1 -1 1 1101
-1 -1 0 1 1100
-1 -1 1 1 1011
-1 0 -1 1 1010

...
0 0 0 0 0000

...
1 0 1 0 1010
1 1 -1 0 1011
1 1 0 0 1100
1 1 1 0 1101

Table 6: TL2 Kernel compresses every three full-precision weights into a 1-bit sign (0 or 1) and a 4-bit index.

Algorithm 4: TL2 mpGEMM
Input: Activation A of shape N,K
Input: Weights W of shape M,K
Output: Result matrix R of shape M,N

1 IndexWeight, Signweight = PreprocessWeights(W, M, K)
2 LUT = PreCompute(A, N, K)
3 for n,m← 1 to N,M do
4 R[n,m] =

∑K/3
k←1 Lookup(LUT, IndexWeight, n,m, k)

5 R[n,m] = Signweight×R[n,m]

6 end
7 Function PreCompute(A,N,K):
8 for n, k ← 1 to N,K/3 do
9 for i← 1 to 33/2 do

/* Unpack shows in Table 6 */
10 LUT [n, k, i] = Unpacki(A[n, 3k], A[n, 3k + 1], A[n, 3k + 2])

11 end
12 end
13 return R

14 Function PreprocessWeights(W,M,K):
15 SignWeight = Sign(W )
16 W = |W |
17 for m, k ← 1 to M,K/3 do

/* Pack shows in Table 6 */
18 IndexWeight[m, k] = Pack(W [m, 3k],W [m, 3k + 1],W [m, 3k + 2])

19 end
20 return IndexWeight, SignWeight
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F Performance1058

CPU
Model
Size

Kernels

general kernels ternary kernels

Float16 Q4_0 T-MAC TQ1_0 TQ2_0 TL1_0 TL2_0 I2_S

b(16) b(4.5) b(2) b(1.69) b(2.06) b(2) b(1.67) b(2)

Intel i7-13700H
20C 64G

700M 30.73 67.57 76.29 114.20 123.94 75.62 126.99 125.37

1.5B 15.02 35.46 42.38 64.86 71.92 43.44 74.16 77.75

3.8B 5.85 16.33 18.12 26.59 33.19 17.91 35.43 35.04

7B 3.30 9.09 12.29 17.96 19.92 11.89 20.72 20.62

13B 1.78 5.04 6.44 10.55 11.21 6.32 11.41 10.62

30B N/A 2.13 2.54 4.62 5.25 2.65 4.99 5.70

70B N/A 0.94 1.32 2.09 2.32 1.49 2.42 2.30

100B N/A 0.67 0.73 1.48 1.61 0.75 1.69 1.65

APPLE M2

700M 110.65 197.38 220.22 217.64 237.61 214.53 229.21 238.16

1.5B 59.49 117.77 135.27 130.10 145.68 132.68 138.28 143.43

3.8B 28.31 71.89 91.84 73.14 88.66 90.73 92.12 91.65

7B 14.87 39.47 53.37 45.55 54.90 52.77 55.42 54.74

13B 8.42 23.28 31.72 25.83 34.63 32.12 33.22 32 .88

30B 3.78 10.98 16.40 12.85 15.46 15.02 19.59 16.41

70B 1.71 5.16 9.48 6.30 8.16 9.23 10.37 8.39

100B N/A 3.56 6.45 4.53 6.18 6.34 7.45 6.50

Table 7: Comparison of inference speed across different CPU (Unit: Tokens/Second) in an unlimited thread setting.
b(x) represents the bits per weight, where x denotes specific value. "N/A" indicates that the tested CPU cannot
host the specified model size with the given kernel. The token generation speed was determined by calculating the
average results from 10 tests conducted across different devices using diverse methodologies.

18


	Introduction
	Ternary LLM & mpGEMM on Edge
	Ternary LLM: Features
	mpGEMM on Edge: Definitions
	mpGEMM on Edge: Taxonomy (Figure 3)

	Methodology
	Fast Edge Inference
	Design: TL
	Implementation: TL

	Lossless Edge Inference
	Design & Implementation: TL
	Design & Implementation: I2_S


	Experiments
	Speed Evaluation
	Devices
	Baselines
	End-to-end Inference Speed

	Quality Evaluation

	Related Work
	Conclusion
	Insight
	Complexity
	Compared to MAD-based: More Practical
	Compared to Bit-Wise : More Fine-grained

	Analysis
	Memory-Computation Trade-off Decoding
	Towards Memory: Compared to T-MAC
	Towards Compute: Compared to TQ1_0

	Potential
	Bandwidth
	Instructions Throughput
	Register Length

	Statement
	TL Algorithm
	Performance

