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Abstract

Mechanistic interpretability focuses on reverse engineering the internal mecha-
nisms learned by neural networks. We extend our focus and propose to mechanisti-
cally forward engineer using our framework based on Concept Bottleneck Models.
In the context of long-term time series forecasting, we modify the training objective
to encourage a model to develop representations which are similar to predefined,
interpretable concepts using Centered Kernel Alignment. This steers the bottleneck
components to learn the predefined concepts, while allowing other components
to learn other, undefined concepts. We apply the framework to the Vanilla Trans-
former, Autoformer and FEDformer, and present an in-depth analysis on synthetic
data and on a variety of benchmark datasets. We find that the model performance
remains mostly unaffected, while the model shows much improved interpretability.
Additionally, we verify the interpretation of the bottleneck components with an
intervention experiment using activation patching.

1 Introduction

Transformers show great success for various types of sequential data, including language [Devlin,
2018, Brown, 2020], images [Dosovitskiy et al., 2021, Liu et al., 2021], and speech [Baevski et al.,
2020]. Their ability to capture long-term dependencies has triggered substantial interest in applying
them to time-series, which are naturally sequential, and in particular to the challenging task of
long-term time series forecasting. Transformer-based architectures, indeed, often show superior
performance on this task [Zhou et al., 2021, 2022, Wu et al., 2021, Ni et al., 2023, Chen et al., 2024],
for an overview we refer to Wen et al. [2023].

However, due to their deep and complex architecture, transformers are difficult to interpret, which is
especially important in high-stakes domains such as finance and energy demand prediction. There is
a large body of work in the field of explainable AI to interpret neural networks [Bereska and Gavves,
2024], or increase their interpretability, including the approach of Concept Bottleneck Models (CBMs;
Koh et al., 2020). This approach relies on the idea of constraining the model such that it first predicts
human-interpretable concepts, and then uses only these concepts to make the final prediction. CBMs
and their variants have become popular in various fields, especially in computer vision, but are so far
unexplored in the context of time series forecasting.

In this paper, we propose a training framework to make any time series transformer into a Concept
Bottleneck Model using time-series specific, yet domain-agnostic concepts, as shown in Figure 1. A
key aspect of our training framework is to leave the model’s architecture intact, while encouraging the
learned representations to be similar - but not identical - to the interpretable concepts. We measure
similarity with Centered Kernel Alignment (CKA; Kornblith et al., 2019) and include it in the loss
function. The first concept is a simple, linear surrogate model and the second is time information (e.g.
hour-of-day). Note that we propose a global interpretability method, which improves identifying
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Figure 1: Overview of the concept bottleneck framework. The bottleneck is one encoder layer
which is trained to be similar to pre-defined, interpretable concepts. The residual stream around the
bottleneck is removed, such that all information passes through the bottleneck.

and localizing high-level concepts in the model’s internal mechanisms, and is not comparable to
local post-hoc interpretability methods such as SHAP, LIME, or attention-based visualizations which
explain individual predictions.

We apply our concept bottleneck framework to three types of models: Vanilla Transformer [Vaswani
et al., 2017], Autoformer [Wu et al., 2021] and FEDformer [Zhou et al., 2022]. Across extensive
experiments on seven datasets, we show that our setup results in models that are more interpretable
while the overall performance remains largely unaffected – in many cases surpassing results from
the original Autoformer paper. Furthermore, we explicitly test the faithfulness of the obtained
interpretations with an intervention study using activation patching.

Our contributions are summarized as follows:

1. We propose a novel training framework to increase the interpretability of transformers for
time series.

2. We demonstrate the feasibility of applying this framework to time-series transformers by
conducting extensive experiments on three types of transformers and seven datasets, and
identify interpretable concepts in each of these transformers.

3. We assess the faithfulness of the interpretability analysis by performing an activation
patching experiment, and obtain evidence that the identified components (in the concept
bottleneck) indeed have the hypothesized unique and causal role in the predictions of the
target model.

2 Background and Related Work

This paper combines and builds upon foundational works from different fields, including CBMs,
knowledge transfer with CKA and time series transformers. CBMs have been applied to time series
before [Ferfoglia et al., 2024], but not with the same interpretable concepts. Likewise, the similarity
index CKA has been used before to transfer knowledge between models [Tian et al., 2023], yet, to
the best of our knowledge, it has not been used to construct a CBM. This makes our work a unique
contribution at the intersection of (mechanistic) interpretability, concept learning, and time series
forecasting.

2.1 Concept Bottleneck Models

Concept Bottleneck Models (CBMs; Koh et al., 2020) have emerged as promising interpretable
models [Poeta et al., 2023]. The concept bottlenecks constrain the model to first predict interpretable
concepts, and then use only these concepts in the final downstream task. They are shown to be useful
in multiple applications, such as model debugging and human intervention. The bottleneck allows for
explaining which information the model is using and when it makes an error due to incorrect concept
predictions.
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One of the shortcomings of standard CBMs is that concept annotations are needed during training
to learn the bottleneck, and concept labels do not necessarily contain all information needed to
accurately perform the downstream task, and can therefore decrease the task accuracy [Mahinpei
et al., 2021]. Therefore, Zarlenga et al. [2022] propose Concept Embedding Models, where concepts
are represented as vectors, such that richer and more meaningful concept semantics can be captured.

CBMs and their variants are usually applied to the field of computer vision, and less frequently to
natural language [Tan et al., 2024], graphs [Barbiero et al., 2023] or tabular data [Zarlenga et al.,
2022]. In principle, the methodology can be applied to time series as well, but defining high-level,
meaningful concepts is challenging. Ferfoglia et al. [2024] use Signal Temporal Logic (STL) formulas
as concept embeddings for time series to convert them into natural language, and use these concepts
as bottleneck for anomaly detection.

2.2 Knowledge Transfer with Centered Kernel Alignment

Inspired by neuroscience, CKA measures the similarity between different representations from
neural networks [Kornblith et al., 2019]. By factoring out differences in scaling or orthogonal
transformations, CKA captures intuitive notions of similarity between representations. To obtain
the score, firstly, the similarity between every pair of examples in each representation separately is
measured using a pre-defined kernel, and then the obtained similarity structures are compared. We
use a linear kernel, which makes the CKA score defined as follows for representations X and Y :

CKA(X,Y ) =

∥∥Y ⊤X
∥∥2
F

∥X⊤X∥F ∥Y ⊤Y ∥F
. (1)

The CKA score can be used to transfer knowledge between different models when included in the loss
function [Tian et al., 2023]. In this work, the authors study knowledge distillation between a teacher
and student model, and incorporate CKA into the loss function to transfer feature representation
knowledge from the pretrained model to the incremental learning model [Parisi et al., 2019].

2.3 Time Series Transformers

Time series transformers for long-term time series forecasting, such as the Autoformer and FEDformer,
obtain two types of input: (1) data values X ∈ RI×d, and (2) timestamps T ∈ RI×4. More
specifically, they can be regarded as a function f : RI×d × RI×4 × RO×4 → RO×d, where I is the
number of input time steps, O is the number of future time steps, and d is the number of variables in
the time series. The additional four dimensions of timestamps T represent four time features, namely
hour-of-day, day-of-week, day-of-month, and day-of-year. The future timestamps are also provided,
for which the model should forecast the future data values. Note that we explicitly introduce a
notation for the timestamps to later define the CKA scores and the intervention.

3 Method

We propose a training framework to make any transformer model interpretable by including a
bottleneck based on knowledge transfer with CKA [Kornblith et al., 2019], as shown in Figure 2. The
main idea is that we assign one of the encoder layers to be the concept bottleneck; representations in
the bottleneck are subject to a soft constraint of being as similar as possible to predefined interpretable
concepts. To this end, we calculate CKA scores with the interpretable concepts, and include these
scores in the loss function.

3.1 Loss Function

The loss function should encourage the model to represent the interpretable concepts in the bottleneck
layer. Therefore, we add a term LCKA based on the CKA scores of the bottleneck and the interpretable
concepts (Eq. 3). In particular, low similarity between the bottleneck and the interpretable concepts
results in a higher value for LCKA. The total loss function LTotal (Eq. 2), then, is a weighted average
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Figure 2: Architecture of a transformer with a concept bottleneck in the attention mechanism (blue)
or the FF network (red). Note that the residual connection is removed at the location of the bottleneck
(and the residual stream thus interrupted). Visualisation inspired by Rai et al., 2024.

of the Mean Squared Error (MSE) loss LMSE and the CKA loss LCKA:

LTotal = (1− α) LMSE + α LCKA, (2)

LCKA = 1− 1

c

c∑
i=1

CKAi, (3)

where α is a hyperparameter, c is the number of concepts, and CKAi ∈ [0, 1] is the CKA score
(using a linear kernel) between the model’s representation and concept i (see Section 3.2).

3.2 Interpretable Concepts in the Bottleneck

In this section, we describe how to calculate the CKA score to measure the presence of a concept.
We refer to Appendix B for a more detailed description of the concept bottleneck framework.

Location bottleneck. We assign one encoder layer to be the bottleneck layer, because the encoder
focuses on modelling seasonal information. Within the bottleneck layer, the latent representations can
be taken from two different types of blocks: the attention block (τ = Att) and the feed-forward block
(τ = FF ). These two options are illustrated in Figure 2. We assign c interpretable concepts over the
latent representations, with the goal of teaching the corresponding model component to represent the
pre-defined interpretable concepts.

Since the attention block is multi-headed, different heads naturally form the components of the
attention bottleneck. Moreover, the components need to be divided between the heads, which would
be convenient when the number of heads is a multiple of the total number of concepts to maintain a
uniform concept per head ratio. For the feed-forward bottleneck, we define the components to be
slices from its output, such that stacking the components results in the original output.

Interpretable concepts. For the real-world time series, we use two domain-agnostic interpretable
concepts which can be used for forecasting, namely: (1) a simple, human-interpretable surrogate
forecasting model, (2) the input timestamps recorded with the time series. Note that each model
token (time step) should map to each concept to calculate the CKA score.

1. We use a simple autoregressive model (AR) as a surrogate model, which predicts the next
future value as a linear combination of its past values. This model is transparent, and the
attribution of each input feature to the output can be simply interpreted by its weight. This
concept can also be regarded as a baseline for the forecasting performance. The model is fit
to the same training data as the transformer (with its order being the length of the input).
We use its activations to calculate the CKA score.

2. We use the hour-of-day feature from the timestamps T as interpretable time concept, denoted
by Thourofday . This provides the bottleneck with a simplified notion of time.

Removal of residual connection. Any transformer layer contains residual connections around the
attention and feed-forward blocks. To ensure that all information passes through the bottleneck, we
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remove the residual connection around the bottleneck, potentially at the cost of a loss in performance.
Otherwise, any concept, including the interpretable concepts, can be passed through the residual
connection and compromise the bottleneck.

In the scenario that the number of components is equal to the number of interpretable concepts
(c = 2), the construction of the bottleneck limits learning domain-specific features from the data,
other than the interpretable concepts. Therefore, we perform experiments where we allow an extra
component in the bottleneck to not learn any pre-defined concept (c = 3). In other words, the extra
component serves as a side-channel or free component, on which no CKA loss is calculated. The free
component may partly restore the information lost by removing the residual connection, but with the
advantage that we can monitor which information goes through it, and even visualize it (as in Section
4.3.2).

3.3 Implementation details.

In our experiments, we use transformer models with three encoder layers, of which the bottleneck
layer is the second layer. Similar to the original Autoformer paper, we use one decoder layer, employ
the Adam optimizer [Kingma and Ba, 2017] with an initial learning rate of 10−4, and use a batch
size of 32. The training process is early stopped within 25 epochs. All experiments are repeated five
times on different seeds, using hyperparameter α = 0.3. Each model is trained on 1 Nvidia GeForce
GTX 1080 Ti with 30 GB for approximately 30 minutes.

4 Experiments

We evaluate our framework on three models and seven datasets, including synthetic and real-world
data. The six real-world benchmarks consider the domains of energy, traffic, economics, weather,
and disease, similar to Wu et al. [2021]. These datasets are multivariate, and the task is to predict the
future values of all variates. For example, the electricity dataset consists of hourly measurements
of the electricity consumption of 321 customers from 2012 to 2014. For more information on the
datasets, we refer the reader to Appendix A. We apply the experiments to the Vanilla Transformer,
Autoformer and FEDformer. First, we train a simple AR model on the same data, so that its outputs
can be used to align the representations of the bottleneck. Then, we train the transformers with and
without bottleneck, using different configurations for the bottleneck.

4.1 Synthetic Data

To show the general applicability of the bottleneck framework, we first train an Autoformer on a
synthetic time series. In particular, we generate the dataset as the sum of different sines using the
function fTotal with time t as follows:

fTotal(t) = f1(t) + f2(t) + f3(t),

where:
f1(t) = sin(2πt),

f2(t) =
1

2
sin(4πt+

π

4
),

f3(t) =
1

4
sin(6πt+

π

2
) + ϵt.

Note that all functions f1, f2 and f3 follow a periodic structure, and f3 contains random noise ϵ from
a normal distribution with standard deviation of 0.2.

Each concept in the bottleneck is defined as one of the underlying functions (i.e., f1, f2 or f3), for
which the ground-truth is known by construction. For hyperparameter α = 0.8 (see Section 3.1),
we find that the model is able to forecast well, while achieving very high similarity scores. That is,
the model obtains a Mean Squared Error (MSE) of 0.36 ± 0.17 and Mean Absolute Error (MAE) of
0.46 ± 0.12 on 5 different seeds. See Figure 3 for a sample forecast on the test data and the CKA
scores of the model’s representations with the concept representations. The heads in the bottleneck
layer1 show high similarity for their respective concepts, e.g. a score of 0.93 for the head trained on
f1 (recall that CKA scores range from 0 for totally dissimilar to 1.0 for identical, although potentially
scaled and rotated). We refer to Appendix H for more results on the synthetic dataset.
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Figure 3: Forecast and CKA scores of the attention bottleneck Autoformer on synthetic data, where
the three heads of each layer (vertically) are compared with the three concept vectors (horizontally).

4.2 Real-world data

Table 1 shows the performance of the Autoformer with our bottleneck on the benchmark datasets,
compared to the AR surrogate model (i.e. the first interpretable concept) and Wu et al. [2021] (i.e.
the original Autoformer model). Note that the bottleneck models are trained with a free component,
i.e., c = 3, and the original Autoformer is of a different size (two encoder layers with eight heads per
layer). Visualizations of the forecasts from these models are shown in Appendix C.

Table 1: Error scores of different Autoformer models. For both metrics, it holds that a lower score
indicates a better performance, where the best results are bold, and the second-best are underlined.

Att bottleneck FF bottleneck No bottleneck AR Wu et al.
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.231 0.338 0.207 0.320 0.280 0.368 0.497 0.522 0.201 0.317
Traffic 0.642 0.393 0.393 0.377 0.619 0.387 0.420 0.494 0.613 0.388
Weather 0.290 0.354 0.271 0.341 0.269 0.344 0.006 0.062 0.266 0.336
Illness 3.586 1.313 3.661 1.322 3.405 1.295 1.027 0.820 3.483 1.287
Exchange rate 0.195 0.323 0.155 0.290 0.152 0.283 0.082 0.230 0.197 0.323
ETT 0.177 0.282 0.174 0.280 0.155 0.265 0.034 0.117 0.255 0.339

We find that including a bottleneck (either Att bottleneck or FF bottleneck) outperforms Wu et al.
for three datasets (traffic, exchange rate and ETT), and stays within 5% of the MSE and MAE for the
other three datasets. Surprisingly, the surrogate AR model outperforms the other models for most
datasets w.r.t. both MSE and MAE, even though this model is very simple.1 More detailed results
are presented in Appendix D and E, where the first includes the results for bottlenecks without free
component (including the standard deviation for different seeds), and the latter includes a sensitivity
analysis to hyperparameter α.

Similar to the Autoformer, the Vanilla Transformer and FEDformer with a bottleneck outperform
models without bottleneck for some datasets, see Appendix F and G for a full analysis, respectively.

1Note that the phenomenon that simple models sometimes beat time series transformers [Zeng et al., 2022]
has been observed before. There has been a vivid discussion about the relevance of these results, for instance
here. These discussions are beyond the scope of our paper, which rather targets interpretability of time series
transformers. For more information on the effect of AR as surrogate model, see Appendix I.
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4.3 Interpretability Analysis

To demonstrate the impact of the bottleneck on model interpretability, we first conduct a CKA analysis
on the bottleneck layer with the corresponding interpretable concepts, and then visually demonstrate
how each component contributes to the final forecast.

4.3.1 CKA Analysis

To test the extent to which the bottleneck represents the interpretable concepts, we calculate the CKA
scores of the model’s representations with the concept representations. The scores of the feed-forward
bottleneck on the electricity dataset are shown in Figure 4 (see Appendix E for more scores on
the Autoformer). Note that the bottom, middle and upper layer of layer1 correspond to the AR,
hour-of-day, and free component of the bottleneck, respectively.

The scores show that the representations in the bottleneck layer are much more similar to the intended
concepts than the representations from the model without bottleneck: 0.94 for the AR model, and 1.00
for the hour-of-day feature, whereas the model without bottleneck does not show high similarity to
the interpretable concepts. This indicates that the training framework can encourage the components
to form representations that are perfectly similar to the interpretable concepts. Additionally, note that
the CKA scores of other layers than the bottleneck layer are also higher in Fig. 4b, which indicates
that these other model components also learn to represent the interpretable concepts. This does not
affect the interpretability of the bottleneck layer itself (Section 4.4).
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Figure 4: CKA scores on different concepts for the encoder of the Vanilla Transformer without
bottleneck and with FF bottleneck. Both models contain three heads per layer. The first component
of layer1 (lower row) of the attention bottleneck is trained to be similar to AR, and the second
component (middle row) to the hour-of-day concept. The scores are calculated on three batches of
size 32 from the electricity test data. Recall that CKA is defined on a scale from 0 to 1, where 1
denotes perfect similarity.

4.3.2 Component Visualizations

Because the model components all read and write from the residual stream [Elhage et al., 2021], we
can visualize the contributions to the final prediction of each component separately by applying the
entire decoder to the component representations (Decoder Lens method, Langedijk et al. [2023]).
This way, we obtain visualizations of the contributions of each component in the bottleneck, see
Figure 5. We obtain the output from the full bottleneck by applying the decoder to the output of the
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bottleneck (after performing layer normalization). The output from each component individually is
obtained by masking the other components with zero (close to the mean).

From Figure 5a and 5b we see that the different bottleneck components are similar to the concepts
they were trained on. In particular, the first component shows a forecast with correct periodicity and
few irregularities, similar to the actual forecast from the AR model. Likewise, the second component
shows a periodicity to the actual hour-of-day feature. The third component is not trained to be similar
to an interpretable concept, and seems to pick up on the high-frequency patterns in the data, e.g.,
the low, second peak in the forecast. This observation is further strengthened by Figure 5f, which
shows that the final forecast consists of many high-frequency patterns when using only the third
component from the bottleneck. We find similar component visualizations on the Vanilla Transformer,
see Appendix F.3.
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Figure 5: Forecasts from individual bottleneck components by masking the other components with
zero in 5a, 5b and 5c (FF bottleneck Autoformer on electricity data). The first half of the ground truth
forms the input to the model. Note that the horizontal axes are the same across all figures, but Figure
5b contains a grid of days instead of numbered hours. Figure 5d shows the forecast made by the
surrogate model AR; Figure 5e shows the forecast of the entire layer (i.e., all components together),
and 5f shows the forecast of the final layer when only the third component is used in the bottleneck
layer. Note the difference between Figures 5c and 5f, where we decode from the bottleneck and the
final layer, respectively.

4.4 Intervention

The main benefit of interpreting trained models is gaining a deeper understanding and, possibly,
more control of the model’s behavior. This can be useful in the scenario of out-of-distribution data
at inference time. If the data changes in features that can be interpreted in the model, it is feasible
to intervene locally in these concepts to exclusively employ the model with data from its training
distribution. Additionally, an intervention can be regarded as a causal interpretability test, where a
successful intervention indicates a successful representation of the concept of interest.

To show such benefit of our framework, we perform activation patching (or causal tracing, Meng
et al., 2023), where causal effects of hidden state activations are researched by evaluating the model
on clean and corrupted inputs. We evaluate the trained model on data with shifted timestamps and
compare it with performing an intervention on the shifted concept.

More specifically, we delay the input timestamps T ∈ RI×4 with a fixed number of hours to obtain
the shifted timestamps T̃ , so that the learned patterns associated to the hour-of-day feature are
misleading. We run the model on both types of timestamps, and perform an intervention in the
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bottleneck by substituting the activations based on the shifted time with the activations based on the
original, see Figure 6 for an overview.

We perform the intervention experiment with the electricity dataset, and perform shifts of up to and
including 23 hours. We compare the performance of the intervention with out-of-the-box performance
of the same model on the shifted dataset. The results of the Vanilla Transformer shown in Figure 7.
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Figure 7: MSE of the attention (Att) and feed-forward (FF) bottleneck models on electricity data with
shifted timestamps. The dashed line represents the performance on the data without timeshift.

Remarkably, the intervention on the Vanilla Transformer achieves the original performance for all
timeshifts. This indicates that the bottleneck models effectively learn to represent the hour-of-day
concept in the dedicated bottleneck component. Most interestingly, the models only utilise this
interpretable concept in the bottleneck layer, but not in other encoder layers (because the experiment
only intervenes in the bottleneck).

9



5 Discussion and Conclusions

In this work, we propose a training framework based on Concept Bottleneck Models to enforce
interpretability of time series transformers. We introduce a new loss function based on the similarity
score CKA of the model’s representations and interpretable concepts. We apply our framework to the
Vanilla Transformer, Autoformer and FEDformer using synthetic data and six benchmark datasets.
Our results indicate that the overall performance remains unaffected, while the model’s components
become more interpretable. Additionally, it becomes possible to perform a local intervention when
employing the model after a temporal data shift.

The main limitation of our concept bottleneck framework is that interpretable concepts have to
be decided on before training, which might require domain knowledge. Representations for these
concepts have to be available during training. However, domain-agnostic concepts such as the AR
surrogate model and hour-of-day information are sufficient. Additionally, our framework increases
computational complexity. This might be problematic if the size of the architecture increases.

An interesting direction for future research would be to optimize the number and type of interpretable
concepts in the bottleneck, and extend the framework to other modalities. We trained mostly using
two domain-agnostic concepts (AR and hour-of-day), but including more concepts, possibly domain-
specific, would be very interesting. For example, one could consider choosing speech and music
concepts for audio time series. Additionally, the framework should also work for transformers in
other modalities, e.g., language and vision, although these models are usually of larger size. We
hope our work contributes to a deeper understanding of (time series) transformers and their behavior
in different fields. In particular, recent progress in the field of mechanistic interpretability is based
on the observation that the residual stream of the transformer encourages modular solutions, which
enables localized concepts or specialized circuitry to perform a specific task. Instead of relying on
post-hoc localization of these concepts, our paper presents a demonstration that we can encourage
locality of concepts, without a significant loss in performance.

Regarding societal impact, this work enables transparent time series forecasting models, which enable
explainable forecasts. However, in the case of malicious use, biases could be included in the models.
Harm could be prevented by developing mechanistic interpretability techniques for bias detection in
time series models.
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A Datasets

We evaluate the Autoformer model on six real-world benchmarks, covering the five domains of
energy, traffic, economics, weather, and disease. We use the same datasets as Wu et al. [2021], and
provide additional information in Table 2, as given in the original Autoformer paper.

Table 2: Descriptions of the datasets, as given by Wu et al. [2021] and shared online. ‘Pred len’
denotes the prediction length used in our experiments.

Dataset Pred len Description
Electricity 96 Hourly electricity consumption of 321 customers from 2012 to 2014.
Traffic 96 Hourly data from California Department of Transportation, which

describes the road occupancy rates measured by different sensors on
San Francisco Bay area freeways.

Weather 96 Recorded every 10 minutes for 2020 whole year, which contains 21
meteorological indicators, such as air temperature, humidity, etc.

Illness 24 Includes the weekly recorded influenza-like illness (ILI) patients data
from Centers for Disease Control and Prevention of the United States
between 2002 and 2021, which describes the ratio of patients seen
with ILI and the total number of the patients.

Exchange rate 96 Daily exchange rates of eight different countries ranging from 1990
to 2016.

ETT 96 Data collected from electricity transformers, including load and oil
temperature that are recorded every 15 minutes between July 2016
and July 2018.

B Formalization of Concept Bottleneck Framework

Any time series Transformer obtains two types of input: (1) data values X ∈ RI×d, and (2)
timestamps T ∈ RI×4. The transformer consists of an encoder and a decoder, which are both
constructed from one or multiple layers. Any encoder layer contains two sub-layers: a multi-head
attention mechanism (Att) and a fully connected neural network (FF). Every sub-layer contains a
residual connection around it. More specifically, the output Xℓ of any encoder layer ℓ is:

Xℓ = Encoder(Xℓ−1)

= LayerNorm(FF(Sℓ) + Sℓ),

Sℓ = LayerNorm(Att(Xℓ−1) +Xℓ−1),

where

FF(x) = max(0, xW1 + b1)W2 + b2,

Att(x) = W0 · Concat (h1(x), . . . , hh(x)) .

For future reference, we denote the output of the feed-forward module as follows: FF(Sℓ) = Zℓ ∈
Rd1×d2 . We omit the definition of the decoder, because our bottleneck framework does not include it.
Note that the exact implementation of each (sub-)layer depends on the type of Transformer.
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B.1 Bottleneck Layer

We assign one encoder layer to be the bottleneck and construct it such that it contains c latent
representations or components, i.e., (Hi)

c
i=1. Depending on the bottleneck type τ , these latent

representations are either taken from the attention mechanism or the feed-forward module. More
specifically:

Hi =

{
hi(x) if bottleneck type τ = Att,
Zi if bottleneck type τ = FF.

Since the attention block is multi-headed, different heads naturally form the components of the
attention bottleneck. For the feed-forward bottleneck, we define the components to be slices (in d1)
from its output Z, such that stacking the components results in the original output.

Note that the residual connection around the corresponding bottleneck component is removed, and
that each component Hi should represent a pre-defined interpretable concept.

B.2 Intervention

In the intervention experiment, we shift the time stamps T to obtain T̃ . The key aspect of the experi-
ment is to run the Transformer on the shifted time stamps T̃ , and replace the input representations
X̃b−1 of the bottleneck layer b with Xb−1 (based on T ), but only in the component that represents
the time concept.

More specifically, if type τ = Att, we intervene on the attention block in the bottleneck as follows:

Att(x, x̃) = W0 · Concat (h1(x̃), h2(x), h3(x̃)) ,

and, if type τ = FF, as follows:

FF(x, x̃) = Stack(Z̃1,Z2, Z̃3).

In both functions we make use of the fact that the time concept is represented in the second component,
and there are three components in total. This intervention can be done in the bottleneck only, because,
by construction, its location of the concept representations is known.
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C Qualitative Results
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Figure 8: Forecasts on different datasets. The first part of the ground truth (shown in blue) is the
input for the models, and the test set is used for each dataset.

15



D Detailed results

Table 3: Performance of different models in Mean Squared Error (MSE) and Mean Absolute Error
(MAE). The bottlenecks do contain a free component (c = 3), and use AR as surrogate model. The
model with no bottleneck is an original Autoformer of similar size. For all datasets, the shortest
prediction lengths from Wu et al. [2021] are used, see Table 2. The standard deviation is determined
using five different seeds.

Free component
Att bottleneck FF bottleneck No bottleneck AR Wu et al.
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.231
± 0.009

0.338
± 0.005

0.207
± 0.005

0.320
± 0.005

0.280
± 0.165

0.368
± 0.111

0.497 0.522 0.201
± 0.003

0.317
± 0.004

Traffic 0.642
± 0.022

0.393
± 0.013

0.393
± 0.013

0.377
± 0.006

0.619
± 0.015

0.387
± 0.005

0.420 0.494 0.613
± 0.028

0.388
± 0.012

Weather 0.290
± 0.027

0.354
± 0.020

0.271
± 0.016

0.341
± 0.011

0.269
± 0.000

0.344
± 0.000

0.006 0.062 0.266
± 0.007

0.336
± 0.006

Illness 3.586
± 0.241

1.313
± 0.040

3.661
± 0.237

1.322
± 0.050

3.405
± 0.208

1.295
± 0.044

1.027 0.820 3.483
± 0.107

1.287
± 0.018

Exchange rate 0.195
± 0.029

0.323
± 0.025

0.155
± 0.010

0.290
± 0.013

0.152
± 0.003

0.283
± 0.003

0.082 0.230 0.197
± 0.019

0.323
± 0.012

ETT 0.177
± 0.003

0.282
± 0.004

0.174
± 0.006

0.280
± 0.005

0.155
± 0.004

0.265
± 0.002

0.034 0.117 0.255
± 0.020

0.339
± 0.020

Table 4: Performance on different datasets, where the bottlenecks do not contain a free component
(c = 2). AR is used as surrogate model in the bottlenecks. The model with no bottleneck is an
original Autoformer of similar size. For all datasets, the shortest prediction lengths from Wu et al.
[2021] are used, see Table 2. The standard deviation is determined using five different seeds.

No free component
Att bottleneck FF bottleneck No bottleneck AR Wu et al.
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.224
± 0.006

0.332
± 0.003

0.206
± 0.009

0.321
± 0.009

0.202
± 0.006

0.318
± 0.007

0.497 0.522 0.201
± 0.003

0.317
± 0.004

Traffic 0.629
± 0.023

0.394
± 0.015

0.627
± 0.031

0.392
± 0.025

0.613
± 0.018

0.378
± 0.007

0.420 0.494 0.613
± 0.028

0.388
± 0.012

Weather 0.281
± 0.025

0.348
± 0.018

0.260
± 0.015

0.333
± 0.013

0.257
± 0.004

0.332
± 0.005

0.006 0.062 0.266
± 0.007

0.336
± 0.006

Illness 3.966
± 0.296

1.401
± 0.073

3.721
± 0.268

1.351
± 0.053

3.585
± 0.331

1.333
± 0.070

1.027 0.820 3.483
± 0.107

1.287
± 0.018

Exchange rate 0.208
± 0.026

0.333
± 0.022

0.158
± 0.009

0.293
± 0.009

0.152
± 0.006

0.284
± 0.007

0.082 0.230 0.197
± 0.019

0.323
± 0.012

ETT 0.178
± 0.011

0.283
± 0.007

0.174
± 0.01

0.283
± 0.009

0.165
± 0.004

0.274
± 0.004

0.034 0.117 0.255
± 0.020

0.339
± 0.020
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E Hyper-Parameter Sensitivity

To verify the sensitivity to hyperparameter α in the loss function, we train the Autoformer with a feed-
forward bottleneck on different values for α, where the bottleneck contains a free component (c = 3)
and the model is trained on the electricity dataset. The results are given in Figure 9. Interestingly, the
error scores for all α < 1 are close in value, which verifies that additionally training for interpretability
does not hurt the performance, at least not in this set-up. Note that a low forecasting error cannot
be expected for α = 1, because in this edge case the loss function does not contain any term that
represents the forecasting performance.

Figure 9: Performance of the Autoformer for different values of α in MSE and MAE.

Additionally, the CKA scores of the different models with the interpretable concepts (and other time
features) are given in Figures 10, 11, and 12. Naturally, the CKA scores are the lowest in the setting
α = 0, and the scores from the bottleneck (layer1) increase over α. Interestingly, the CKA scores
from the bottleneck do not increase for higher values than α = 0.5, although the scores of some
other components do increase. This indicates that perfect similarity (i.e. CKA score of 1) to some
interpretable concepts may not be reached.
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(b) α = 0.3

Figure 10: CKA scores of the feed-forward bottleneck Autoformer on electricity data for different
values of hyperparameter α. The scores are calculated using three batches of size 32 of the test data
set.
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(b) α = 0.7

Figure 11: CKA scores of the feed-forward bottleneck Autoformer on electricity data for different
values of hyperparameter α. The scores are calculated using three batches of size 32 of the test data
set.
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(a) α = 1

Figure 12: CKA scores of the feed-forward bottleneck Autoformer on electricity data for hyperpa-
rameter α = 1. The scores are calculated using three batches of size 32 of the test data set.

F Application of Framework to Vanilla Transformer

To demonstrate the generality of the concept bottleneck framework, we apply it to an additional
Transformer architecture, namely the vanilla Transformer (the original architecture from which all
Transformer models, including all time series Transformers, are derived). We train it using the same
six benchmark datasets and perform a similar, but less extensive, analysis as done for the Autoformer
model. Note that the architecture of the Transformer is not modified, and the timestamps are included
as an embedding (in addition to the positional embedding).

F.1 Performance Analysis

The performance of the vanilla Transformer model with and without bottleneck is given in Table 5.
We train the bottleneck with a ‘free’ component (the side channel), i.e., with c = 3. Note that Wu
et al. [2021] do not provide scores for these benchmark forecasting datasets, therefore we cannot
include them in the table. The results show that the vanilla Transformer performs, unsurprisingly,
worse than the Autoformer, and for most datasets also worse than the linear AR model. However,
most relevant, for our purposes, is that across the datasets using a concept bottleneck does not hurt
the overall performance of the vanilla Transformer.

F.2 CKA Analysis

After training the vanilla Transformer with the bottleneck framework, we evaluate the similarity of
its hidden representations to the interpretable concepts using CKA, see Figure 13. Recall that CKA
scores are defined in the range from 0 to 1, where 1 indicates perfect similarity. Both components in
the two types of bottleneck show very high similarity to their target concept. Interestingly, the first
component in the bottleneck (the AR concept) shows a higher similarity to the AR representations than
the Autoformer (see Figure 4), presumably because the decomposition structure of the Autoformer
hinders learning a linear function.
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Table 5: Performance of different vanilla Transformer models. For both metrics, it holds that a
lower score indicates a better performance, where the best results are bold, and the second-best are
underlined.

Att bottleneck FF bottleneck No bottleneck AR
MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.275 0.371 0.268 0.362 0.275 0.371 0.497 0.522
Traffic 0.708 0.394 0.703 0.397 0.684 0.376 0.420 0.494
Weather 0.400 0.450 0.381 0.410 0.362 0.415 0.006 0.062
Illness 3.380 1.280 3.323 1.252 3.321 1.273 1.027 0.820
Exchange rate 0.675 0.642 0.677 0.633 0.694 0.662 0.082 0.230
ETT 0.230 0.328 0.185 0.299 0.166 0.294 0.034 0.117
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(b) FF bottleneck

Figure 13: CKA scores of the vanilla Transformer’s encoder (containing three heads per layer) from
the attention and feed-forward bottleneck on the electricity dataset, where each score denotes the
similarity of an individual component. The first component of layer1 is trained to be similar to
AR, and the second component to the hour-of-day concept (lower and middle row in the figure,
respectively). The scores are calculated using three batches of size 32 from the test data set.

F.3 Component Visualizations

We visualize the contributions of each component in the bottleneck using the Decoder Lens method
[Langedijk et al., 2023], see Figure 14. We obtain the output from each component individually by
masking the other components with zero (close to the mean). Each component seems to provide
similar contributions to the forecast as their respective counterpart in the Autoformer model. In
particular, the first component (see Figure 14a) produces forecasts of correct seasonality and few
irregularities, similar to the AR model. The second component (see Figure 14b) follows the hour-of-
day feature, and the free head (see Figure 14c) picks up on high-frequency data patterns.
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Figure 14: Vanilla Transformer forecasts from the components in the bottleneck layer (FF bottleneck
on electricity data) in 14a, 14b and 14c. They are obtained by masking the other components with
zero (the mean). The first half of the ground truth forms the input to the model. Note that the
horizontal axes are the same across all figures, but Figure 14b contains a grid of days instead of
numbered hours. Figure 14d shows the forecast made by the surrogate model AR; Figure 14e shows
the forecast of the entire layer (i.e., all components together), and 14f shows the forecast of the final
layer when only the third component is used in the bottleneck layer. Note the difference between
Figures 14c and 14f, where we decode from the bottleneck and the final layer, respectively.

F.4 Intervention

We perform the intervention experiment in the same set-up as for the Autoformer model. That is, we
delay the input timestamps with a fixed number of hours to obtain shifted timestamps, and perform
an intervention in the bottleneck by substituting the activations based on the shifted time with the
activations from the original time. We use a vanilla Transformer trained on the electricity dataset,
and perform shifts of up to and including 23 hours. We compare the performance of the intervention
with out-of-the-box performance of the same model on the shifted dataset. The results are shown in
Figure 15. For both types of bottlenecks, the intervention performs best for all timeshifts, by keeping
the error scores marginally close to the original performance (with no timeshift). This indicates that
the model effectively learns to represent the hour-of-day concept in the dedicated head, which is able
to provide control over the model’s behavior.

F.5 Conclusion

By repeating the set of experiments for the vanilla Transformer model, we provided further evidence
for the generality of the concept bottleneck framework. In particular, we showed that the framework
can be applied to the vanilla Transformer model, without having any significant impact on the overall
model performance, while providing improved interpretability.
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Figure 15: Performance of the bottleneck vanilla Transformer on electricity data with shifted times-
tamps. The dashed line represents the performance of the same model on the original data, i.e., with
no timeshift.

G Application of Framework to FEDformer

To demonstrate the generality of our concept bottleneck framework, we apply it to FEDformer [Zhou
et al., 2022]. This is a Transformer architecture containing Fourier enhanced blocks and wavelet
enhanced blocks to represent time series in the frequency domain. For more details, we refer to the
original authors Zhou et al. [2022]. We train the model on the same six datasets and perform an
interpretability analysis.

G.1 Performance Analysis

The performance of the FEDformer with and without bottleneck is given in Table 6. We train the
bottleneck with a ‘free’ component (the side channel), i.e., with c = 3. Note that the model by Zhou
et al. [2022] is of a different size (two encoder layers with eight heads per layer). Interestingly, we find
for some datasets (e.g. electricity and illness) that including a bottleneck increases the performance,
while it has little effect on the performance for the other datasets. We can conclude for all datasets
that including a bottleneck does not hurt performance.

Table 6: Performance of FEDformer. For both metrics, it holds that a lower score indicates a better
performance, where the best results are bold, and the second-best are underlined.

Att bottleneck FF bottleneck No bottleneck AR Zhou et al.
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.185 0.302 0.186 0.303 0.189 0.304 0.497 0.522 0.193 0.308
Traffic 0.585 0.364 0.585 0.364 0.573 0.358 0.420 0.494 0.587 0.366
Weather 0.221 0.299 0.219 0.296 0.334 0.397 0.006 0.062 0.217 0.296
Illness 3.070 1.217 3.076 1.219 3.111 1.232 1.027 0.820 3.228 1.260
Exchange rate 0.147 0.277 0.145 0.275 0.146 0.276 0.082 0.230 0.148 0.278
ETT 0.079 0.193 0.079 0.192 0.077 0.190 0.034 0.117 0.203 0.287

G.2 CKA Analysis

After training the FEDformer with our concept bottleneck framework, we evaluate the similarity of
the hidden representations to the interpretable concepts using CKA, see Figure 16. Recall that CKA
scores are defined in the range from 0 to 1, where 1 indicates perfect similarity. Both components in
the two types of bottleneck show a very high similarity to their target concept, indicating a successful
training on interpretability.
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Figure 16: CKA scores of the FEDformer’s encoder (containing three heads per layer) from the
attention and feed-forward bottleneck on the electricity dataset, where each score denotes the similarity
of an individual component. The first component of layer1 is trained to be similar to AR, and the
second component to the hour-of-day concept (lower and middle row in the figure, respectively). The
scores are calculated using three batches of size 32 from the test data set.

G.3 Intervention

Additionally, we perform the intervention experiment in the same set-up as for the other Transformer
models. That is, we delay the input timestamps with a fixed number of hours and perform an
intervention in the bottleneck by substituting the activations with those based on the original time. We
compare the performance of the intervention with out-of-the-box performance of the same model on
the shifted dataset. The results are shown in Figure 17. For both types of bottlenecks, the intervention
performs best for all timeshifts, by keeping the error marginally close to the original performance
(without timeshift). This indicates that the model effectively learns to represent the hour-of-day
concept in the dedicated head, which is able to provide control over the model’s behavior.
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Figure 17: Performance of the bottleneck FEDformer on electricity data with shifted timestamps. The
dashed line represents the performance of the same model on the original data, i.e., with no timeshift.
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G.4 Conclusion

By repeating the set of experiments for the FEDformer model, we provided further evidence for the
generality of the concept bottleneck framework. In particular, we showed that the framework can
be applied to the FEDformer model, without having any significant impact on the overall model
performance, while providing improved interpretability.
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H Synthetic Data

To increase the understanding of how the concepts in the bottleneck can be leveraged, we train the
model on a synthetic dataset.

H.1 Dataset

We generate a synthetic time series as the sum of different functions. In particular, the dataset is
generated using the function fTotal with time t as follows:

fTotal(t) = f1(t) + f2(t) + f3(t),

where:

f1(t) = sin(2πt),

f2(t) =
1

2
sin(4πt+

π

4
),

f3(t) =
1

4
sin(6πt+

π

2
) + ϵt.

Note that all functions f1, f2 and f3 follow a periodic structure, and f3 contains random noise ϵ
from a normal distribution with standard deviation of 0.2. See Figure 18 for a visualization of the
functions.

Figure 18: The synthetic time series dataset.

H.2 Experiment and Results

We train an Autoformer model on the synthetic dataset using the concept bottleneck framework. Each
concept in the bottleneck is defined as one of the underlying functions (i.e., f1, f2 or f3), for which
the ground-truth is known by construction. The model contains three encoder layers, with three
attention heads per layer. We apply the bottleneck to the attention heads of the second encoder layer.
Additionally, we train the bottleneck using different values for hyperparameter α, which controls the
weight of the CKA loss in the total loss function (see Section 3.1).

As expected, we find for all values α < 1 that the model is able to forecast the dataset well, see
Figure 19. Note that a low forecasting error cannot be expected for α = 1, because in this edge case
the loss function does not contain any term that represents the forecasting error. Remarkably, for
all other cases, the performance of the Autoformer seems to improve as α increases. This suggests
that properly chosen concepts improve the performance of the model, at least when the ground-truth
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underlying functions are known. It should be noted that the standard deviation is higher for all
α > 0, which indicates that initialization of the parameters is important when learning the bottleneck.
Additionally, visualizations of the predictions are given in Figure 20.

Figure 19: Performance on the synthetic dataset for different values of α, using an Autoformer with
attention bottleneck. For both metrics, it holds that a lower score indicates a better performance. The
standard deviation is provided over 5 different seeds.
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Figure 20: Predictions of the Autoformer model on a sample from the test dataset. The Autoformer is
trained with an attention bottleneck using different values of hyperparameter α and the same seed.

Additionally, the different values of hyperparameter α show clearly how the different concepts are
leveraged by the model, see Figure 21. The figure shows the similarity scores between the attention
heads and the different underlying functions of the dataset. Without the CKA loss, at α = 0, the
different heads in layer1 of the model do not show high similarity to their respective concepts, i.e.,
functions. Instead, all heads have a high similarity to concept f2. This is different for higher values
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of α, where the different heads show higher similarity to their respective concepts. Note that the third
concept f3 cannot be perfectly learned by the model because of the random noise component.

All in all, these results show that a higher value for α, which is equivalent to a higher weight of the
CKA loss in the total loss function, results in more similarity of the bottleneck components to their
respective concepts, as expected.
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(f) α = 1

Figure 21: CKA scores of the attention bottleneck Autoformer on synthetic data for different values
of hyperparameter α. The scores are calculated using three batches of size 32 of the test data set.
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I Effect of AR as Surrogate Model

Interestingly, the AR model outperforms the Autoformer for some datasets (see Table 1). This raises
the question whether the AR surrogate model makes up for any loss in performance introduced by
the concept bottleneck.

To test this, we train an Autoformer without the AR concept. Specifically, we include the time concept
and a free component in the feed-forward bottleneck. Here, the free component refers to a component
in the bottleneck that is not included in the CKA loss (see Section 3.2).

The performance on the electricity data for this model is (MSE: 0.206, MAE: 0.321), which is
seemingly identical to the original performance of (MSE: 0.207, MAE: 0.320). This suggests that it
is not the AR head that makes up for the loss in performance. The CKA plots, see Figure 22, verify
that there is no component in the minimal set-up (without AR) that is very similar to the AR model,
unlike in the original set-up. So, these results show that the AR model does not add performance to
the bottleneck model, merely interpretability.

Additionally, we refer the reader to Appendix H, where we perform more experiments on training the
bottleneck without the AR surrogate model.
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(a) Without AR (MSE: 0.206, MAE: 0.321)
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(b) With AR (MSE: 0.207, MAE: 0.320)

Figure 22: CKA plots of two Autoformer models with feed-forward bottlenecks. The model in 22a is
trained without AR in the bottleneck, while the model in 22b is trained with AR. Note that the upper
component in layer1 is the free component in both plots.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
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the results can be expected to generalize to other settings.
Guidelines:
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made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 discusses the limitations of the work, including the assumptions and
computational efficiency of the method.
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• The answer NA means that the paper has no limitation while the answer No means that
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3 discloses all information needed to reproduce the main experimental
results. Additionally, Appendix B provides a formalization of the proposed method.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Upon acceptance of the paper in an archive, we will release the code. The data
is open-source, and already available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 3.3 specificies the implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Appendix D and E report error margins and details on hyperparameter sensitiv-
ity.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There are no violations with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Potential social impacts are discussed in Section 5.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the assets used in the paper are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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