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Abstract

Multivariate causal discovery is the process of in-
ferring a causal graphical model given data gener-
ated from that model. Many methods have been de-
veloped both for deriving point estimates as well as
quantifying uncertainty over causal graphs. How-
ever, integrating complex knowledge or "what-if"
scenarios, such as an observed causal effect value,
into the discovery process remains a significant
challenge. In this paper, we follow the Bayesian
approach to causal discovery, and propose to cast
such problems as conditional inference. The key
computational challenge is that such knowledge
may be very unlikely, making approaches based on
naïve sampling infeasible: that is, there may be no
sample which satisfies the condition. To overcome
this, we leverage techniques from the rare event
estimation literature. Our empirical results on syn-
thetic data illustrate the efficacy of our approach
where baselines fail to accurate capture the condi-
tional distribution, and we illustrate its application
to the real-world Sachs protein dataset.

1 MOTIVATION

In causal discovery, one seeks to recover the causal genera-
tive process responsible for generating some observed data.
Often, however, it is not possible to reliably recover a single
causal graph, for a number of reasons. First, with only a
finite number of samples, statistical uncertainty can make
it impossible to recover even the Markov-equivalence class
of the ground-truth graph with high confidence. Second,
even with unlimited observational data, identifiability limits
remain: all DAGs within a Markov-equivalence class entail
the same distribution, so one can recover at best that class,
not a unique graph. Third, in high-dimensional problems
the combinatorial explosion of the DAG search space poses

a substantial computational challenge.

Bayesian causal discovery offers a principled way to tackle
the first two obstacles by replacing the goal of recovering
a single causal graph with representing uncertainty over
the true causal graph through a posterior distribution over
possible DAGs. However, representing and reasoning over
the super-exponential space of DAGs is an even greater
computational challenge. As such, it is of vital importance to
be able to effectively incorporate any additional knowledge
into the inference process both to reduce uncertainty as well
as ease the computational burden. This can be viewed as
conditioning the posterior distribution of DAGs on some
event representing this knowledge.

For concreteness, in this work, we focus on the problem
of conditioning on an observed causal effect. In many ex-
perimental settings we possess hybrid information: obser-
vational measurements for every variable and one or more
interventional estimates of the causal effect between a cho-
sen pair of nodes. This naturally poses an inverse question:

Which graphical structures—and which specific
causal paths—can generate a causal effect at

least as large as the one we measured?

Real-world decisions often hinge not just on some ob-
served/measured quantitative causal effect, but the explana-
tion behind how those effects occur. Moreover, such expla-
nations can help domain experts to interpret any experimen-
tal observations and guide further investigation such as in
choosing intervention targets for experiments.

Additionally, when experimental data about a causal ef-
fect of interest is not available, it can be useful to analyze
the uncertainty implied by the model posterior. For exam-
ple, regulators might be interested in tail probabilities: the
probability that a causal effect in the population exceeds
some (large) threshold that would merit further investigation
and/or action (e.g. the effect of smoking on cancer).

The central challenge in applying existing Bayesian causal
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discovery algorithms is that they are not able to integrate
conditional information effectively (e.g. observed causal
effect) in the posterior inference process. As we find in
our experiments, conditioning post-hoc on the observed
information (e.g. by filtering out posterior samples) can lead
to inaccurate inference, either when the observed causal
effect has low posterior probability or if the Bayesian causal
discovery method exhibits significant bias (e.g. variational
approaches).

Answering conditional causal queries effectively requires
concentrating the sampling effort precisely on the param-
eter space’s subregion that is compatible with the target
effect threshold. Our proposed framework, which combines
a rare-event estimation method known as Multilevel Split-
ting with Structure MCMC, does exactly that. Multilevel
splitting tackles conditioning by progressively sampling
DAGs and parameters conditioned on a series of interme-
diate levels, progressively guiding samples toward larger
causal effects. By the final level, we have amassed suffi-
ciently many DAG–parameter samples whose causal effect
CE(i→j) exceeds the target. The sampling process simul-
taneously provides estimates of Pr

[
CE(i→j) > t

]
for any

causal effect threshold t, and offer a concrete answer set for
practitioners seeking structural explanations.

Contributions. By integrating multilevel splitting to en-
able conditioning in Bayesian structure learning, we provide
a practical toolset for:

1. integrating knowledge into the Bayesian causal discov-
ery process;

2. rigorously quantifying the posterior probability of ex-
treme causal effects;

3. retrieving informative DAG and path examples that
explain why a large causal effect appears

2 RELATED WORK

Bayesian causal discovery casts causal discovery as a pos-
terior inference problem, given a prior over causal graphs
and a likelihood function. This enables one to capture un-
certainty over the underlying causal graph. A very popular
approach to the inference problem is to utilize Markov chain
Monte Carlo (MCMC) sampling over graphs, or higher level
abstractions such as orders [Friedman and Koller, 2003,
Kuipers and Moffa, 2017, Viinikka et al., 2020, Giudice
et al., 2023]. There have also been many other approaches
which attempt to infer a variational posterior over graphs
[Annadani et al., 2021, Lorch et al., 2021, Cundy et al.,
2021, Wang et al., 2022, Deleu et al., 2022, Rittel and Tschi-
atschek, 2023, Toth et al., 2024]. The goal is typically either
to produce a sample of graphs representing uncertainty over
causal relations, or to use Bayesian model averaging to per-
form Bayesian causal inference [Toth et al., 2022]. However,

these methods typically do not allow one to condition on
arbitrary properties, such as the presence of a large causal ef-
fect. Our work develops an effective new inference strategy
for these conditional posterior inference problems, where ex-
isting methods fail to produce accurate probability estimates
and samples.

3 PRELIMINARIES

Causal Bayesian Networks A Bayesian network (BN)
(G,Θ) is a probabilistic model p(X) over d variables
X = {X1, ..., Xd}, specified using the directed acyclic
graph (DAG) G, which encodes conditional independencies
in the distribution p, and Θ, which parameterizes the mech-
anisms (conditional probability distributions) constituting
the Bayesian network. The conditional probabilities take
the form p(Xi|paG(Xi),Θi), giving rise to the joint data
distribution:

p(X|G,Θ) =
∏
i

p(Xi|paG(Xi),Θi)

where paG(X) denotes the parents of X in G. In this work,
we will focus on the specific case of linear Gaussian models,
under which the distribution is given by the structural equa-
tion X = XB + ϵ, where B ∈ Rd×d is a matrix of real
weights parameterizing the mechanisms, and ϵ ∼ N (b,Σ)
where b ∈ Rd and Σ ∈ Rd×d

≥0 is a diagonal matrix of
noise variances. In particular, for a given DAG G, we have
Bij = 0 for all i, j such that i is not a parent of j in G.

Whereas Bayesian networks typically only express prob-
abilistic (conditional independence) information, causal
Bayesian networks [Spirtes et al., 2000, Pearl, 2009] are
additionally imbued with a causal interpretation, where, in-
tuitively, the directed edges in G represent direct causation.
More formally, causal BNs can predict the effect (change
in joint distribution) of interventions in the system, where
some mechanism is changed, for instance by setting a vari-
able X to some value x independent of its parents. In the
linear Gaussian case, the average causal effect (ACE) of
variable Xi on variable Xj , written CE(i → j|G,B), is
given by:

CE(i→ j|G,B) = (I −B)−1
ij

Bayesian Causal Discovery Causal discovery [Koller and
Friedman, 2009, Glymour et al., 2019] is the problem of in-
ferring the DAG G of the (causal) Bayesian network respon-
sible for generating some given data D. Typically, strong
assumptions are required for causal discovery; in this work,
we make the common assumption of causal sufficiency,
meaning that there are no latent (unobserved) confounders.
Even given this assumption, it is often not possible to re-
liably infer the causal DAG, whether due to limited data,
or non-identifiability within a Markov equivalence class.



Instead of learning a single DAG, Bayesian approaches to
causal discovery express uncertainty over structures in a uni-
fied fashion, through defining a prior p(G) and (marginal)
likelihood p(D|G) over directed graphs G.

The graph prior is typically chosen to penalize larger parent
sets. In this work, we adopt a standard independent Bernoulli
edge prior p(G) ∝ p

|E|
edge(1 − pedge)

d(d−1)/2−|E| for some
pedge ∈ (0, 1). In the case of linear Gaussian models, the
typical choice of prior over the parameters leads to a closed-
form marginal likelihood p(D|G) known as the BGe score
[Geiger and Heckerman, 1994, 2002]. The posterior over
parameters p(B|D, G) then factorizing as p(B|G,D) =∏

i p(Bi|Gi,D) where each component is a multivariate
t-distribution [Viinikka et al., 2020]. The overall posterior
can then be computed as:

p(G,B | D) ∝ p(G) p(D | G) p(B | G,D). (1)

4 CONDITIONAL CAUSAL DISCOVERY

In this paper, we tackle the related problems of estimating
the probability of some property E and drawing samples
of graphs and edge weights conditional on that property.
In particular, we will consider estimating the probability
of (and sampling from) extreme causal effects. Specifically,
for fixed (i, j) and a threshold t > 0 of interest, define the
property

At =
{
(G,B) : CE(i→j |G,B) > t

}
.

The quantity we wish to estimate is the posterior probability

p
(
At | D

)
=

∫∫
At

p(G,B | D) dB dG,

When the threshold t is large, this probability can become
extremely small, e.g. < 10−8. As such, sampling from the
posterior (e.g., running a MCMC chain targeting the pos-
terior) may struggle to return any samples satisfying the
property, leading to high-variance estimates.

We therefore adopt the multilevel splitting (MLS) strategy
[Kahn and Harris, 1951, Guyader et al., 2011], which de-
composes the estimation problem into a series of simpler
conditional estimation problems. In particular, given a se-
quence of levels −∞ = L0 < L1 < . . . < LK where
LK = t, one aims to estimate the probability by decompos-
ing into:

p
(
At | D

)
= p

(
AL0

| D
) K∏
i=1

p
(
ALi
| ALi−1

,D
)

(2)

Since all (G,B) pairs are in AL0 , p
(
AL0 | D

)
= 1. MLS

iteratively constructs sets of samples from the conditional
distributions p(G,B|ALi

,D) starting from i = 0.

Adaptive MLS In adaptive multilevel splitting (AMLS)
[Cérou and Guyader, 2007], the levels L1, . . . , LK are set
adaptively instead of being chosen by the user. On a high-
level, this estimation is performed as follows:

1. Given the current level Lk, run an inner MCMC
(Sec. 4.1) for every particle (G,B) to obtain a new
set of samples conditionally distributed on CE > Lk.
The inner chain length m controls the mixing of the
chain.

2. Compute all n CE values for the samples, and set Lk+1

to the q-th upper quantile (e.g. q = 0.9).

3. Estimate αk := p
(
ALk+1

| ALk
,D

)
by the empirical

survival fraction α̂k = #{CE > Lk+1}/n.

4. Resample with replacement the surviving particles so
that the population size returns to n; copy their current
states as starting points for the next iteration.

Algorithm 1 summarizes the overall approach, which we call
MLS-parameter as it operates over the joint (G,B) space.
The algorithm enables us to simultaneously estimate the
probabilities for a set of target thresholds t1 < . . . < tT in
one execution of the algorithm (though these estimates will
be correlated).

Besides estimating the probability, the multilevel splitting
procedure also provides as a byproduct a sample of graphs
and edge weights conditional on the causal effect being
greater than t for any threshold t. This can then be used e.g.
to interpret possible explanations for a large causal effect or
for Bayesian model averaging.

Particle initialisation We begin with n DAGs {G(0)
r }nr=1

drawn i.i.d. from the structural prior p(G). For each of the
DAGs, we draw a posterior weight matrix B

(0)
r ∼ P (B |

G
(0)
r ,D) which follows a multivariate t-distribution as pre-

viously mentioned.

4.1 INNER METROPOLIS–HASTINGS OVER
JOINT (G,B)

In the inner MCMC update part of Algorithm 1, we run m
Metropolis-Hastings (MH) steps as follows. In each step,
we traverse the joint (G,B) space based on two reversible
proposal distributions:

• Structure move: draw (G′, B′) by adding, deleting or
reversing a single edge; when a new edge (u→ v) is
created, we sample an initial weight from N(µ, σ2),
where µ = 0 and σ = 1.

• Weight move: pick an existing edge (u→ v) and per-
turb Buv by a zero-mean Gaussian step of variance
τ2, where τ = η · max (1, |Buv|). Here, η > 0 is a
step size hyperparameter that scales the perturbation



Algorithm 1: Adaptive Multilevel Splitting for p(x) =
Pr
[
CEi→j > x

]
(single run, multiple thresholds x)

Input :dataset D; CE threshold list
t = (t(1), . . . , t(T )); particle count n; inner
MCMC length m; quantile q; max. outer
iterations Kmax

Output :estimates
{
p̂(t(i))

}T

i=1
; survivor particle set

// Initialization
for r ← 1 to n do

sample G
(0)
r ∼ DAGPrior(pedge)

sample B
(0)
r ∼ P

(
B | G(0)

r ,X
)

end
k ← 0; L0 ← −∞; S ← 0; i← 0;
// Core Algorithm

while k < Kmax & i ≤ T do
for r ← 1 to n do

run m MH steps in Sec.4.1
end
Compute θr ← CEi→j(G

(k)
r , B

(k)
r )

Lk+1 ← q-quantile of {θr}nr=1

α̂k ← #{θr > Lk+1}/n
while Lk+1 ≥ t(i) do

calculate β = #{θr > t(i)}/n
p̂
(
t(i)

)
← exp(S + log(β));

i← i+ 1

end
S ← S + log(α̂k)
resample survivors to restore n particles
k ← k + 1

end
Result: {p̂(t(i))}Ti=1 and level-k particle set

relative to the current weight. In all experiments, we
set η = 0.8, so τ2 = 0.64 ·max (1, |Buv|)2

The proposal is accepted with probability

min
{
1,

p(G′, B′ | D,ALk
) q

(
(G′, B′)→(G,B)

)
p(G,B | D,ALk

) q
(
(G,B)→(G′, B′)

) }
,

Here, q represents the probability of making the proposed
move. The target distribution p(G,B | D,ALk

) ∝ p(G,B |
D)1CE(i→j|G,B)>Lk

, where p(G,B | D) is given by Eq. (1).
This ensures that we always have a set of samples above
with causal effect above the current level Lk.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate all methods on synthetic linear-Gaussian data
sets generated from random Erdős–Rényi DAGs at four

dimensions:
d ∈ {4, 8, 16, 32}.

As for the ground truth edge weights, we independently
sample B̃ij ∼ N (2, 1) for every node pair (i, j), then set
B = B̃ ⊙ G, so that Bij = B̃ij if Gij = 1 and Bij = 0
otherwise. The choice of mean edge weight of 2 is chosen
to induce potentially large causal effects. We generated an
observational dataset D of size n = 1000 sampled from this
causal model.

Given a randomly generated ground truth graph and edge
weights (G,B), we choose a pair (i, j) of nodes, calculate
the ground truth causal effect t1 := CE(i→ j|G,B), and
then choose a sequence of ascending thresholds (described
in detail in Appendix A.3):

t1 < t2 < · · · < tT .

All methods are then tasked with estimating p(Ati |D) =
p(CE(i→ j) > ti | D) for every i.

Compared methods. We implement and compare the
following methods:

1. Exhaustive enumeration: Enumerating all DAGs (for
the d = 4 experiment only) and sampling 4000 weight
samples per graph;

2. OrderSPN [Wang et al., 2022]: This method constructs
an approximate represention of the posterior as a prob-
abilistic circuit. For evaluation, we take 5000 graphs
sampled from the OrderSPN model, and sample 200
edge weights from the posterior given each graph.

3. Single MCMC chain: This is a single, long Metropo-
lis–Hastings chain over both graphs and edge weights,
run for 500000 MCMC iterations, burn-in 10%.

4. DiBS [Lorch et al., 2021]: DiBS is a variational ap-
proach that returns samples jointly over the graph and
edge weights. We take 10000 graph and edge weight
samples (100 runs with 100 samples for each run as the
runtime scales quadratically in the number of samples).

5. MLS–parameter: For our MLS-parameter method, we
use n = 400 particles, m = 4000 MCMC iterations
per level, Kmax = 15.

6. MLS–structure: We also test a variant of MLS which
operates just over the DAG space using the posterior
p(G|D) ∝ p(G)p(D|G), and where the causal effect
of a graph is defined by the expected CE under the
posterior over edge weights p(B|G,D). As with MLS-
parameter, we use n = 400 particles, m = 4000
MCMC iterations per level, Kmax = 15.

5.2 SMALL SCALE VALIDATION (d = 4)

We begin by validating each method in d = 4 setting, where
we can still explicitly enumerate every directed acyclic



Figure 1: Estimated tail probabilities P (CE > xt) for ten
node pairs—one pair from each of ten randomly generated
d = 4 graphs—with exhaustive enumeration as the ground-
truth reference.

graph (DAG) (|Gd=4| = 543). We can thus very accurately
compute the tail probabilities p(CE(i, j) > t) and treat
these values as a gold-standard baseline.

Figure 1 shows the estimated tail probabilities p̂t =
P
(
CE > t | X

)
for ten random node pairs across ten data

sets, with the exhaustive enumeration (Baseline, blue) as
ground truth. We observe that:

• DiBS (green) consistently overestimates, returning
probabilities between 10−2 and 10−1 in 8/10 cases.
This systematic bias can be explained by the fact that
DiBS is a variational method and thus has no conver-
gence guarantees;

• MLS–structure (brown) fails to accurately capture the
probability, which is unsurprising as it operates over
structures (and average causal effects given structures);

• Single MCMC chain (purple) matches the ground-truth
in 9/10 cases indicating adequate mixing; Case 5 is the
lone outlier (which we analyse in Appendix A.2).

• MLS–parameter (orange) and OrderSPN (red) both
track the ground-truth closely in all 10 cases, spanning
probabilities over four orders of magnitude (10−6 →
10−2);

5.3 LARGE SCALE EVALUATION (d = 8, d = 16,
AND d = 32)

We now consider scaling to higher dimensions, where ex-
haustive enumeration of all possible DAGs is no longer
feasible and so we no longer have ground-truth probabilities.
Based on the results from the low-dimensional case, we
will focus primarily on OrderSPN, the long MCMC chain,
and MLS-parameter. We assess rare-event performance on
synthetic datasets with d ∈ {8, 16, 32}. For each dimension
we plot the tail probability P (CE(i, j) > t) for different
values of t, using a log-scale for the probability. A robust
method should decay smoothly rather than collapse to zero.
We additionally provide error bars for MLS–parameter on

Figure 2: Estimated tail-probabilities for a representative
node pair in the d = 16 setting. MLS-parameter shows
standard error (s.e.) over 5 runs.

the d = 8 and d = 16 synthetic datasets, which appear in
Figs. 8 and 2. Error bars show p̄t ± SEt from 5 indepen-
dent MLS runs.From Figures 8, 2, and 9, we can make the
following observation on each model.

• MLS–parameter (blue) shows a steady decline in prob-
ability from 10−1 down to values smaller than 10−6

for the larger causal effect thresholds.

• DiBS (orange) repeats the overestimation seen at d=4
and suggests its variational posterior is also not suffi-
ciently accurate in higher dimensions;

• OrderSPN (green) follows MLS–parameter at the first
few thresholds but then drops to zero abruptly, indi-
cating that the OrderSPN posterior representation is
not able to cover the low-probability graphs with large
causal effect in higher dimensions.

• MLS–structure (purple) cannot capture extreme causal
effects for similar reasons for the small-d case;

• Single MCMC chain (red) exhibits a (perhaps surpris-
ing) failure to capture any graph/weights with large
causal effects. Upon further analysis, we found that the
chain struggles to jump between causal effect modes
indicating poor mixing even with 500K steps.

In summary, MLS-parameter is the only method that is
able to accurately estimate the probability for large causal
effect thresholds (as shown by the tight error bars). All
other methods except DiBS also fail to return any samples
conditional on large causal effects; however, as we have
seen, DiBS is not accurate even in the low-d setting.

5.4 EFFECT OF TRAINING SAMPLE SIZE

In practice, the amount of data available to fit a causal model
varies widely. To illustrate how the probability of causal
effects varies in these settings, we fixed the d = 16 setting
from Section 5.3 (target pair (12, 6)) and re–ran the sampler



Figure 3: Effect of training-set size on Pr
(
CE12,6 > t

)
.

Each curve is an independent MLS run with identical hyper-
parameters but different numbers of observations.

Figure 4: Ground-truth DAG for the Sachs protein dataset
[Sachs et al., 2005].

with training sizes

n ∈ {100, 1 000, 10 000, 100 000}.

Figure 3 demonstrates the resulting tail–probability curves;
probabilities smaller than 10−15 are clipped to that value.
The results shows a clear and intuitive pattern: as the training
size increases, the posterior concentrates around a smaller
set of graphs/edge weights that best explain data. As we have
chosen thresholds much larger than the true causal effect,
the probability of causal effect exceeding these thresholds
becomes smaller as the training size increases.

5.5 SACHS PROTEIN DATASET

We now evaluate on the real-world Sachs dataset [Sachs
et al., 2005], which provides 7 466 measurements of expres-
sion levels of 11 proteins and phospholipids. The DAG in
Figure 4 is the consensus ground-truth causal graph. In this
experiment, rather than trying to recover this ground-truth
graph, we are interested in answering the what-if question:

Table 1: Node index↔ protein name.

Index Protein Index Protein

0 praf 6 pakts473
1 pmek 7 PKA
2 plcg 8 PKC
3 PIP2 9 P38
4 PIP3 10 pjnk
5 p44/42

Figure 5: MLS tail probability for CE8,1 (PKC→ pmek) in
log scale. Empirical CE: xemp≈0.89.

“When an unusually large causal effect is ob-
served/hypothesized, which pathways form the
most plausible explanation?”

In particular, we illustrate this for one node pair (node num-
ber mapped to variables in Table 1) in the Sachs network:

(8→1) [PKC→pmek].

In the true graph, we have four paths between 8 and 1:

8→1, 8→0→1, 8→7→1, 8→7→0→1

We now apply our MLS-parameter method, which in addi-
tion to probability estimates also provides a set of samples
from the posterior conditional on the causal effect being
greater than some threshold. In order to analyse the effect
of each path, we compute (i) in how many of the samples
the path appears; and (ii) among the samples where the path
appears, the average contribution to the causal effect (given
by the product of edge weights along the path). We test nine
thresholds between t = 0.70 and t = 1.15. Figure 5 shows
the tail probability is fairly large for 0.70 ≤ x ≤ 0.90 but
drops sharply once x > 0.90.



Figure 6: Edge-frequency heat-maps for (8, 1) at x = 0.70
(top) and x = 1.15 (bottom).

Table 2: Most frequent paths occurring in samples at t =
0.70 (out of 66 graphs)

Occurrences Path Contribution

41 (8, 1) 0.1857
28 (8, 0, 1) 0.4580
26 (8, 6, 1) 0.1335
19 (8, 9, 1) 0.5942
12 (8, 2, 1) 0.07711
8 (8, 3, 2, 1) 0.07487

Causal Paths At the lowest threshold, t = 0.70, Table
2 shows a large collection of (8 → . . . → 1) paths. The
MLS posterior comprises 66 graphs containing 414 distinct
8⇝ 1 paths. Although the direct edge (8→1) is already the
most common—present in 41 of the 66 graphs—its mean
contribution (0.19) remains below the threshold. Several
indirect paths, such as (8 → 0 → 1), (8 → 9 → 1) and
(8→ 6→ 1), occur almost as often and achieve markedly
higher average effects (0.46, 0.59, and 0.13, respectively).
Hence, no single edge/path is entirely responsible for the
causal effect at this level; the heat map in Fig. 6 (left) reflects
this significant amount of uncertainty.

Raising the threshold to t = 1.15 increases edge certainty,

Table 3: Top positive and negative paths contributions t =
1.15 (out of 101 graphs)

Occurrences Path Contribution

Most Frequent Paths
92 (8, 6, 1) 0.1995
63 (8, 1) 0.4863
57 (8, 6, 3, 1) 0.0667
32 (8, 6, 9, 3, 1) 0.0021
29 (8, 0, 1) 0.4994

Most Positive Contribution Paths
3 (8, 10, 6, 0, 1) 0.6533

21 (8, 9, 1) 0.5843
23 (8, 9, 6, 0, 1) 0.5781
29 (8, 0, 1) 0.4994
63 (8, 1) 0.4863
3 (8, 9, 0, 1) 0.4716

Most Negative Contribution Paths
3 (8, 10, 6, 5, 0, 1) -0.3090

23 (8, 6, 0, 1) -0.2593
23 (8, 9, 5, 0, 1) -0.0904
23 (8, 2, 3, 5, 0, 1) -0.0384
63 (8, 10, 6, 5, 1) -0.0327

Figure 7: Sampled graph from t = 1.15

as shown in Fig. 6 (right). Path frequency now concentrates
sharply (Table 3): path (8→6→1) appears in 92 of the 101
graphs, while the direct path (8→1) is almost as frequent
(63/101). Notably, only two paths — (8 → 0 → 1) and
(8 → 1) — have both high frequency and high positive
contribution, and they are all among the four ground-truth
paths between nodes 8 and 1, indicating that the sampled
graphs, even under an extreme threshold, still follow key
features of the underlying causal structure.

Taking one sample graph (Fig.7) as an example, we find
45 distinct paths from node 8 (PKC) to node 1 (pJNK),
yet their contributions to the causal effect differ greatly, as
shown in Table 4, which groups the paths into major positive
(each adding at least 0.05) and negative contributors (each
subtracting at least 0.02). Among them, path (8 → 9 →
6→ 0→ 1) alone supplies about 50% of the total positive
impact, while path (8→ 0→ 1) contributes another 22%,
and together they account for more than 70% of the effect.
Meanwhile the largest negative path, (8 → 6 → 0 → 1),
removes about 24% of the positive effect.

We emphasize that while these pathways are not testable
(and in fact not necessarily present in the true graph), they
can help narrow down the search space for a human expert.



Table 4: Dominant positive and negative 8→1 paths in the
sampled graph at t = 1.15

Path Edge–product expression Contribution

Largest positive contributions
(8, 9, 6, 0, 1) 5.06× 0.108× 0.714× 1.481 0.58
(8, 0, 1) 0.239× 1.481 0.35

(8, 2, 6, 0, 1) 0.696× 0.197× 0.714× 1.481 0.14
(8, 2, 0, 1) 0.696× 0.136× 1.481 0.14

Largest negative contributions
(8, 6, 0, 1) (−0.251)× 0.714× 1.481 −0.27
(8, 9, 5, 0, 1) 5.06× 0.009× (−1.333)× 1.481 −0.08
(8, 6, 1) (−0.251)× 0.148 −0.04

(8, 2, 3, 5, 0, 1) 0.696× 1.597× 0.016× (−1.333)× 1.481 −0.03

For instance, a domain scientist could focus first on these
high-impact pathways—e.g., by selectively perturbing praf
(node 0) or pakts473 (node 6) and observing the change in
plcg activation—before turning to the minor paths whose
individual contributions are an order of magnitude smaller.

6 CONCLUSIONS

Summary. We introduced a novel framework for causal
discovery conditional on additional knowledge, such as
a pairwise causal effect. Our method uses the adaptive
multilevel-splitting (MLS) framework to infer the poste-
rior probability over causal effects while also producing
interpretable graph samples consistent with the causal ef-
fect property. We show that, compared with baselines, our
MLS–parameter method remains accurate from d = 4 to
d = 32; while returning interpretable samples explaning the
observed causal effect.

Limitations and future work. In this study, our empirical
results have been focused on (i) linear Gaussian models and
(ii) conditioning on a single causal effect pair; but our frame-
work is not restricted to these cases. Future work could thus
study other properties of interest (such as a combination of
observed causal effects between different node pairs). Fur-
ther, to improve the MCMC mixing during each level, one
could consider incorporating more sophisticated MCMC
schemes over the DAG space [Kuipers and Moffa, 2017,
Viinikka et al., 2020].
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A APPENDIX

A.1 ADDITIONAL PLOTS FOR d = 8 AND d = 32

Figure 8: Estimated tail–probabilities for a representative
node pair in the d = 8 setting. MLS-parameter shows stan-
dard error (s.e.) over 5 runs.

Figure 9: Estimated tail-probabilities for a representative
node pair in the d = 32 setting.

A.2 INVESTIGATION OF MCMC CHAIN ON
CASE 5 (d = 4)

In Section 5.2, we noted that running a single, long MCMC
chain can fail to capture the distribution over causal effects
accurately. From Fig 10, we see that true distribution of
causal effect follows a multimodal pattern, and the causal
effect of the ground truth graph lies in the right-most peak
centered around 25. As Fig 11 shows, the single MCMC
chain’s distribution is centered around 8. This can be ex-
plained by the fact that the initial particle lies in this peak,
and the MCMC chain fails to mix because of the distinct
qualitative structure of the graphs corresponding to the dif-
ferent peaks.

Figure 10: Ground-truth posterior distribution of ACE3,0 in
Case 5

Figure 11: Posterior of ACE3,0 with pedge = 0.2

A.3 TARGET–THRESHOLD CONSTRUCTION

We select the target causal effects thresholds for evaluation
as follows, in order to test the ability of the methods to
estimate probabilities of causal effects much larger than the
true effect.

1. True effect: Let t0 denote the true pair-wise CE for
the node pair (i, j); this is treated as the starting point.

2. Pilot run: Execute a short, low-budget adaptive
multilevel-splitting (MS) pilot. Identify a threshold
t′ for which the estimated tail probability already lies
in the rare-event regime (about 10−8 or less).

3. Threshold grid: Form an ascending sequence

t0 = t1 < t2 < . . . < tT = t′,

spaced geometrically so that thresholds become denser
as they approach tmax; this focuses evaluation effort
where Pr[CE > t] is smallest.
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