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ABSTRACT

The sliced Wasserstein distance (SW) reduces optimal transport on R? to a sum
of one-dimensional projections, and thanks to this efficiency, it is widely used in
geometry, generative modeling, and registration tasks. Recent work shows that
quasi-Monte Carlo constructions for computing SW (QSW) yield direction sets
with excellent approximation error. This paper presents an alternate, novel ap-
proach: learning directions with Bayesian optimization (BO), particularly in set-
tings where SW appears inside an optimization loop (e.g., gradient flows). We in-
troduce a family of drop-in selectors for projection directions: BOSW, a one-shot
BO scheme on the unit sphere; RBOSW, a periodic-refresh variant; ABOSW,
an adaptive hybrid that seeds from competitive QSW sets and performs a few
lightweight BO refinements; and ARBOSW, a restarted hybrid that periodically
relearns directions during optimization. Our BO approaches can be composed
with QSW and its variants (demonstrated by ABOSW/ARBOSW) and require no
changes to downstream losses or gradients. We provide numerical experiments
where our methods achieve state-of-the-art performance, and on the experimental
suite of the original QSW paper, we find that ABOSW and ARBOSW can achieve
convergence comparable to the best QSW variants with modest runtime overhead.
We release code with fixed seeds and configurations to support faithful replication
(see supplementary material).

1 INTRODUCTION

Optimal transport (OT) is a mathematical framework for measuring distances between probability
measures (Villani et al., [2008). OT has seen increasing interest from the learning community in
recent years since, for example, collections of sample data can be interpreted as empirical distribu-
tions. In particular, the Wasserstein distance is a popular metric for OT tasks in the learning literature
(compared to, e.g., Kullback-Lieibler (KL) divergence, which is not symmetric, nor does it satisfy
the triangle inequality) (Solomon et al.| | 2014; Montavon et al.,|2016; |[Kolouri et al., 2017).

However, evaluating the conventional Wasserstein distance (WD) is computationally prohibitive
(O(n3logn) in time and O(n?) in space (Nguyen et al., 2023a)), particularly for higher-dimensional
measures, where computing Wasserstein distances can become the bottleneck of an application
(Kolouri et al.L[2019). The sliced Wasserstein (SW) distance (Bonneel et al.|[2015a) offers a scalable
alternative to the classical WD by averaging one-dimensional Wasserstein costs over projections on
the unit sphere, giving O(nlogn) time and O(n) memory for discrete measures via sorting, and
enabling its use across geometry, imaging, and generative modeling tasks (Peyré & Cuturi, 2019;
Bonneel et al.| 2015a Formally, the SW between p, v € Pp(Rd) (p>1is

SWH (1, v) = Egngy(sa-1y (W5 (0z11,03v)] - (1)

"Note that Bonnotte, (2013) showed SW is equivalent to WD for compactly supported measures.
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Here, d is the ambient dimension, and p > 1 is the order of the Wasserstein cost. Pp(Rd) denotes
the set of Borel probability measures on R? with finite p-th moment, i.e., [ ||z||P du(z) < oo.
S9-1 is the unit sphere, and ¢/(S%~1) is the uniform distribution on it. For a direction § € S4~1,
the pushforward 6y is the distribution of the scalar projection 67 X when X ~ p (ie., un-
der z — 0Tx). W,(-,-) is the p-Wasserstein distance on R; we average its p-th power over
directions, i.e., SWP(u,v) = Eo[WP(0;u,04v)]. Equivalently, one may write SW(u,v) =
(Eo[WE (O, O3v)]) /7.

Of course, in practice, the expectation—which integrates over all directions—must be estimated
using a finite set of directions. Given L directions (“slices”) O, = {6}, we estimate

_ 1 &
SW (1, 1;01) = 7 > WH(00)sp1, (8e)5v). 2
=1

For a fixed budget of L slices, the quality of a SW estimate is therefore determined by the set
©r C S%. For notational convenience, we denote f(0; u,v) == WE (s, O;v).

In the absence of any information, a natural choice for selecting the ©, is random Monte Carlo
(MC) sampling, which famously suffers from a slow (’)(L‘l/ 2) error convergence rate (Nadjahi
et al., 2020). To mitigate this issue, recent work has applied quasi-Monte Carlo (QMC) sampling
techniques to estimate SW (Nguyen et al.l 2024a). However, QMC methods still sample pseudo-
randomly, merely using data-independent heuristics to generate sample sets with more uniform cov-
erage of the space being sampled (i.e., lower discrepancy) (Niederreiter, 1992} Dick & Pillichsham-
mer, 2010). Randomized counterparts (RQSW) restore unbiasedness for stochastic optimization
while retaining uniformity (Nguyen et al., [2024a)).

However, in estimating SW, there is not an absence of information; the motivating idea of our paper
is that when computing SW, every slice yields additional information that can inform the selection
of further slices. For instance, if two nearby 6 have substantially different values of f(6; u,v), one
may wish to sample additional slices between those two slices. Put another way, given a fixed budget
of slices (especially for small L), the goal of selecting slices in SW should not be uniform coverage,
but rather to maximize coverage where most of the “signal” of SW is determined.

Based on this insight, the present paper develops a novel family of algorithms for estimating SW,
learning to select projection directions via Bayesian Optimization (BO), which proves to be espe-
cially effective in settings where SW is called inside an optimization loop (e.g., gradient-flow-style
updates). BO has become a popular, sample-efficient strategy for selecting informative queries un-
der tight budgets across hyperparameter tuning, experimental design, and robotics (Shahriari et al.,
20165 |Snoek et al.l 2012} (Garnett, 2023; |Vardhan et al., [2024)). Unlike QSW, which provides task-
agnostic uniform coverage of the sphere, BO can exploit structure in the projection landscape to
prioritize informative directions and adapt them as the task evolves. Our thesis is that when the
objective repeatedly queries SW on evolving distributions, a small set of task-adapted directions can
accelerate convergence without altering downstream losses or gradients—and that BO provides a
simple, black-box way to pick them.

Of course, BO is not the only possibility for adaptive refinement of SW estimates. For instance,
control variates such as the up/low method of [Nguyen & Ho| (2024)) or spherical harmonics as in
Leluc et al.| (2024) have been shown to improve MC convergence in the context of SW. Repulsive
point processes for MC have also been applied to SW (Petrovic et al., [2025), showing potential
advantages in higher dimensions. Random-path projecting directions (Nguyen et al., [2024b)) and
Markovian SW (Nguyen et al., 2023b)) both seek to select informative directions and show improved
performance over baseline MC SW. Nonetheless, a recent survey on sampling for sliced OT (Sisouk
et al.| 2025) confirms BO remains unexplored in this area.

Our paper ultimately introduces and evaluates four drop-in, BO-based direction selectors: BOSW:
a one-shot BO search on S~ to pick L directions; RBOSW: a periodic-refresh variant that reuses
BO for light retuning during optimization; ABOSW: an adaptive hybrid that seeds from strong
QSW sets and applies a few lightweight BO refinements and ARBOSW: a restarted hybrid that
periodically relearns directions (fresh BO) while retaining QSW seeding.

We note that our idea of leveraging BO can be complementary to QSW approaches: for instance,
combining QSW and BO yields our ABOSW and ARBOSW methods, which often achieve the best
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performance in our numerical results. RQSW-style randomization can still be layered when unbiased
stochastic gradients are required (under the constructions proposed in Nguyen et al.[ (2024a)).

The contributions of our work include:

1. We provide a family of simple, plug-and-play selectors for SW projections driven by BO.
In appropriate settings, these methods achieve state-of-the-art performance (measured by
error vs. number of iterations) for estimating SW with a finite number of slices (BO makes
estimators biased and prevents convergence to the true, unbiased SW value in the limit).

2. We integrate these methods into the QSW/RQSW pipeline without changing downstream
losses/gradients.

3. On the QSW paper’s test suite (Nguyen et al, [2024a), our hybrid variants
(ABOSW/ARBOSW) show convergence competitive with the best QSW baselines at mod-
est overhead; we follow their reporting protocol for one-to-one comparability.

2 BACKGROUND

Wasserstein and sliced Wasserstein. Consider a cost function or metric ¢ : R% x R? — R,
and let P.(R%) be the set of probability measures on R? where there exists an g such that
Jga ¢(z, xo)dpu(x) < oco. Then, given two measures 1, € P.(R?), the p-Wasserstein distance
(p > 1) between p and v is defined by

WP (u,v) = min c(z,y)Pdn(z,y),
Eplv) = min / (z, )P dm(z, y)
where II(u, v) denotes couplings with marginals u, v (Nguyen, 2025} |Peyré & Cuturi, 2019). The
standard choice of ¢(z, y) is ||z — ||, in which case the c is conventionally omitted from subscripts.

Computing W, ,, in high dimension can be costly (cf. Section E[)). The sliced Wasserstein (SW)
distance mitigates this by averaging one-dimensional Wasserstein costs over directions on the
unit sphere (see Equation . Following the notation of Nguyen| (2025), the one-dimensional
Wasserstein-p distance between u, v € P.(R) is

Wy ) = [ ea By o Fyla))du(o)

where F), is the cumulative distribution function (CDF) of x and F,, ! is the generalized inverse
CDF of v:
F,'(z) = inf{y € Rlz < F,(y)}.

Nguyen| (2025) elucidate (see their Remark 2.9) that the computational complexity of evaluating

WP, in the one-dimensional case is O(nlogn) in time and O(n) in space.

As discussed in Section [I] we use the finite-direction estimator in Equation 2] with a set of slices
O = {Gg}ZL:l; With i.i.d. Monte Carlo (MC) directions, the root mean square error scales as
O(L~1/?),

Quasi-Monte Carlo Methods. Quasi—-Monte Carlo (QMC) methods replace uniform random
draws by low-discrepancy point sets (Niederreiter, |1992; Dick & Pillichshammer;, 2010), improving
integration error for sufficiently smooth integrands (e.g., a convergence rate of O(L~!(log L)%) vs.
O(L‘l/ 2) for MC (Caflisch, [1998)). The idea of QMC for integrals dates back at least 50 years
(Zaremba, [1968). In either MC or QMC methods, an integral is estimated as a discrete average of
function evaluations (cf. Equation [2):

1 L
[ 1o0ix 1" pix

i=1

The distinction of QMC is rather than uniformly randomly sampling points from the domain of f,
one uses quasi-random (i.e., low-discrepancy) sequences of points. For instance, in one dimension,
a van der Corput sequence (van der Corputl [1935) takes the positive natural numbers, expresses
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them in a base (commonly base 2), reverses the digits, moves the digits after the radix point, and
translates back into decimal (for instance, 5 — 101y — 1015 — 0.1015 — 0.625). This scheme
is repeated using different bases in different dimensions to form Halton sequences (Halton, |1964)), a
common multi-dimensional quasi-random scheme. Sobol sequences (Sobol, [1967)) are related, but
notably, they use only base 2, enabling fast computational arithmetic (Pharr et al., 2023)).

QSW and RQSW. QSW instantiates QMC on S? via (i) equal-area transforms of Sobol points,
(i) Gaussianized Sobol points (Okten & Goncii, [2011) projected to the sphere, and (iii) structured
deterministic sets such as spiral sequences and energy/distance-optimized designs; it also studies
randomized counterparts (RQSW) that either scramble the net or apply random rotations, which re-
store unbiasedness while retaining uniform coverage (Nguyen et al.|[2024a). Since these algorithms
have state-of-the-art performance, we evaluate our methods against the same experimental protocols
(datasets, metrics, and reporting) as Nguyen et al.| (2024a) for fair comparison.

Bayesian optimization (BO). BO is a state-of-the-art sample-efficient strategy for optimizing
expensive, black-box functions (Shahriari et al.l 2016} Snoek et al., 2012} |Garnett, 2023} |Vard-
han et al} [2024). BO works by first fitting a surrogate model M to a set of seed observations
Dy, = {(i, f(x;))},. With M as a Gaussian process (GP), for example, the posterior predictive
distribution at a new point x is normally distributed:

f(@) | Dn ~ N(p(z), 0% (2)),

where p and o2 are posterior mean and variance. o2 depends on a kernel (covariance) function k.
For details on how the GP hyperparameters are fit to the data, we refer to the excellent tutorial and
visualizations of |Duque| (2023)).

To determine the next point to sample, BO optimizes an acquisition function «(z) and adds the
resulting = to D,,. A popular choice of acquisition function is the upper confidence bound (UCB),
which, for a GP surrogate, takes the form

avucs(z; B) = p(z) + Bo(x),

where [ is a scalar hyperparameter that balances mean (exploitation) and variance (exploration)
terms. The exploitation term favors candidate points that look promising based on the GP prior,
whereas the exploration term pushes BO to select points from undersampled regions where little is
known (large predictive variance).

Problem view for this work. Many learning tasks repeatedly evaluate sliced Wasserstein distances
between an evolving distribution and a fixed target, e.g., gradient flows, registration, and neural
network training. In such settings, the projection directions act purely as a numerical estimator and
can therefore be adapted to the task at hand without changing the underlying optimization objective.
Our BO-based methods learn such task-adapted direction sets: BOSW and ABOSW learn a fixed
set once, while RBOSW and ARBOSW periodically refine the set as the distribution evolves. All
variants drop into existing SW pipelines, e.g., those from|Nguyen et al.| (2024a)), without modifying
downstream losses or gradients.

3 METHODS

3.1 BAYESIAN OPTIMIZATION ON THE SPHERE

We treat f(6; 1, v) from Equation [2] as a black-box function on S%~! and fit a GP surrogate with
covariance (kernel) k(-, ). We use the angular RBF kernel, i.e., a Gaussian of the spherical geodesic
distance:

k(0.0') = exp( = H(EG1)%),  ds(6.6') = arccos(d, ), ©)
with lengthscale ¢ > 0 (set by a median heuristic over pairwise geodesic distances among the
currently evaluated directions). This isotropic (zonal) kernel on spheres is standard (Schoenberg,

1942; Borovitskiy et al., 2020; Rasmussen & Williams|, 2006).

Given a budget of L slices {6;}~ ,, the goal of Bayesian optimization in the context of SW is to
select the slices to maximize information about the integral in Equation This is a sequential
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experimental design problem—selecting which projection directions # € S9! to evaluate next,
given previous observations.

At iteration ¢, with data D, = {(6,, f(6,))};£, (so ny = |Dy|), the GP posterior (u, o) defines an
acquisition o (6); by default we use UCB with 5 = 0.7 (Srinivas et al., 2010; [Jones et al., [1998;
Shahriari et al.,2016). New directions are proposed by maximizing «; over a candidate pool of size
n. sampled uniformly on S~ (we use n. = 4096 unless stated), selecting a small batch b (default
b = 5). Candidates are normalized to unit norm and we suppress near-duplicates by dropping any
proposal whose cosine similarity to the current set exceeds 0.98. These small, parallelizable rounds
keep the BO overhead modest relative to SW evaluation; per round, scoring costs O(n. n;) kernel
evaluations and adds only b new f-evaluations.

We performed ablations to choose the models and parameters listed here; see Appendix|C} Further-
more, we discuss the theoretical guarantees on using BO for SW in Appendix

3.2 FOUR VARIATIONS OF BAYESIAN OPTIMIZATION FOR SLICED WASSERSTEIN

BOSW: one-shot learned directions BOSW performs a single BO run to select L directions,
starting from a small random initialization and iteratively expanding ©, until full. The learned
set remains fixed during downstream optimization. In terms of computational cost, each BO round
requires O(n.n;) kernel evaluations, which is modest for L in the hundreds. We note that the
task-adapted directions BOSW learns do not comprise an unbiased quadrature rule for the spher-
ical average. We include BOSW in the approximation error plot (see Section only for com-
pleteness and do not expect it to excel there; for unbiased estimation we rely on (R)YQSW. We
omit RBOSW/ABOSW/ARBOSW from that plot since their refresh/seeding mechanisms target
optimization-in-the-loop rather than a one-off integral.

RBOSW: periodic refresh RBOSW re-runs the BOSW selection process every R optimization
steps using updated source and target distributions (i.e., the current pair of distributions whose dis-
tance is being measured with SW at step ¢). Between refreshes, the selected directions remain fixed.
This adaptation can track evolving geometry without restarting the main optimization loop. We
note that “refresh” here means re-running BOSW from scratch on the current data without carrying
forward the previous surrogate model.

ABOSW: QSW-seeded, lightweight refinement ABOSW is a variant that uses adaptive BO:
standard GP-based BO (UCB) whose proposals are conditioned on the slice values already observed.
ABOSW is adaptive to the task at initialization (QSW seed — a few BO refinements), but not time-
adaptive; the set is refined once and then fixed.

ABOSW begins with a strong QSW set (e.g., spiral/Coulomb) and performs a few BO rounds to
lightly adjust it:

1. Initialize the GP by evaluating f(6) on the QSW seed ©,; these evaluations form the
initial dataset Dy.

2. Run a small number of BO rounds (in our experiments, we run r = 2 rounds with mini-
batch size b = 5; thus at most br < 10 directions change when L = 100, i.e., < 10% of
the set). At each round: sample a candidate pool of size n. = 4096 uniformly on S?~1,
score by UCB (default 5 = 0.7), suppress near-duplicates (cosine similarity > 0.98), pick
b proposals, and replace the b worst directions in ©7,.

3. Return the refined set O ; the overhead is small since only br new directions are evaluated
(mere seconds of compute, in our experiments).

ARBOSW: restarted hybrid ARBOSW periodically restarts the ABOSW process: at fixed in-
tervals, it re-seeds from a QSW set and runs the short BO refinement routine on current data. The
key distinction from RBOSW is that each restart begins from a QSW initialization rather than the
previous BO state, enabling both periodic adaptation and consistent seeding.

Compatibility with randomized estimators When unbiased stochastic gradients are needed, ran-
domized QSW remains appropriate (Nguyen et al., [2024a)). Our BO-based selectors are orthogonal
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Figure 1: Synthetic projection-selection experiment on three fitness landscapes (higher is better).
Bayesian optimization consistently and quickly finds the optimal projection directions. In the ridge
example, one of the (pseudo-random) QSW methods happens to identify a useful slice early on; but
BO clearly succeeds across all test cases.

to this choice: QSW (deterministic or randomized) provides the base set, and BO offers refinement
or re-selection. We do not claim unbiasedness for BOSW-based sets (cf. Appendix [D)); evaluations
follow the same deterministic vs. randomized protocols as|[Nguyen et al.[(2024a).

3.3 COMPUTATIONAL OVERHEAD

The dominant cost of sliced Wasserstein evaluation is the O(nlogn) sorting of n projected points
for each of the L slices. BO-driven selectors add an additional cost of scoring n. candidate di-
rections (we use 4096) and evaluating a small batch of b = 5 new slices per refinement round,
giving an overhead of O(n.n; + bnlogn) relative to plain SW/QSW. In practice, this cost is modest
compared to the core sorting operations: BOSW and ABOSW run within a few percent of QSW run-
times, ARBOSW is roughly 1.5-2 % slower due to occasional refinements, and only RBOSW incurs
substantial overhead due to its repeated refreshes. This pattern is consistent across all experiments,
including point-cloud interpolation (Table I, image translation, and autoencoding.

4 EXPERIMENTS

Aside from Section[4.1] our experiments match those run in[Nguyen et al.| (2024a): we use the same
datasets, tasks, and reporting style, and we only “swap” the projection selector (ours vs. theirs).
Across all tasks, we keep the optimizer, learning rates, and stopping criteria identical to Nguyen
et al. (2024a) to ensure one-to-one comparability. We include the QSW families used in the paper, as
well as vanilla Monte Carlo SW (denoted MCSW in our results). We note that in all our experiments,
for methods with refreshes (RBOSW and ARBOSW), we use a refresh interval of R = 25, which
we found to be a balance of speed and accuracy (see Appendix [C).

4.1 SYNTHETIC PROJECTION-SELECTION EXPERIMENT

Settings. To verify that Bayesian optimization (BO) can adaptively identify high-quality projec-
tion directions, we construct synthetic “fitness landscapes” over the sphere where certain directions
yield much higher rewards. We design three landscapes: (i) Peaks, with several local maxima and
one dominant peak; (ii) Ridge, where projections aligned with [1, 1, 1] achieve high value; and (iii)
Quadratic, where a single target direction maximizes fitness. Each method is given a small eval-
uation budget L € {5,10,15,20} and must return the best projection found. We compare BO
against QSW baselines (EQSW, GQSW, SQSW, DQSW, CQSW) and their randomized counter-
parts (RQSW, RGQSW, RSQSW, RDQSW, RCQSW) (see|Nguyen et al.[(2024a) for details of each
variant). Performance is measured by the mean best fitness value over 5 trials.

Results. Figure|l|summarizes the outcomes. On the Peaks landscape, BO steadily improves with
budget and clearly outperforms all QSW variants at L. = 15 and 20 (best value ~ 1.90 versus
~ 1.2 for the strongest QSW). On the Ridge landscape, QSW methods that happen to align with the
ridge (notably GQSW) perform well, but BO rapidly adapts to approach the optimum, surpassing
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randomized variants at all budgets. On the Quadratic landscape, BO dominates: it already finds
near-optimal projections by L = 10 (value 2.69 vs. < 1.0 for QSW/RQSW), and reaches the global
optimum ~ 2.84 by L = 15, while QSW remains below 2.4. These results illustrate how BO lever-
ages feedback to focus search on promising regions, whereas QSW'’s fixed designs (though effective
for uniform coverage) cannot adapt to landscape structure. This synthetic experiment confirms BO’s
capability as an adaptive projection selector, motivating its use in sliced Wasserstein computations.

4.2 APPROXIMATION ERROR

Setting. We select four point clouds (indices 1-4; 2048 points; 3D) from the ShapeNet Core-
55 (Chang et al., 2015) and use them as in [Nguyen et al.| (2024al). The population (ground truth)
SW value for each pair (1-2, 1-3, 24, 3-4) is approximated by a high-budget MC estimate with
L = 100,000. L ranges from 10 to 10, 000. We report the absolute error of: (i) MCSW, (ii) the QSW
variants (GQSW, EQSW, SQSW, DQSW, CQSW), and (iii) our BOSW (one-shot BO). Stochastic
methods (MCSW, BOSW) are averaged over five seeds; QSW variants are deterministic.

Results. Figure 2] shows absolute error versus L across the four pairs. Unsurprisingly, QSW vari-
ants consistently yield lower errors than standard MC, with CQSW/DQSW (and SQSW/EQSW
closely behind) approaching the ~ 10~° regime once L > 102. In contrast, BOSW exhibits notably
larger error across all L and pairs, decreasing with L but remaining above MC. This is expected: in
this problem, the data are highly uniform, such that slices along each direction are roughly equally
meaningful. Since BOSW learns task-adapted directions and is not designed to uniformly integrate
the sphere, it does not perform competitively on approximation error for a task of this nature. Conse-
quently, in subsequent sections, we focus on optimization-in-the-loop settings (e.g., gradient flows),
where learned directions via BO are shown to help.

4.3 POINT-CLOUD INTERPOLATION

Setting. We evolve
Z(t) = —n Vz(t) [SWQ(PZ(t)7 Py)]

to interpolate between two point clouds X and Y. Here, Px, Py are empirical distributions
over X and Y, and the curve starts at Z(0) = X (and ends at Y). We use the same Euler
scheme as [Nguyen et al. (2024a): 500 iterations with step size 0.01, and evaluate the distance
between PZ(t) and Py using the 2-Wasserstein metric from POT (Flamary et al} 2021). We set
L = 100 directions for all methods and report the mean + standard deviation over thirty seeds
at steps ¢ € {100,200, 300,400,500}. We compare MCSW, the QSW family, the randomized
QSW (RQSW) family, and our BO-driven selectors: BOSW (one-shot), RBOSW (periodic refresh),
ABOSW (hybrid seed+refine), and ARBOSW (restarted hybrid).

Results. Table 1| reports W5 (x10?) and wall-clock time. As in [Nguyen et al.|(2024a)), random-
ized QSW variants generally yield the shortest trajectories at later steps. However, our ARBOSW

Absolute Error

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
L L L L

Figure 2: Approximation error for SW between empirical distributions over point clouds. BO does
not provide an advantage compared to QSW methods, which excel on this type of problem that relies
on uniformly sampling the sphere of possible directions.
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achieves the best value at step 500, with a moderate overhead (6.9 s vs 3.8—4.2 s for QSW baselines).
RBOSW is strongest early (best at steps 100 and 200) but incurs large cost due to periodic BO re-
freshes. The deterministic one-shot BOSW trails (consistent with the need for fresh directions as the
flow evolves), while ABOSW performs similarly to the deterministic QSW group. Overall, BO hy-
brids provide competitive convergence without changing the optimization loop. For completeness,
we also report results at a much smaller budget (L = 10 directions) in Appendix [A.3] The trends
are consistent: ARBOSW remains among the top-performing estimators, RBOSW dominates early

steps but is slower, and BOSW/ABOSW align with their deterministic counterparts.

Estimators Step 100 (W2 |)  Step 200 (W2 |) Step 300 (W2 |) Step 400 (W2 |) Step 500 (W2 |) Time (s))
MCSW 5.749 £+ 0.079 0.187 & 0.006 0.031 + 0.002 0.013 + 0.002 0.006 + 0.002 4.06
GQSW 6.082 + 0.0 0.251 +£0.0 0.078 £ 0.0 0.070 + 0.0 0.069 + 0.0 423
EQSW 5.408 + 0.0 0.246 + 0.0 0.083 £ 0.0 0.074 + 0.0 0.072 + 0.0 3.85
SQSW 5.707 £ 0.0 0.200 + 0.0 0.085 £+ 0.0 0.075 + 0.0 0.074 + 0.0 4.08
DQSW 5771 +£0.0 0.201 + 0.0 0.075 £+ 0.0 0.065 + 0.0 0.064 + 0.0 3.96
CQSwW 5.603 + 0.0 0.183 £ 0.0 0.078 £+ 0.0 0.073 +£ 0.0 0.071 £ 0.0 3.96
RGQSW 5.713 £ 0.018 0.182 4+ 0.004 0.024 + 0.003 0.010 + 0.002 0.004 £ 0.001 4.14
RRGQSW 5.735 £ 0.035 0.183 4 0.007 0.029 + 0.003 0.012 + 0.003 0.005 £ 0.002 4.01
REQSW 5.705 £+ 0.023 0.183 4 0.002 0.029 + 0.002 0.013 + 0.002 0.007 £ 0.002 3.87
RREQSW 5.721 £+ 0.023 0.183 4 0.003 0.027 + 0.002 0.011 + 0.002 0.007 £ 0.002 3.80
RSQSW 5.710 £ 0.001 0.182 4+ 0.003 0.026 + 0.002 0.010 + 0.002 0.005 + 0.002 3.95
RDQSW 5.711 £ 0.004 0.181 4 0.003 0.027 + 0.002 0.012 + 0.002 0.005 £ 0.001 4.00
RCQSW 5.708 £+ 0.005 0.181 4 0.002 0.027 + 0.003 0.011 + 0.003 0.005 + 0.002 3.95
BOSW 3.744 £ 0.179 0.217 4 0.040 0.101 +£0.013 0.091 + 0.010 0.088 + 0.009 3.81
RBOSW (ours) 2.213 £ 0.055 0.083 + 0.008 0.047 + 0.005 0.033 + 0.004 0.025 4+ 0.003 44.58
ABOSW (ours) 6.199 £+ 0.522 0.298 + 0.084 0.087 + 0.012 0.077 + 0.009 0.075 + 0.008 3.95
ARBOSW (ours) 5.717 £ 0.079 0.186 + 0.004 0.025 + 0.003 0.012 + 0.001 0.003 + 0.001 6.91

Table 1: Summary of Wasserstein-2 distances (multiplied by 10%) from 30 different runs (L=100).

4.4 IMAGE STYLE TRANSFER

Setting. RGB source and target image are treated as point clouds X,Y € R"*3 (n is the number
of pixels) and are evolved along the same SW—driven curve as in Section[4.3] As in Nguyen et al/|
, we round RGB values to {0, ..., 255} at the final Euler step, use 1,000 iterations with step
size 1, and set L = 100 projection directions for all methods; W is computed with POT
2021). We visualize MCSW, RCQSW, and our RBOSW/ARBOSW. We report RCQSW
as the representative RQSW baseline because the QSW study found it consistently among the top
performers. Randomized variants behave very similarly overall; see Appendix [A-6]for full results.

Results. Figure[3]shows a representative transfer. Both RCQSW and our BO hybrids clearly out-
perform vanilla MCSW in terms of final W5 (printed above each panel) and visual fidelity. For ease
of exposition, we keep RCQSW as the representative randomized baseline in the main text, mirror-
ing the recommendation of [Nguyen et al] (2024a); see Appendix [A-4]for full comparisons. We note,
for transparency, that other randomized variants can be marginally stronger on some instances; in
particular, RGQSW achieves the lowest final W5 on our example at both L=10 and L=100. How-
ever, the randomized family behaves very similarly overall, and RCQSW remains competitive. Our
ARBOSW matches RCQSW on this example while preserving contrast and texture; RBOSW im-
proves over SW but typically trails RCQSW/ARBOSW, consistent with its lighter periodic refresh.
Thus, while not as clear of an accuracy advantage as seen in Sections 4.3]and [4.5] ARBOSW is at
least competitive with the state-of-the-art for this example.

Target

ARG ) | | i @
Figure 3: Image style transfer with L=100 and 1,000 iterations.
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Approximation Epoch 100 Epoch 200 Epoch 400
SWa(l) Wa({) SWa(l) Wa({) SWa(l) Wa({)

MCSW 225+£0.06 1058+0.12 2.11+£0.04 9.92+0.08 1.94£0.06 9.21 £0.06
GQSW 11.17+£0.07 3258 £0.06 11.75+£0.07 3327+0.09 14.824+0.02 37.99 £0.05
EQSW 225+£0.02 10574+0.02 2.05+0.02 9.84 +£0.07 1.90 £0.04  9.20 £ 0.07
SQSW 225+0.01 10.57+£0.03 2.08=+0.01 9.90 + 0.04 1.90+0.02  9.17 £0.05
DQSW 224+£0.07 10.58+0.05 2.06+0.04 9.83+£0.01 1.86 £ 0.05 9.12 £ 0.07
CQSW 222+0.02 10544002 2.05+0.06 9.81 +0.04 1.84 £0.02  9.06 £+ 0.02
RGQSW 225+£0.02 10.57+0.01 2.09 £0.03 9.92 £ 0.01 1.944+£0.02  9.18 £0.02
RRGQSW 223+0.01 1051 £0.04 2.06 £0.05 9.84 + 0.06 1.88+0.09 9.16 £0.11
REQSW 224+£0.04 1053+0.04 2.08+0.04 9.90+0.08 1.89 £0.04  9.17 £0.06
RREQSW 221+0.04 1050+£0.04 2.03+£002 9.83+0.02 1.88 +0.05 9.15 £ 0.06
RSQSW 222+£0.05 1053+001 2.04+0.06 9.82+0.06 1.85 £ 0.05 9.12 £ 0.02
RDQSW 221+£0.03 1050+0.02 2.03+0.04 9.82+0.04 1.86 +0.03 9.12 +£0.02
RCQSW 222+£0.03 1050+0.05 2.03+£0.02 9.82+0.03 1.85+£0.06 9.12+0.03
BOSW 220+0.01 10.34+£0.02 2.02+004 9.78+0.03 1.80 £ 0.01 9.01 + 0.02
RBOSW 228 £0.03 10.54 £0.04 2.09 £ 0.05 9.84 £0.05 1.90 £0.02  9.10+0.03
ABOSW 2.18+0.01 1027 £0.02 2.01£0.03 9.76 + 0.02 1.81 £0.02  9.01 +0.03
ARBOSW 221 £0.01 1044 +0.02 2.04+0.04 9.80+0.03 1.85+£0.02  9.07£0.02

Table 2: Reconstruction losses on the autoencoder task from different approximations with L = 100.
Losses are scaled by 10 for ease of exposition.

4.5 DEEP POINT-CLOUD AUTOENCODER

Setting. Following Nguyen et al.| (2023a) and |[Nguyen et al.[ (2024a), we train deep point-cloud
autoencoders with SW on ShapeNet Core-55 (Chang et al., 2015). This amounts to optimizing an
objective function:

Ig,lf Exopux) [Swp (PX7 Pgw(f¢>(X))) ]’

where (X)) is the data distribution, f, is a deep encoder, and gy, is a deep decoder. Both f; and
gy use a PointNet architecture (Qi et al.,2017). We approximate gradients using either MC, QSW,
RQSW, or our BO-driven selectors, and train for 400 epochs with SGD (learning rate 10~3, batch
size 128, momentum 0.9, weight decay 5 x 1074). We set L = 100 directions for all methods. Evalu-
ation is on the distinct ModelNet40 dataset (Wu et al.l[2015); we report the mean reconstruction loss
over three runs, measured against W5 and SW5 (which are estimated via 10,000 MC projections).

Results. Table [2] and Figure ] show the reconstruction losses and qualitative outputs with L =
100. Consistent with prior work, CQSW is a strong deterministic baseline. However, our BO-
based methods, particularly ABOSW, achieve the lowest reconstruction losses across epochs, even
surpassing CQSW in both SWy and W5 at the final epoch. BOSW also performs competitively,
while the restart variants (RBOSW, ARBOSW) lag slightly behind their non-restart counterparts.
This reversal compared to gradient flows highlights the different nature of dataset-level training:
here, the distribution is large and stable, so maintaining consistent, high-quality projection sets (as in
BOSW/ABOSW) is more effective than frequent refreshes, which can inject unnecessary variability.
We emphasize that while methods like RGQSW, RRGQSW, and REQSW were top performers for
image style transfer (Section[4.4), they are among the worst-performing methods in Table 2] after 400
epochs. Overall, BO-based selectors not only remain competitive but, in this setting, outperform
the previously recommended CQSW, suggesting that task-adaptivity via BO can provide tangible
benefits beyond the low-discrepancy sampling enabled by QSW. For clarity, we include MCSW,
CQSW, and our BO variants in the main text; the full visual and quantitative comparisons with all
QSW/RQSW variants are deferred to Appendix[A.6

5 CONCLUDING REMARKS

We proposed BOSW, RBOSW, ABOSW, and ARBOSW: Bayesian optimization—driven selectors
for projection directions in sliced Wasserstein (SW) computations that complement quasi—-Monte
Carlo (QSW) designs. Our hybrids combine QSW’s low-discrepancy coverage with BO’s task adap-
tivity and drop in to existing SW-based optimization loops without changing losses or gradients.
Across the QSW benchmark suite of [Nguyen et al.| (2024a), ABOSW and ARBOSW match the



Published as a conference paper at ICLR 2026

best QSW baselines in convergence, RBOSW offers strong early-stage gains, and BOSW provides
a simple deterministic alternative. Collectively, our methods perform competitively on the image
style transfer task, and achieve state-of-the-art convergence for the point-cloud interpolation and
deep point-cloud autoencoder tasks. By uniting deterministic geometric constructions with data-
driven adaptivity, our work broadens the design space for SW direction sets and opens a path toward
principled, learned projections in large-scale optimal transport applications.

Reflecting on our proposed algorithms, we remark on the work of [Nguyen & Hol (2023), where
the authors reweight slices (directions) for SW based on the slices’ 1D costs, yielding a new slic-
ing distribution. In the view of that work, our proposed nonparametric regression framework uses
in- and out-of-sample weights—training directions and new proposed directions, respectively—to
go beyond simply defining a set of projection directions and effectively define a new slicing distri-
bution (or, alternatively, a data-dependent Radon transform (Bonneel et al., 2015b}; [Kolouri et al.]
[2019)). We note that while the importance sampling energy-based SW of [Nguyen & Hol (2023) is
not an unbiased estimator of SW for finite L, it is an unbiased estimator of a new metric it induces
(“importance-weighted SW”). Thus, as future work, we are interested in further analyzing bias of
and metrics induced by our BO-based methods in light of Nguyen & Ho| (2023).

A common criticism of BO is its poor
scaling with respect to the dimension
d of the data. However, recent liter-
ature has suggested several variants
of BO that perform well in high di-
mensions
Kingsford, 2021} Binois & Wycoff,
2022; Jaquier & Rozo, [2020), and
in an exciting development,
just found that even

vanilla BO can perform excellently in
high dimensions with a simple scal-
ing of the GP lengthscale. More-
over, the GP surrogate, which is a pri-
mary bottleneck in BO, could poten-
tially be replaced with a neural surro-
gate for performance that scales bet-

ter with dimension (Li et al., 2023}
2021). Thus, overall, it

is no longer fair to claim that BO is
cursed by dimensionality. We would
like to test our methods on higher-
dimensional datasets in future work.

%o

ARBOSW

We remark that the present work is Figure 4: Reconstructed point clouds from the deep autoen-
reminiscent of (adaptive) Bayesian coder experiment, with L = 100.

quadrature (BQ) (Duvenaud, 2012;

Kanagawa & Hennig, 2019

et al., |2015; |Osborne et al., [2012). However, BQ is designed to compute an integral itself, not
select individual directions. In our setting, the integrand changes every step, so BQ would require
refitting a GP and recomputing quadrature weights each time, for a total of O(L?) runtime; see Sec-
tion [A-2] for a short experiment. Thus, while BQ is infeasible to directly apply, it remains closely
related to the ideas in our work.

Finally, we imagine several opportunities to improve our methods. Parallelism and GPU implemen-
tation, as explored by others in the field (Balandat et al.,[2020; [Knudde et al.,[2017; Munawar et al.}
2009), could significantly accelerate the runtime of our methods. Adding constraints or information
to BO based on knowledge of the problem, as in|Eriksson & Poloczek| (2021)); |Gelbart| (2015)); [Vard-
han et al.| (2023)); Taquier et al.| (2022), would give our methods further advantage over data-blind
techniques like QSW. Finally, recent variants of BO could offer higher-performance drop-in replace-
ments for the BO functions in our paper (Visser et al/, 2025} [McLeod et al/, 2018} [Kawaguchi et al
[2015). We aim to explore these extensions in future work.

10
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APPENDIX

A ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

A.1 SENSITIVITY TO KERNEL CHOICE AND ACQUISITION PARAMETERS

Setup. We evaluate the robustness of our BO-based direction selectors by varying the Gaussian
process kernel (RBF vs. Matérn—3/2) and the UCB acquisition parameter 5 € {1, 2, 3}. We choose
these kernels because they are the standard GP covariances used on the sphere (Borovitskiy et al.,
2020). Experiments follow the approximation-error setting from Section 4.1 with L € {100, 1000},
four ShapeNet point-cloud pairs, and five random seeds. We focus on BOSW (fixed direction set
learned once) and ARBOSW (periodically refined set), which represent the two BO refinement
regimes used in the paper. The other variants, ABOSW and RBOSW, use the same BO inner loop
and exhibited identical kernel/acquisition behavior in preliminary tests, so we omit them for brevity.

Results. Across all kernel and 3 choices, both BOSW and ARBOSW show extremely small vari-
ation in approximation error. The standard deviation remains below 4 x 10~ for L=100 and below
8 x 10~° for L=1000, and the relative ranking of methods is unchanged. RBF and Matérn-3/2
kernels yield nearly identical results. These findings confirm that our BO-driven direction selection
is highly robust to kernel and acquisition hyperparameters.

Method Kernel L=100 L=1000
BOSW RBF 9.74%x107° £ 4.10x 10~ 2.20x107° £ 7.12x 10~
BOSW RBF 9.74%107°5 £ 4.10x 10~ 2.20x107°% £ 7.12x 10~
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BOSW Matérn-3/2 1
BOSW Matérn-3/2 2
BOSW Matérn-3/2 3
ARBOSW RBF 1
ARBOSW RBF 2
ARBOSW RBF 3
ARBOSW  Matérn-3/2 1
ARBOSW  Matérn-3/2 2
ARBOSW  Matérn-3/2 3

9.74x107° £ 4.10x 10~
9.74%x1075 £ 4.10x 10~
9.41%x107°5 £ 4.16x 10~
9.74%x1075 +4.10x 10~
9.74x 1075 +£4.10x 10~
9.41x107° +£4.16x107°

2201075 £ 7.12x 10~
2.31x107° £ 6.70x 10~
2.20x107° £ 7.12x 10~
2.20x107° +7.12x 10~

)
)
)
)
)
)
)
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|
) (2.31x107° +£6.70x 10~

Table 3: Kernel and acquisition-parameter sensitivity (mean = std over four ShapeNet pairs and five
seeds).

A.2 FEASIBILITY OF CLASSICAL BAYESIAN QUADRATURE (BQ)

Classical Bayesian Quadrature (BQ) is conceptually related but computationally impractical for
sliced-Wasserstein projection selection: each iteration requires refitting a GP and recomputing
quadrature weights, leading to overall O(L?) cost (see Section 5).

To illustrate this scaling, we benchmarked a standard adaptive BQ method (GP refit + UCB acquisi-
tion) against SW and our ABOSW method on synthetic point clouds. Table[|reports the end-to-end
runtime for generating all L projection directions.

Method L=50 L=100 L=200 L=500 L=1000 L=2000 L=5000

MCSW 0.00 0.00 0.00 0.00 0.01 0.01 0.03
ABOSW  0.35 0.06 0.06 0.06 0.06 0.07 0.09
BQ 0.10 0.21 0.47 1.61 5.78 35.73 654.66

Table 4: Wall-clock runtime (seconds) for generating L projection directions.

15



Published as a conference paper at ICLR 2026

ABOSW shows a slightly higher cost at L=>50 because its adaptive initialization performs more
refinement steps when the budget is small; for larger budgets (L > 100), this cost is amortized
and ABOSW switches quickly into its fast QSW-style fill-in stage, yielding a nearly flat runtime of
0.06—0.09s across all L.

In contrast, BQ grows from 0.47s at L;QOO to 1.61s at L=>500, 5.78s at L=1000, and over 650s at
L=5000, fully consistent with its O(L?) scaling. These results further support our decision not to
include classical BQ as a comparative baseline in the main experiments.

A.3 POINT-CLOUD INTERPOLATION WITH L = 10 DIRECTIONS

Estimators Step 100 (W2 |)  Step 200 (W2 |) Step 300 (W2 |) Step 400 (W2 |) Step 500 (W2 |) Time (s])
MCSW 5719 +0.113 0.190 + 0.016 0.041 4 0.001 0.020 + 0.002 0.011 4 0.001 271
GQSwW 9.207 + 0.000 3.692 + 0.000 2.461 =+ 0.000 2.191 =+ 0.000 2.119 =+ 0.000 2.92
EQSW 4.045 £ 0.000 0.552 + 0.000 0.490 + 0.000 0.487 + 0.000 0.482 + 0.000 2.78
SQSW 6.323 + 0.000 1.044 + 0.000 0.582 + 0.000 0.538 + 0.000 0.534 + 0.000 2.84
DQSW 5.897 4+ 0.000 0.856 + 0.000 0.612 4+ 0.000 0.595 + 0.000 0.594 + 0.000 2.79
CQSW 5.574 + 0.000 0.755 + 0.000 0.592 + 0.000 0.582 + 0.000 0.582 + 0.000 2.87
RGQSW 6.036 + 0.231 0.183 +0.022 0.034 + 0.003 0.017 + 0.003 0.009 + 0.002 2.84
RRGQSW 6.002 & 0.149 0.215 +0.025 0.047 £ 0.004 0.029 + 0.003 0.024 £+ 0.002 278
REQSW 5.722 £0.153 0.189 + 0.008 0.039 + 0.005 0.019 + 0.004 0.009 =+ 0.002 2.80
RREQSW 5.832 +0.018 0.193 4+ 0.006 0.038 + 0.002 0.022 £+ 0.001 0.015 + 0.000 2.83
RSQSW 5.718 + 0.064 0.187 + 0.008 0.035 + 0.004 0.015 + 0.002 0.007 + 0.001 2.81
RDQSW 5.694 +0.044 0.182 + 0.020 0.033 + 0.002 0.015 £ 0.001 0.007 =+ 0.002 2.79
RCQSW 5.673 +0.023 0.184 &+ 0.008 0.038 + 0.005 0.018 + 0.003 0.008 + 0.002 2.79
BOSW (ours) 4.833 £ 0.863 1.303 + 0.494 0.967 + 0.375 0.912 £ 0.345 0.900 + 0.333 2.86
RBOSW (ours) 3.457 + 0.109 0.175 4+ 0.044 0.082 + 0.009 0.059 + 0.005 0.047 + 0.004 22.63
ABOSW (ours) 9.086 + 3.294 3.005 + 1.499 1.637 + 0.520 1.297 + 0.205 1.216 +0.139 3.09
ARBOSW (ours)  5.617 £0.128 0.207 £ 0.015 0.039 + 0.002 0.017 £ 0.003 0.009 =+ 0.001 3.09

Table 5: Summary of Wasserstein-2 distances (multiplied by 10?) from three different runs (L=10).

Table [3] reports results for point-cloud interpolation with a smaller projection budget of L = 10.
As expected, variance across methods is larger under such limited directions, but the relative trends
mirror those observed for L = 100: randomized QSW variants achieve fast convergence at later
steps, while ARBOSW remains within the top four methods overall, offering competitive final ac-
curacy. RBOSW continues to excel early in the trajectory but incurs a higher runtime due to periodic
refreshes.

A.4 COMPLETE IMAGE STYLE TRANSFER COMPARISONS

Figures[5|and|[6] visualize the full method grid. Across both budgets, the randomized family performs
very similarly; within that family RGQSW attains the lowest final Wy on our example for both
L=10and L=100. This is consistent with the QSW observation that randomized designs are closely
clustered in quality. Our BO hybrids remain competitive: ARBOSW is comparable to RCQSW
visually and in Wy at L=100, while RBOSW improves over SW but generally trails the strongest
RQSW variants, reflecting its lighter refresh. These results support our choice to use RCQSW as the
representative randomized baseline in the main figures while providing full transparency here.

A.5 COLOR-TRANSLATION EXPERIMENTS AT 128 x 128

We additionally include a controlled color—translation study in which the source and target images
differ only through a global additive RGB shift. This setting preserves the spatial structure of the
image and isolates the effect of a distributional shift in color space. For a given 128 x 128 source
image X, we construct the target image X via

X(i,5) = clip(X(i,5) + 6, 0,255),

where § € R3 is a fixed color—translation vector. We then run the same style—transfer procedure as
in Section 4.4 using both L=100 (Figure[/) and L=10 (Figure [8) projection directions.

Across both projection budgets, methods that employ randomized QSW constructions or BO-based
refinement accurately recover the color shift and yield very small final W, distances, while deter-
ministic QSW variants show larger variability. As in the main experiments, ARBOSW behaves
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Source MCSW, W, = 643.23 GQSW, W, =36.65 RGQSW, W, =0.12 A . EQSW, W, =21.35

REQSW, W, =0.35

Source

BOSW, W, =175.80 A 08 ABOSW, 59.87 ARBOSW, W, =1.37 Target

Figure 6: Full comparison for image style transfer with L=10.

comparably to the strongest randomized baselines at L=100, and RBOSW improves over vanilla
SW though it is typically outperformed by RCQSW and RGQSW. These controlled translation re-
sults further highlight the stability of the BO-refined direction sets and their consistency across
varying projection budgets.

A.6 FULL COMPARISON FOR DEEP POINT-CLOUD AUTOENCODERS

Setting. We follow the same setup as in Section [£.5} ShapeNet Core-55 training, PointNet en-
coder/decoder, L = 100 projection directions, SGD with learning rate 10~3, momentum 0.9, weight
decay 5 x 1074, batch size 128, and training for 400 epochs. Evaluation is performed on Model-
Net40, reporting SWo and W5, reconstruction losses averaged over three runs. Here, we expand the
comparison to include the entire QSW family (EQSW, GQSW, SQSW, DQSW, CQSW) and their
randomized counterparts (RQSW, RRGQSW, REQSW, RREQSW, RSQSW, RDQSW, RCQSW),
alongside our BO-based methods (BOSW, RBOSW, ABOSW, ARBOSW).

Results. Figure [0] shows qualitative reconstructions across all baselines and our BO variants.
While randomized QSW methods produce consistent and visually plausible outputs, our BO-based
designs, especially ABOSW, stand out with sharper reconstructions and more stable geometry. No-
tably, CQSW remains a strong deterministic baseline, but ABOSW surpasses it in final reconstruc-
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Source MCSW, W, =0.17 GQSW, W, =95.17 RGQSW, W, =0.07 RRGQSW, W; =0.07 EQSW, W, = 26.69

REQSW, W, =0.08 SQSW, W, =71.54 RSQSW, W, =0.12 DQSW, W, =0.14 RDQSW, W, =0.14 CQSW, W, =75.98

RCQSW, W2 =0.13 BOSW, W =91.71 RBOSW, W, =0.19 ABOSW, W; =16.48 ARBOSW, W, =0.04 Target

Figure 7: Color—translation experiment at 128 x 128 with L = 100.

Source MCSW, W, =1.23 GQSW, W, = 186.48 RGQSW, W, =0.12 RRGQSW, W, =0.12 EQSW, W; =33.30

REQSW, W, =0.37 SQSW, W, =148.14 RSQSW, W, =0.13 DQSW, W, =0.13 RDQSW, W, =0.13 CQSW, W; =191.25

RCQSW, W, =0.37 BOSW, W, = 26723 RBOSW, W, =0.10 ABOSW, W, =27.86 ARBOSW, W, =0.08 Target

Figure 8: Color—translation experiment at 128 x 128 with L = 10.

tion loss while maintaining visual quality. This contrasts with gradient flow experiments, where
refresh-style variants (RBOSW/ARBOSW) had stronger performance; in autoencoders, the stable
large-scale dataset favors consistent one-shot or hybrid projection sets (BOSW/ABOSW). These ob-
servations reinforce our conclusion that the optimal projection strategy is task-dependent: stability-
driven tasks benefit from non-refresh BO, while dynamic flows gain from refresh hybrids.
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Figure 9: Full reconstructed point-clouds from MCSW, QSW, RQSW, and BO variants with L =
100.
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Convergence: Distance vs. Iterations (L = 100) Convergence: Distance vs. Time (L = 100)
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Figure 10: Ablation study of different acquisition functions for Bayesian optimization, including
upper confidence bound (UCB), expected improvement (EI), Thompson sampling, and log-EI. UCB
consistently performs best in terms of number of iterations and wall-clock time required to converge.
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Figure 11: Ablation study of different values of /3 (the weight parameter for the UCB acquisition
function). Although the different values of /3 yield similar results, 5 = 0.7 consistently demonstrates
the best performance.

B COMPUTATIONAL INFRASTRUCTURE

We use dual NVIDIA RTX A6000 GPUs to conduct experiments on training deep point-cloud au-
toencoders. Other applications are run on a MacBook Pro 14-inch (Nov 2023) equipped with an
Apple M3 Max chip and 36 GB memory.

C ABLATION STUDIES

Section [3.1] describes several modeling and parameter choices made for our implementation of
Bayesian optimization. We justify these choices here via ablation studies. Each study is evalu-
ated on the point-cloud interpolation (gradient flow) example of Section [#.3] For consistency, we
also select L = 100 for all our ablation studies unless otherwise noted.

First, we experiment with different possible acquisition functions for Bayesian optimization. We test
popular functions such as upper confidence bound (UCB), expected improvement (EI), Thompson
sampling (Thompson [1933)), as well as the recently-proposed log-EI (Ament et al.| [2023). Figure|[I0]
shows that UCB consistently outperforms other acquisition functions. Thus, we select UCB for all of
our examples in the paper. Interestingly, we note that a recent work (Vardhan et al.,[2024) also found
that LCB (identical to UCB, but for minimization rather than maximization) was the most efficient
acquisition function choice, in a completely different application domain (design optimization).

Next, we consider different values of /3, the parameter that tunes exploration vs. exploitation in
the UCB acquisition function. (Note that in our experiments, we use a constant 3; adaptive (3
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Figure 12: Ablation study of different values of the cosine-similarity cutoff threshold used in our
method. The plots motivate our usage of 0.98 for all our experiments.
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Figure 13: Effect of varying n. on the convergence of our BO-based methods. For most meth-
ods, n. = 4096 is optimal, except for BOSW, which attains minimal error after 500 steps using
n. = 1024. Note that the vertical axis is scaled logarithmically to make the data points easier to
distinguish.

schedules are certainly possible and may benefit bias (see Appendix [D]) As demonstrated in Figure
the constant value 5 = 0.7 that we select for all our experiments outperforms all other choices
considered (both larger and smaller).

We also explore different thresholds for the cosine-similarity cutoff (used to reject the selection of
directions that are too close to each other). We remark that this value should typically be chosen
closer to 1 as L increases, to facilitate large numbers of slices becoming dense on the unit hyper-
sphere. For L = 100, though (as generally used in our experiments), Figure[T2]shows that our choice
of 0.98 is near-optimal; while sometimes a slightly lower value (0.9 or 0.95) helps achieve a slightly
lower error at a particular time, a value of 0.98 results in the lowest error after sufficient iterations
or time. An annealing scheme for a dynamic threshold value may unlock marginally better perfor-
mance (particularly for large L), but we feel this would be a very minor optimization, especially
since L is usually kept relatively small to maintain computational efficiency of SW.

Next, we consider different values of n., the number of candidate directions considered on any
iteration of our core BO routine. We chose 1, = 4096 to copy the number of candidate directions
used in the QSW methods of [Nguyen et al| (2024a). Interestingly, as Figure [I3] shows, this value
turns out to be optimal for all methods except BOSW (where 1024 is optimal). Nonetheless, we
found that values from 512 to 16384 did not significantly change the error in our methods after 500
steps, despite the linear-time computational complexity associated with n.. Thus, in practice, it may
be appropriate to use smaller values of n., accepting a modest change in accuracy for a potentially
substantial change in performance. We note that, as expected, for sufficiently small values of n., no
method converged well (neither QSW methods nor our BO-based methods).

Finally, we consider different values of R for the variants of our method that use periodic BO
refreshes. We evaluate R € {5,10,25,50} for both RBOSW and ARBOSW. Smaller R values
adapt more aggressively but incur substantial GP and BO overhead, while larger values refresh less
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Figure 14: Ablation study on refresh frequency R for BO-refined SW estimators. Across both
RBOSW and ARBOSW, refresh rates in the range R = {5, 10,25,50} provide the best accu-
racy—efficiency balance, with R = 25 achieving the strongest performance overall.

often and risk using stale direction sets. As illustrated in[I4] R = 25 consistently offers the best
accuracy—efficiency trade-off: it converges quickly while maintaining low overhead. A slightly
less frequent refresh, R = 50, performs comparably and is a reasonable secondary choice when
computation time is constrained. In contrast, the more frequent refresh schedules (R = 5 and
R = 10) incur significant overhead and have the poorest wall-clock efficiency. Motivated by these
results, we adopt R = 25 for all of our numerical experiments.

D THEORETICAL PERFORMANCE OF BAYESIAN OPTIMIZATION FOR SLICED
WASSERSTEIN

Although our paper is primarily intended to provide numerical evidence of the efficacy of using
Bayesian optimization for sliced Wasserstein distance computations, we briefly remark on the pos-
sibility of theoretical performance bounds.

It is known that under i.i.d. MC sampling and sufficient regularity assumptions, SW converges at a

rate of O(L~'/2). By the triangle inequality, we can relate the error of our BO methods to the error
of MCSW:

SWP(Or) — SW2(1, y)’ < ]swg(éT) - SWf(@MC)‘ +|SWE(Ouc) — SWP(p,v)]

BO-MC Error MC-SW Error

The latter term is bounded above by O(L~'/?), while bounding the former term remains an open
question. The primary reason bounding that term is problematic is that BOSW may not perform as
well as MC SW in the limit, because BOSW is not generally an unbiased estimator. For instance,
with our UCB acquisition function as used in our paper,

i (0) = pe-1(0) + Bor-1(0),

we take a constant 5 = 0.7. Thus, «; will always be encouraged to select 0 yielding high f(0; i, V).
In the limit, this suggests that

il

L
S0 sup 1(0) > Egnulf(6)
=1 fesd—1

This is a strict inequality assuming f is non-constant on S%~!; and when sampling # uniformly
(MC), as mentioned above, Eg. [ f(0)] = 0. This rough sketch demonstrates that BOSW, at least
with UCB with a constant 3, will not converge in the limit—despite its attractive numerical perfor-
mance (demonstrated in our experiments in the main body) during early iterations. Bounding the
performance of BOSW for finite L is an interesting open question. It may be possible to approach
this question using the concepts of information gain and regret minimization; see, e.g.,|Vakili et al.
(2021). This would be impacted by our choice of using an angular RBF kernel.
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Despite gaps in the current theory, we note that we can use an annealing schedule for S to drive our
GP-UCB sampler towards eventual uniform coverage of the sphere. In spirit, this follows the idea
of using BOSW for early iterations, then switching to MC or other variants for later iterations—an
idea that could harmonize the benefits of fast early convergence with BO-based methods with the
benefits of uniform coverage of MC samplers. For instance, if we define

1

a1 (0) = eray(0) + (1 — Et)ma

we can choose ¢; = t77 (0 < v < 1). Thenast — oo, ¢, — 0, but Zt €; = 00, so informally
speakin the second Borel-Cantelli lemma would suggest that every measurable region of the
hypersphere is sampled infinitely often with probability 1. It follows that the bias will match that of
uniform MC sampling, which is 0 in the limit; and under this scheme, the convergence rate would
reach O(L~'/?) asymptotically (whether it is faster or slower during initial iterations).

E USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used in the preparation of this paper. Specifically, Perplexity
was prompted to act as a peer reviewer for our draft. In this context, the model identified several
recent references for us to discuss in our related work that we previously had not included; and the
model reminded us to perform a few of the ablation studies seen in Appendix

The lemma assumes each “event” (direction selection) is independent, which is not the case, by design.
Nonetheless, this assumption would hold in the limit of ¢, — 0. Generalizations of the Borel-Cantelli lemma
that do not require strict independence have been studied (Chandra) 2008; Bir6 & Curbelo} [2021), and it is
possible that those may apply here. For the present work, though, we only characterize our arguments as
informal.
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